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Abstract

While being disturbed by environmental noises, the acoustic masking technique is a1

conventional way to reduce the annoyance in audio engineering that seeks to cover2

up the noises with other dominant yet less intrusive sounds. However, misalignment3

between the dominant sound and the noise—such as mismatched downbeats—often4

requires an excessive volume increase to achieve effective masking. Motivated by5

recent advances in cross-modal generation, in this work, we introduce an alternative6

method to acoustic masking, aiming to reduce the noticeability of environmental7

noises by blending them into personalized music generated based on user-provided8

text prompts. Following the paradigm of music generation using mel-spectrogram9

representations, we propose a Blending Noises into Personalized Music (BNMusic)10

framework with two key stages. The first stage synthesizes a complete piece of11

music in a mel-spectrogram representation that encapsulates the musical essence of12

the noise. In the second stage, we adaptively amplify the generated music segment13

to further reduce noise perception and enhance the blending effectiveness, while14

preserving auditory quality. Our experiments with comprehensive evaluations on15

MusicBench, EPIC-SOUNDS, and ESC-50 demonstrate the effectiveness of our16

framework, highlighting the ability to blend environmental noise with rhythmically17

aligned, adaptively amplified, and enjoyable music segments, minimizing the18

noticeability of the noise, thereby improving overall acoustic experiences.19

1 Introduction20

In public environments like subway trains, passengers are often exposed to persistent noise. While21

active noise cancellation (ANC) [5] is effective for personal use, it’s not practical in group settings.22

Equipping everyone with ANC headphones is unrealistic, and ANC systems struggle with high-23

frequency noise. We propose a new approach: instead of eliminating noise for individuals, we aim to24

blend the environmental noise with designed music in a way that reduces its perceptual salience for a25

group. This shift from suppression to harmonious masking enables scalable auditory enhancement in26

shared environments, improving comfort without requiring personal devices. This approach could27

also be applied in other noise-prone settings, such as elevators or household appliances, where28

blending the noise with aligned music could improve the auditory experience.29

Inspired by psychoacoustic principles of audio masking, where one sound reduces the perception of30

another, our task focuses on introducing background sounds to mask unwanted noise. Traditionally,31

white noise or unrelated music has been used for this purpose, but these methods often fall short. White32

noise struggles with non-stationary sounds and, when amplified, can become irritating. Similarly,33

unrelated music requires high volume to mask noise effectively, which can cause discomfort. Instead34

of full masking, our approach aims for perceptual blending—generating music rhythmically and35

spectrally aligned with the noise. This partial masking reduces annoyance without overwhelming the36

listener, integrating residual noise components into the music.37
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Effective blending requires the generated music to mask the noise perceptually, even at low volumes.38

To achieve this, the music must align with the noise in terms of rhythm and structure, integrating39

naturally without relying on high loudness. While recent advances in music generation using mel-40

spectrogram representations [2, 12, 8, 6, 14, 15, 16, 7] show progress, most models are trained41

on clean, structured inputs and struggle with noisy, unstructured data. We build on this emerging42

paradigm by generating music in the frequency domain, aligning its structure and rhythmic patterns43

with the surrounding noise for seamless auditory blending, thereby reducing the listener’s awareness44

of the noise.45

We propose a novel method, Blending Noises into Personalized Music (BNMusic), which uses46

adaptive loudness-amplified music to blend with ambient noise. The approach consists of two47

interconnected stages. In Stage 1, we apply a two-step outpainting and inpainting process on the48

noise mel-spectrogram to generate music that aligns rhythmically and spectrally with the noise’s49

high-energy regions. By conditioning on these regions, the model generates music that effectively50

targets the perceptually prominent components of the noise. In Stage 2, we adaptively amplify51

the music’s loudness, leveraging the alignment from Stage 1. Since the music already inherits the52

frequency distribution of the noise’s high-energy region, only modest amplification is needed to53

achieve effective masking, without excessively increasing the overall volume. This two-stage process54

works together to mask the most salient noise components, which significantly reduces the noise’s55

perceptual presence, leaving the less intrusive low-energy components with minimal impact on the56

listener’s experience. Thus, our design ensures perceptually effective blending with minimal gain,57

preserving musical coherence while suppressing unwanted noise.58

To evaluate our approach, we conducted objective and subjective assessments using EPIC-59

