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Abstract

Self-supervised learning (SSL) has allowed for advance-001
ments in language processing and computer vision, as un-002
labelled data is available in large quantities. However,003
imbalances in training datasets can lead to strong biases004
in the learned features of pre-trained models. Previous005
results show that pre-training using imbalanced data can006
also hurt downstream performance. We propose a data-007
centric approach: our method trains on the data, finds008
underrepresented samples, and uses diffusion to gener-009
ate novel data complementing the underrepresented im-010
ages. Our proposed method, BRADD (Balancing Represen-011
tations through Anomaly Detection and Diffusion), utilizes012
distance-based outlier detection to identify regions of the013
embedding space that are underrepresented in each training014
cycle. Experimental results on ImageNet-100-LT demon-015
strate that BRADD consistently outperforms both balanced016
and imbalanced baselines, with significant improvements017
on fine-grained classification tasks. Detailed ablation stud-018
ies confirm that both out-of-distribution sample selection019
and diffusion-based generation contribute substantially to020
the effectiveness of our approach, offering a promising al-021
ternative to model-centric solutions for addressing imbal-022
ance in self-supervised learning.023

1. Introduction024

Self-supervised learning (SSL) methods have emerged025
as powerful techniques for learning transferable features026
across diverse tasks [2, 3, 17]. However, their perfor-027
mance is significantly affected by dataset imbalance [1,028
12, 23]. For instance, SimCLR underperforms on long-029
tailed datasets due to insufficient negative samples [23],030
while joint-embedding methods like VICReg assume uni-031
form clustering, hampering performance on imbalanced032
data [1].033

Existing solutions typically adopt model-centric ap-034
proaches, such as ensemble learning [23], incorporating035
arbitrary feature priors [1], or modifying training dynam-036
ics [12]. These approaches, however, often require prior037

knowledge of dataset distributions or extensive hyperpa- 038
rameter tuning, contradicting the unsupervised nature of 039
SSL. 040

We propose BRADD (Balancing Representations with 041
Anomaly Detection and Diffusion), a data-centric approach 042
to address imbalance in SSL. BRADD divides training into 043
cycles, identifies underrepresented samples via OOD detec- 044
tion after each cycle, and augments them using diffusion 045
models for subsequent training. This approach (1) elimi- 046
nates the need for prior dataset knowledge and (2) dynam- 047
ically balances the latent space to avoid suboptimal local 048
minima. 049

Experiments on ImageNet-100-LT across multiple archi- 050
tectures (ResNet-50, ViT-S, ViT-B) and SSL methods (Sim- 051
CLR, DINO, MoCo) demonstrate that BRADD consistently 052
outperforms both balanced and imbalanced baselines on di- 053
verse downstream tasks. BRADD achieves significant im- 054
provements on fine-grained tasks (up to 11.7% on Oxford 055
Flowers) and surpasses state-of-the-art methods on CIFAR- 056
10 (73.3%) and CIFAR-100 (45.4%), showing that our data- 057
centric approach offers a promising alternative to model- 058
centric solutions. 059

2. Related Work 060

Self-Supervised Learning (SSL) leverages unlabeled data 061
to learn meaningful representations for downstream tasks. 062
In computer vision, three main approaches are: (1) masked 063
prediction [7], (2) contrastive learning like MoCo [6] and 064
SimCLR [3], and (3) self-distillation methods such as 065
DINO [2]. These techniques have enabled large-scale train- 066
ing of models with emergent abilities [24]. 067
Training on Imbalanced Datasets often leads to inferior 068
performance and bias toward majority classes [10]. While 069
SSL methods are more robust to imbalance than super- 070
vised approaches [13], they still exhibit diminished perfor- 071
mance on imbalanced data. Current solutions are primarily 072
model-centric, attempting to learn arbitrary feature priors 073
[1]. Data-centric approaches that directly complement im- 074
balanced datasets remain underexplored. 075
Out-Of-Distribution (OOD) Detection is crucial for en- 076
hancing model robustness by maintaining high-quality 077
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datasets [25]. Distance-based approaches [21] iden-078
tify OOD samples by measuring their distance from in-079
distribution samples in the embedding space. These non-080
parametric methods offer flexibility without distributional081
assumptions, making them suitable for imbalanced, unla-082
beled data.083

