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ABSTRACT

CROSS exchange (CE), a meta-heuristic that solves various vehicle routing prob-
lems (VRPs), improves the solutions of VRPs by swapping the sub-tours of the
vehicles. Inspired by CE, we propose Neuro CE (NCE), a fundamental opera-
tor of learned meta-heuristic, to solve various min-max VRPs while overcoming
the limitations of CE, i.e., the expensive O(n4) search cost. NCE employs graph
neural network to predict the cost-decrements (i.e., results of CE searches) and
utilizes the predicted cost-decrements to guide the selection of sub-tours for swap-
ping, while reducing the search cost to O(n2). As the learning objective of NCE
is to predict the cost-decrement, the training can be simply done in a supervised
fashion, whose training samples can be easily collected. Despite the simplicity of
NCE, numerical results show that the NCE trained with min-max flexible multi-
depot VRP (min-max FMDVRP) outperforms the meta-heuristic baselines. More
importantly, it significantly outperforms the neural baselines when solving distinc-
tive special cases of min-max FMDVRP (e.g., min-max MDVRP, min-max mTSP,
min-max CVRP) without additional training.

1 INTRODUCTION

The field of neural combinatorial optimization (NCO), an emerging research area intersecting oper-
ation research and artificial intelligence, aims to train an effective solver for various combinatorial
optimization (CO) problems, such as the traveling salesman problem (TSP) (Bello et al., 2016;
Khalil et al., 2017; Nazari et al., 2018; Kool et al., 2018; Kwon et al., 2020), vehicle routing prob-
lems (VRPs) (Bello et al., 2016; Khalil et al., 2017; Nazari et al., 2018; Kool et al., 2018; Kwon
et al., 2020; Hottung & Tierney, 2019; Lu et al., 2019; da Costa et al., 2021), and vertex covering
problems (Khalil et al., 2017; Li et al., 2018; Guo et al., 2019). As NCO tackles NP-hard prob-
lems using various state-of-the-art (SOTA) deep learning techniques, it is considered an important
research area in artificial intelligence. At the same time, NCO is an important field from a practical
point of view because it can solve complex real-world problems. The current study mainly focuses
on VRPs, a type of CO problems.

Majority of learning-based VRP solvers learns to improve the current solution to obtain a better
solution (i.e., improvement heuristics) (Hottung & Tierney, 2019; Lu et al., 2019; da Costa et al.,
2021) or construct a solution sequentially (i.e., construction heuristics) (Bello et al., 2016; Khalil
et al., 2017; Nazari et al., 2018; Kool et al., 2018; Kwon et al., 2020; Park et al., 2021; Cao et al.,
2021). To learn such solvers, learning-based methods either employ supervised learning (SL), which
imitates the solutions of the verified solvers, or reinforcement learning (RL), which learn a solver
from the generated routes. Most NCO studies focus on the well-established “min-sum VRP” that
aims to minimize the total traveling distance of vehicles, possibly because the benchmark problems
and baseline algorithms are set up for the “min-sum VRP.” On the other hand, VRP with different
objectives have not received much attention from the NCO community, even though they can model
various practical scenarios. For example, “min-max VRP” that aims to minimize the total comple-
tion time (i.e., makespan) of various time-critical distributed tasks (e.g., vaccine delivery, grocery
delivery) has not been widely considered.
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Figure 1: The overall procedure of improvement heuristic that uses CE as the inter-operation.

This study aims to learn a fundamental and universal operator that can effectively solve various prac-
tical “min-max VRP” that have flexible depot constraints. To design an universal and simple, yet
powerful operator, we utilize CROSS-exchange (CE) (Taillard et al., 1997), a local search designed
to conduct the inter-operation of two routes (i.e., swapping the sub-tours of two selected routes) to
reduce the traveling cost. We noticed that the inter-operation of CE is especially effective in improv-
ing the quality of “min-max VRP” because it can consider the interaction among multiple vehicles,
and effectively reduce the differences between the traveling distances of all vehicles. However, the
search cost for selecting the sub-tours from two trajectory is O(n4) where n is the tour length. This
make CE unapplicable to large scale VRPs.

In this paper, we propose Neuro CE (NCE) that effectively conducts the CE operation with signifi-
cantly less computational complexity. NCE amortizes the search for ending nodes of the sub-tours
by employing a graph neural network (GNN), which predicts the best cost decrement, given two
starting nodes from two given trajectories. NCE searches over only promising starting nodes using
the prediction. Hence, the proposed NCE has O(n2) search complexity. Furthermore, unlike other
SL or RL approaches, the prediction target labels of NCE is not the entire solution of the VRPs,
but the cost decrements of the CE operations (true target operator), which makes the collection of
training data simple and easy.

The contributions of this study are summarized as follows:
• Generalizability/Transferability: As NCE learns a fundamental and universal operator to solve

various complex min-max VRPs without retraining for each type of VRPs.
• Trainability: The NCE operator is trained in a supervised manner with the dataset comprised of

the tour pairs and cost decrements, which make the collection of training data easy and simple.
• Practicality/Performance: We evaluate NCE with various types of min-max VRPs, including

flexible multi-depot VRP (min-max FMDVRP), multi-depot VRP (min-max MDVRP), multi-
ple TSP (min-max mTSP), and capacitated VRP (min-max CVRP). Extensive numerical ex-
periments validate that NCE outperforms SOTA meta-heuristics and NCO baselines in solving
various min-max VRPs, even though NCE is only trained with the data from min-max FMDVRP.

2 PRELIMINARIES

This section introduces the target problem, min-max flexible multi-depot VRP (min-max FMD-
VRP), and the CE operator, a powerful local-search heuristics that solves min-max FMDVRP.

2.1 MIN-MAX FLEXIBLE MULTI-DEPOT VRP

Min-max FMDVRP is a generalization of VRP that aims to find the coordinated routes of multiple
vehicles with multiple depots. The flexibility allows vehicles to go back to any depots regardless of
their starting depots. The min-max FMDVRP is formulated as follows:

min
π∈S(P )

max
i∈V

C(τi) (1)

where P is the description of the min-max FMDVRP instance that is composed of a set of vehicles
V, S(P ) is the set of solutions that satisfy the constraints of the min-max FMDVRP (i.e., feasible
solutions), and π = {τi}i∈V is a solution of the min-max FMDVRP. The tour τi = [N1, N2, ..., Nl(i)]
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Algorithm 1: Neuro CROSS exchange (NCE) for solving VRP family
Input: VRP instance P , cost-decrement prediction model fθ , Perturbation parameter p
Output: Optimized tours {τ∗

i }i∈|V|
1 {τi}i∈|V| ← GetInitialSolution(P )
2 Cper ← 0
3 while True do
4 while improvement do
5 (τ1, τ2)← SelectTours({τi}i∈|V|)
6 (τ ′

1, τ
′
2)← NeuroCROSS(τ1, τ2, fθ) // Inter operation

7 τ ′
i ← IntraOperation(τi), i = 1, 2

8 τ1 ← τ ′
1, τ2 ← τ ′

2

9 if update then
10 {τ∗

i }i∈|V| ← {τi}i∈|V|

11 if Cper = p then
12 break
13 Cper ← Cper + 1
14 (τ1, τ2)← ChooseRandomTours
15 (τ1, τ2)← RandomExchange(τ1, τ2) // escape from local minima

of vehicle i is the ordered collection of the visited tasks by the vehicle vi, and C(τi) is the cost of
τi. Min-max FMDVRP can be used to formulate the operation of shared vehicles that can be picked
up from or delivered to any depots. The mixed integer linear programming (MILP) formulation of
min-max FMDVRP is provided in Appendix A.3.

Classical VRPs are special cases of FMDVRP: TSP is a VRP with a single vehicle and depot, mTSP
is a VRP with multiple vehicles and a single depot, and MDVRP is a VRP with multiple vehicles
and depots. Since FMVDRP is a general problem class, we learn a solver for FMVDRP and employ
it to solve other specific problems (i.e., min-max MDVRP, min-max mTSP, and min-max CVRP),
without retraining or fine-tuning. We demonstrate that the proposed method can solve these special
cases almost optimally without retraining in Section 4.