SOUNDS [3] and ESC-50 [11] noise sources, covering a wide range of environmental sounds.60

Our method outperformed other baselines on MusicBench [8]. In summary, we introduce a novel61

task of noise blending with music, propose a method to construct and adaptively amplify music to62

blend with noise, and demonstrate through experiments that our method effectively minimizes noise63

perception while preserving auditory coherence.64

2 BNMusic framework: Blending Noises into personalized Music65

In this section, we present the details of our BNMusic framework, designed to blend noise ANoise66

with adaptive amplified music AMusic generated from ANoise and text condition Ctext. Our method67

extends the existing model’s application without additional training.68

Problem statement. We formalize noise blending as an alternative to traditional masking, which69

often relies on high volume. Given a noise segment ANoise and a user prompt Ctext, the goal is to70

generate a music segment AMusic that, when played with the noise, reduces its perceptual salience and71

integrates residual components into the musical texture, enhancing the overall auditory experience.72

As shown in Fig. 1, the masked noise exhibits a regular rhythm, enabling alignment with music73

through our two-stage BNMusic framework.74

Pre-processing. The input noise ANoise ∈ Rt×fs is first converted to a mel-spectrogram SNoise =75

Mel|STFT(ANoise)| ∈ RW×H , where STFT is the Short-Time Fourier Transform and Mel denotes76

mel-filtering. This transforms the 1D audio signal into a 2D representation, which is then mapped77

to grayscale pixel intensities xNoise ∈ [0, 255]W×H×1, with lower values indicating louder regions.78

To highlight high-energy areas, a binary mask M ∈ {0, 1}W×H is applied, producing the masked79

spectrogram x̃Noise = xNoise ⊙M.80

Stage 1: Noise-aligned music synthesis. We use a two-step outpainting and inpainting process to81

preserve the rhythmic essence of the input noise while blending it into music. The mask M isolates82

the core noise region in the image x̃Noise, dividing it into two parts. During the outpainting stage, the83

model generates music to fill the space surrounding the core, allowing the noise to diffuse outward.84

The masked mel-spectrogram x̃Noise and the text prompt Ctext are encoded into latent representations85

and passed through the modified LDM model from Riffusion [2], which is fine-tuned for music86

generation. Given the noisy latent zt at timestep t, the model predicts the added noise ϵθ using87

a U-Net conditioned on the corrupted mel-spectrogram x̃Noise and the prompt Ctext. The posterior88

distribution of the previous latent state zt−1 is computed as:89
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Figure 1: Overall pipeline of our proposed BNMusic framework to achieve noise blending with
frozen music generators. The two stages of our approach are marked with different background
colors. In Stage 1, our approach generates music that aligns with the noise, and in Stage 2 we adaptive
amplify the music signal to reach the most ideal and reasonable blending with the noise.

p(zt−1 | zt, x̃Noise, Ctext) = N
(
zt−1;µ(zt, ϵθ), σ

2
t I
)

The reverse process proceeds until t = 0, yielding the final latent ẑ0. This latent is passed through90

the decoder D to reconstruct the mel-spectrogram, including the masked region xMid = D(ẑ0). The91

outpainted region of xMid aligns rhythmic patterns with the surrounding noise. We invert the mask92

M and inpaint the higher-energy components of the noise: x̃Mid = xMid ⊙ (1−M).93

After a second inpainting, we obtain the final musical content xMusic, integrating rhythmic patterns94

while eliminating distractions.95

Stage 2: Blending enhancement by adaptive amplification. To improve blending, we amplify the96

generated music to enhance its masking effect on the core noise region. First, we compute the noise’s97

spectrogram ŜNoise using the Short-Time Fourier Transform (STFT). Based on prior research [10],98

we derive the threshold matrix:99

TMask = Mel|10
20·log10(ŜNoise)+21

20 |

The minimum signal-to-mask ratio (SMR) of 21 dB is used to set the masking thresholds. The100

amplification factor λ is optimized to maximize auditory masking while maintaining acceptable101

music loudness. The optimization function is:102

λ∗ = argmin
λ

{SUM(α · S′
Music) + SUM(max[(TMask − S′

Music)⊙M,0])}

This ensures the music amplifies the core area’s masking while minimizing global amplification. The103

amplified mel-spectrogram S′
Music is converted back to audio:104

AMusic = ISTFT(Griffin-Lim(Mel−1(S′
Music)))

3 Experiment105

3.1 Experiment setup106

Dataset. Our dataset comprises noise clips, real music clips, and text prompts. We source 1,000107

segments from EPIC-SOUNDS[3] (58 human actions, 140 objects) and 300 from ESC-50[11] (50108
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Table 1: Subjective and objective evaluation results. We report subjective scores for overall quality
(OVL) and perceived noise level (PER) on adaptively amplified samples, along with objective metrics
(FAD and KL) evaluated on both adaptive amplified and direct output audio samples. BNMusic
achieves the highest subjective scores and consistently superior objective metrics across both settings.

