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ABSTRACT

As an alternative to target-driven drug discovery, phenotype-driven approaches
identify compounds that counteract the overall disease effects by analyzing phe-
notypic signatures. Our study introduces a novel approach to this field, aiming to
expand the search space for new therapeutic agents. We introduce PDGRAPHER,
a causally-inspired graph neural network model designed to predict arbitrary per-
turbagens – sets of therapeutic targets – capable of reversing disease effects. Un-
like existing methods that learn responses to perturbations, PDGRAPHER solves
the inverse problem, which is to infer the perturbagens necessary to achieve a
specific response – i.e., directly predicting perturbagens by learning which pertur-
bations elicit a desired response. Experiments across eight datasets of genetic and
chemical perturbations show that PDGRAPHER successfully predicted effective
perturbagens in up to 9% additional test samples and ranked therapeutic targets
up to 35% higher than competing methods. A key innovation of PDGRAPHER is
its direct prediction capability, which contrasts with the indirect, computationally
intensive models traditionally used in phenotype-driven drug discovery that only
predict changes in phenotypes due to perturbations. The direct approach enables
PDGRAPHER to train up to 30 times faster, representing a significant leap in effi-
ciency. Our results suggest that PDGRAPHER can advance phenotype-driven drug
discovery, offering a fast and comprehensive approach to identifying therapeuti-
cally useful perturbations.

1 INTRODUCTION

Target-driven drug discovery, predominant since the 1990s, focuses on the design of highly specific
compounds against disease-associated targets such as proteins or enzymes (Vincent et al., 2022;
Moffat et al., 2017). Despite numerous successful examples (Druker et al., 1996; Bange et al.,
2001), the past decade has seen a revival of phenotype-driven approaches in an attempt to go beyond
the “one drug, one gene, one disease” model of target-driven approaches. Phenotype-driven drug
discovery aims to identify compounds or, more broadly, perturbagens – combinations of therapeutic
targets – that reverse phenotypic disease effects as measured by high-throughput phenotypic assays
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such as cellular responses, as represented by gene expression profiles (Musa et al., 2018; Vincent
et al., 2022). Recent advances in deep learning produced methods that predict gene expression
responses to perturbagens or combinations thereof (Zhu et al., 2021; Pham et al., 2021; Lotfollahi
et al., 2019; Hetzel et al., 2022). Such methods have advanced lead discovery by enabling predictions
of responses to perturbagens that were not yet experimentally tested. 1) However, current approaches
rely on predefined perturbagen libraries, meaning that they can select perturbagens only from pre-
defined libraries instead of flexibly identifying perturbagens as combinations of therapeutic targets.
2) Existing approaches are predominantly perturbation response methods that predict changes in
phenotypes upon perturbations. Thus, they only indirectly identify perturbagens by exhaustively
predicting responses to all perturbations in the library and then searching for perturbagens with
the desired response. 3) Unlike existing methods that learn responses to perturbations, phenotype-
driven drug discovery needs to solve the inverse problem, which is to infer perturbagens necessary
to achieve a specific response – i.e., directly predicting perturbagens by learning which perturba-
tions elicit a desired response. In causal discovery, the problem of identifying which elements of a
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Figure 1: Overview of PDGRAPHER. (A) Given a paired diseased and treated gene expression
samples, and a proxy causal graph, PDGRAPHER predicts a candidate set of therapeutic targets to
shift cell gene expression from diseased to treated state. (B-D) Depicted is the PPI we use throughout
our work using SAFE (Baryshnikova, 2016) (B). Spatial enrichment of ground-truth and predicted
gene targets for Raloxifene (C) and Sertindole (D) in Chemical-PPI-Lung as computed by SAFE
show high overlap. More details can be found in Appendix A.1.

