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Abstract

Self-supervised learning (SSL) has allowed for advance-
ments in language processing and computer vision, as un-
labelled data is available in large quantities. However,
imbalances in training datasets can lead to strong biases
in the learned features of pre-trained models. Previous
results show that pre-training using imbalanced data can
also hurt downstream performance. We propose a data-
centric approach: our method trains on the data, finds
underrepresented samples, and uses diffusion to gener-
ate novel data complementing the underrepresented im-
ages. Our proposed method, BRADD (Balancing Represen-
tations through Anomaly Detection and Diffusion), utilizes
distance-based outlier detection to identify regions of the
embedding space that are underrepresented in each training
cycle. Experimental results on ImageNet-100-LT demon-
strate that BRADD consistently outperforms both balanced
and imbalanced baselines, with significant improvements
on fine-grained classification tasks. Detailed ablation stud-
ies confirm that both out-of-distribution sample selection
and diffusion-based generation contribute substantially to
the effectiveness of our approach, offering a promising al-
ternative to model-centric solutions for addressing imbal-
ance in self-supervised learning.

1. Introduction

Self-supervised learning (SSL) methods have emerged
as powerful techniques for learning transferable features
across diverse tasks [2, 3, 17]. However, their perfor-
mance is significantly affected by dataset imbalance [1,
12, 23]. For instance, SimCLR underperforms on long-
tailed datasets due to insufficient negative samples [23],
while joint-embedding methods like VICReg assume uni-
form clustering, hampering performance on imbalanced
data [1].

Existing solutions typically adopt model-centric ap-
proaches, such as ensemble learning [23], incorporating
arbitrary feature priors [1], or modifying training dynam-
ics [12]. These approaches, however, often require prior
knowledge of dataset distributions or extensive hyperpa-
rameter tuning, contradicting the unsupervised nature of
SSL.

We propose BRADD (Balancing Representations with
Anomaly Detection and Diffusion), a data-centric approach
to address imbalance in SSL. BRADD divides training into
cycles, identifies underrepresented samples via OOD detec-
tion after each cycle, and augments them using diffusion
models for subsequent training. This approach (1) elimi-
nates the need for prior dataset knowledge and (2) dynam-
ically balances the latent space to avoid suboptimal local
minima.

Experiments on ImageNet-100-LT across multiple archi-
tectures (ResNet-50, ViT-S, ViT-B) and SSL methods (Sim-



CLR, DINO, MoCo) demonstrate that BRADD consistently
outperforms both balanced and imbalanced baselines on di-
verse downstream tasks. BRADD achieves significant im-
provements on fine-grained tasks (up to 11.7% on Oxford
Flowers) and surpasses state-of-the-art methods on CIFAR-
10 (73.3%) and CIFAR-100 (45.4%), showing that our data-
centric approach offers a promising alternative to model-
centric solutions.

2. Related Work
Self-Supervised Learning (SSL) leverages unlabeled data
to learn meaningful representations for downstream tasks.
In computer vision, three main approaches are: (1) masked
prediction [7], (2) contrastive learning like MoCo [6] and
SimCLR [3], and (3) self-distillation methods such as
DINO [2]. These techniques have enabled large-scale train-
ing of models with emergent abilities [24].
Training on Imbalanced Datasets often leads to inferior
performance and bias toward majority classes [10]. While
SSL methods are more robust to imbalance than super-
vised approaches [13], they still exhibit diminished perfor-
mance on imbalanced data. Current solutions are primarily
model-centric, attempting to learn arbitrary feature priors
[1]. Data-centric approaches that directly complement im-
balanced datasets remain underexplored.
Out-Of-Distribution (OOD) Detection is crucial for en-
hancing model robustness by maintaining high-quality
datasets [25]. Distance-based approaches [21] iden-
tify OOD samples by measuring their distance from in-
distribution samples in the embedding space. These non-
parametric methods offer flexibility without distributional
assumptions, making them suitable for imbalanced, unla-
beled data.
Diffusion-Based Image Generation models systematically
add and then remove noise to generate high-quality images
[8]. Stable Diffusion [20], particularly Stable Diffusion 2
UnClip, leverages CLIP embeddings to generate semanti-
cally similar images to the input context. Its ability to per-
form image-to-image generation while preserving semantic
content makes it well-suited for augmenting self-supervised
learning datasets.