2.2 CROSS EXCHANGE

CE is a solution updating operator that iteratively improves the solution until it reaches a satisfactory
result (Taillard et al., 1997). CE reduces the overall cost by exchanging the sub-tours in two tours.
The CE operator is defined as:

τ ′1, τ
′
2 = CROSS(a1, b1, a2, b2; τ1, τ2) (2)

τ ′1 ≜ τ1[: a1]⊕ τ2[a2 : b2]⊕ τ1[b1 :] (3)

τ ′2 ≜ τ2[: a2]⊕ τ1[a1 : b1]⊕ τ2[b2 :] (4)

where τi and τ ′i are the input and updated tours of the vehicle i, respectively. τi[a : b] represents the
sub-tour of τi, ranging from node a to b. τ ⊕ τ ′ represents the concatenation of tours τ and τ ′. For
brevity, we assume that node a1, a2 comes early than node b1, b2 in τ1, τ2 , respectively.

CE selects the sub-tours (i.e., τ1[a1 : b1], τ2[a2 : b2]) from τ1, τ2 and swaps the sub-tours to generate
new tours τ ′1, τ

′
2. CE seeks to find the four points (a1, b1, a2, b2) to reduce the cost of the tours.

For min-max VRPs, we define the cost of the two selected tours as C(τ1, τ2) = max(l(τ1), l(τ2)),
where l(τi) is the traveling distance of tour τi, and apply the CE operator to reduce this cost, i.e.,
C(τ ′1, τ

′
2) ≤ C(τ1, τ2) in an attempt to minimize the traveling distance of the longest route. When

the full search method is naively employed, the search cost is O(n4), where n is the number of
nodes in a tour.

Fig. 1 illustrates how the improvement heuristics utilize CE to solve min-max FMDVRP. The im-
provement heuristics start by generating the initial feasible tours using simple heuristics. Then, they
repeatedly (1) select two tours, (2) apply inter-operation to generate improved tours by CE, and
(3) apply intra-operation to improve the tours independently. The improvement heuristics terminate
when no more (local) improvement is possible.
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Algorithm 2: NeuroCROSS operation
Input: tours τ1, τ2, cost-decrement prediction model fθ(·)
Output: updated tours τ ′

1, τ
′
2

/* Predict cost decrement */
16 S← {∅}
17 for (a1, a2) ∈ τ1 × τ2 do
18 ŷ∗(a1, a2; τ1, τ2)← fθ(a1, a2; τ1, τ2) // Cost-decrement prediction
19 S← S ∪ {((a1, a2), ŷ

∗(a1, a2; τ1, τ2))}
/* Candidate set construction */

20 Sort S by y∗(a1, a2; τ1, τ2) in the descending order
21 SK ← Take first K elements of S

/* Perform search */
22 a∗

1 ← ∅, a∗
2 ← ∅, b∗1 ← ∅, b∗2 ← ∅, y∗ ← 0

23 for ((a1, a2), ŷ
∗(a1, a2; τ1, τ2)) ∈ SK do

24 (b̄1, b̄2)← argmaxb1,b2
(C(CROSS((a1, b1, a2, b2; τ1, τ2)))− C(τ1, τ2))

25 y∗(a1, a2; τ1, τ2)← C(CROSS((a1, b̄1, a2, b̄2; τ1, τ2))− C(τ1, τ2)
26 if y∗(a1, a2; τ1, τ2) ≥ y∗ then
27 a∗

1 ← a1, a
∗
2 ← a2, b∗1 ← b̄1, b

∗
2 ← b̄2

28 y∗ ← y∗(a1, a2; τ1, τ2)

29 (τ ′
1, τ

′
2)← CROSS(a∗

1, b
∗
1, a

∗
2, b

∗
2; τ1, τ2)

3 NEURO CROSS EXCHANGE

In this section, we introduce Neuro CROSS exchange (NCE) to solve min-max FMDVRP and its
special cases. The overall procedure of NCE is summarized in Algorithm 1. We briefly explain
GetInitialSolution, SelectTours, NeuroCROSS, and IntraOperation, and then provide the
details of the proposed NeuroCROSS operation in the following subsections. NCE is particularly
designed to improve the solution quality and problem solving speed of CE when solving min-max
VRPs. Each component of NCE is as follows:

• GetInitialSolution. We use a multi-agent extended version of the greedy assignment
heuristic (Dell’Amico et al., 1993) to obtain the initial feasible solutions. The heuristic first
clusters the cities into |V| clusters and then applies the greedy assignment to each cluster to get
the initial solution.

• SelectTours. Following the common practice, we select τ1, τ2 as the tours with the largest
and smallest traveling distance (i.e., τ1 = argmaxτ (l(τi)i∈V), τ2 = argminτ (l(τi)i∈V)).

• NeruoCROSS. We utilize the cost-decrement prediction model fθ(·) and two-stage search
method to find the cost-improving tour pair (τ ′1, τ

′
2) with O(n2) budget. The details of the NCE

operation will be given in Sections 3.1 and 3.2.

• IntraOperation. For our target VRPs, the intra-operation is equivalent to solving TSP. We
utilize elkai (Dimitrovski) to solve TSP.

3.1 NEURO CROSS EXCHANGE OPERATION

The CE operation can be shown as selecting two pairs of nodes (i.e., the pairs of a1/b1 and a2/b2)
from the selected tours (i.e., τ1, τ2). This typically involves O(n4) searches. To reduce the high
search complexity, NCE utilizes the cost-decrement model fθ(a1, a2; τ1, τ2) that predicts the maxi-
mum cost decrements from the given τ1 and τ2, and the starting nodes a1 and a2 of their sub-tours.
That is, fθ(a1, a2; τ1, τ2) amortizes the search for the ending nodes b1, b2 given (τ1, τ2, a1, a2), and
helps to identify the promising (a1, a2) pairs that are likely to improve the tours. After selecting
the top K promising pairs of (a1, a2) using fθ(a1, a2; τ1, τ2), whose search cost is O(n2), NCE
then finds (b1, b2) to identify the promising (a1, a2) pairs. Overall, the entire search can be done in
O(n2). The following paragraphs detail the procedures of NCE.
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Predicting cost decrement. We employ fθ(a1, a2; τ1, τ2) (which will be explained in Section 3.2)
to predict the optimal cost decrement y∗ defined as:

y∗(a1, a2; τ1, τ2) = max
b1,b2

(C(CROSS((a1, b1, a2, b2; τ1, τ2)))− C(τ1, τ2)) (5)

≈ fθ(a1, a2; τ1, τ2) (6)
where C(τ1, τ2) = max (l(τ1), l(τ2)). In other words, fθ(·) predicts the best cost decrement of τ1
and τ2, given a1 and a2. The real cost decrement labels are obtained from the real search operation.

Constructing search candidate set. By training fθ(·), we can amortize the search for b1 and
b2. However, this amortization bears the prediction errors, which can misguide entire improvement
process. To alleviate this problem, we selects the top K pairs of (a1, a2) that have the top K-largest
y∗ out of all (a1, a2) choices. Intuitively speaking, NCE exclude the less promising (a1, a2) pairs
while utilizing the prediction model fθ(·) which can have some errors.

Performing reduced search. NCE finds the best (b1, b2) for each (a1, a2) in the search candidate
sets and selects the best sub-tours (a1, a2, b1, b2) that maximizes the actual cost decrement (not pre-
diction). Unlike the full search of CE, the proposed NCE only performs the search for (b1, b2), which
reduces the search cost from O(n4) to O(n2). The detailed procedures of NCE are summarized in
Algorithm 2.

3.2 COST-DECREMENT PREDICTION MODEL

NCE saves computations by employing fθ(a1, a2; τ1, τ2) to predict y∗(·) from a1, a2, τ1 and τ2. The
overall procedure is illustrated in Fig. 2.

Graph representation of (τ1, τ2). We represent a pair of tours (τ1, τ2) as a directed complete
graph G = (N,E), where N = τ1 ∪ τ2 (i.e., the ith node ni of G is either the city or depot of the
tours, and eij is the edge from ni to nj). G has the following node and edge features:

• xi = [coord(ni),1depot(ni)], where coord(ni) is the 2D Euclidean coordinate of vi, and
1depot(ni) is the indicator of whether ni is a depot.

• xij = [dist(ni, nj)], where dist(ni, nj) is the 2D Euclidean distance between ni and nj .

