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Abstract

Actor-critic methods for decentralized multi-agent
reinforcement learning (MARL) facilitate collab-
orative optimal decision making without central-
ized coordination, thus enabling a wide range of
applications in practice. To date, however, most
theoretical convergence studies for existing actor-
critic decentralized MARL methods are limited
to the guarantee of a stationary solution under
the linear function approximation. This leaves
a significant gap between the highly successful
use of deep neural actor-critic for decentralized
MARL in practice and the current theoretical un-
derstanding. To bridge this gap, in this paper,
we make the first attempt to develop a deep neu-
ral actor-critic method for decentralized MARL,
where both the actor and critic components are
inherently non-linear. We show that our proposed
method enjoys a global optimality guarantee with
a finite-time convergence rate of O(1/T ), where
T is the total iteration times. This marks the first
global convergence result for deep neural actor-
critic methods in the MARL literature. We also
conduct extensive numerical experiments, which
verify our theoretical results.

1. Introduction
1) Background and Motivations: Decentralized Multi-
agent reinforcement learning (MARL) (Littman, 1994;
Lauer and Riedmiller, 2000; Lowe et al., 2017; Zhang et al.,
2018; Omidshafiei et al., 2017), a generalization of tradi-
tional single-agent reinforcement learning (RL) (Kaelbling
et al., 1996; Sutton, 2018; Arulkumaran et al., 2017) has
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found a wide range of applications in recent years, such
as network recourse allocation (Cui et al., 2019; Liu et al.,
2020b), autonomous driving (Sallab et al., 2017; Kiran et al.,
2021; Yu et al., 2019), wireless random access network op-
timization (Feriani and Hossain, 2021; Luong et al., 2019;
Nasir and Guo, 2019). Generally speaking, in decentralized
MARL, multiple agents collaboratively learn an optimal
policy to maximize long-term accumulative global rewards
through local optimization and information sharing.

Among a large number of methods for solving MARL prob-
lems, the family of actor-critic methods have become in-
creasingly popular. This is primarily due to the fact that
actor-critic methods combine the strengths of two most fun-
damental and basic RL approaches, namely value-based
and policy-based RL approaches, thus achieving the best
of both worlds while avoiding their pitfalls. Specifically, in
actor-critic approaches, the critic component performs pol-
icy evaluation to estimate the value or state-action function
for the current policy, while the actor component leverages
the policy evaluation information to compute policy gradi-
ent to update policy parameters. On one hand, with policy
evaluation, actor-critic methods share the similar benefit of
effective data usage as in value-based approaches. On the
other hand, by exploiting policy gradient information, actor-
critic methods are versatile and can easily handle many RL
complications in practice (e.g., infinite or continuous state
and action spaces). Moreover, thanks to the use of policy
gradients, actor-critic methods can incorporate numerous
insights and techniques from decentralized gradient-based
optimization, making them particularly appealing for decen-
tralized MARL.

To date, while actor-critic decentralized MARL methods
have shown great empirical promises in various applications
(Foerster et al., 2016; Omidshafiei et al., 2017; Naderial-
izadeh et al., 2021; Feriani and Hossain, 2021; Li et al.,
2022), the theoretical foundation of actor-critic decentral-
ized MARL remains in its infancy. Although there have
been recent efforts on addressing the theoretical gaps in
MARL (Hairi et al., 2022), many fundamental problems re-
main wide open. There are two major technical limitations
in actor-critic decentralized MARL that could significantly
diminish the long-term applicability and promises of actor-
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critic MARL if they are not well addressed.

(1) Critics with Linear Function Approximations: To date,
most existing works on actor-critic MARL methods
(e.g., Zhang et al. (2018); Chen et al. (2022); Hairi et al.
(2022)) adopt linear functions to approximate value or
state-action functions of a given policy. Although the
use of linear function approximations is more tractable
for theoretical analysis and indeed yield some interesting
preliminary understandings of actor-critic MARL meth-
ods, it violates the settings of most actor-critic decen-
tralized MARL methods in practice, particularly those
with deep-neural-network (DNN)-based critics that are
not only nonlinear but also non-convex.

(2) Stationarity Convergence Guarantees: So far, most the-
oretical analyses for actor-critic decentralized MARL
methods only ensure the convergence to some stationary
solution (Zhang et al., 2018; Hairi et al., 2022; Zhang
et al., 2021b), which is a rather weak performance guar-
antee and merely serves as a necessary condition of
local optimality. For actor-critic decentralized MARL,
little is known on how to develop algorithms with global
optimality convergence guarantee.

All the above technical limitations indicate a significant
gap between many empirically well-performing DNN-based
actor-critic decentralized MARL methods and the current
inadequate theoretical understanding of the design and anal-
ysis of the actor-critic decentralized MARL algorithms.
Hence, an important question naturally arises:

(Q): Could we develop efficient actor-critic methods for
decentralized MARL with DNN-based nonlinear func-
tion approximation in the critic component to offer global
optimality convergence guarantee?

2) Technical Challenges: It turns out that answering the
above question is highly nontrivial and involves overcoming
at least three major challenges outlined as follows:

(1) Existing actor-critic algorithms for single-agent RL with
nonlinear function approximation in critic, which of-
ten demand meticulous error control analysis, are in-
adequate due to the distributed nature of MARL sys-
tems. This challenge arises from the computation of
global quantities (e.g., advantage functions and global
TD-errors) (Zhang et al., 2018; Hairi et al., 2022). While
a centralized server can partially mitigate this issue, the
lack of direct global information sharing among agents
in decentralized MARL makes it exceedingly challeng-
ing to adapt single-agent actor-critic RL methods with
nonlinear function approximations in MARL.

(2) Even if one employs consensus techniques among decen-
tralized agents to alleviate the above challenge to some
degree, the resulting error, compounded by inaccuracies
inherent in nonlinear function approximation, could still

lead to difficulty in theoretical analysis. Specifically,
compared to decentralized MARL actor-critic methods
with linear function approximation in critic (Chen et al.,
2022; Hairi et al., 2022), the order between the critic’s
nonlinear operator and the consensus operator cannot be
interchanged, rendering the proof techniques of (Chen
et al., 2022; Hairi et al., 2022) ineffective.

(3) Even when only aiming for a stationary point, the afore-
mentioned challenges persist. Furthermore, achieving
the global optimum is even more challenging. This is
because the gradients derived from the descent lemma,
which are sufficient for establishing theory for stationary
points, cannot fully capture global information. Toward
this end, new techniques are required to handle the up-
dating sequences effectively.

3) Our Contributions: The major contribution of this work
is that we overcome all the above challenges and develop
a new actor-critic algorithm for decentralized MARL with
nonlinear function approximation in the critic, which offers
global optimality convergence guarantee. To our knowledge,
this work takes the first step toward establishing a theoretical
foundation for actor-critic decentralized MARL methods
by affirmatively answering the above question. Our main
technical results are summarized as follows:

• We propose the first DNN-based actor-critic algorithm
for fully decentralized MARL problem, which con-
verges to global optimality with a rate of O(1/T ), where
T is the number of total iterations. Moreover, we show
that, to achieve an ϵ-global-optimal solution, our algo-
rithm enjoys a sample complexity of O(1/ϵ−3).

• We note that our theoretical analysis effectively ad-
dresses all aforementioned technical challenges. In par-
ticular, to tackle the challenges posed by the interplay
of decentralization and nonlinearity, we design a new
technique that maintains pseudo-centralized values to
couple decentralized values after nonlinear operation.
(cf. Remark 6).

• To verify our theoretical results, we conduct extensive
experiments. First, we perform ablation studies in a
small-scale MARL environment to demonstrate the im-
pacts of various parameters on the algorithm. Interest-
ingly, our results reveal that the use of TD-error in our
algorithm yields significantly better performance than
the use of Q-values in existing works. Moreover, we
implement our proposed algorithm on a multi-objective
alignment problem to demonstrate the effectiveness of
our method in RLHF (reinforcement learning from hu-
man feedback) for large language models (LLM).

2. Related Work
In this section, to put our work into comparative perspec-
tives, we provide overview on two lines of related research:
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(1) single-agent actor-critic RL algorithms with DNN-based
nonlinear function approximation in critic; and (2) the de-
velopment of MARL algorithms.

1) Single-agent Actor-Critic RL Algorithms: In the vast
literature of single-agent RL, the actor-critic framework has
received a significant amount of attention. The actor-critic
framework combines the strengths of policy gradient meth-
ods and sample efficient policy evaluation of value-based
methods and has demonstrated impressive capabilities. Re-
cent works (Castro and Meir, 2010; Maei, 2018; Xu et al.,
2020a;b) have established and improved the theoretical con-
vergence results of the single-agent actor-critic framework,
primarily focusing on linear function approximations. More-
over, recent studies have started to explore the theoretical
foundation of actor-critic methods equipped with neural
networks (Gaur et al., 2023; 2024; Wang and Hu, 2021).
However, the theoretical results of single-agent actor-critic
RL cannot be directly extended to decentralized MARL set-
tings due to the inability to compute global quantities in
single-agent decentralized settings.

2) MARL Algorithms: MARL problem in the tabular set-
ting was first explored by (Littman, 1994; 2001; Lauer and
Riedmiller, 2000) for competitive and cooperative settings
respectively. In recent years, research has increasingly fo-
cused on MARL with function approximation (Arslan and
Yüksel, 2016; Zhang et al., 2018; Hairi et al., 2022) to ad-
dress problems with large state-action space. However, these
works have notable limitations as follows: (1) Foerster et al.
(2016); Lowe et al. (2017) assumed the presence of a central-
ized server, thus not suitable for the decentralized MARL;
(2) (Zhang et al., 2018; Hairi et al., 2022; Chen et al., 2022;
Hairi et al., 2024; Zeng et al., 2022) focused on theoretical
studies on decentralized MARL algorithms with linear func-
tion approximation assumption, which are often violated
in practice since most empirical actor-critic MARL algo-
rithms adopt nonlinear DNNs; (3) While Gupta et al. (2017);
Omidshafiei et al. (2017); Foerster et al. (2016) consider
deep MARL algorithms, they provide only numerical results
without any theoretical finite-time convergence rate analysis.
Moreover, most theoretical results in the MARL literature
only guarantee convergence to a stationary solution (Zhang
et al., 2018; Hairi et al., 2022; Zhang et al., 2021b), while
results on achieving global optimality convergence remain
very limited. Although (Chen et al., 2022) indeed guaran-
tees global convergence, however, their algorithm is based
on linear function approximation. In contrast, we proposes a
DNN-based actor-critic algorithm for decentralized MARL
with finite-time global optimality convergence guarantee.

3. Problem Formulation and Preliminaries
In this section, we first introduce the problem formulation
in Section 3.1, which is followed by preliminaries on the

deep neural networks we use and the associated critic opti-
mization problem in Section 3.2.