Methods
Subjective Metrics Objective Metrics

Adaptive Amplified Adaptive Amplified Direct Outputs

OVL↑ PER↑ FAD↓ KL↓ FAD↓ KL↓

Random Music 2.93 ± 0.58 2.63 ± 0.53 6.84 2.07 15.41 2.38
MusicGen [1] 2.97 ± 0.34 2.68 ± 0.54 7.08 1.75 10.95 1.85
Riff A2A [2] 2.95 ± 0.60 3.24 ± 0.67 12.82 2.33 13.15 2.25
BNMusic (Ours) 3.67 ± 0.55 3.84 ± 0.63 7.98 1.67 7.98 1.67

real-world sounds), covering frequencies from 100 Hz to 10,000 Hz. Music data includes 5,000109

five-second clips from MusicBench[8] across diverse genres and instrumentation. Additionally,110

we create 100 text prompts across seven genres (Pop, EDM, Rock, Hip-hop, Punk, Jazz, Classical)111

via ChatGPT[9]. Pairing noise clips with multiple prompts, we generate 14,200 music clips using112

Riffusion[2] and MusicGen[1], e.g., 1,000 EPIC-SOUNDS clips × 5 prompts = 5,000 clips; 300113

ESC-50 clips × 7 prompts = 2,100 clips.114

Baselines. We compare with three baselines: (1) Riffusion audio-to-audio generation, (2) MusicGen115

melody-conditioned generation, and (3) randomly selected real music from MusicBench. All music116

clips are overlaid with corresponding noise to simulate realistic auditory conditions for both objective117

and subjective evaluation.118

Implementation details. To ensure pleasant blending without excessive volume, we normalize119

loudness using Pyln-norm [13] with ITU-R BS.1770-4, setting noise to -18 dB LUFS. Riffusion runs120

with default settings, processing each sample in 5 seconds on an Nvidia 4090 GPU; preprocessing121

and amplification take 0.28 seconds. Adaptive amplification uses an overall control parameter122

α = 0.14. Evaluation overlays music and noise, with half of the real music clips paired with noise123

and the other half serving as ground truth.124

3.2 Evaluation125

Objective evaluation. We use Fréchet Audio Distance (FAD)[4] and Kullback-Leibler (KL) Diver-126

gence to measure similarity between generated and reference audio, with lower values indicating127

better matching. FAD evaluates feature distributions across batches, while KL is computed pairwise.128

Scores are calculated on combined noise-music audio against real music, with and without loudness129

normalization. As shown in Tab. 1, BNMusic achieves the lowest FAD and KL, indicating effective130

blending and alignment with noise structure. Our direct outputs perform best overall, while Random131

Music benefits from louder amplification.132

Subjective evaluation. We conduct human evaluations on 50 samples, each with five clips: original133

noise, BNMusic output, and three amplified baselines. Clips are mixed with noise, and listeners134

rate OVL (overall quality) and PER (perceived noise) on a 1–5 Likert scale. Results (Tab. 1) show135

BNMusic provides the most pleasant listening experience and best noise masking, outperforming136

Riffusion, MusicGen, and real music. Riffusion ranks second, suppressing noise but reducing137

musicality, while MusicGen and real music offer limited masking.138

4 Conclusion and discussion139

In conclusion, our BNMusic demonstrates superior performance in blending music with environmental140

noise compared to other methods, effectively reducing the annoyance of the noise while enhancing141

the overall auditory experience. Through a series of experiments and ablation studies, we show142

the effectiveness of our approach, as well as the contribution of each key modeling component.143

By finding an optimal balance between maximizing the pleasantness of the music, controlling its144

loudness, and aligning it with the noise for more seamless blending, our method ensures that the145

combined sound provides the best listening environment.146
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