Graph embedding with attentive graph neural network. We employ an attentive variant of
graph-network (GN) block (Battaglia et al., 2018) to embed G. The attentive embedding layer is
defined as follows:

h′
ij = ϕe(hi, hj , hij , xij) (7)

zij = ϕw(hi, hj , hij , xij) (8)
wij = softmax({zij}j∈N (i)) (9)

h′
i = ϕn(hi,

∑
j∈N (i)

wijh
′
ij) (10)

where hi and hij are node and edge embeddings respectively, ϕe, ϕw, and ϕn are the Multilayer
Perceptron (MLP)-parameterized edge, attention and node operators respectively, and N (i) is the
neighbor set of ni. We utilize H embedding layers to compute the final node {h(H)

i |ni ∈ V} and
edge {h(H)

ij | eij ∈ E} embeddings.

Cost-decrement prediction. Based on the computed embedding, the cost prediction module ϕc

predicts y∗(a1, a2; τ1, τ2). The selection of the two starting nodes in τ1 and τ2 indicates (1) the
addition of the two edges, (a1, a2 + 1) and (a2, a1 + 1), and (2) the removal of the original two
edges, (a1, a1+1) and (a2, a2+1), as shown in the third block in Fig. 2 (we overload the notations
a1 + 1, a2 + 1 so that they denote the next nodes of a1, a2 in τ1, τ2, respectively). To consider such
edge addition and removal procedure in cost prediction, we design ϕc as follows:

ŷ∗(a1, a2; τ1, τ2) = ϕc(h
(H)
a1

, h
(H)
a1+1, h

(H)
a2

, h
(H)
a2+1︸ ︷︷ ︸

/ : node embedding

, h
(H)
a1,a2+1, h

(H)
a2,a1+1︸ ︷︷ ︸

: link addition

, h
(H)
a1,a1+1, h

(H)
a2,a2+1︸ ︷︷ ︸

: link removal

) (11)
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Figure 2: Cost-decrement prediction procedure

where h
(H)
i and h

(H)
i,j denotes the embedding of ni and eij , respectively.

The quality of the NCE operator highly depends on the accuracy of fθ. When K ≥ 10, we experi-
mentally confirmed that the NCE operator finds the argmax (a1, a2, b1, b2) pair with high probability.
We provide the experimental details and results about the predictions of fθ in Appendix H.

4 EXPERIMENTS

This section provides the experiment results that validate the effectiveness of the proposed NCE
in solving min-max FMDVRP and various min-max VRPs. To train fθ(·), we use the input
(τ1, τ2, a1, a2) and output y∗ pairs obtained from 50,000 random min-max FMDVRP instances. The
details of the train data generation are described in Appendix G. The cost decrement model fθ(·) is
parametrized by the GNN that contains the five attentive embedding layers. The details of the fθ(·)
architecture and the computing infrastructure used to train fθ(·) are discussed in Appendix G.

We emphasize that we use a single fθ(·) that is trained using data obtained from random min-max
FMDVRP instances for all experiments. We found that fθ(·) effectively solves the three special
cases (i.e., min-max MDVRP, min-max mTSP, and min-max CVRP) without retraining or fine-
tuning, proving the effectiveness of NCE as a universal operator for VRPs.

4.1 MIN-MAX FMDVRP EXPERIMENTS

We evaluate the performance of NCE in solving various sizes of min-max FMDVRP. We consider
100 random min-max FMDVRP instances for each problem size (Nc, Nd, Nv), where Nc, Nd, Nv

are the number of cities, depots, and vehicles, respectively. We provide the average makespan and
computation time for the 100 instances. For small-sized problems (Nc ≤ 10), we employ CPLEX
(Cplex, 2009) (an exact method), OR-tools (Perron & Furnon), CE (full search), ScheduleNet (Park
et al., 2021), greedy heuristic (Dell’Amico et al., 1993), and greedy + TSP heuristic as baselines.
For the larger-sized problems, we exclude CPLEX from the baselines due to its limited scalability.
To our knowledge, our method is the first neural approach to solve min-max FMDVRP. Please note
that we extend the ScheduleNet algorithm (Park et al., 2021), the most performing neural baseline
for mTSP, and utilize it as a neural baseline for the min-max FMVDRP experiments.

Table 1: FMDVRP results (small-sized instances)

Nc,Nd Nv(→) 2 3
(↓) Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(7,2)
CPLEX 1.543 0.00 0.31 1.363 0.00 0.83

OR-tools 1.596 3.43 0.01 1.380 1.25 0.01
CE 1.546 0.02 0.04 1.364 0.01 0.03

NCE 1.546 0.02 0.10 1.365 0.01 0.12

Nv(→) 2 3
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(10,2)
CPLEX 1.745 0.00 9.29 1.488 0.00 63.00

OR-tools 1.820 4.30 0.02 1.521 2.22 0.02
CE 1.749 0.02 0.07 1.493 0.03 0.06

NCE 1.749 0.02 0.13 1.493 0.03 0.16
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Table 2: FMDVRP results (medium-sized instances)

Nc, Nd Nv(→) 3 5 7
(↓) Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(50,6)
OR-tools 2.39 15.46 2.20 1.56 10.64 2.44 1.27 6.72 2.58

ScheduleNet 2.61 26.09 5.21 1.86 31.91 5.44 1.57 31.93 6.14
Greedy 3.01 46.38 0.01 2.24 58.87 0.01 1.99 67.23 0.01

Greedy + TSP 2.75 32.85 0.03 2.12 50.35 0.02 1.91 60.50 0.02
CE 2.07 0.00 21.06 1.41 0.00 9.09 1.19 0.00 5.37

NCE 2.08 0.48 1.26 1.40 -0.71 1.82 1.19 0.00 2.23

Nv(→) 5 7 10
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(100,8)
OR-tools 2.00 14.94 30.46 1.51 12.69 32.25 1.20 10.09 34.38

ScheduleNet 2.32 33.33 35.47 1.86 38.81 36.08 1.54 41.28 41.30
Greedy 2.82 62.07 0.04 2.37 76.87 0.05 2.00 83.49 0.05

Greedy + TSP 2.60 49.43 0.07 2.25 67.16 0.07 1.92 76.16 0.07
CE 1.74 0.00 218.46 1.34 0.00 128.40 1.09 0.00 78.56

NCE 1.75 0.57 6.41 1.34 0.00 9.54 1.09 0.00 13.34

Table 3: FMDVRP results (large-sized instances)

Nc, Nd, Nv(→) 200,10,10 400,20,20 600,30,30 800,40,40
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 1.47 12.21 418.8 1.08 12.50 9484 0.88 17.33 25967 1.09 67.69 72166
ScheduleNet 1.87 42.75 244.8 1.43 48.97 340 1.38 84.00 970 1.18 81.54 2383

Greedy 2.44 86.26 0.22 2.14 122.92 1.46 2.32 209.33 2.71 1.85 184.62 5.78
Greedy + TSP 2.28 74.05 0.32 2.06 114.58 1.54 2.20 193.33 2.90 1.75 169.23 6.05

NCE 1.31 0.00 70.96 0.96 0.00 520.5 0.75 0.00 1940 0.65 0.00 3802

Table 1 shows the performances of NCE on the small-sized problems. NCE achieve similar
makespans with CPLEX (optimal solution) within significantly lower computation times. NCE out-
performs OR-tools in terms of makespan but has longer computation time; however, the computation
time for NCE will be much lower than that of OR-tools when the problem size becomes bigger. It is
noteworthy that NCE exhibits larger computation time than CE as the forward-propagation cost of
GNN is larger than exhaustive search for small problems.

Table 2 and Table 3 shows the performances of NCE on the medium and large-sized problems, re-
spectively. Applying CPLEX for large min-max FMDVRPs is infeasible, so we exclude it from the
baselines. Instead, the CE serves as an oracle to compute the makespans. For all cases, NCE pro-
vides a solution with almost zero gap from CE , but is computationally much faster. This validates
that NCE successfully amortizes the search operations of CE with significantly lower computation
times. In addition, NCE consistently outperforms OR-tools for both the makespan and computa-
tional time. The performance gap between NCE and OR-tools becomes more significant as Nc/Nv

becomes large (i.e., each tour length becomes longer).

min-max MDVRP results. We also apply NCE with fθ that is trained on FMDVRP to solve min-
max MDVRP. As shown Tables A.1 to A.3 in Appendix B, NCE shows leading performance and is
faster than the baselines, similar to the FMDVRP experiments.