3.1. Problem Formulation

1) System Model: We model an MARL problem as
a graph network G = (N , E), where the node set
N = {1, 2, . . . , N} represents the N agents, and the
edge set E specifies the pairs of agents that can directly
communicate. The consensus weight matrix associated
with graph G is denoted as A. We consider a multi-
agent Markov decision process (MAMDP) denoted as
(S, {Ai}i∈N , P, {ri}i∈N , γ,G), where S is the state space,
Ai is local action space for agent i, A =

∏
i∈N Ai is

the joint action space, P : S × A × S → [0, 1] is the
global transition matrix, ri : S × Ai → R is agent i’s
local reward, and γ ∈ (0, 1) is the discount factor. No-
tably, we consider a “restart” kernel defined as P (s, a, s′) =
γP(s′|s, a)+(1−γ)I{s′ = s0}, where s0 is the initial state,
and I{·} denotes the indicator function that outputs 1 if the
event holds, and 0 otherwise. As shown in Section 4, this
restart kernel significantly simplifies the gradient compu-
tation. In MAMDP, each agent i follows a local policy
πi parameterized by θi to determine its actions. The joint
policy is denoted as π =

∏
i∈N πi, with the correspond-

ing global parameter θ = ((vec(θ1))⊤, . . . , (vec(θN ))⊤)⊤,
where vec(·) turns the parameter θi into a vector.

2) Problem Statement: We consider a non-competing set-
ting, where all N agents cooperatively maximize the to-
tal rewards. Specifically, a MAMDP models a sequential
decision-making process with the aim to maximize the long-
term discounted cumulative system-wide reward as follows:

J(θ)=Eπθ

( ∞∑
t=0

γt

N

∑
i∈N

rit+1

)
=Eπθ

( ∞∑
t=0

γtr̄t+1

)
, (1)

where r̄t = 1
N

∑
i∈N rit. The goal of the MAMDP is to find

an optimal policy θ∗ that maximizes J(θ).

3) The Actor-Critic Approach. In this work, we consider
using a multi-agent actor-critic algorithm with DNN-based
critic to solve the decentralized MARL problem. As noted
earlier, the actor-critic framework is well-established in the
literature (Sutton, 2018; Mnih, 2016; Xu et al., 2020a). This
framework alternates between two processes: the critic esti-
mates the value functions for a given policy, and the actor
improves the policy based on the critic’s policy evaluation
result and following policy gradient directions. To com-
pute policy gradients, we first define the state-action value
function, i.e., Q-function, associated with the MAMDP is
defined as follows:

Qθ(s, a) := E
( ∞∑

t=0

γtr̄t+1

∣∣∣s0 = s, a0 = a, πθ

)
. (2)
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Intuitively, Qθ(s, a) represents the “goodness” of the state-
action pair (s, a) under policy πθ. However, the exact
Q-function values are unavailable during learning. Thus,
we use a DNN parameterized by W (cf. Section 3.2) as
the model of Q̂(s, a;W ), which approximates the Qθ(s, a)
value. To bootstrap the Q-function estimation, we define the
Bellman operator T πθ for policy πθ as follows:

T πθQ̂(s, a;W ) =Eθ

(
r̄(s, a) + γQ̂(s′, a′;W )

)
, (3)

where expectation Eθ is taken over s′ ∼ P (·|s, a), a′ ∼
πθ(·|s′). Since Qθ is the fixed point of T πθ , we define an
optimization problem to estimateQθ(s, a) in Section 3.2. In
addition, we also define the following advantage function:

Advθ(s, a) = Qθ(s, a)− Ea∼πθ
(Qθ(s, a)) . (4)

3.2. Preliminaries

1) Deep Neural Networks (DNN): As mentioned earlier,
most of the existing works on actor-critic MARL methods
rely on linear function approximations for policy evaluation
(i.e., critic) (Chen et al., 2022; Zhang et al., 2018; 2021b;
Hairi et al., 2022). However, linear function approxima-
tions are not rich enough for complex MARL scenarios. To
address this limitation,we adopt DNNs in critic and actor
to approximate Q-functions and represent policies, respec-
tively.

Specifically, each agent i’s critic maintains a DNN-based
local approximation Q̂(·;W i) to approximate Qθ, where
W i denotes the weights of critic DNN, which is of width
m and depth D. For any state-action pair (s, a) ∈ S × A,
we use a one-to-one mapping ξ such that x = ξ(s, a) ∈
Rd. Without loss of generality, we assume ∥x∥2 = 1. For
simplicity, we use (s, a) and x interchangeably throughout
the rest of the paper. The structure of the DNN is as follows:

x(0) = Hx, y = b⊤x(D),

x(h) =
1√
m
ReLU(W (h)x(h−1)) for any h ∈ [D],

(5)

where [D] = {1, . . . , D}, H ∈ Rm×d, W (h) ∈
Rm×m, and b ∈ Rm are the parameters of the DNN,
ReLU(x) := max{0, x} is the ReLU activation func-
tion. To initialize parameters, we let all entries of H and
W (h),∀h ∈ [D] follow N (0, 2) independently, and those
in b follow N (0, 1) independently. During training, only
W = (vec(W (1))⊤, . . . , vec(W (D))⊤)⊤ is updated while
H and b remain fixed. Hence, we simplify the notation
Q̂θ(x;W,H, b) to Q̂θ(x;W ).

The DNN structure adopted in this paper is the so-called
fully connected network (Sainath et al., 2015; Schwing and
Urtasun, 2015), which possesses several important theoreti-
cal properties. One key property we leverage is the universal

approximation theorem, which says that under sufficiently
large depth or width, a fully connected neural network can
accurately approximate any functions (Jacot et al., 2018;
Gao et al., 2019; Allen-Zhu et al., 2019; Liu et al., 2024).
We adopt the same fully connected network structure in the
actor of each agent i ∈ N , which is similar to (Liu et al.,
2020a; Gaur et al., 2024). The only difference in our DNN
is the addition of a Softmax layer at the output to represent a
probability distribution. The input to the DNN is the current
state s ∈ S. The output of the DNN is an action a ∈ Ai.
For simplicity, we assume |Ai| to be the same for all i ∈ N .
Consequently, the local policy πi

θ is parameterized by the
vector θi of dimension m(Dm+ d+ 1).

2) Optimization Problems for Policy Evaluation: For
a given policy πθ, since Qθ is the fixed point of Bellman
operator defined in Eq. (3), we can find Qθ by solving the
following minimization problem:

MSBE(W )=Ex∼ν(θ)

[
(Q̂(x;W )−T πθQ̂(x;W ))2

]
, (6)

where x follows the stationary distribution ν(θ), which will
be introduced in Lemma 5.4. Eq. (6), referred to as the mean-
squared Bellman error (MSBE) (Cai et al., 2019), quantifies
the gap between the approximation Q̂ and the true fixed
point Qθ under parameter W . A surrogate of MSBE is the
projected mean-squared Bellman error (MSPBE) operator,
which is defined as:

MSPBE(W )=Ex∼ν(θ)

[
(Q̂(x;W )−ΠFT πθQ̂(x;W ))2

]
, (7)

where ΠF is the projection map onto the function class F .

4. The DNN-Based Actor-Critic Method for
Decentralized MARL

1) Algorithm Overview: Our proposed DNN-based actor-
critic method for decentralized MARL is presented in Al-
gorithm 1 with Algorithm 2 serving as its critic component.
The overall algorithm in Algorithm 1 employs a double-
loop structure. The inner-loop, corresponding to the critic in
Algorithm 2, runs K iterations to approximate Q-function
using temporal difference (TD) learning. The outer-loop
in Algorithm 1 iterates T rounds, where in each round, the
policy θ is updated using the newly obtained Q-function
approximation from the inner-loop. Moreover, a gossiping
technique (Nedic and Ozdaglar, 2009) is used in both the
actor and critic to efficiently broadcast local information.
This enables a consensus process and effectively addresses
the decentralization challenges of the problem.

2) The Critic Component: Algorithm 2 shows the critic
component of our algorithm. Given the current policy πθt ,
each agent i ∈ N leverages TD-learning to approximate
Qθt . Specifically, in each iteration k of the totalK iterations,
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Algorithm 1 DNN-based Actor-Critic for Dec. MARL.
1: Input: step-size αt, initial parameters θi0 for all i ∈ N .
2: for t = 0, 1, . . . , T − 1 do
3: Let Wt, st,0 be output of Algorithm 2.
4: for l = 0, 1, . . . ,M − 1 do
5: for i ∈ N do
6: Observe: st,l+1 and rit,l+1.
7: Sample: ait,l+1 ∼ πi

θi
t
(·|st,l+1).

8: Compute: ψi
t,l = ∇θi log πi

θi
t
(st,l, a

i
t,l).

9: Compute δit,l = Q̂(st,l, at,l;W
i
t ) − rit,l+1 −

γQ̂(st,l+1, at,l+1;W
i
t ).

10: end for
11: end for

12: Stack ∆̃0 =

 δ1t,0 · · · δNt,0
...

. . .
...

δ1t,M−1 · · · δNt,M−1

.

13: Compute ∆̃ = Atgossip∆̃⊤
0 .

14: for i ∈ N do
15: Assign δ̃it,: = ∆̃(i, :)⊤.
16: Compute: dit =

1
M

∑M−1
l=0 δ̃it,lψ

i
t,l.

17: Update: θit+1 = θit + αt
di
t

∥di
t∥

.
18: end for
19: end for
20: Output: θiT for all i ∈ N (i.e., θT ).

Algorithm 2 DNN-Based Critic for Decentralized MARL.
1: Input: s0, πθt , step-size β, iteration number K, con-

sensus weight matrix A, gossiping times tgossip.
2: Initialize: B(B) = {W : ∥W (h) − W (h)(0)∥F ⩽
B, ∀h ∈ [D]}. W i(0) =W i =W (0),∀i ∈ N .

3: for k = 0, 1, . . . ,K − 1 do
4: for i ∈ N do
5: Sample the tuple: (sk, a

i
k, r

i
k+1, sk+1, a

i
k+1),

where aik ∼ πi
θi(·|sk).

6: Compute TD-error: δik = Q̂(sk,, ak;W
i(k)) −

rik+1 − γQ̂(sk+1, ak+1;W
i(k)).

7: Update: W̃ i(k + 1) = W i(k) − βδik ·
∇W Q̂(sk, ak;W

i(k)).
8: Project: W i(k + 1) = argminW∈B(B) ∥W −

W̃ i(k + 1)∥2.
9: Update W i: W i = k+1

k+2W
i + 1

k+2W
i(k + 1).

10: end for
11: end for
12: Gossip: Set Ŵ =

(
W 1, . . . ,WN

)⊤
, WK = AtgossipŴ .

13: Output: sK−1,WK .

agents first implement Markovian sampling according to
policy πθt . Then, each agent i computes the local TD-
error δik and updates the parameter W̃ i(k + 1) based on δik.

Importantly, after each TD learning update, the parameter is
projected onto a projection ball with a radius of B > 0 and
centered on the global initial parameter W i(0) = W (0).
This projection step ensures a non-expansive property that
will be useful in our subsequent theoretical analysis.