3. Method: BRADD
We propose BRADD (Balancing Representations with
Anomaly Detection and Diffusion), a data-centric approach
to address imbalance in self-supervised learning. Unlike
model-centric approaches, BRADD identifies and augments
underrepresented concepts in the data distribution itself.
BRADD alternates between self-supervised pre-training
and dataset augmentation phases (Algorithm 1). After
training for NE epochs, we identify underrepresented data
points by computing k-nearest neighbor distances in the em-

Algorithm 1 BRADD: Balancing Representations through
Anomaly Detection and Diffusion

1: Input: model m, SSL algorithm a, diffusion model
md, cycles NC , epochs per cycle NE , dataset D, sam-
ples per point NAug , OOD samples NOOD

2: repeat
3: Train m using a for NE epochs on D
4: Compute embeddings E = {m(xi)|xi ∈ D}
5: Find OOD points O =

{xi|rank(dkNN (m(xi), E)) ≤ NOOD}
6: for x ∈ O do
7: D = D ∪ {md(x, ϵj)|j = 1, ..., NAug}
8: end for
9: until NC cycles completed

bedding space. Rather than using a percentile threshold, we
select the top-NOOD samples with highest k-NN distances,
providing precise control over augmentation.
For each identified OOD point, we generate NAug new
samples using Stable Diffusion 2 UnCLIP [19], which pre-
serves semantic content while introducing sufficient varia-
tion. We use k=5 for k-NN computation, NOOD = 500,
and NAug = 5, adding 2,500 new images per cycle across
5 cycles with 20 epochs each (100 total epochs).

4. Experiments

To evaluate the performance of our proposed method
BRADD (Balancing Representations through Automated
Detection and Diffusion), we conduct experiments on
ImageNet-100-LT. We test various backbone architectures,
SSL methods, and implementation details through compre-
hensive ablation studies, and compare against state-of-the-
art approaches.

4.1. ImageNet-100 Experiments
ImageNet-100 is a subset of ImageNet with 100 randomly
selected classes [22]. Following previous work [14], we
introduce imbalance by creating a long-tailed distribution
(ImageNet-100-LT) that follows a Pareto distribution with
α = 6. The dataset contains around 15 thousand images.
Models. We evaluate our method across multiple architec-
tures: ResNet-50 (25.6M parameters), ViT-Small (22.1M
parameters), and ViT-Base (86.6M parameters).
Self-Supervised Learning Methods. Our primary experi-
ments use SimCLR [3] with a temperature of 0.5, and we
later compare with DINO [2] and MoCo [5] in our ablation
studies.
Downstream Evaluation. We evaluate the learned features
using both linear probing and K-nearest neighbor (KNN)
classification across multiple datasets: CIFAR-10, CIFAR-
100 [11], Stanford Cars [4], FGVC Aircraft [15], Oxford
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Figure 1. The BRADD algorithm augments the most underrepresented datapoints in a dataset based on OOD detection.

Table 1. Comparison to balanced and imbalanced baselines
(ViT-B, SimCLR, ImageNet-100-LT, 100 epochs)

C-10 C-100 Cars Aircraft Flowers Pets

Setting Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN

Balanced 59.90 57.13 33.63 28.34 4.29 3.31 9.14 4.83 31.25 26.04 23.64 13.04
Imbalanced 59.89 57.25 33.02 27.78 3.80 3.43 8.75 5.37 27.50 25.42 22.55 11.96
BRADD (ours) 64.00 60.73 38.42 31.56 6.13 4.54 11.55 6.72 39.22 30.89 30.08 14.69

Flowers [16], and Oxford-IIIT Pets [18].
Baselines. We train two baselines: (1) a model trained on
a balanced subset of ImageNet-100 with as much data uni-
formly removed as in ImageNet-100-LT and (2) a model
trained on the imbalanced ImageNet-100-LT.
Proposed Method. Our proposed method BRADD starts
with ImageNet-100-LT and trains for multiple cycles, where
each cycle consists of training epochs followed by OOD de-
tection and generation steps.

4.2. Experimental Results
Table 1 compares our method against balanced and imbal-
anced baselines using a ViT-B backbone with SimCLR. The
results demonstrate that:
• While imbalance causes only slight performance degrada-

tion compared to the balanced setting on some datasets,
our method consistently outperforms both baselines
across all datasets.

• BRADD achieves substantial improvements in linear
probing, with gains of up to 11.72% on Oxford Flowers
and 7.53% on Oxford-IIIT Pets compared to the imbal-
anced baseline.

• Our method also shows consistent improvements in KNN
classification, demonstrating the enhanced quality of the
learned feature space.

Table 2 shows BRADD compared to state-of-the-art meth-
ods using ResNet-50 with SimCLR (500 epochs):

• Our method achieves superior linear probing performance
on CIFAR-10 (73.34%) and CIFAR-100 (45.38%) com-
pared to previous methods.

• While TS [12] performs better on KNN classification for
most datasets, BRADD shows competitive performance
across all benchmarks.

4.3. Ablation Studies
To analyze the effectiveness of different components in our
approach, we conducted extensive ablation studies:
SSL Method. Table 3a demonstrates that SimCLR con-
sistently outperforms DINO and MoCo across all datasets
when using our method, with substantial margins particu-
larly on fine-grained classification tasks.
Backbone Architecture. As shown in Table 3b, we com-
pared ViT-S, ViT-B, and ResNet-50 backbones. ResNet-50
achieves the best linear probing performance on CIFAR-10
(71.17%), while ViT architectures perform better on fine-
grained datasets, with ViT-B showing the strongest perfor-
mance on Oxford-IIIT Pets (30.08%).
Sample Selection Strategy. In Table 3c, we compare uni-
form sampling versus our OOD-based selection. The re-
sults confirm that OOD-based selection provides consistent
performance gains, validating our hypothesis that targeting
underrepresented regions of the feature space is more effec-
tive than random augmentation.
Sample Generation Method. Table 3d compares re-