Diffusion-Based Image Generation models systematically084
add and then remove noise to generate high-quality images085
[8]. Stable Diffusion [20], particularly Stable Diffusion 2086
UnClip, leverages CLIP embeddings to generate semanti-087
cally similar images to the input context. Its ability to per-088
form image-to-image generation while preserving semantic089
content makes it well-suited for augmenting self-supervised090
learning datasets.091

3. Method: BRADD092

We propose BRADD (Balancing Representations with093
Anomaly Detection and Diffusion), a data-centric approach094
to address imbalance in self-supervised learning. Unlike095
model-centric approaches, BRADD identifies and augments096
underrepresented concepts in the data distribution itself.097

Algorithm 1 BRADD: Balancing Representations through
Anomaly Detection and Diffusion

1: Input: model m, SSL algorithm a, diffusion model
md, cycles NC , epochs per cycle NE , dataset D, sam-
ples per point NAug , OOD samples NOOD

2: repeat
3: Train m using a for NE epochs on D
4: Compute embeddings E = {m(xi)|xi ∈ D}
5: Find OOD points O =

{xi|rank(dkNN (m(xi), E)) ≤ NOOD}
6: for x ∈ O do
7: D = D ∪ {md(x, ϵj)|j = 1, ..., NAug}
8: end for
9: until NC cycles completed

BRADD alternates between self-supervised pre-training098
and dataset augmentation phases (Algorithm 1). After099
training for NE epochs, we identify underrepresented data100
points by computing k-nearest neighbor distances in the em-101
bedding space. Rather than using a percentile threshold, we102
select the top-NOOD samples with highest k-NN distances,103
providing precise control over augmentation.104

For each identified OOD point, we generate NAug new105
samples using Stable Diffusion 2 UnCLIP [19], which pre-106
serves semantic content while introducing sufficient varia-107
tion. We use k=5 for k-NN computation, NOOD = 500,108
and NAug = 5, adding 2,500 new images per cycle across109
5 cycles with 20 epochs each (100 total epochs).110

4. Experiments 111

To evaluate the performance of our proposed method 112
BRADD (Balancing Representations through Automated 113
Detection and Diffusion), we conduct experiments on 114
ImageNet-100-LT. We test various backbone architectures, 115
SSL methods, and implementation details through compre- 116
hensive ablation studies, and compare against state-of-the- 117
art approaches. 118

4.1. ImageNet-100 Experiments 119

ImageNet-100 is a subset of ImageNet with 100 randomly 120
selected classes [22]. Following previous work [14], we 121
introduce imbalance by creating a long-tailed distribution 122
(ImageNet-100-LT) that follows a Pareto distribution with 123
α = 6. The dataset contains around 15 thousand images. 124
Models. We evaluate our method across multiple architec- 125
tures: ResNet-50 (25.6M parameters), ViT-Small (22.1M 126
parameters), and ViT-Base (86.6M parameters). 127
Self-Supervised Learning Methods. Our primary experi- 128
ments use SimCLR [3] with a temperature of 0.5, and we 129
later compare with DINO [2] and MoCo [5] in our ablation 130
studies. 131
Downstream Evaluation. We evaluate the learned features 132
using both linear probing and K-nearest neighbor (KNN) 133
classification across multiple datasets: CIFAR-10, CIFAR- 134
100 [11], Stanford Cars [4], FGVC Aircraft [15], Oxford 135
Flowers [16], and Oxford-IIIT Pets [18]. 136
Baselines. We train two baselines: (1) a model trained on 137
a balanced subset of ImageNet-100 with as much data uni- 138
formly removed as in ImageNet-100-LT and (2) a model 139
trained on the imbalanced ImageNet-100-LT. 140
Proposed Method. Our proposed method BRADD starts 141
with ImageNet-100-LT and trains for multiple cycles, where 142
each cycle consists of training epochs followed by OOD de- 143
tection and generation steps. 144