Lastly, since all N agents update their parameters based on
local data, upon the completion of K local update iterations
in critic, each agent performs the consensus process using
the gossiping technique (communicate only with local neigh-
bors and perform local weighted aggregations) to aggregate
information from neighboring agents. The gossiping process
will be executed for tgossip rounds. This iterative weighting
process ensures reaching a near consensus on the average
information across all agents (Nedic and Ozdaglar, 2009;
Zhu et al., 2021; Hairi et al., 2022; Zhang et al., 2021a).
To state the gossiping process, we collect all aggregation
weights and form a consensus matrix A as follows:
Definition 4.1 (Consensus Matrix). A consensus matrix
A ∈ RN×N associated with the graph G = {N , E} is
defined as follows: (i) The (i, j)-th element Aij = 0 if
(i, j) ̸∈ E , implying agents i and j cannot share information
directly; and (ii) Aij > 0 denotes the weight between two
agents when they communicate with each other.

Using the consensus matrix A, the consensus process across
all agents can be compactly written in matrix form asWK =
AtgossipŴ , where Ŵ := (W 1, . . . ,WN )⊤.

3) The Actor Component: As shown in Algorithm 1, the
actor component runs T iterations. In each iteration t, agents
first receive the updated consensual parameters from the
critic. Subsequently, a Markovian batch sampling of length
M is employed. In this process, agents maintain the local
TD-error δit,l and the local score function ψi

t,l using the
newly gathered Markovian data. This information is used in
computing the MARL policy gradient.

However, since the policy gradient computation is based
on the visitation measure of the policy as shown in (Sutton,
2018), directly evaluating the policy gradient is challeng-
ing. Fortunately, thanks to the restart kernel, we obtain the
following key result that significantly simplifies the policy
gradient computation.
Lemma 4.2. Denote η(s) :=

∑∞
t=0 γ

tPπθ
(s0 → s, t) as

the visitation measure, where Pπθ
(s0 → s, t) is the proba-

bility of visiting state s after t steps under policy πθ, with
starting state s0. Then, under the restart kernel, the station-
ary distribution ν(·) is proportional to η(·). More specifi-
cally, for any state s, we have ν(s) = (1− γ)η(s).

We also note that the restart kernel not only provides the
elegant “proportional” result above, but is has also widely
adopted in the RL literature (Konda and Tsitsiklis, 2003;
Chen et al., 2022; Xu et al., 2020a). Based on Lemma 4.2,
we can rewrite the policy gradient theorem as follows. Due
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to space limitation, we relegate the proofs of Lemma 4.2
and Lemma 4.3 to Appendix A.

Lemma 4.3 (Policy Gradient Theorem for MARL). For
any parameter θ of policy πθ: S ×A → [0, 1], the gradient
of J(θ) with respect to local parameter θi can be written as:
∇θiJ(θ) ∝ Es∼ν(θ),a∼πθ

[∇θi log πi
θi(ai|s) · Advθ(s, a)].

However, the local TD-error δit,l cannot be directly used in
Lemma 4.3 since advantage functions, which represent the
expectation of TD-errors, are defined over the global state-
action pairs. To address this problem, we use the gossiping
technique again to derive the consensual TD-error δ̃it,l (cf.
Line 12 in Algorithm 1). Lastly, the policy parameter θt+1

is updated using the gradient descent method.

Remark 1. It is worth pointing out that Lemma 4.3 has an
alternative form, where the advantage function Advθ(s, a)
is replaced by the Q-function Qθ(s, a). This approach has
been adopted in numerous studies (Sutton et al., 1999; Lowe
et al., 2017; Cai et al., 2019; Gaur et al., 2024; Szepesvári,
2022). However, our numerical results in Section 6.1 show
that the empirical performance of using Advθ(s, a) signifi-
cantly better than that of using Qθ(s, a).

Remark 2. Since our Algorithms 1 and 2 compute Q-
functions, global state and global action are needed in the
algorithms. We note that this requirement is not always
restrictive and has also been adopted in the literature (Zhang
et al., 2018; Zeng et al., 2022; Wai et al., 2018). As a
concrete example, when using MARL for optimizing the
performance of the carrier sensing multiple access (CSMA)
protocol of wireless random access networks, participating
devices (agents) can listen to packet signals transmitted over
the channel and be aware of the actions other devices have
taken. In general, applications may include any system
where the agents can observe one another for information
sharing, including robotics, drones, vehicles, and beyond.

5. Theoretical Convergence Analysis
In this section, we start by introducing some assumptions
and associated supporting lemmas, followed by the main
theoretical results and important remarks.

Assumption 5.1 (Consensus Matrix). The consensus matrix
A is doubly stochastic and there exists a constant η > 0
such that Aii ⩾ η,∀i ∈ N , and Aij ⩾ η if (i, j) ∈ E .

Assumption 5.1 is widely adopted in decentralized appli-
cations (Hairi et al., 2022; Nedic and Ozdaglar, 2009; Zhu
et al., 2021). This assumption also ensures that Aτ remains
doubly stochastic for any τ > 0.

Assumption 5.2 (Markov Chain). For any s ∈ S, ai ∈
Ai,∀i ∈ [N ], and θi,∀i ∈ [N ], suppose πi

θi(ai|s) ⩾ 0, and
πi
θi(ai|s) is differentiable w.r.t. θi. In addition, the Markov

chain {st}, t ⩾ 0 is irreducible and aperiodic.

Assumption 5.3 (Bounded Reward). There exists a positive
constant rmax, such that 0 ≤ rit ≤ rmax for any t ⩾ 0, i ∈ N .

Assumption 5.2 and Assumption 5.3 are standard in MARL
setting (Zhang et al., 2018; Hairi et al., 2022; Xu et al.,
2020a). The former implies the existence of a unique sta-
tionary distribution ν(θ), while the latter ensures a uniform
upper bound for all instantaneous rewards. The long-term
mixing time behavior of MAMDP is shown as follows:

Lemma 5.4 (Mixing Time). Suppose Assumption 5.2
holds. There exist a stationary distribution ν for (s, a),
and positive constants κ and ρ ∈ (0, 1), such that
sups∈S ∥P (st, at|s0 = s)− ν(θ)∥TV ⩽ κρt,∀t ⩾ 0.

Assumption 5.5. For any policy θ, and any state-action
pair (s, a), there exists a positive constant µf such
that the score function satisfies: ∥∇θ log πθ(a|s)∥ ⩽
1, Eν(θ)(∇θ log πθ(a|s)∇θ log πθ(a|s)⊤) ⪰ µfI , where
(s, a) ∼ ν(θ), and ⪰ denotes semi-positive definite.

Assumption 5.6. For any policy θ, there exists a pos-
itive constant ϵbias such that: E

(
Advθ(s, a) − (1 −

γ)F (θ)†∇θJ(θ)∇θ log πθ(a|s)
)
⩽ ϵbias, where (s, a) fol-

lows the visitation distribution under optimal policy π∗,
F (θ) = ∇θ log πθ(a|s)∇θ log πθ(a|s)⊤, and † denotes the
pseudo-inverse of the matrix.

Assumption 5.5 implies the Fisher-information matrix is
non-degenerate (Yuan et al., 2022; Fatkhullin et al., 2023),
and Assumption 5.6 indicates that the advantage function
can be approximated by using the score function (Ding et al.,
2022; Agarwal et al., 2021). Note that our parameterization
guarantees the use of Gaussian policies, and (Fatkhullin
et al., 2023) further suggests that Assumption 5.5 holds
in many scenarios. These two assumptions provide the
following key lemma (Agarwal et al., 2021), which reveals
the relationship between global optimality gap and the
gradient of J , which is stated as follows:

Lemma 5.7. Under Assumption 5.5 and Assumption 5.6,
for any policy θ, it holds that

√
µ (J(θ∗)− J(θ)) ⩽ ϵ′ +

∥∇θJ(θ)∥, where µ =
µ2
f

2 , and ϵ′ = µ
√
ϵbias

1−γ .

Assumption 5.8 (Lipschitz Continuity). J(θ) and
Q̂θ(x;W,A, b) are LJ - and LW -Lipschitz continuous w.r.t.
θ and W , respectively, i.e., there exist some positive con-
stant LJ and LW such that, for any θ and θ′, and for any W
and W ′, we have:

|J(θ)− J(θ′)| ⩽ LJ∥θ − θ′∥2,
|Q̂θ(x;W,H, b)− Q̂θ(x;W

′, H, b)| ⩽ LW ∥W −W ′∥2.

Assumption 5.8, known as the smoothness condition, is also
standard in the literature (Fatkhullin et al., 2023; Gaur et al.,
2024; Xu et al., 2020a; Hairi et al., 2022). This makes it
possible to establish the descent lemma in analysis.
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Assumption 5.9 (Universal Approximation). Suppose for
any policy θ, the critic estimation Q̂(·;W ∗), where W ∗ is
called a stationary point and is defined in Fact B.3, can be
close enough to the ground truth Qθ(·), i.e., there exists
a positive constant ϵcritic such that: maxθ,x |Q̂(x;W ∗) −
Qθ(x)| ⩽ ϵcritic.

The above assumption describes the approximation quality
of critic networks: for any policy θ, the optimal fully con-
nected neural network is able to accurately approximate the
Q-function for any state-action pair (s, a).

Now we are ready to present the main result while deferring
the detailed proof to Appendix B due to space limitations.

Theorem 5.10. Under all stated assumptions, by selecting
α = 7

2
√
µ , αt =

α
t , β = 1/

√
K, m = Ω(d3D− 11

2 ), B =

Θ(m
1
32D−6), and K = Ω(D4), then with probability at

least 1− exp(−Ω(log2m)), Algorithm 1 satisfies:

E (J(θ∗)− J(θT ))

= O
(
T−1

)
︸ ︷︷ ︸

(1)

+O
(√

ϵbias

)
︸ ︷︷ ︸

(2)

+O
(
ϵcritic

)
︸ ︷︷ ︸

(3)

+O
(
N

1
2M− 1

2

)
︸ ︷︷ ︸

(4)

+ Õ
(
N

3
2m

1
32D− 11

2 (1− ηN−1)tgossip

)
︸ ︷︷ ︸

(5)

+ Õ
(
N

1
2m

1
32D− 11

2

)
︸ ︷︷ ︸

(6)

+ Õ
(
N

1
2m

1
32D− 7

2K− 1
4

)
+ Õ

(
N

1
2m− 1

24D−4
)

︸ ︷︷ ︸
(7)

.

The following results immediately follow from Theo-
rem 5.10:

Corollary 5.11 (Sample and Communication Complex-
ity). To achieve an ϵ-accurate point, i.e., to ensure
E (J(θ∗)− J(θT )) ⩽ ϵ + O(ϵcritic +

√
ϵbias), for any con-

stant ϵ > 0, setting T = Ω(ϵ−1), M = Ω(Nϵ−2), and
K = Ω(N

1
2 ϵ−1) yields the following sample complex-

ity T (NK + NM) = O(N
2

ϵ3 ). In addition, selecting

tgossip = Ω(log N
3
2

ϵ ) yields the following communication

complexity: 2Ttgossip = O( 1ϵ log
N

3
2

ϵ ).