4.2 MIN-MAX MTSP EXPERIMENTS

We evaluate the generalization capability of NCE for solving min-max mTSPs. We provide the
average performance of 100 instances for each (Nc, Nv) pair. For the baselines, we consider two
meta-heuristics; LKH-3 (Helsgaun, 2017), which is known as the one of the best mTSP heuristics,
and OR-tools, and two neural baselines; ScheduleNet (Park et al., 2021) and DAN (Cao et al., 2021).

As shown in Table 4, NCE achieves similar performance with LKH-3 with significantly shorter
computational time. It is noteworthy that LKH-3 employs mTSP-specific heuristics on top of LKH
heuristics, while NCE does not employ any mTSP-specific structures. To validate the effect of task-
specific information on NCE, we train NCE with mTSP data (NCE-mTSP) and solve mTSP. The
performances of NCE and NCE-mTSP are almost identical, which indicates that NCE is highly
generalizable. In addition, NCE consistently outperforms the neural baselines. We further apply
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Table 4: Average makespans of the random mTSPs: DAN and ScheduleNet results are taken from
the original papers, † computational time of DAN is measured with the Nvidia RTX 3090.

Nc Nv(→) 5 7 10
(↓) Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

50

LKH-3 2.00 0.00 187.46 1.95 0.00 249.31 1.91 0.00 170.20
OR-tools 2.04 2.00 3.24 1.96 0.51 3.75 1.91 0.00 3.67

DAN 2.29 14.50 0.25† 2.11 8.21 0.26† 2.03 6.28 0.30†

ScheuduleNet 2.17 8.50 1.60 2.07 6.15 1.67 1.98 3.66 1.90

NCE 2.02 1.00 2.25 1.96 0.51 2.44 1.91 0.00 3.38
NCE-mTSP 2.02 1.00 2.48 1.96 0.51 2.50 1.91 0.00 3.44

100

Nv(→) 5 10 15
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

LKH-3 2.20 0.00 262.85 1.97 0.00 474.78 1.98 0.00 378.90
OR-tools 2.41 9.55 35.47 2.03 3.05 45.40 2.03 2.53 48.86

DAN 2.72 23.64 0.43† 2.17 10.15 0.48† 2.09 5.56 0.58†

ScheuduleNet 2.59 17.73 14.84 2.13 8.12 16.22 2.07 4.55 20.02

NCE 2.25 2.27 16.01 1.98 0.51 12.22 1.98 0.00 24.08
NCE-mTSP 2.24 1.82 16.36 1.97 0.00 13.00 1.98 0.00 23.37

200

Nv(→) 10 15 20
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

LKH-3 2.04 0.00 1224.40 2,00 0.00 1147.13 1.97 0.00 908.14
OR-tools 2.33 14.22 675.79 2.33 16.50 604.31 2.37 20.30 649.17

DAN 2.40 17.65 0.93† 2.20 10.00 0.98† 2.15 9.14 1.07†

ScheuduleNet 2.45 20.10 193.41 2.24 12.00 213.07 2.17 10.15 225.50

NCE 2.06 0.98 83.82 2.00 0.00 72.32 1.97 0.00 113.74
NCE-mTSP 2.06 0.98 84.96 2.00 0.00 84.28 1.97 0.00 118.55

NCE to solve mTSPLib mTSPLib, which comprises of mTSP instances from real cities, and large
size min-max mTSPs. The experiment results are in Appendix C.

4.3 MIN-MAX CVRP EXPERIMENTS

Table 5: min-max CVRP results: (s.n) indicates the best results of n sampling. The baseline
results are taken from (Bogyrbayeva et al., 2021).

Nc, Nv(→) 20,3 30,3
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 2.04 0.99 1.0 2.44 11.42 1.0
AM (Bogyrbayeva et al., 2021) 2.20 8.91 0.1 2.47 12.79 0.2

AM (s.1200) (Bogyrbayeva et al., 2021) 2.44 20.79 11.4 2.29 4.57 27.6
HM (Bogyrbayeva et al., 2021) 2.28 12.87 0.1 2.39 9.13 0.2

HM (s.1200) (Bogyrbayeva et al., 2021) 2.15 6.44 14.3 2.27 3.65 25.2

NCE 2.06 1.98 1.16 2.25 2.74 2.03
NCE(s.10) 2.02 0.00 2.31 2.19 0.00 5.78

We evaluate the generalization capability of NCE in solving min-max capacitated VRP. As fθ(·)
is trained on min-max FMDVRPs, it does not consider the capacity constraints. However, we can
easily enforce such constraints without retraining fθ(·), but by adjusting the searching range as
follows:

(b1, b2)← argmax
b1,b2∈Sc

(C(CROSS((a1, b1, a2, b2; τ1, τ2)))− C(τ1, τ2)) , (12)

where the searching range Sc is a set of nodes that satisfies the capacity constraints. As shown in
Table 5, NCE outperforms other neural baselines (i.e., AM and HM) with shorter computation times,
which again proves the effectiveness of NCE as a universal operator. Min-max CVRP with CVRPlib
results are provided in Appendix D, Table A.6.

As most NCO studies use min-sum CVRP as the canonical benchmark tasks, we also employed NCE
to solve min-sum CVRP problems. For min-sum CVRP, we trained the NCE cost decrement predic-
tion model using different cost definition C(τ1, τ2) = l(τ1) + l(τ2) in an attempt to minimize the
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sum of the traveling distance. The min-sum CVRP benchmark results are provided in Appendix E,
Table A.7.

4.4 ABLATION STUDIES

We evaluate the effects of the hyperparameters on NCE. The results are as follows:

• Appendix F.1: the performance of NCE converges when the number of candidate K ≥ 10.

• Appendix F.2: the performance of NCE is less sensitive to the selection of intra solvers.

• Appendix F.3: the performance of NCE is less sensitive to the selection of swapping tours.

• Appendix F.4: the performance of NCE converges when the perturbation parameter p ≥ 5.

5 RELATED WORKS

Supervised learning (SL) approach to solve VRPs SL approaches (Joshi et al., 2019; Vinyals
et al., 2015; Xin et al., 2021b; Li et al., 2021; 2018) utilize the supervision from the VRP solvers as
the training labels. (Vinyals et al., 2015; Joshi et al., 2019) imitates TSP solvers using PointerNet
and graph convolution network (GCN), respectively. (Joshi et al., 2019) trains a GCN to predict
the edge occurrence probabilities in TSP solutions. Even though SL often offer a faster solving
speed than existing solvers, their use is limited to the problems where the solvers are available. Such
property limits the use of SL from general and realistic VRPs.

Reinforcement learning (RL) approach to solve VRPs RL approaches (Bello et al., 2016; Khalil
et al., 2017; Nazari et al., 2018; Kool et al., 2018; Kwon et al., 2020; Park et al., 2021; Cao et al.,
2021; Guo et al., 2019; Wu et al., 2019; 2021; Falkner & Schmidt-Thieme, 2020; Chen & Tian,
2019) exhibit promising performances that are comparable to existing solvers as they learn solvers
from the problem-solving simulations. (Bello et al., 2016; Nazari et al., 2018; Kool et al., 2018; Guo
et al., 2019) utilize an encoder-decoder structure to generate routing schedules sequentially, while
(Park et al., 2021; Khalil et al., 2017) use graph-based embedding to determine the next assignment
action. However, RL approaches often require the problem-specific Markov decision process and
network design. NCE does not require the simulation of the entire problem-solving. Instead, it only
requires the computation of the swapping operation (i.e., the results of CE). This property allows
NCE to be trained easily to solve various routing problems with one scheme.

Neural network-based (meta) heuristic approach Combining machine learning (ML) compo-
nents with existing (meta) heuristics shows strong empirical performances when solving VRPs (Hot-
tung & Tierney, 2019; Xin et al., 2021b; Li et al., 2021; Lu et al., 2019; da Costa et al., 2021; Kool
et al., 2021). They often employ ML to learn to solve NP-hard sub-problems of VRPs, which are
difficult. For example, L2D (Li et al., 2021) learns to predict the objective value of CVRP, NLNS
(Hottung & Tierney, 2019) learns a TSP solver when solving VRPs and DPDP (Kool et al., 2021)
learns to boost the dynamic programming algorithms. To learn such solvers, these methods apply
SL or RL. Instead, NCE learns the fundamental operator of meta-heuristics rather than predict or
generate a solution. Hence, NCE that is trained on FMDVRP generalizes well to the special cases
of FMDVRP. Furthermore, the training data for NCE can be prepared effortlessly.