4.2. Experimental Results 145

Table 1 compares our method against balanced and imbal- 146
anced baselines using a ViT-B backbone with SimCLR. The 147
results demonstrate that: 148
• While imbalance causes only slight performance degrada- 149

tion compared to the balanced setting on some datasets, 150
our method consistently outperforms both baselines 151
across all datasets. 152

• BRADD achieves substantial improvements in linear 153
probing, with gains of up to 11.72% on Oxford Flowers 154
and 7.53% on Oxford-IIIT Pets compared to the imbal- 155
anced baseline. 156

• Our method also shows consistent improvements in KNN 157
classification, demonstrating the enhanced quality of the 158
learned feature space. 159

Table 2 shows BRADD compared to state-of-the-art meth- 160
ods using ResNet-50 with SimCLR (500 epochs): 161

2



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

SSL Encoder

Imbalanced Dataset

Problem: pretraining 

suffers from imbalanced data

latent space
z1

z2

Strong Encoder

Imbalanced Dataset

Result: robust 

representations

Flowers

39.22%

Linear Probes on Representations

CIFAR10

64.00%

Pets

30.08%

+5.93%

+11.72%
+7.53%

SSL Encoder

Diffusion Model

Balancing Representations by Identifying 

and Generating Under-represented Data (BRIDGE)

high

low

KNN-dist. in latent space
z1

z2

KNN-dist. in latent space
z1

z2

high

low

Refined Dataset

under-represented data

repeat for NC Cycles:

Figure 1. The BRADD algorithm augments the most underrepresented datapoints in a dataset based on OOD detection.

Table 1. Comparison to balanced and imbalanced baselines
(ViT-B, SimCLR, ImageNet-100-LT, 100 epochs)

C-10 C-100 Cars Aircraft Flowers Pets

Setting Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN

Balanced 59.90 57.13 33.63 28.34 4.29 3.31 9.14 4.83 31.25 26.04 23.64 13.04
Imbalanced 59.89 57.25 33.02 27.78 3.80 3.43 8.75 5.37 27.50 25.42 22.55 11.96
BRADD (ours) 64.00 60.73 38.42 31.56 6.13 4.54 11.55 6.72 39.22 30.89 30.08 14.69

• Our method achieves superior linear probing performance162
on CIFAR-10 (73.34%) and CIFAR-100 (45.38%) com-163
pared to previous methods.164

• While TS [12] performs better on KNN classification for165
most datasets, BRADD shows competitive performance166
across all benchmarks.167

4.3. Ablation Studies168

To analyze the effectiveness of different components in our169
approach, we conducted extensive ablation studies:170
SSL Method. Table 3a demonstrates that SimCLR con-171
sistently outperforms DINO and MoCo across all datasets172
when using our method, with substantial margins particu-173
larly on fine-grained classification tasks.174
Backbone Architecture. As shown in Table 3b, we com-175
pared ViT-S, ViT-B, and ResNet-50 backbones. ResNet-50176
achieves the best linear probing performance on CIFAR-10177
(71.17%), while ViT architectures perform better on fine-178
grained datasets, with ViT-B showing the strongest perfor-179
mance on Oxford-IIIT Pets (30.08%).180
Sample Selection Strategy. In Table 3c, we compare uni-181
form sampling versus our OOD-based selection. The re-182
sults confirm that OOD-based selection provides consistent183
performance gains, validating our hypothesis that targeting184
underrepresented regions of the feature space is more effec-185
tive than random augmentation.186
Sample Generation Method. Table 3d compares re-187

population (adding back removed samples) versus gener- 188
ation using Stable Diffusion. While both approaches im- 189
prove over the baseline, Stable Diffusion generation yields 190
better results, particularly on fine-grained datasets like Ox- 191
ford Flowers. 192
Number of Cycles. As shown in Table 3e, we tested differ- 193
ent numbers of cycles (2, 5, 10, 20) while keeping the total 194
number of generated images fixed. Performance generally 195
improves with more cycles, with the best results at 20 cy- 196
cles for CIFAR-10 (68.68% linear probing accuracy) and 5 197
cycles for Oxford-IIIT Pets (30.08%). 198
Number of OOD Samples. Table 3f analyzes the effect of 199
selecting different numbers of samples per cycle for aug- 200
mentation. We find that 500 samples per cycle provides the 201
optimal balance, while selecting too many samples (2500) 202
degrades performance, suggesting that focusing on the most 203
out-of-distribution samples is important. 204