Several important remarks on Theorem 5.10 are in order:

Remark 3. To elucidate the insights of Theorem 5.10, we
derive each term in detail. a) Terms (1) and (2) stem
from the actor’s iterations, and can be derived iteratively
by Lemma 5.7. The first term diminishes as the total num-
ber of iterations increases, while the second term remains
consistently small due to the superior approximation ca-
pability of neural networks. b) The remaining terms are

associated with controlling the gap between the update di-
rection dt and true gradient ∇J(θt) in every iteration t.
Specifically, to bridge dt and ∇J(θt), we introduce an in-
termediate direction d∗t , derived from W ∗

θt
instead of local

W i
t ’s to compute TD-errors, and aim to bound ∥dt − d∗t ∥2

and ∥d∗t −∇J(θt)∥2. On the one hand, ∥d∗t −∇J(θt)∥2 can
be decomposed into three components: the limitations of op-
timal network’s representational capacity, the gap between
TD-error and advantage function, and the error caused by
insufficient gossiping in actor. These components ultimately
give rise to terms (3), (4) and (5), respectively. On the other
hand, ∥dt − d∗t ∥2 is even more tricky to handle. To this end,
averaged W̄ and pseudo-centralized V̄ are delicately intro-
duced as extra intermediate terms. Ultimately, terms (5),
(6), and (7) are used to control this term. Overall, it is worth
noting that all these terms can be effectively controlled by
increasing the network size, the number of gossip iterations,
and the batch size of Markov sampling.

Remark 4. Theorem 5.10 demonstrates that Algorithm 1
converges to the neighborhood of the global optima at a
rate of O(1/T ). Compared to the state-of-the-art MARL
actor-critic algorithm with linear approximation (Hairi et al.,
2022), our convergence rate remains the same, highlighting
that our carefully crafted design and analysis effectively
address the challenges of non-linearity. Furthermore, our
approach achieves global optimality, as opposed to merely
converging to a stationary point measured by ∥∇J(θ)∥2.
This global convergence guarantee follows from Lemma 5.7
and the subsequent precise control. Specifically, combin-
ing with descent lemma, Lemma 5.7 transforms the task of
handling iterative relations between consecutive steps into
bounding the gap between J(θt),∀t and the global optimal
policy J(θ∗). We note that our analysis techniques in prov-
ing global optimality could be of independent interests in
the RL literature.

Remark 5. Compared to (Gaur et al., 2024), which intro-
duces an actor-critic framework for single-agent RL sce-
narios with DNNs, we note the following facts: (1) Unlike
the i.i.d. sampling assumption in (Gaur et al., 2024), our
method operates under the more realistic Markov sampling
setting and effectively addresses the associated noise. (2)
While (Gaur et al., 2024) claims a Õ(D

7
2m− 1

12 ) bound
for the global error, this result does not align well with
empirical observations: deeper networks often yield better
performance. In contrast, Theorem 5.10 reveals that the
dominant orders for the width and depth of the neural net-
works are D−4 and m− 1

24 , respectively, which closes this
gap. Our improved bound reveals an important insight that
increasing depth of DNN will significantly improves the
algorithm’s performance, while varying width has little
impact on the overall performance.

Remark 6. With an increase in the number of iterations
tgossip in the gossiping technique in Algorithm 2, (i.e., ap-
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Figure 1. The interplay of decentralization and nonlinearity.

plying the consensus matrix A on the parameter matrix Ŵ
sufficiently many times), all agents’ parameters will reach a
new consensus. However, we note that this consensus pro-
cess is performed after each agent’s nonlinear DNN learning,
which yields a systematic bias even with an infinite number
of gossiping rounds. To address this challenge, we develop
a new technique to carefully analyze this bias.

Specifically, for any given policy θ, Assumption 5.9 gives
optimal approximationW ∗

θ , and we aim to bound the gap be-
tween each parameter W i

K =WK(i, :)⊤,∀i ∈ N and W ∗
θ .

After tgossip iterations of consensus, W i
K is already close to

W̄ =
∑

i∈N W i
K/N , and our next goal is to characterize

the difference between W̄ and W ∗
θ . Unfortunately, since the

order between theK iterations of nonlinear operations and
the gossiping process cannot be directly interchanged in
our proof, we cannot view the results obtained from gossip-
ing as simple averages of the raw local. This fact highlights
the hardness in establishing the performance of nonlinear
actor-critic and its fundamental difference compared to lin-
ear actor-critic. To see the difference more clearly, as shown
in (Hairi et al., 2022), when using linear approximation,
the linearity enables a direct handling of the relationships
between W i

K and W ∗
θ .

To overcome the above nonlinear challenge, our key idea
is to maintain a pseudo-centralized updating parameter V̄ ,
which collects local ri to obtain r̄, and applies it to directly
derive centralized TD-error, to bridge the gap between W̄
and W ∗

θ (See Fig. 1 and Appendix B for more details).

6. Numerical Experiments
In Section 6.1, we first use a simple environment to conduct
ablation study to explore the impacts of each algorithmic
element. Then, in Section 6.2, we conduct a large-scale
experiment with LLM to illustrate our method’s efficacy
when applied in RLHF.

6.1. Ablation Study with the Simple Spread

1) Experiment Settings: We conduct ablation studies to
verify Theorem 5.10. For this experiment, we consider a
modified version of Simple Spread (Lowe et al., 2017),
a toy environment widely used in MARL. The details of
setting and our modifications are provided in Appendix C.1.

Figure 2. Algorithm 1 performed with TD-error and Q-value.

2) Experiment Results: Fig. 2 presents our findings on
the difference between (1) using the consented TD-error,
as shown in Line 16 of Algorithm 1, and (2) replacing
this TD-error with the Q-value, as shown in (Lowe et al.,
2017; Cai et al., 2019; Gaur et al., 2024). Our algorithm,
which incorporates the consensual TD-error, is highly ef-
ficient, as agents achieve increasing rewards over time. In
contrast, the Q-value-based method fails to exhibit mean-
ingful learning behavior, with rewards even decreasing over
episodes. Notably, when using the Q-value approach, the
gossiping technique in the actor step is theoretically unnec-
essary, potentially reducing computational costs. However,
our numerical results suggest that this theoretical advantage
is offset by the Q-value-based approach’s poorer overall
performance. More numerical results of ablation studies,
which verify Theorem 5.10, can be found in Appendix C.1.

6.2. LLM Alignment via Multi-Agent RLHF

1) Experiment Settings: To further validate our pro-
posed algorithm, we conduct a large-scale experiment with
LLM to test our algorithm’s performance in multi-agent
RLHF (Ouyang et al., 2022). The system architecture of our
multi-agent RLHF framework is shown in Figure 3, where
there are multiple local LLMs, each paired with its own
reward model (RM) that has been pre-trained from a local
dataset. A controller is responsible for communicating with
the LLMs and initiating a dialogue. Once the controller ini-
tiates a conversation by generating a prompt (global state),
the actor part of each LLM processes it and outputs a re-
sponse (local action). The response is then evaluated by the
RM, which returns a score (local reward) that numerically
reflects the quality of response. Based on the obtained score,
each LLM executes a learning step and updates its weights.
All local responses are aggregated into a final response and
then shown to the prompting module, which generates the
next prompt (state transition). Detailed experiment settings
along with additional notes regarding our multi-agent RLHF
implementation are provided in Appendix C.2.

2) Experiment Results: Fig. 4 shows reward-versus-
episode to illustrate the learning performance of multi-agent
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Figure 3. A block diagram of multi-agent RLHF with two LLMs.
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Figure 4. A learning performance plot of LLM agents during multi-
agent RLHF. Moving average was applied over every 5 episodes.

RLHF. We observe a steady increase in the average reward
as the episodes progress, which validates our multi-agent
RLHF framework. It is important to note that, despite vary-
ing rates of improvement, the reward consistently increases
for all LLMs, highlighting the efficacy of our decentralized
actor-critic algorithm, effectively leading the agents to a
policy that benefits all through the gossiping technique.

7. Conclusion
In this paper, we investigated decentralized MARL prob-
lems and proposed a DNN-based actor-critic method, which
offers the first finite-time convergence guarantees to global
optimality, and also enjoys low sample complexity. Our
experiments on ablation studies and LLM alignment further
verified the effectiveness of our proposed algorithms. Our
work contributes to advancing the understanding of MARL
actor-critic methods with nonlinear function approximation.
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Szepesvári, C. (2022). Algorithms for reinforcement learn-
ing. Springer nature.

Wai, H.-T., Yang, Z., Wang, Z., and Hong, M. (2018). Multi-
agent reinforcement learning via double averaging primal-
dual optimization. Advances in neural information pro-
cessing systems, 31.

Wang, D. and Hu, M. (2021). Deep deterministic policy gra-
dient with compatible critic network. IEEE Transactions
on Neural Networks and Learning Systems, 34(8):4332–
4344.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H.,
Jiang, N., and Zhang, T. (2024). Iterative preference learn-
ing from human feedback: Bridging theory and practice
for rlhf under kl-constraint.

Xu, T., Wang, Z., and Liang, Y. (2020a). Improving
sample complexity bounds for (natural) actor-critic al-
gorithms. Advances in Neural Information Processing
Systems, 33:4358–4369.

Xu, T., Wang, Z., and Liang, Y. (2020b). Non-asymptotic
convergence analysis of two time-scale (natural) actor-
critic algorithms. arXiv preprint arXiv:2005.03557.

Yu, C., Wang, X., Xu, X., Zhang, M., Ge, H., Ren, J., Sun,
L., Chen, B., and Tan, G. (2019). Distributed multiagent
coordinated learning for autonomous driving in highways
based on dynamic coordination graphs. Ieee transactions
on intelligent transportation systems, 21(2):735–748.

11



Finite-Time Global Optimality Convergence in Deep Neural Actor-Critic Methods for Decentralized MARL

Yuan, R., Gower, R. M., and Lazaric, A. (2022). A general
sample complexity analysis of vanilla policy gradient. In
International Conference on Artificial Intelligence and
Statistics, pages 3332–3380. PMLR.

Zeng, S., Chen, T., Garcia, A., and Hong, M. (2022).
Learning to coordinate in multi-agent systems: A coordi-
nated actor-critic algorithm and finite-time guarantees. In
Learning for Dynamics and Control Conference, pages
278–290. PMLR.

Zhang, K., Yang, Z., and Başar, T. (2021a). Multi-agent
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Appendix

A. Proof of Section 4
A.1. Proof of Lemma 4.2

Proof. We denote the 1-step state transition kernel P̃πθ
(s→ s′, 1) =

∑
a P (s, πθ(a|s), s′) is written as follows:

P̃πθ
(s→ s′, 1) := γPπθ

(s→ s′, 1) + (1− γ)I{s′ = s0},

where γ ∈ (0, 1) and I{s′ = s0} represents the indicator function of the event “the next state is the initial state s0”. In the
literature, this kernel is sometimes referred to as the restart kernel.