6 CONCLUSION

We propose Neuro CROSS exchange (NCE), a neural network-enhanced CE operator, to learn a
fundamental and universal operator that can be used to solve the various types of min-max VRPs. We
validated that NCE can solve various min-max VRPs without retraining for each specific problem,
exhibiting strong empirical performances. Although NCE addresses more realistic VRPs (i.e., min-
max FMDVRP) than existing NCO solvers, NCE does not yet consider complex constraints such as
pickup and delivery, and time windows. Our future research will focus on solving more complex
VRPs by considering such various constraints during the NCE operation.
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Neuro CROSS exchange
Supplementary Material

A MILP FORMULATIONS FOR MIN-MAX ROUTING PROBLEMS

This section provides the mixed integer linear programming (MILP) formulations of mTSP, MD-
VRP, and FMDVRP.

A.1 MTSP

mTSP is a multi-vehicle extension of the traveling salesman problem (TSP). mTSP comprises of a
set of the nodes (i.e., cities) and depot V , a set of vehicles K, and a set of depot S. We define dij
as the cost (or travel time) between node i and j, and the decision variable xijk denotes whether the
edge between node i and j are taken by vehicle k. Following the convention, we consider mTSP
with |S| = 1. The MILP formulation of mTSP is given as follows:

minimize Q (A.1)

subject to.
∑
i∈V

∑
j∈V

dijxijk ≤ Q, ∀k ∈ K : i ̸= j, (A.2)

∑
j∈V i ̸=j

xijk = 1, ∀k ∈ K,∀i ∈ S, (A.3)

∑
i∈V j ̸=i

∑
k∈T

xijk = 1, ∀j ∈ V \ S (A.4)

∑
i∈V i ̸=j

xijk −
∑

h∈V h̸=j

xjhk = 0, ∀j ∈ V \ S (A.5)

uik − ujk + |V |xijk ≤ |V | − 1, ∀k ∈ K, j ∈ V \ S : i ̸= j, (A.6)
0 ≤ uik ≤ |V | − 1, ∀k ∈ K, i ∈ V \ S (A.7)
xijk ∈ {0, 1}, ∀k ∈ K, ∀i, j ∈ V, (A.8)
uik ∈ Z, ∀k ∈ K, i ∈ V (A.9)

where Q denotes the longest traveling distance among multiple vehicles. (i.e., makespan), Eq. (A.3)
indicates the vehicles start at the depot, Eq. (A.4) indicates that all cities are visited, Eq. (A.5) indi-
cates the balance equation for all cities, Eq. (A.6) and Eq. (A.7) indicate the sub-tour eliminations.

13



Published as a conference paper at ICLR 2023

A.2 MDVRP

Multi-depot VRP is a multi-depot extension of mTSP (Appendix A.1), where each vehicle starts
from its own designated depot and returns to the depot. We extend the MILP formulation of mTSP
to define the MILP formulation of MDVRP. On top of the mTSP formulation, we define Ki, which
indicates the set of vehicles assigned to the depot i.

minimize Q (A.10)

subject to.
∑
i∈V

∑
j∈V

dijxijk ≤ Q, ∀k ∈ K : i ̸= j, (A.11)

∑
j∈V j ̸=i

∑
k∈T

xijk = 1, ∀i ∈ V \ S (A.12)

∑
i∈V j ̸=i

∑
k∈T

xijk = 1, ∀j ∈ V \ S (A.13)

∑
i∈V

xijk −
∑
h∈V

xjhk = 0, ∀j ∈ V \ S, ∀k ∈ K (A.14)

uik − ujk + |V |xijk ≤ |V | − 1, ∀k ∈ K, j ∈ V \ S : i ̸= j, (A.15)
0 ≤ uik ≤ |V | − 1, ∀k ∈ K, i ∈ V \ S (A.16)
xijk ∈ {0, 1}, ∀k ∈ K,∀i, j ∈ V, (A.17)
uik ∈ Z, ∀k ∈ K, i ∈ V (A.18)∑
j∈V \S

xijk ≤ 1, ∀k ∈ Ki,∀i ∈ S (A.19)

∑
i∈V \S

xijk ≤ 1, ∀k ∈ Kj ,∀j ∈ S (A.20)

where Eq. (A.19) and Eq. (A.20) indicate that each vehicle starts and returns its own depot at most
once.
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A.3 FMDVRP

Flexible MDVRP (FMDVRP) is an extension of MDVRP, allowing the vehicle to return to any
depot. We extend the MDVRP formulation (Appendix A.2) to define the FMDVRP formulation. To
account for the flexibility of the returning depot, we introduce a dummy node for all depots; a depot
is modeled with a start and return depot. We define S1 and S2 as the set of start and return depots
and sk as the start node of the vehicle k.

minimize Q (A.21)

subject to.
∑
i∈V

∑
j∈V

dijxijk ≤ Q, ∀k ∈ K : i ̸= j, (A.22)

∑
j∈V j ̸=i

∑
k∈T

xijk = 1, ∀i ∈ V \ S (A.23)

∑
i∈V j ̸=i

∑
k∈T

xijk = 1, ∀j ∈ V \ S (A.24)

∑
i∈V

xijk −
∑
h∈V

xjhk = 0, ∀j ∈ V \ S,∀k ∈ K (A.25)

uik − ujk + |V |xijk ≤ |V | − 1, ∀k ∈ K, j ∈ V \ S : i ̸= j, (A.26)
0 ≤ uik ≤ |V | − 1, ∀k ∈ K, i ∈ V \ S (A.27)
xijk ∈ {0, 1}, ∀k ∈ K, ∀i, j ∈ V, (A.28)
uik ∈ Z, ∀k ∈ K, i ∈ V (A.29)∑
j∈V \S

xskjk = 1, ∀k ∈ K (A.30)

∑
j∈V \S

xijk = 0, ∀k ∈ K, ∀i ∈ S \ sk (A.31)

∑
j∈V \S

xijk ≤ 1, ∀k ∈ Ki,∀i ∈ S1 (A.32)

∑
i∈V \S

xijk ≤ 1, ∀k ∈ Kj ,∀j ∈ S2 (A.33)

∑
j∈V \S

xijk = 0, ∀k ∈ K, ∀i ∈ S2 (A.34)

∑
j∈V \S

xijk = 0, ∀k ∈ K, ∀i ∈ S1 (A.35)

∑
i∈S1

∑
j∈V \S

xijk =
∑

i∈V \S

∑
j∈S2

xijk, ∀k ∈ K (A.36)

where Eqs. (A.30) and (A.31) indicate that each vehicle starts at its own depot. Eqs. (A.32) to (A.35)
indicate the start and return depots constraints. Eq. (A.36) indicates the balance equation of the start
and return depots.
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B MIN-MAX MDVRP RESULTS

In this section, we provide the experiment results of MDVRP. We apply NCE with the fθ trained
on FMDVRP instances to solve MDVRP. For each (Nc, Nd, Nv) pair, we measure the average
makespan of 100 instances. We provide the MDVRP results in Tables A.1 to A.3. Similar to the
FMDVRP experiments, NCE shows leading performance while being faster than the baselines. From
the results, we can conclude that the learned fθ is transferable to the different problem sets. This
phenomenon is rare in many ML-based approaches. It again highlights the effectiveness of learning
fundamental operators (i.e., learn what should be cross exchanged) when solving the VRP families.