Table 2. Comparison to SOTA
(ResNet50, SimCLR, ImageNet-100-LT, 500 epochs)

C-10 C-100 Cars Aircraft Flowers Pets

Method Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN Lin. KNN

SDCLR [9] 68.72 65.16 38.71 35.53 7.84 5.21 11.24 10.11 11.87 31.14 40.22 21.98
TS [12] 71.26 66.76 43.90 35.64 10.91 5.58 12.95 10.85 32.05 3.36 47.01 23.20
BRADD (ours) 73.34 61.76 45.38 32.26 8.95 4.73 10.95 7.92 26.14 24.94 34.68 16.05

Table 3. Ablations of the key components of our method.

(a) Pretraining
(ViT-B, ImageNet-100-LT, 100 epochs)

C-10 Flowers Pets

backbone Lin. KNN Lin. KNN Lin. KNN

SimCLR 63.40 60.73 39.22 30.89 30.08 14.69
DINO 47.97 37.36 20.92 12.46 10.30 6.00
MoCo 49.13 42.86 15.03 17.63 14.36 7.50

(b) Backbone
(SimCLR, ImageNet-100-LT)

C-10 Flowers Pets

backbone Lin. KNN Lin. KNN Lin. KNN

ViT-S 64.48 62.13 44.44 34.78 27.91 15.94
R50 71.17 59.06 26.80 21.07 26.29 15.43
ViT-B 63.40 60.73 39.22 30.89 30.08 14.69

(c) Sample Selection
(ViT-B, SimCLR, ImageNet-100-LT)

C-10 Flowers Pets

SSL Method Lin. KNN Lin. KNN Lin. KNN

SimCLR uniform 62.01 58.81 31.37 29.56 23.85 13.25
OOD 63.40 60.73 39.22 30.89 30.08 14.69

MoCoV3 uniform 51.38 41.08 21.79 16.16 12.90 7.14
OOD 52.42 42.13 19.87 17.12 11.83 11.56

(d) Sample Generation
(ViT-B, SimCLR, ImageNet-100-LT)

C-10 Flowers Pets

SSL Method Lin. KNN Lin. KNN Lin. KNN

SimCLR Re-Popul. 63.36 59.68 30.07 29.24 26.02 14.12
Stable-Diff. 63.40 60.73 39.22 30.89 30.08 14.69

MoCoV3 Re-Popul. 48.76 38.68 24.56 15.56 19.23 15.50
Stable-Diff. 52.42 42.13 19.87 17.12 11.83 11.56

(e) Number of Cycles
(ViT-S, SimCLR, ImageNet-100-LT, 100 Epochs, 10k created

images total)

C-10 Flowers Pets

#Cycles Lin. KNN Lin. KNN Lin. KNN

2 64.08 61.15 39.87 31.63 26.02 14.83
5 63.40 60.73 39.22 30.89 30.08 14.69
10 64.46 60.63 31.38 31.28 27.91 14.23
20 68.68 62.02 35.95 31.56 26.56 14.72

(f) Number of most OOD samples selected for aug. per cycle
(ViT-B, SimCLR, ImageNet-100-LT, 100 Epochs, 2500 created

images per cycle)

C-10 Flowers Pets

#Samples Lin. KNN Lin. KNN Lin. KNN

5 62.09 59.04 33.33 28.55 25.47 13.79
500 63.40 60.73 39.22 30.89 30.08 14.69
1250 58.09 56.10 28.10 24.21 27.10 11.50
2500 57.03 55.75 24.18 23.15 23.57 11.42

population (adding back removed samples) versus gener-
ation using Stable Diffusion. While both approaches im-
prove over the baseline, Stable Diffusion generation yields
better results, particularly on fine-grained datasets like Ox-
ford Flowers.
Number of Cycles. As shown in Table 3e, we tested differ-
ent numbers of cycles (2, 5, 10, 20) while keeping the total
number of generated images fixed. Performance generally
improves with more cycles, with the best results at 20 cy-

cles for CIFAR-10 (68.68% linear probing accuracy) and 5
cycles for Oxford-IIIT Pets (30.08%).
Number of OOD Samples. Table 3f analyzes the effect of
selecting different numbers of samples per cycle for aug-
mentation. We find that 500 samples per cycle provides the
optimal balance, while selecting too many samples (2500)
degrades performance, suggesting that focusing on the most
out-of-distribution samples is important.



5. Conclusion
Our comprehensive experiments demonstrate that BRADD
effectively mitigates the negative impact of dataset imbal-
ance in self-supervised learning. By strategically detect-
ing regions of the feature space that are underrepresented
and augmenting them with generated samples, our method
achieves consistent improvements across different architec-
tures, SSL methods, and downstream tasks. The ablation
studies confirm that both OOD-based sample selection and
diffusion-based generation contribute significantly to the ef-
fectiveness of our approach.
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