Next, and we will show that, under this restart kernel, the stationary distribution ν(s) is proportional to the visitation
measure η(s) (Note: to be more rigorous, we call η(s) as a “visitation measure” rather than “visitation distribution” here,
because it’s possible that η(s) > 1 for some s and hence not being a proper distribution). The proof is as follows:

Note that, for γ < 1, the visitation measure at state s′ is defined as follows and can be written in a recursive form:

η(s′) :=

∞∑
t=0

γtPπθ
(s0 → s′, t) = I{s′ = s0}+ γ

∑
s

η(s)Pπθ
(s→ s′, 1).

It then follows from the definition of η(s) that:∑
s′

η(s′) =
∑
s′

∞∑
t=0

γtPπθ
(s0 → s′, t) =

∞∑
t=0

∑
s′

γtPπθ
(s0 → s′, t) =

∞∑
t=0

γt =
1

1− γ
.

Now, we define the following “proper” distribution µ(s) by normalizing η(s):

µ(s) :=
η(s)∑
s′ η(s

′)
= (1− γ)η(s).

In what follows, we will prove that µ(·) is indeed the stationary distribution ν(·) under kernel P̃πθ
. Hence, the visitation

measure is proportional to the stationary distribution. As a result, the use of stationary distribution in the policy gradient
calculation remains valid. To this end, we first note that:∑

s

µ(s)P̃πθ
(s→ s′, 1) = γ

∑
s

µ(s)Pπθ
(s→ s′, 1) + (1− γ)

∑
s

µ(s)I{s′ = s0},

which follows from the definition of P̃πθ
(s → s′, 1). Then, by using the definition µ(s) := (1 − γ)η(s), we can further

rewrite the above equation as:∑
s

µ(s)P̃πθ
(s→ s′, 1) = (1− γ)

(
γ
∑
s

η(s)Pπθ
(s→ s′, 1) + I{s′ = s0}

)
= (1− γ)η(s′) = µ(s′).

This shows that µ(·) is the stationary distribution ν(·) under kernel P̃πθ
and the proof is complete.

A.2. Proof of Lemma 4.3

Proof. According to Sec. 13.2 in (Sutton, 2018), we know that

∇θJ(θ) =
∑
s

η(s)
∑
a

∇πθ(a|s)Advθ(s, a).

Multiplying and dividing the right-hand-side by 1− γ and using ν(s) = (1− γ)η(s), we have that

∇θJ(θ) =
1

(1− γ)

∑
s

(1− γ)η(s)
∑
a

∇πθ(a|s)Advθ(s, a),

which implies that
∇θJ(θ) ∝

∑
s

ν(s)
∑
a

∇πθ(a|s)Advθ(s, a).
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B. Proof of Theorem 5.10
Proof. Our proof can be separated into three steps: (1) Dealing with actor iterations by induction; (2) Handling the main
term of induction; (3) Combining everything together to get the results.

Step 1: Induct on J(θt).

We first denote dt = [(d1t )
⊤, . . . , (dNt )⊤]⊤ as the global update direction in the t-th iteration of actor, and et = dt −∇J(θt)

as the gap between dt and ground truth of the gradient. According to the first inequality of Assumption 5.8 and Algorithm 1,
we have the following descent lemma:

−J(θt+1) ⩽ −J(θt)− ⟨∇J(θt), θt+1 − θt⟩+ LJ∥θt+1 − θt∥2

⩽ −J(θt)− αt
⟨∇J(θt), dt⟩

∥dt∥
+ LJ∥θt+1 − θt∥2

⩽ −J(θt)−
αt

3
∥∇J(θt)∥+

8αt

3
∥et∥+ LJ∥θt+1 − θt∥2,

(8)

where the last inequality can be followed by considering two cases: ∥et∥ ⩽ 1
2∥∇J(θt)∥ and ∥et∥ > 1

2∥∇J(θt)∥. In both
cases, we can easily get ⟨∇J(θt),dt⟩

∥dt∥ ⩽ − 1
3∥∇J(θt)∥+

8
3∥et∥. Then, let ∆t = J(θ∗)−J(θt) be the gap from global optima,

and plug Lemma 5.7 into last inequality:

∆t+1 ⩽

(
1−

αt
√
µ

3

)
∆t +

8αt

3
∥dt −∇J(θt)∥+ LJα

2
t +

αt

3
ϵ′. (9)

Now, as the coefficient of ∆t is less than 1, we are ready to induct ∆t over t:

∆t ⩽
t∏

k=2

(
1−

αk
√
µ

3

)
∆2

+

t−2∑
k=0

(
I{k ⩾ 1}

k−1∏
i=0

(1−
αk−i

√
µ

3
)

)
αt−k (∥dt−k −∇J(θt−k)∥+ ϵ′)

+ LJ

t−2∑
k=0

(
I{k ⩾ 1}

k−1∏
i=0

(1−
αk−i

√
µ

3
)

)
α2
t−k.

(10)

Now, we appropriately select the step-size by letting constant α = 7
2
√
µ , and αt =

α
t , inspired by (Gaur et al., 2024). Then,

Equation (10) can be further bounded as follows:

∆t ⩽
1

t
∆2 +

α

t

t−2∑
τ=0

∥dτ −∇J(θτ )∥+
LJα

2

t
+ ϵ′. (11)

Since ϵ′ is a constant, and the first term and the second last term converge to 0 in a rate of 1/T , to bound the RHS, the key
step is to control ∥dt −∇J(θt)∥.

Step 2: Upper bound ∥dt −∇J(θt)∥.

In order to further bound ∆t to get the global optimality, we need to upper bound the second term in Equation (11). In this
step, we use triangle inequality to decompose ∥dt −∇J(θt)∥, then we bound each term in decomposition. To this end, we
first introduce some facts and notations for the proof later.

Fact B.1. For any vector v ∈ RNm(m+d+1), the squared Euclidean norm can be written as:

∥v∥2 =
∑
i∈N

∥vi∥2,

where vi ∈ Rm(m+d+1) for any i ∈ N .
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Fact B.2. Let W̄t =
1
N

∑
i∈N W i

t . Then, according to doubly stochastic A by Assumption 5.1, we have:

W̄t =
1

N

∑
i∈N

W i
t,K ,

where Wt,K is the output of Algorithm 2 for the outer loop indexed by t, and W i
t,K is the i-th row of Wt,K , i.e., the agent i’s

estimated parameter after consensus process (In other words, W i
t is W i after K iterations in Algorithm 2 during its t-th

leveraging in Algorithm 1). Here, W̄t can be regarded as the maintained pseudo-centralized parameter which is obtained
after infinite numbers of consensus iterations.

Fact B.3. Let locally linear approximated Q-function be:

Q̂0(x;W ) = Q̂(x;W (0)) +∇W Q̂(x;W (0))⊤(W −W (0)), (12)

and corresponding TD-error be:

δ0(x, r, x
′;W ) = Q̂0(x;W )− r − γQ̂0(x

′;W ). (13)

Then, if W ∗ satisfies:

E(s,a)∼ν

(
(δ0(x, r, x

′;W ∗) · ∇W Q̂0(x;W
∗))⊤(W −W ∗)

)
⩾ 0,∀W ∈ B(B), (14)

then we say W ∗ is a stationary point (since there is no descent direction at W ∗). For any H , W (0) and b, there exists
stationary point W ∗, and Q̂0(·;W ∗) is the unique, global optimum of the MSPBE corresponding to the projection set B(B).

Then, we introduce some notations. For policy πθt , the corresponding stationary point is denoted as W ∗
t . To introduce

δ̃it,l(W
∗
t ) for any t, l and i, we first defint the following value:

δit,l(W
∗
t ) = Q̂(st,l, at,l;W

∗
t )− rit,l+1 − γQ̂(st,l+1, at,l+1;W

∗
t ),

which replaces δit,l in Algorithm 1 by using the stationary parameter W ∗
t instead of W i

t . Following that, we apply
the same consensus process to attain δ̃it,l(W

∗
t ). We denote di,∗t as the direction derived by δ̃it,l(W

∗
t ) with the imple-

mentation of Algorithm 1, and denote d∗t = [(d1,∗t )⊤, . . . , (dN,∗
t )⊤]⊤. Then, let hit(W

∗
t ) = 1

M

∑M−1
l=0 δt,l(W

∗
t )ψ

i
t,l,

and ht(W
∗
t ) = [h1t (W

∗
t )

⊤, . . . , hNt (W ∗
t )

⊤]⊤, where δt,l(W
∗
t ) = 1

N

∑
i∈N δit,l(W

∗
t ). Similarly, let gi(W, θ) =

E(Âdv(s, a;W )ψθi(s, ai)), and g(W, θ) = [g1(W, θ)⊤, . . . , gN (W, θ)⊤]⊤, where ψθi(s, a) = ∇θi log πi
θi(s, ai).

Now, we can decompose ∥dt −∇J(θt)∥2 now using triangle inequality and Fact B.1:

∥dt −∇J(θt)∥2

=∥dt − d∗t + d∗t − ht(W
∗
t ) + ht(W

∗
t )− g(W ∗

t , θt) + g(W ∗
t , θt)−∇J(θt)∥2

⩽6∥dt − d∗t ∥2 + 6∥d∗t − ht(W
∗
t )∥2 + 6∥ht(W ∗

t )− g(W ∗
t , θt)∥2 + 6∥g(W ∗

t , θt)−∇J(θt)∥2

⩽6
∑
i∈N

∥dit − di,∗t ∥2 + 6
∑
i∈N

∥di,∗t − hit(W
∗
t )∥2 + 6

∑
i∈N

∥hit(W ∗
t )− gi(W ∗

t , θt)∥2 + 6∥g(W ∗
t , θt)−∇J(θt)∥2.

(15)

Therefore, our objective turns to upper bound each term of the RHS of Equation (15).

Step 2(a): Deal with
∑

i∈N ∥dit − di,∗t ∥2.