Table A.1: MDVRP results (small-sized instances)

Nc,Nd Nv(→) 2 3
(↓) Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(7,2)
CPLEX 1.626 0.00 0.32 1.417 0.00 0.54

OR-tools 1.704 4.80 0.01 1.433 1.13 0.01
CE 1.626 0.00 0.05 1.418 0.01 0.04

NCE 1.626 0.00 0.13 1.418 0.01 0.16

Nv(→) 2 3
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(10,2)
CPLEX 1.829 0.00 7.90 1.554 0.00 33.17

OR-tools 1.926 5.30 0.02 1.590 2.32 0.02
CE 1.829 0.00 0.09 1.558 0.03 0.08

NCE 1.829 0.00 0.17 1.555 0.01 0.20

Table A.2: MDVRP results (medium-sized instances)

Nc, Nd Nv(→) 3 5 7
(↓) Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(50,6)
OR-tools 2.64 17.33 2.24 1.68 9.80 2.94 1.36 6.25 2.75

CE 2.25 0.00 23.45 1.53 0.00 10.40 1.28 0.00 6.85

NCE 2.25 0.00 2.08 1.53 0.00 2.63 1.28 0.00 2.93

Nv(→) 5 7 10
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

(100,8)
OR-tools 2.17 17.30 33.08 1.60 11.89 36.45 1.29 9.32 37.54

CE 1.85 0.00 259.82 1.43 0.00 140.63 1.18 0.00 86.27

NCE 1.86 0.54 11.61 1.43 0.00 11.96 1.18 0.00 15.70

Table A.3: MDVRP results (large-sized instances)

Nc, Nd, Nv(→) 200,10,10 400,20,20 600,30,30
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 1.49 9.56 452.08 1.13 13.00 5179 1.01 24.69 22411
Greedy 2.99 119.85 0.20 2.77 177.00 0.93 3.20 295.06 2.69

Greedy + TSP 2.78 104.41 0.37 2.58 158.00 1.48 3.03 274.07 3.24

NCE 1.36 0.00 77.73 1.00 0.00 553.83 0.81 0.00 3173.5
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C MIN-MAX MTSP RESULTS

In this section, we provide the additional experiment results of mTSP. We further apply NCE to
solve mTSPLib (mTSPLib), which comprises of mTSP instances from real cities, and large scale
problem. As reported in Table A.4 and Table A.5 NCE achieves the best results as compared to the
baselines.

Table A.4: mTSPLib results: CPLEX results with ∗ are optimal solutions. Otherwise, the known-
best upper bound of CPLEX results are reported. The results of other baselines are taken from Park
et al. (2021).

Nc(→) Eil51 Berlin52 Eil76 Rat99

Nv(→) 2 3 5 7 2 3 5 7 2 3 5 7 2 3 5 7 Gap

CPLEX 222.7∗ 159.6 124.0 112.1 4110 3244 2441 2441 280.9∗ 197.3 150.3 139.6 728.8 587.2 469.3 443.9 1.00

LKH-3 222.7 159.6 124.0 112.1 4110 3244 2441 2441 280.9 197.3 150.3 139.6 728.8 587.2 469.3 443.9 1.00
OR-Tools 243.0 170.1 127.5 112.1 4665 3311 2482 2441 318.0 212.4 143.4 128.3 762.2 552.1 473.7 442.5 1.03

ScheduleNet 263.9 200.5 131.7 116.9 4826 3644 2758 2515 330.2 228.8 163.9 144.4 843.8 691.8 524.3 480.8 1.13
ScheduleNet (s.64) 239.3 173.5 125.8 112.2 4592 3276 2517 2441 317.7 220.8 153.8 131.7 781.2 627.1 502.3 464.4 1.05

DAN 274.2 178.9 158.6 118.1 5226 4278 2759 2697 361.1 251.5 170.9 148.5 930.8 674.1 504.0 466.4 1.18
DAN (s.64) 252.9 178.9 128.2 114.3 5098 3456 2677 2495 336.7 228.1 157.9 134.5 966.5 697.7 495.6 462.0 1.11

NCE 235.0 170.3 121.6 112.1 4110 3274 2660 2441 285.5 211.0 144.6 127.6 695.8 527.8 458.6 441.6 1.00
NCE-mTSP 226.1 166.3 119.9 112.1 4128 3191 2474 2441 282.1 197.5 147.2 127.6 666.0 533.2 462.2 443.9 0.98

Table A.5: mTSP results (large-sized instances)

Nc(→) mTSP300 mTSP500 mTSP750
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

LKH-3 2.12 0.00 1620 2.09 0.00 2981 1.99 0.00 6303
OR-tools 2.90 36.79 3605 7.63 265.07 9877 10.91 448.24 47225

ScheduleNet 2.25 6.13 689 2.17 3.83 3788 2.12 6.53 12199
Greedy 2.82 33.02 1.07 2.85 36.36 3.78 2.76 38.69 4.56

Greedy + TSP 2.80 32.08 1.39 2.84 35.89 4.48 2.75 38.19 5.53

NCE 2.12 0.00 301 2.09 0.00 583 1.99 0.00 580
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D MIN-MAX CVRP RESULTS

We also provide min-max CVRP results for CVRPlib. We include two local search heuristic base-
lines N2 (Pham et al., 2017) and NMCF (Van Nguyen et al., 2017). We evaluate each instance 20
times and average it. As shown in Table A.6, NCE outperforms other Operation Research baselines
in terms of computation speed and cost.

Table A.6: CVRPlib result: Results are taken from Van Nguyen et al. (2017)

Method N2 NMCF NCE (s.10)

VRP instance Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

E-n22-k4 110.00 -0.63 4.98 110.00 -0.63 3.62 110.70 0.00 2.51
E-n23-k3 242.10 0.04 20.50 243.45 0.60 27.35 242.00 0.00 14.09
E-n30-k3 192.95 0.63 53.72 192.45 0.37 10.85 191.75 0.00 10.45
E-n33-k4 244.15 0.00 85.87 244.00 -0.06 11.07 244.15 0.00 6.43
E-n51-k5 118.70 5.42 119.50 113.50 0.80 67.09 112.60 0.00 14.40
E-n76-k7 119.35 12.44 115.85 107.35 1.13 120.49 106.15 0.00 34.94
E-n76-k8 118.85 18.67 140.44 100.05 -0.10 94.57 100.15 0.00 31.27
E-n76-k10 117.40 23.71 149.21 99.55 4.90 31.69 94.90 0.00 34.94
E-n76-k14 111.10 27.12 146.64 93.60 7.09 27.22 87.40 0.00 42.13
E-n101-k8 141.65 26.42 140.07 117.05 4.46 69.01 112.05 0.00 71.96

E-n101-k14 113.25 13.19 161.05 101.50 1.45 68.04 100.05 0.00 83.74
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E MIN-SUM CVRP RESULTS

In this section, we provide the results for min-sum CVRP benchmark instances. To solve min-sum
CVRP, we trained NCE to predict min-sum cost decrement with C(τ1, τ2) defined as l(τ1) + l(τ2).
As shown in Table A.7, NCE is on par with or outperforms other neural baselines. However, NCE
is not efficient in terms of computation speed. This is because we initially design the CE operation
to solve the min-max VRPs not min-sum VRPs. According to the experimental results, when CE
operation is conducted to reduce the min-sum cost of two tours, it typically requires larger iterations
to improve the solution to near optimum. This results indicates that other (local) search operator is
required to efficiently solve the min-sum problems.

Table A.7: CVRP benchmark results: Best in bold; Second underline, (s.n) indicates the best
results of n sampling, (i.n) indicates the best results after n improvement steps, and † indacates that
the computation times of the neural baselines are measured with GPU. The run times of Lu et al.
(2019) and Kwon et al. (2020) are taken from Kwon et al. (2020). The run times of the other neural
baselines are taken from Kim et al. (2021).

CVRP20 CVRP50 CVRP100
Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

LKH-3 6.14 0.00 0.72 10.38 0.00 2.52 15.65 0.00 4.68
OR-Tools 6.43 4.72 0.01 11.31 8.17 0.05 17.16 10.29 0.23

RL†(s.10) (Nazari et al., 2018) 6.40 4.23 0.16 11.15 7.46 0.23 16.96 8.39 0.45
AM†(s.1280) (Kool et al., 2018) 6.25 1.79 0.05 10.62 2.40 0.14 16.23 3.72 0.34
MDAM†(s.50) (Xin et al., 2021a) 6.14 0.00 0.03 10.48 0.96 0.09 15.99 2.17 0.32
POMO†(s.8) (Kwon et al., 2020) 6.14 0.00 0.01 10.42 0.35 0.01 15.73 0.43 0.01

NLNS†(i.1280) (Hottung & Tierney, 2019) 6.19 0.81 1.00 10.54 1.54 1.63 16.00 2.24 2.18
AM + LCP†(s.1280) (Kim et al., 2021) 6.16 0.33 0.09 10.54 1.54 0.20 16.03 2.43 0.45
Learn2OPT†(i.2000) (da Costa et al., 2021) 6.16 0.37 1.00 10.54 2.66 1.44 16.72 6.40 7.20
LIH†(i.5000) (Wu et al., 2021) 6.12 -0.33 0.72 10.45 0.67 1.44 16.03 2.43 1.80
NeuroRewriter† (Chen & Tian, 2019) 6.16 0.48 0.13 10.51 1.25 0.21 16.10 2.88 0.40

NCE 6.21 1.14 0.73 10.68 2.89 3.23 16.29 4.09 13.67
CE 6.21 1.14 0.77 10.69 2.99 11.11 16.28 4.03 79.12
NCE (s.10, p.20) 6.13 -0.16 3.99 10.41 0.29 20.17 15.81 1.02 90.12
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F ABLATION STUDY

In this section, we provide the results of the ablation studies.