5. Conclusion 205

Our comprehensive experiments demonstrate that BRADD 206
effectively mitigates the negative impact of dataset imbal- 207
ance in self-supervised learning. By strategically detect- 208
ing regions of the feature space that are underrepresented 209
and augmenting them with generated samples, our method 210
achieves consistent improvements across different architec- 211
tures, SSL methods, and downstream tasks. The ablation 212
studies confirm that both OOD-based sample selection and 213
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Table 2. Comparison to SOTA
(ResNet50, SimCLR, ImageNet-100-LT, 500 epochs)

C-10 C-100 Cars Aircraft Flowers Pets

Method Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN

SDCLR [9] 68.72 65.16 38.71 35.53 7.84 5.21 11.24 10.11 11.87 31.14 40.22 21.98
TS [12] 71.26 66.76 43.90 35.64 10.91 5.58 12.95 10.85 32.05 3.36 47.01 23.20
BRIDGE (ours) 73.34 61.76 45.38 32.26 8.95 4.73 10.95 7.92 26.14 24.94 34.68 16.05

Table 3. Ablations of the key components of our method.

(a) Pretraining
(ViT-B, ImageNet-100-LT, 100 epochs)

C-10 Flowers Pets

backbone Lin. KNN Lin. KNN Lin. KNN

SimCLR 63.40 60.73 39.22 30.89 30.08 14.69
DINO 47.97 37.36 20.92 12.46 10.30 6.00
MoCo 49.13 42.86 15.03 17.63 14.36 7.50

(b) Backbone
(SimCLR, ImageNet-100-LT)

C-10 Flowers Pets

backbone Lin. KNN Lin. KNN Lin. KNN

ViT-S 64.48 62.13 44.44 34.78 27.91 15.94
R50 71.17 59.06 26.80 21.07 26.29 15.43
ViT-B 63.40 60.73 39.22 30.89 30.08 14.69

(c) Sample Selection
(ViT-B, SimCLR, ImageNet-100-LT)

C-10 Flowers Pets

SSL Method Lin. KNN Lin. KNN Lin. KNN

SimCLR uniform 62.01 58.81 31.37 29.56 23.85 13.25
OOD 63.40 60.73 39.22 30.89 30.08 14.69

MoCoV3 uniform 51.38 41.08 21.79 16.16 12.90 7.14
OOD 52.42 42.13 19.87 17.12 11.83 11.56

(d) Sample Generation
(ViT-B, SimCLR, ImageNet-100-LT)

C-10 Flowers Pets

SSL Method Lin. KNN Lin. KNN Lin. KNN

SimCLR Re-Popul. 63.36 59.68 30.07 29.24 26.02 14.12
Stable-Diff. 63.40 60.73 39.22 30.89 30.08 14.69

MoCoV3 Re-Popul. 48.76 38.68 24.56 15.56 19.23 15.50
Stable-Diff. 52.42 42.13 19.87 17.12 11.83 11.56

(e) Number of Cycles
(ViT-S, SimCLR, ImageNet-100-LT, 100 Epochs, 10k created

images total)

C-10 Flowers Pets

#Cycles Lin. KNN Lin. KNN Lin. KNN

2 64.08 61.15 39.87 31.63 26.02 14.83
5 63.40 60.73 39.22 30.89 30.08 14.69
10 64.46 60.63 31.38 31.28 27.91 14.23
20 68.68 62.02 35.95 31.56 26.56 14.72

(f) Number of most OOD samples selected for aug. per cycle
(ViT-B, SimCLR, ImageNet-100-LT, 100 Epochs, 2500 created

images per cycle)

C-10 Flowers Pets

#Samples Lin. KNN Lin. KNN Lin. KNN

5 62.09 59.04 33.33 28.55 25.47 13.79
500 63.40 60.73 39.22 30.89 30.08 14.69
1250 58.09 56.10 28.10 24.21 27.10 11.50
2500 57.03 55.75 24.18 23.15 23.57 11.42

diffusion-based generation contribute significantly to the ef-214
fectiveness of our approach.215
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