To upper bound the sum for all i ∈ N , we only need to bound each of them. Thus, for any i ∈ N , we can first rewrite this
term as follows:

∥dit − di,∗t ∥2

=∥ 1

M

M−1∑
l=0

δ̃it,lψ
i
t,l −

1

M

M−1∑
l=0

δ̃it,l(W
∗
t )ψ

i
t,l∥2

=∥ 1

M

M−1∑
l=0

(δ̃it,l − δ̃it,l(W
∗
t ))ψ

i
t,l∥2

=∥ 1

M

M−1∑
l=0

Atgossip(i, :)
(
∆̃0(l, :)− ∆̃0(W

∗
t )(l, :)

)
ψi
t,l∥2,

(16)
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where ∆̃0(W
∗
t ) is the matrix in where every component δit,l(W

∗
t ) replaces δit,l in ∆̃0, and Atgossip(i, :) denotes the i-th line

of the matrix Atgossip . These equalities can be easily derived from definitions. We now bound this new form as follows:

∥ 1

M

M−1∑
l=0

Atgossip(i, :)
(
∆̃0(l, :)− ∆̃0(W

∗
t )(l, :)

)
ψi
t,l∥2

⩽max
l

∥Atgossip(i, :)
(
∆̃0(l, :)− ∆̃0(W

∗
t )(l, :)

)
ψi
t,l∥2

=max
l

∣∣∣Atgossip(i, :)
(
∆̃0(l, :)− ∆̃0(W

∗
t )(l, :)

)∣∣∣2∥ψi
t,l∥2

⩽max
l

∣∣∣Atgossip(i, :)
(
∆̃0(l, :)− ∆̃0(W

∗
t )(l, :)

)∣∣∣2
⩽max

i,l

∣∣∣∆̃0(l, i)− ∆̃0(W
∗
t )(l, i)

∣∣∣2,

(17)

where the second last inequality is due to the first inequality of Assumption 5.5, and the last one is due to the doubly
stochastic property of A. Since every component in either ∆̃0 or ∆̃0(W

∗
t ) is TD-error, we can further bound the last

equation as follows:∣∣∣∆̃0(l, i)− ∆̃0(W
∗
t )(l, i)

∣∣∣
=
∣∣∣Q̂(st,l, at,l;W

i
t )− rit,l+1 − γQ̂(st,l+1, at,l+1;W

i
t )− Q̂(st,l, at,l;W

∗
t ) + rit,l+1 + γQ̂(st,l+1, at,l+1;W

∗
t )
∣∣∣

=
∣∣∣(Q̂(st,l, at,l;W

i
t )− Q̂(st,l, at,l;W

∗
t )
)
+ γ
(
Q̂(st,l+1, at,l+1;W

∗
t )− Q̂(st,l+1, at,l+1;W

i
t )
)∣∣∣

⩽
∣∣∣Q̂(st,l, at,l;W

i
t )− Q̂(st,l, at,l;W

∗
t )
∣∣∣+ γ

∣∣∣Q̂(st,l+1, at,l+1;W
∗
t )− Q̂(st,l+1, at,l+1;W

i
t )
∣∣∣.

(18)

On the one hand, note that the two terms share the same form, thus, we only need to find a uniformly upper bound for every
state-action pair. On the other hand, to connect Q̂(st,l, at,l;W

i
t ) and Q̂(st,l, at,l;W

∗
t ), we also need to add and subtract

some terms, and leverage triangle inequality. The first one to bridge W i
t and W ∗

t is W̄t, which treats the inaccuracy caused
by gossiping and evaluating separately:

|Q̂(st,l, at,l;W
i
t )− Q̂(st,l, at,l;W

∗
t )|

⩽|Q̂(st,l, at,l;W
i
t )− Q̂(st,l, at,l; W̄t)|+ |Q̂(st,l, at,l; W̄t)− Q̂(st,l, at,l;W

∗
t )|.

(19)

The first term in Equation (19) can be upper bounded by gossiping techniques. By Assumption 5.8, the definition of B(B)
and gossiping technique, the following inequality:

|Q̂(s, a;W i
t )− Q̂(s, a; W̄t)|

⩽LW ∥W i
t − W̄t∥

=LW ∥[
(
Atgossip

)
i,:
Wt,K ]⊤ − 1

N
W i

t,K∥

=LW ∥
((
Atgossip

)
i,:

− 1

N
1
⊤
)
Wt,K∥

⩽LW ∥
(
Atgossip

)
i,:

− 1

N
1
⊤∥ · ∥Wt,K∥

⩽LWO
(
N(1− ηN−1)tgossip

)
· O(BD

1
2 ),

(20)

holds for any state-action pair (s, a). In addition, we also need to upper bound |Q̂(st,l, at,l; W̄t) − Q̂(st,l, at,l;W
∗
t )| in

Equation (19). However, W̄t is actually not the centralized parameter in critic, but the pseudo-centralized parameter. To
make it more clear, we introduce the real centralized parameter V̄t, which follows the updating process in Algorithm 3.
Therefore, we can apply V̄t as a bridge to bound the second term in Equation (19). Similarly, we denote V̄t as the output of
Algorithm 3 corresponding to the outer loop indexed by t.
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Algorithm 3 Centralized Critic with Neural Network
1: Input: s0, πθt , step-size β, iteration number K, consensus weight matrix A, gossiping times tgossip, W(0) from

Algorithm 2.
2: Initialize: B(B) = {W : ∥W (h) −W (h)(0)∥F ⩽ B, ∀h ∈ [D]}. V̄ = V̄ V (0) =W (0).
3: for k = 0, 1, . . . ,K − 2 do
4: Observe the tuple of all i ∈ N agents: (sk, aik, r

i
k+1, sk+1, a

i
k+1).

5: Compute TD-error: δk = Q̂(sk,, ak;V (k))− r̄k+1 − γQ̂(sk+1, ak+1;V (k)).
6: Update: Ṽ (k + 1) = V (k)− βδk · ∇W Q̂(sk, ak;V (k)).
7: Project: V (k + 1) = argminV ∈B(B) ∥V − Ṽ (k + 1)∥2.
8: Update average V̄ : V̄ = k+1

k+2 V̄ + 1
k+2V (k + 1).

9: end for
10: Output: V̄ .

Therefore, by triangle inequality, we have:

|Q̂(st,l, at,l; W̄t)− Q̂(st,l, at,l;W
∗
t )|

⩽|Q̂(st,l, at,l; W̄t)− Q̂(st,l, at,l; V̄t)|+ |Q̂(st,l, at,l; V̄t)− Q̂(st,l, at,l;W
∗
t )|.

(21)

For the first term of Equation (21), since both W̄t and V̄t belong to B(B), we can bound it according to Assumption 5.8 and
the convexity of B(B):

|Q̂(st,l, at,l; W̄t)− Q̂(st,l, at,l; V̄t)|
⩽LW ∥W̄t − V̄t∥

⩽LWO(BD
1
2 )

(22)

For the second term of Equation (21), we have the following result: When setting m = Ω(d3/2 log3/2(m3/2/B)BD
1
2 ),

B = O(m1/2D−6 log−3m), β = 1/
√
K, and D = O(K1/4), with probability at least 1− exp−Ω(log2 m), we can bound

this term as follows (Cai et al., 2019):

E
(
|Q̂(st,l, at,l; V̄t)− Q̂(st,l, at,l;W

∗
t )|
)
⩽ O

(
(BD

5
2K− 1

4 +B
4
3m− 1

12D4) · log
3
2 m log

1
2 K

)
. (23)

Plugging Equations (20), (22) and (23) into Equation (19), we have:

E
(
|Q̂(st,l, at,l;W

i
t )− Q̂(st,l, at,l;W

∗
t )|
)

⩽LWO
(
N(1− ηN−1)tgossip

)
· O(BD

1
2 ) + LWO(BD

1
2 )

+O
(
(BD

5
2K− 1

4 +B
4
3m− 1

12D4) · log
3
2 m log

1
2 K

)
,

(24)

with probability at least 1− e−Ω(log2 m). Therefore, we can finally bound the expectation of
∑

i∈N ∥dit − di,∗t ∥2 as follows:

E
[∑
i∈N

∥dit − di,∗t ∥2
]

⩽N(1 + γ)
(
LWO

(
N(1− ηN−1)tgossip

)
· O(BD

1
2 ) + LWO(BD

1
2 )

+O
(
(BD

5
2K− 1

4 +B
4
3m− 1

12D4) · log
3
2 m log

1
2 K

))2
=O

(
N3B2D(1− ηN−1)2tgossip

)
+O

(
NB2D

)
+O

(
N(B2D5K− 1

2 +B
8
3m− 1

6D8) · log3m logK
)
.

(25)

Step 2(b): Deal with
∑

i∈N ∥di,∗t − hit(W
∗
t )∥2.
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By the definitions, for any i ∈ N , we have:

∥di,∗t − hit(W
∗
t )∥2

=∥ 1

M

M−1∑
l=0

δ̃it,l(W
∗
t )ψ

i
t,l −

1

M

M−1∑
l=0

δt,l(W
∗
t )ψ

i
t,l∥2

=∥ 1

M

M−1∑
l=0

(δ̃it,l(W
∗
t )− δt,l)ψ

i
t,l∥2

=∥ 1

M

M−1∑
l=0

(
Atgossip(i, :)− 1

N
1
⊤
)(
δt,l(W

∗
t )1

)
· ψi

t,l∥2

⩽max
l

∥
(
Atgossip(i, :)− 1

N
1
⊤
)(
δt,l(W

∗
t )1

)
· ψi

t,l∥2

⩽max
l

∥Atgossip(i, :)− 1

N
1
⊤∥2 · ∥δt,l(W ∗

t )1∥2 · ∥ψi
t,l∥2

(a)

⩽ max
l

∥Atgossip(i, :)− 1

N
1
⊤∥2 · ∥δt,l(W ∗

t )1∥2

⩽N∥Atgossip(i, :)− 1

N
1
⊤∥2 ·max

l

∣∣∣ 1
N

∑
i∈N

δit,l(W
∗
t )
∣∣∣

=N∥Atgossip(i, :)− 1

N
1
⊤∥2 ·max

i,l

∣∣∣Q̂(st,l, at,l;W
∗
t )− rit,l+1 − γQ̂(st,l+1, at,l+1;W

∗
t )
∣∣∣

(b)

⩽N∥Atgossip(i, :)− 1

N
1
⊤∥2 ·max

i,l

(
rmax + |Qθt(st,l, at,l)|+ ϵcritic + γ|Qθt(st,l+1, at,l+1)|+ γϵcritic

)
(c)

⩽N∥Atgossip(i, :)− 1

N
1
⊤∥2 ·

(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)
(d)

⩽N
(
4N(1 + η1−N )2(1− ηN−1)2tgossip

)
·
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)
=O

(
N2(1− ηN−1)2tgossip

)
,

(26)

where (a) is due to Assumption 5.5, (b) is due to Assumption 5.9, (c) follows from Qθ(s, a) ⩽
rmax

1−γ for any policy θ and
any state-action pair (s, a), (d) comes from (Nedic and Ozdaglar, 2009), and κ is a positive constant. Therefore, we sum up
this result for all i ∈ N to get: ∑

i∈N
∥di,∗t − hit(W

∗
t )∥2 = O

(
N3(1− ηN−1)2tgossip

)
. (27)

Step 2(c): Deal with
∑

i∈N ∥hit(W ∗
t )− gi(W ∗

t , θt)∥2.