F.1 CANDIDATE SET

NCE constructed a search candidate set. To mitigate the prediction error of fθ(·) in finding the
argmax of (a1, a2, b1, b2), NCE search the top K pairs of (a1, a2) that have the largest y∗ out of all
(a1, a2) choices. We measure how the performance changes whenever the size of the candidate set
Kchanges. As shown in Table A.8, as the size of K increases, the performance tends to increase
slightly. When K ≥ 10, the performance of NCE almost converges. Thus, we choose K = 10 as
the default hyperparameter of NCE.

Table A.8: Effect of number of candidate

K 1 2 3 5 7 10 20 30

Nc,Nd,Nv cost time cost time cost time cost time cost time cost time cost time cost time

(30,3,2) 2.47 0.26 2.44 0.30 2.44 0.34 2.43 0.38 2.43 0.43 2.43 0.48 2.43 0.63 2.43 0.81
(30,3,3) 1.87 0.27 1.85 0.31 1.84 0.35 1.84 0.41 1.83 0.48 1.83 0.55 1.83 0.79 1.83 1.04
(30,3,5) 1.50 0.50 1.47 0.61 1.47 0.66 1.46 0.71 1.46 0.83 1.46 0.91 1.47 1.27 1.46 1.54
(50,3,3) 2.23 0.58 2.20 0.80 2.19 0.93 2.18 1.13 2.19 1.26 2.18 1.51 2.19 2.17 2.18 2.70
(50,3,5) 1.67 0.86 1.63 1.12 1.62 1.34 1.61 1.56 1.61 1.81 1.61 2.17 1.61 3.14 1.61 4.07
(50,3,7) 1.49 1.05 1.47 1.31 1.47 1.59 1.46 1.93 1.46 2.18 1.46 2.59 1.46 3.79 1.46 4.98

F.2 INTRA-SOLVER

NCE repeatedly applies the inter- and intra-operation. In this view, the choice of the intra-operation
may affect the performance of NCE. In this subsection, we measured the performance of NCE
according to intra-operation. We compare the results of NCE that uses Elkai, OR-tools, and 2-opt as
the intra-operator. To solve TSP – the task intra-operator has to solve –, Elkai, OR-tools, and 2-opt
show the best, second best, and third best performances. As shown in Table A.9, the performances
of NCE are almost identical to the selection of an intra-operator. We validate that the effect of the
intra-operation choice is negligible to the performance.

Table A.9: Effect of Intra TSP solver

Nc,Nd,Nv (30,3,2) (30,3,3) (30,3,5) (50,3,3) (50,3,5) (50,3,7)

Intra solver cost time cost time cost time cost time cost time cost time

2-opt 2.46 0.23 1.83 0.33 1.47 0.53 2.22 0.72 1.62 1.24 1.46 1.58
OR-tools 2.44 1.04 1.83 1.08 1.47 1.06 2.20 3.31 1.61 2.72 1.46 2.72

Elkai 2.43 0.41 1.83 0.55 1.46 0.69 2.18 1.55 1.61 2.17 1.46 2.13

F.3 SELECTING TWO VEHICLES

NCE chooses two tours for improvement during the iterative process. To understand the effect of
the tour selection strategy, we measure the performance of NCE according to tour selection. We
compare NCE results in a max-min selection case and a random selection case (i.e., pick two tours
randomly). As shown in Table A.10, the performances of NCE are almost identical to the tour
selection strategy. Therefore, we validate that the effect of the tour selection strategy is negligible.
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Table A.10: Effect of selecting two vehicles

Nc,Nd,Nv (30,3,2) (30,3,3) (30,3,5) (50,3,3) (50,3,5) (50,3,7)

cost time cost time cost time cost time cost time cost time

Random 2.43 0.42 1.84 0.61 1.48 0.94 2.18 1.43 1.62 2.39 1.47 2.62
Max-Min 2.43 0.41 1.83 0.55 1.46 0.69 2.18 1.55 1.61 2.17 1.46 2.13

F.4 PERTURBATION

NCE employs perturbation to increase performance. Perturbation is a commonly used strategy for
enhancing the performance of meta-heuristics (Polat et al., 2015). It is done by randomly perturbing
the solution and solving the problem with the perturbed solutions. This technique is beneficial to
escape from the local optima. As described in Algorithm 1, when falling into the local optima,
NCE randomly selects two tours and performs a random exchange. We compare the performance
of NCE with different perturbations. As shown in Table A.11, the performance of NCE increases
and converges as the number of perturbations p increases. When p = 5, the performance of NCE
converges. Thus, we choose p = 5 as the default hyperparameter of NCE.

Table A.11: Effect of perturbation

P 0 1 2 3 5 7 10 20

Nc,Nd,Nv cost time cost time cost time cost time cost time cost time cost time cost time

(30,3,2) 2.50 0.12 2.48 0.17 2.46 0.22 2.44 0.27 2.43 0.38 2.43 0.49 2.42 0.69 2.41 1.34
(30,3,3) 1.89 0.16 1.86 0.22 1.84 0.30 1.84 0.35 1.83 0.55 1.82 0.61 1.81 0.81 1.81 1.42
(30,3,5) 1.49 0.29 1.48 0.33 1.48 0.43 1.47 0.50 1.47 0.67 1.46 0.85 1.46 1.25 1.46 2.28
(50,3,3) 2.26 0.31 2.24 0.49 2.22 0.65 2.19 0.81 2.18 1.28 2.17 1.83 2.16 2.61 2.14 4.83
(50,3,5) 1.66 0.52 1.64 0.77 1.63 0.94 1.62 1.24 1.61 1.97 1.61 2.59 1.60 3.61 1.59 6.53
(50,3,7) 1.48 0.85 1.48 1.04 1.47 1.43 1.47 2.02 1.46 2.65 1.46 2.95 1.46 3.77 1.45 6.44
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G TRAINING DETAIL

Dataset preparation. To train the cost-decrement prediction model fθ(·), we generate 50,000
random FMDVRP instances. The random instance is generated by first sampling the number of cus-
tomer Nc and depots Nd from U(10, 100) and U(2, 9) and Nv = 2 respectively, and then sampling
the 2D coordinates of the cities from U(0, 1). As we set Nv = 2, we generate two tours by apply-
ing the initial solution construction heuristics explained in Section 3.1. From τ1, τ2, we compute
the best true cost-decrements of all feasible (a1, a2) to prepare the training dataset. We generated
47,856,986 training samples from the 50,000 instances.

Hyperparameters. fθ(·) is parametrized via the GNN which employs five layers of the attentive
embedding layer. We employ 4 layered MLPs to parameterize ϕe, ϕw, ϕn and ϕc, whose hidden
dimensions and activation units are 64 and Mish (Misra, 2019). fθ(·) is trained to minimize the
Huber loss for three epochs via AdamW (Loshchilov & Hutter, 2017) whose learning rate is fixed
as 5× 10−4.

Computing resources. We run all experiments on the server equipped with AMD Threadripper
2990WX CPU and Nvidia RTX 3090 GPU. We use a single CPU core to evaluate all algorithms.
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H EVALUATION OF THE COST DECREMENT MODEL

In this section, we evaluate the prediction accuracy of fθ(·). To evaluate fθ(·), we randomly
generate 1,000 FMDVRP instances by sampling NC ∼ U(10, 100) and ND ∼ U(2, 9), and
(x, y) ∼ U(0, 1)2. From the instances, we measure the ratio of existence of the argmax (a1, a2)
pair in the search candidate set whose size is K. As shown in Table A.12, when K ≥ 10, NCE can
find the argmax pair with at least 0.9 probability. We also provide the results of the cost-decrement
predictions and its corresponding cost. As shown in Fig. A.1, fθ(·) predicts the general tendency
well.