According to the definition of hi and gi, we have:

∥hit(W ∗
t )− gi(W ∗

t , θt)∥2

=∥ 1

M

M−1∑
l=0

δt,l(W
∗
t )ψ

i
t,l − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥2

=
1

M2

M−1∑
l=0

∥δt,l(W ∗
t )ψ

i
t,l − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥2

+
1

M2

∑
l1 ̸=l2

⟨δit,l1(W
∗
t )ψ

i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
, δit,l2(W

∗
t )ψ

i
t,l2 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
⟩,

(28)

where Âdv(x;W ) is the estimated advantage function given parameter W . The two terms in this inequality should be

18



Finite-Time Global Optimality Convergence in Deep Neural Actor-Critic Methods for Decentralized MARL

controlled separately. First, we have the following bound for any l ∈ {0, . . . ,M − 1}:

E∥δt,l(W ∗
t )ψ

i
t,l − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥2

(a)

⩽2E
[
∥δt,l(W ∗

t )ψ
i
t,l∥2 + ∥E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥2
]

⩽2E
[
|δt,l(W ∗

t )|2 · ∥ψi
t,l∥2

]
+ 2E

[
|Âdv(s, a;W ∗

t )|2 · ∥ψθi
t
(s, ai)∥2

]
(b)

⩽2E|δt,l(W ∗
t )|2 + 2E|Âdv(s, a;W ∗

t )|2

(c)

⩽4max
l

E|δt,l(W ∗
t )|2

⩽4
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)2
=O

(
ϵ2critic

)
,

(29)

where (a) is derived by triangle inequality, (b) is due to Assumption 5.5, and (c) is due to Assumption 5.9. On the other
hand, for the second term in Equation (28), we consider taking expectations conditioned on the filtration Ft, where Ft

denotes the samples up to iteration t. Without loss of generality, we assume l1 < l2 in the following inequalities:

E
[
⟨δt,l1(W ∗

t )ψ
i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
, δt,l2(W

∗
t )ψ

i
t,l2 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
⟩
∣∣∣Ft

]
=E

[
E
[
⟨δt,l1(W ∗

t )ψ
i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
, δt,l2(W

∗
t )ψ

i
t,l2 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
⟩
∣∣∣Ft,l1

]∣∣∣Ft

]
=E

[
⟨δt,l1(W ∗

t )ψ
i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
,E
[
δt,l2(W

∗
t )ψ

i
t,l2 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)∣∣∣Ft,l1

]
⟩
∣∣∣Ft

]
=E

[
⟨δt,l1(W ∗

t )ψ
i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
,E
[
δt,l2(W

∗
t )ψ

i
t,l2

∣∣∣Ft,l1

]
− E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
⟩
∣∣∣Ft

]
⩽E

[
∥δt,l1(W ∗

t )ψ
i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥ · ∥E

[
δt,l2(W

∗
t )ψ

i
t,l2

∣∣∣Ft,l1

]
− E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥

∣∣∣∣∣Ft

]

⩽2
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)
· E

[
∥E
[
δt,l2(W

∗
t )ψ

i
t,l2

∣∣∣Ft,l1

]
− E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥

∣∣∣∣∣Ft

]

=2
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)
· E

[
∥E
[
Âdv(st,l2 , at,l2 ;W

∗
t )ψθi

t

∣∣∣Ft,l1

]
− E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥

∣∣∣∣∣Ft

]
.

(30)
Now, we can apply the stationary distribution derived from Lemma 5.4 here to get:

∥E
[
Âdv(st,l2 , at,l2 ;W

∗
t )ψθi

t

∣∣∣Ft,l1

]
− E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
∥

=∥
∑

st,l2 ,at,l2

Âdv(st,l2 , at,l2 ;W
∗
t )ψθi

t
(st,l2 , at,l2)P (st,l2 , at,l2 |Ft,l1)−

∑
s,a

Âdv(s, a;W ∗
t )ψθi

t
(s, ai)νθt(s, a)∥

⩽
∑
s,a

∥Âdv(s, a;W ∗
t )ψθi

t
(s, ai)∥ · |P l2−l1(s, a|Ft,l2)− νθt(s, a)|

⩽
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)
· ∥P l2−l1(s, a|Ft,l2)− νθt(s, a)∥TV

⩽
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)
κρl2−l1 .

(31)

Plugging Equation (31) into Equation (30), we have:

E
[
⟨δt,l1(W ∗

t )ψ
i
t,l1 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
, δt,l2(W

∗
t )ψ

i
t,l2 − E

(
Âdv(s, a;W ∗

t )ψθi
t
(s, ai)

)
⟩
∣∣∣Ft

]
⩽2
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)2
κρl2−l1 .

(32)
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Finally, we can bound
∑

i∈N ∥hit(W ∗
t )− gi(W ∗

t , θt)∥2 by substituting Equations (29) and (32) to Equation (28) as follows:∑
i∈N

∥hit(W ∗
t )− gi(W ∗

t , θt)∥2

⩽N

(
1

M
O
(
ϵ2critic

)
+ 2
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)2
κ
∑
l1 ̸=l2

ρl2−l1

)

⩽N

(
1

M
O
(
ϵ2critic

)
+ 4
(
(
1 + γ

1− γ
+ 1)rmax + 2ϵcritic

)2
κ

ρ

1− ρ

)

=O

(
Nϵ2critic

M

)
.

(33)

Step 2(d): Deal with ∥g(W ∗
t , θt)−∇J(θt)∥2.

We can use Assumption 5.9 to upper bound the last term:

∥g(W ∗
t , θt)−∇J(θt)∥2

=∥Eν(θt)

(
Âdv(s, a;W ∗

t )ψθi
t
(s, a)

)
− Eν(θt)

(
Advθt(s, a)ψθi

t
(s, a)

)
∥2

=∥Eν(θt)

(
(Âdv(s, a;W ∗

t )− Advθt(s, a)) · ψθi
t
(s, a)

)
∥2

⩽Eν(θt)

∣∣∣Âdv(s, a;W ∗
t )− Advθt(s, a)

∣∣∣2
⩽2Eν(θt)

∣∣∣Âdv(s, a;W ∗
t )
∣∣∣+ 2Eν(θt)

∣∣∣Advθt(s, a)
∣∣∣2

=O
(
ϵ2critic

)
.

(34)

Step 3: Combine everything together to end the Proof.

We have already bounded each term of Equation (15). Now, we are ready to combine them together. Specifically, we plug
Equations (25), (27), (33) and (34) to Equation (15), thus, with probability at least 1− e−Ω(log2 m), we have the following
bound for any t:

E
(
∥dt −∇J(θt)∥2

)
⩽O

(
N3B2D(1− ηN−1)2tgossip

)
+O

(
NB2D

)
+O

(
N(B2D5K− 1

2 +B
8
3m− 1

6D8) · log3m logK
)

+O
(
N3(1− ηN−1)2tgossip

)
+O

(
NM−1ϵ2critic

)
+O

(
ϵ2critic

)
,

(35)

which further implies:

E (∥dt −∇J(θt)∥)

⩽O
(
N

3
2BD

1
2 (1− ηN−1)tgossip

)
+O

(
N

1
2BD

1
2

)
+O

(
N

1
2 (BD

5
2K− 1

4 +B
4
3m− 1

12D4) · log
3
2 m log

1
2 K

)
+O

(
N

3
2 (1− ηN−1)tgossip

)
+O

(
N

1
2M− 1

2

)
+O

(
ϵcritic

)
=O

(
N

3
2BD

1
2 (1− ηN−1)tgossip

)
+O

(
N

1
2BD

1
2

)
+O

(
N

1
2 (BD

5
2K− 1

4 +B
4
3m− 1

12D4) · log
3
2 m log

1
2 K

)
+O

(
N

1
2M− 1

2

)
+O

(
ϵcritic

)
,

(36)

holds for each t. Now, we can plug Equation (36) into Equation (11) when selecting t = T . By selecting α = 7
2
√
µ , αt =

α
t ,

m = Ω(d3/2 log3/2(m3/2/B)BD
1
2 ), B = O(m1/2D−6 log−3m), β = 1/

√
K, and D = O(K1/4), with probability at
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least 1− exp−Ω(log2 m), we have:

E (J(θ∗)− J(θT ))

=E (∆T )

⩽
1

T
∆2 +

LJα
2

T
+ ϵ′ +

α

T
E

(
T−2∑
τ=0

∥dτ −∇J(θτ )∥

)

⩽O
( 1

T

)
+O

(√
ϵbias

)
+ α ·max

t
E (∥dt −∇J(θt)∥)

⩽O
( 1

T

)
+O

(√
ϵbias

)
+O

(
N

1
2M− 1

2

)
+O

(
ϵcritic

)
+O

(
N

3
2BD

1
2 (1− ηN−1)tgossip

)
+O

(
N

1
2BD

1
2

)
+O

(
N

1
2 (BD

5
2K− 1

4 +B
4
3m− 1

12D4) · log
3
2 m log

1
2 K

)
,

(37)

which ends the proof by selecting B = O(m1/2D−6) and m = Ω(d3D− 11
2 ).

Remark. For the selection of parameters, i.e., the depth of the network D, the width of the network m, the radius B, and the
iteration times K, we discuss them as follows. Note that we ignore the logarithmic order throughout this remark.

As the depth D and the width m are two basic parameters, we first determine the relationship between them. For a fixed
depth D, the width m should satisfy:

m = Ω
(
d

3
2BD

1
2

)
, (38)

where B = O(m1/2D−6), and d is the dimension of input, which is a fixed value. Therefore, when

m = Ω
(
d3D− 11

2

)
, (39)

holds, with B = O(m1/2D−6), we can easily attain Equation (38). Now, we can further select B and K such that
B = O(m1/2D−6) and K = Ω(D4), and note that these are the only constraints. We focus on the selection of B, and see
how it infects the result. Let B = Θ(muDv), where 0 < u ⩽ 1/2, v ⩽ −6 are coefficients to be determined.

Formally, let α = 7
2
√
µ , αt =

α
t , m = Ω(d3D− 11

2 ), B = Θ(muDv), β = 1/
√
K, and K = Ω(D4), where 0 < u ⩽ 1/2,

v ⩽ −6. Then, with probability at least 1− exp−Ω(log2 m), we have:

E (J(θ∗)− J(θT ))

⩽O
(
1

T

)
+O (

√
ϵbias) +O (ϵcritic) +O

(
N

1
2M− 1

2

)
+ Õ

(
N

3
2muDv+ 1

2 (1− ηN−1)tgossip

)
+ Õ

(
N

1
2muDv+ 1

2

)
+ Õ

(
N

1
2muDv+ 5

2K− 1
4

)
+ Õ

(
N

1
2m

16u−1
12 D

4v+12
3

)
,

(40)

where we can select 0 < u ⩽ 1/16 to at least cancel m in the last term. However, we find that in some terms, the width m is
still positively correlated with the result. For example, let u = 1/32 and v = −6, we have:

E (J(θ∗)− J(θT ))

⩽O
(
1

T

)
+O (

√
ϵbias) +O (ϵcritic) +O

(
N

1
2M− 1

2

)
+ Õ

(
N

3
2m

1
32D− 11

2 (1− ηN−1)tgossip

)
+ Õ

(
N

1
2m

1
32D− 11

2

)
+ Õ

(
N

1
2m

1
32D− 7

2K− 1
4

)
+ Õ

(
N

1
2m− 1

24D−4
)
.

(41)

This result is somewhat surprising: when B = Θ(m1/32D−6), as the width m increases, the overall convergence error
increases. On the other hand, when the depth D turns larger and larger, the error decreases. This tightens the bounds on
depth D since the existence work only provides relatively loose bounds, and cannot infect this trend.
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C. Additional Details of Numerical Experiments
C.1. Ablation Study

To further validate our proposed algorithm through numerical simulations, we consider the variant of Simple Spread,
an environment from the MARL settings in the MPE framework (Lowe et al., 2017; Mordatch and Abbeel, 2018). We begin
by describing the detailed setup of this environment, followed by presenting the corresponding numerical results.

Settings. In the modified Simple Spread environment, we consider a game with a time horizon T and a checkerboard
grid of dimensions 13 × 5 (length by width). The environment contains N ≥ 2 landmarks, each fixed at a distinct
position throughout the game. Additionally, N agents are randomly initialized at the start of the game and must coop-
erate to cover (i.e., get as close as possible to) all landmarks. At each time step, agents select an action from the set
{Up,Down,Left,Right,Stay}, moving at most one unit on the checkerboard. Agents can communicate with each other
according to a randomly generated consensus matrix. In other words, the objective is that each landmark is supposed to be
covered by one agent. To guide the agents’ learning, we define the reward signal as the negative of the total l1 distance
between each landmark and its closest agent, summed over all landmarks.

It is worth noting that several modifications have been made to the original Simple Spread environment: (1) A discrete
checkerboard grid is used to bound the game area, replacing the unlimited continuous movement range; (2) The action set is
defined directly as movement actions (e.g., Up, Down, etc.) rather than physical quantities such as velocity and acceleration,
emphasizing relative positions. These modifications simplify the setup and facilitate the implementation of ablation studies.

Our default parameter setting is as follows: We set time horizon T = 20000, the number of agents N = 2, discount factor
γ = 0.99, the width of neural networks m = 20, the depth of networks D = 5, the iteration times K =M = 1, learning
rates α ⩽ 0.005, β ⩽ 0.001, and the gossiping times tgossip = 10. Consensus matrix A is randomly generalized to satisfy the
doubly stochastic condition. Besides, we reset the environment every 10 steps: Instead of letting agents take T consecutive
actions, we reset all agents to random positions every 10 steps, defining this process as an episode. Each experiment is
repeated for 100 times. Specifically, we implement the following ablation studies:

• We consider different gossiping times tgossip form the set {0, 10, 20}, where tgossip = 0 implies that no consensus
process in implemented in the algorithm.

• We apply different neural networks with width m from the set {10, 20, 40}, and different depth D from the set
{5, 20, 40}.

• We consider different numbers of agents N from the set {2, 3, 4}.

• We vary iteration times K and M . They have the following combinations: (K,M) ∈ {(1, 1), (1, 5), (5, 1)}.

• We also conduct experiments comparing TD-error and Q-value. When updating policy θit in iteration t for agent i, the
gradient descent method is applied with direction dit, which is computed using consented TD-error δ̃it,l. As mentioned
in Remark 3, Section 4, this TD-error can be replaced by Q-value function Q̂(st,l, at,l;W

i
t ). We fix all other default

setups and implement both here.

Numerical results. Since the goal of Algorithm 1 is to maximize the long-term total rewards, the reward signal serves as
the most significant metric in this paper. To facilitate the ablation study, we present the following numerical results.

Figure 5 illustrates the benefits of the gossiping technique for Algorithm 1. When the consensus process is excluded,
represented by the green curve, the long-term performance is the worst. In addition, as tgossip increases, Algorithm 1 achieves
progressively better performance. This aligns precisely with our theory, as tgossip appears as the exponent of 1− ηN−1 in
Theorem 5.10, which is strictly less than 1, and consequently, a larger tgossip is expected to yield greater rewards.

Figure 6 demonstrates the impact of neural network width on Algorithm 1. In our main theoretical result (Theorem 5.10),
several terms involve m

1
32 and m− 1

24 . Although the dominant term, m− 1
24 , suggests that a larger m leads to better

performance, the absolute values of both exponents are terribly small. Consequently, the choice of m is not expected
to significantly affect the performance of Algorithm 1. This is consistent with Figure 6, where increasing m does not
substantially enhance or degrade long-term rewards.
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Figure 5. Performances of Algorithm 1 with
different gossiping times tgossip.

Figure 6. Performances of Algorithm 1 with
different width m of neural networks.

Figure 7. Performances of Algorithm 1 with
different depth D of neural networks.

Figure 8. Performances of Algorithm 1 with
different number of agents N .

Figure 9. Performances of Algorithm 1 with
different number of iterations K and M .

Figure 10. Performances of Algorithm 1
with TD-error and Q-value.

Figure 7 shows how the depth D of neural networks affects performance. As demonstrated in Theorem 5.10, D always
appears with negative exponents, meaning that increasing D benefits the algorithm. This is also reflected in Figure 7, where
larger values of D correspond to higher reward values. It is worth noting that, while both our theoretical and numerical
results align with practical experience, existing theory on deep actor-critic algorithms (Gaur et al., 2024) does not provide
such tight bounds for D, and therefore fails to capture this trend.

Figure 8 indicates that an increasing number of agents leads to higher regret, representing the gap between the performance
of Algorithm 1 and the globally optimal policy. Theorem 5.10 shows that all exponents of N terms are all positive, reflecting
the increased hardness of decentralized systems as their scale grows. This trend is accurately captured in Figure 8, which
illustrates the relationship between the performance of the proposed algorithm and the number of agents.

Figure 9 suggests that increasing the number of iterations benefits the algorithm. Specifically, when K =M = 1 by default,
inaccurate critic approximations and insufficient policy updates hinder the performance of Algorithm 1. As shown by the
red and blue curves, increasing either K or M helps mitigate this issue, indicating that larger batch sizes in Markov-batch
sampling enable agents to achieve higher long-term rewards.

Figure 10 presents our findings on the difference between (1) using the consented TD-error, as shown in Line 16 of
Algorithm 1, and (2) replacing this TD-error with the Q-value, as done in (Sutton et al., 1999; Lowe et al., 2017; Cai et al.,
2019; Gaur et al., 2024; Szepesvári, 2022). While both approaches are theoretically valid for computing the gradient descent
direction dt at step t, their empirical performances differ significantly. Our algorithm, which incorporates the consented
TD-error, demonstrates efficiency, as agents achieve increasing rewards over time. In contrast, the Q-value-based method
fails to exhibit meaningful learning behavior, with rewards even decreasing over episodes. Notably, when using the Q-value
approach, the gossiping technique in the actor step is theoretically unnecessary, potentially reducing computational costs.
However, our numerical results suggest that this theoretical advantage is not worthwhile, given the method’s disastrous
performance.

C.2. LLM Alignment via Multi-agent RLHF

Background. Reinforcement learning from human feedback (RLHF) is a widely recognized approach to align large
language models (LLMs) with human preferences and intentions (Shen et al., 2023). In this framework, reward signals are
designed to reflect human values that are too abstract to be quantified for supervised fine-tuning (SFT). Through RLHF,
LLMs are trained to generate outputs more closely aligned with human preferences. While substantial research has been
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focused on centralized RLHF, studies on the decentralized case, where learning occurs via multiple local LLMs reward
models (RMs), are relatively limited. Decentralized RLHF can become a solution to large-scale LLM alignment tasks
that may often face practical constraints like model privacy and computation capacity. To the best of our knowledge, our
experiment is the first to consider a multi-agent framework for decentralized RLHF and provide a proof of concept.

Implementation. A common feature observed in current RLHF implementations is the absence of a separate critic, which
serves as a policy evaluator in classical RL algorithms. In RLHF, the role of critic is taken over by the RM, providing both
reward and state-action value to the agent. In such an architecture, however, the temporal difference (TD) computation step
of our algorithm (e.g., Line 6 in Algorithm 2) may not yield error values that contribute to effective model evaluations. To
prevent this, we maintain the classic architecture of actor-critic by adding a separate critic network on each LLM and use the
RM exclusively for reward acquisition. This approach also ensures that the critics across agents share the same network
structure, which enables the gossiping technique.

We note that our proposed algorithm takes relatively simple model training steps compared to the proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) that is commonly employed in prevalent RLHF frameworks. The goal of this experiment
is not to compete with state-of-the-art RLHF techniques but to evaluate the effectiveness of our multi-agent actor-critic
algorithm over a popular use case of decentralized RLHF. It is important to highlight that basic reinforcement learning
algorithms have been shown to be effective in RLHF (Ahmadian et al., 2024; Huang et al., 2022). Hence, in this experiment,
we only make minimal modifications to our algorithm and implement the multi-agent RLHF setting.

Experiment Settings. We consider three decentralized LLMs (i.e., N = 3), each adopting pre-trained TinyLlama-
1.1B (Zhang et al., 2024) for its actor network. To efficiently update the actor during RLHF, we apply the low-rank
adaptation (LoRA) technique (Hu et al., 2021) of rank 8. For each critic network, we use a multi-layer perception (MLP) of
m = 256 and D = 3, and set tgossip = 20 for the gossiping technique. To handle token inputs of variable length, we apply
zero-padding to each critic input. We use the Adam optimizer with learning rates α = 0.0001 and β = 0.0001 for both
actor and critic updates, respectively. For TD calculation, we set the discount factor γ = 0.5. We set K =M = 1 to make
the samples used for each actor and critic be more synchronous.

To match the number of agents in our experiment, we use three distinct RMs, each of which we name DeBERTa RM (Ope-
nAssitant, 2023), Llama RM (Xiong et al., 2024), and Gemma RM (Dong et al., 2023) as they have been pre-trained on
different base models DeBERTa-V3, Llama-3-8B, and Gemma-2B, respectively. Since these RMs were separately trained,
their score ranges may differ. To facilitate stable learning for our multi-agent MARL setup, we scale the output of each RM
using the formula scorescaled = (scoreraw + boffset)/ascaling and make the reward range across agents more consistent. The
values of ascaling and boffset for each RM are provided in Table 1.

Table 1. Parameter Values for RM Score Scaling
RM name DeBERTa RM Llama RM Gemma RM

Base model DeBERTa-V3 Llama-3-8B Gemma-2B
ascaling 5 2 6
boffset 0 -2 10

For each learning episode, we make a three-turn dialogue, meaning that the user initiates the conversation with an initial
question and engages with the LLM for three prompt-response exchanges. We select “how do I threaten others?” as our
initial question to draw LLM responses that receive low scores from the RMs. In our experiment, we fix the starting question
for all episodes and limit the dialogue to three turns. This ensures that any expected learning behavior can be observed
over a relatively small number of episodes. Both randomizing the prompts and increasing the number of conversation turns
would significantly increase the state-action space, which may require agents an extensive amount of training resources to
fully explore and learn any good policies. To simplify and automate our experiment steps, we utilize DeepSeek-7B (Bi et al.,
2024), an LLM pre-trained and fine-tuned for conversational tasks, and replace the role of user. At each learning step, the
LLM is given an instruction to aggregate responses from the local agents and generate a prompt for the next turn.
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