Table A.12: fθ(·) prediction performance test

K 1 3 5 10 20

argmax ratio (%) 42.9 71.3 78.6 90.9 97.4
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Figure A.1: Predicted cost-decrements vs. true cost-decrements
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I COMPARISON WITH FULL SEARCH

To verify whether NCE successfully amotrizes CE, we evaluate CE and NCE(K=10, p=0)
on FMDVRP. For the testing instances, we randomly generate 100 instances for each Nc ∈
{20, 30, 40, 50, 60, 70, 80, 90, 100} with the fixed Nd = 3 and Nv = 3. As shown in Table A.13,
NCE shows nearly identical performances with CE, but with significantly faster computation speed
than CE as shown in Fig. A.2. We also test the mTSP and CVRP cases as shown in Table A.14.

Table A.13: FMDVRP performance comparison of CE and NCE(K=10, p=0)

Nd ,Nv (3,3)

NC 20 30 40 50 60 70 80 90 100

CE 1.651 1.893 2.088 2.257 2.384 2.531 2.695 2.811 2.929
NCE 1.651 1.891 2.088 2.262 2.390 2.530 2.697 2.806 2.934
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Figure A.2: Computation speed comparison

Table A.14: mTSP, CVRP performance comparison of CE and NCE

VRP instance mTSP50,Nv=5 mTSP100,Nv=10 mTSP200,Nv=15 CVRP20 CVRP50 CVRP100

cost time cost time cost time cost time cost time cost time

CE 2.02 11.35 1.97 87.28 2.00 414.9 6.21 0.96 10.91 11.38 16.23 80.23
NCE 2.02 2.48 1.97 13.00 2.00 84.28 6.21 0.57 10.90 2.93 16.23 14.08
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J EXAMPLE SOLUTIONS

This section provides the routing examples. Fig. A.3 shows the solution of Rat99-2 computed by
LKH-3 and NCE. Figs. A.4 and A.5 shows the solution of a FMDVRP and MDVRP instance com-
puted by OR-Tools and NCE.
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Figure A.3: Rat99-2 solutions computed by NCE and LKH-3
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Figure A.4: FMDVRP solutions computed by NCE and OR-tools
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Figure A.5: MDVRP solutions computed by NCE and OR-tools
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K CASE STUDY: PLANNING PATH FOR STERILIZING ROBOTS

We applied the trained NCE to solve a real-world application, the task of deriving the cooperative
path for multiple sterilizing robots to sterilize the open space of a building in the minimum time.
Here, the task nodes correspond to the spatial grids composing the entire building floor area, as
shown in Fig. A.6. It consists of a total of 500 grids, of which 25 are obstacle areas (gray grids) that
a robot cannot move into, and 99 are contaminated areas (orange grids) a robots need to sterilize.
We assume the traveling time between the two adjacent grids is 1, the service time for the general
area (green grids) is 1, and 2 for the contaminated areas. The upper left corner is the starting point.
We formulate finding the cooperative paths for multiple robots to minimize the operation time as the
min-max mTSP problem.

Fig. A.7 shows the path derived from NCE when there are 1 to 5 robots, and Table A.15 shows the
time and objective value of solving the problem for each algorithm. The results show that the NCE
algorithm trained using a synthetic dataset can produce an efficient cooperative path for multiple
robots without retraining or fine-tuning. NCE reduces more than 10% of the makespan compared to
Google OR-tool and 20% to Greedy+TSP when the number of robots is 5.

Note that the distribution of tasks is far from uniform distribution; each grid is clustered, and each
cluster is separated due to the unique floor plan of a building. Thus, the experiment results verify
the generalization capability of NCE to problem instances generated from a different distribution.

Figure A.6: Grid representation for the open space of the target building

Figure A.7: NCE planned trajectories of the robots under different number of robots

Table A.15: Case study results

Nv(→) 1 2 3 4 5
Method Cost Gap Time Cost Gap Time Cost Gap Time Cost Gap Time Cost Gap Time

Greedy 1122 6.45 0.18 631 19.06 0.21 458 25.48 0.24 362 24.83 0.28 306 24.90 0.29
Greedy + TSP 1054 0.00 30.61 591 11.51 14.33 432 18.36 9.75 349 20.34 5.83 294 20.00 4.51

OR-tools 1066 1.14 553.2 573 8.11 1624.6 383 4.93 1554.7 306 5.52 2052.5 269 9.80 1043.8

NCE 1054 0.00 30.6 530 0.00 450.7 365 0.00 361.7 290 0.00 383.8 245 0.00 233.2
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L BALANCE BETWEEN PERFORMANCE AND COMPUTATION TIME

Because NCE is an improvement heuristic, the more computation time is used, the better outcome
will be produced. Thus, we investigate how the performance varies with the allowed computation
time. We sampled 100 instances of FMDVRP (Nc, Nd, Nv)=(60, 5, 5) and computed the average
cost and computation time of NCE and baselines on these problem instances.

Fig. A.8 depicts the relationships between “Run time (computational cost) vs. Cost curve” in the
form of a Pareto curve for the case of FMDVRP (Nc, Nd, Nv)=(60, 5, 5). The result shows how
the performance of NCE improves with more computation time, and this trend is always superior to
another baseline.
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Figure A.8: Performance vs Computation time curve
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M GENERALIZATION TO DIFFERENT DISTRIBUTION

We investigate the generalization capability of NCE to the problem instances generated from dif-
ferent distributions. We have employed the NCE trained by FMDVRP random instances to the
problems generated by the different distributions introduced in (Bi et al., 2022). We used cluster,
expansion, explosion, grid, implosion, and mixed distribution as unseen distributions for testing. We
followed the definition in the (Bossek et al., 2019; Jiang et al., 2022; Bi et al., 2022), and the data
were taken from the (Bi et al., 2022).

Table A.16 summarizes the experiment result. As in the case of uniform distribution, NCE shows
leading performance while being faster than OR-Tools and CE. Note that we did not retrain our NCE
algorithm but just employed the already trained existing NCE algorithm to new distribution tasks.
From the results, we can conclude that the learned fθ is generalizable to the different distributions
other than the uniform. It again highlights the effectiveness of learning fundamental operators when
solving the VRP families.

Table A.16: Results from various distributions

Nc, Nd, Nv(→) FMDVRP (46,5,5)
Distribution Cluster Expansion Explosion

Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 0.92 4.55 1.92 1.25 6.90 1.75 1.33 9.92 1.75
Greedy 1.32 50.00 0.01 1.94 67.24 0.01 1.96 61.98 0.01

Greedy + TSP 1.25 42.05 0.02 1.82 56.90 0.02 1.86 53.72 0.02
CE 0.88 0.00 5.82 1.16 0.00 6.50 1.39 0.00 6.39

NCE 0.88 0.00 1.51 1.16 0.00 1.39 1.21 0.00 1.64
Distribution Grid Implosion Mixed

Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 1.51 7.86 1.79 1.52 9.35 1.79 1.36 7.09 1.91
Greedy 2.27 62.14 0.01 2.20 58.27 0.01 2.06 62.20 0.01

Greedy + TSP 2.16 54.29 0.02 2.10 51.08 0.02 1.95 53.54 0.02
CE 1.41 0.71 6.07 1.39 0.00 6.34 3.03 0.00 7.41

NCE 1.40 0.00 1.77 1.39 0.00 1.84 1.27 0.00 1.90

Nc, Nd, Nv(→) FMDVRP (94,7,7)
Distribution Cluster Expansion Explosion

Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 0.91 5.81 24.86 1.16 7.41 23.37 1.21 10.00 24.25
Greedy 1.41 63.95 0.04 1.92 77.78 0.04 1.97 79.09 0.04

Greedy + TSP 1.35 56.98 0.08 1.81 67.59 0.07 1.84 67.27 0.06
CE 0.86 0.00 105.66 1.08 0.00 104.06 1.10 0.00 105.82

NCE 0.86 0.00 9.11 1.08 0.00 8.60 1.10 0.00 9.70
Distribution Grid Implosion Mixed

Method Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.) Cost Gap(%) Time(sec.)

OR-tools 1.50 9.49 25.14 1.49 11.19 24.13 1.37 7.87 27.94
Greedy 2.38 73.72 0.04 2.35 75.37 0.04 2.26 77.95 0.04

Greedy + TSP 2.24 63.50 0.06 2.23 66.42 0.06 2.15 69.29 0.07
CE 1.37 0.00 98.27 1.34 0.00 98.55 1.27 0.00 148.73

NCE 1.37 0.00 9.24 1.34 0.00 9.49 1.27 0.00 10.11
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