system should be perturbed to achieve a desired state is referred to as optimal intervention design
(Hauser & Bühlmann, 2014; Ghassami et al., 2018; Agrawal et al., 2020). Leveraging insights from
causal discovery and geometric deep learning, here we introduce PDGRAPHER, a novel approach
for combinatorial prediction of therapeutic targets that can shift gene expression from an initial, dis-
eased state to a desired treated state. PDGRAPHER is formulated using a causal model, where genes
represent the nodes in a causal graph, and structural causal equations define their causal relation-
ships. Given a genetic or chemical intervention dataset, PDGRAPHER pinpoints a set of genes that
a perturbagen should target to facilitate the transition of node states from diseased to treated (Figure
1A). PDGRAPHER utilizes protein-protein interaction networks (PPI) and gene regulatory networks
(GRN) as approximations of the causal graph, operating under the assumption of no unobserved
confounders. PDGRAPHER tackles the optimal intervention design objective using representation
learning, utilizing a graph neural network (GNN) to represent the structural equations. We evalu-
ate PDGRAPHER across eight datasets, comprising genetic and chemical interventions across two
cancer types and proxy causal graphs, and consider diverse evaluation setups, including settings

2



Machine Learning for Genomics Explorations workshop at ICLR 2024

where held out folds contain novel samples and challenging settings where held out folds contain
novel samples from a cancer type that PDGRAPHER has never encountered before (Figure 4BC).
Our experiments show PDGRAPHER’s superior performance in the combinatorial prediction of ther-
apeutic targets compared to mechanistic and response prediction baselines. Additionally, we show
PDGRAPHER’s predictions follow network proximity principles that govern gene similarities, and
that PDGRAPHER can illuminate mode of action of existing chemical perturbagens. When trained,
PDGRAPHER predicts perturbagens (as a set of candidate target genes) to shift cells from diseased
to treated. An example of PDGRAPHER’s predictions is depicted in Figure 1B-D where we observe
consistent patterns between ground truth and predicted gene targets and their spatial enrichment
distributions. Our work integrates deep learning with causal inference to advance phenotype-driven
drug discovery. More details on related work can be found in Appendix A.2.

2 METHODOLOGY

Problem formulation - combinatorial prediction of therapeutic targets. Intuitively, given a dis-
eased cell line sample, we would like to predict the set of therapeutic genes that need to be targeted
to reverse the effects of disease, that is, the genes that need to be perturbed to shift the cell gene
expression state as close as possible to the healthy state. Next, we formalize our problem formula-
tion. Let M =< E,V,F , P (E) > be a structural causal model (SCM) associated with causal graph
G, where E is a set of exogenous variables affecting the system, V are the system variables, F are
structural equations encoding causal relations between variables and P (E) is a probability distribu-
tion over exogenous variables. Let T = {T1, ..., Tm} be a dataset of paired healthy and diseased
samples, where each element is a 3-tuple T =< vh,U, vd > with vh ∈ [0, 1]N being gene expres-
sion values of healthy cell line (variable states before perturbation), VU being the disease-causing
perturbed variable (gene) set in V, and vd ∈ [0, 1]N being gene expression values of diseased cell
line (variable states after perturbation). Our goal is to find, for each sample T =< vh,U, vd >, the
variable set U′ with the highest likelihood of shifting variable states from diseased vd to healthy vh

state. To increase generality, we refer to the desired variable states as treated (vt). Our goal can then
be expressed as

argmax U′PGU

(V = vt | do(U′)), (1)

where PGU

represents the probability over graph G mutilated upon perturbations in variables in U.
Under the assumption of no unobserved confounders, the above interventional probability can be
expressed as a conditional probability on the mutilated graph GU′

:

argmax U′PGU′

(V = vt | U′), (2)

which under the causal Markov condition is:

argmax U′

∏
i

P (vVi = vvti | PavVi), (3)

where PavVi represents parents of variable vVi according to graph GU′
(that is, the mutilated graph

upon intervening on variables in U′). Here, state of a variable vVj ∈ PavVi will be equal to an
arbitrary value vv′j if vVj ∈ U′. Therefore, intervening on the variable set U′ modifies the graph
used to obtain conditional probabilities and determines the state of variables in U′.

Problem formulation - representation-learning-based combinatorial prediction of therapeutic
targets. In the previous section, we drew on the SCM framework to introduce a general formulation
for the task of combinatorial prediction of therapeutic targets. Instead of approaching the problem
from a purely causal inference perspective, we draw upon representation learning to approximate the
queries of interest to address the limiting real-world setting of a noisy and incomplete causal graph.
Formulating our problem using the SCM framework allows for explicit modeling of interventions
and formulation of interventional queries. Inspired by this principled problem formulation, we next
introduce the problem formulation using a representation learning paradigm.

We let G = (V, E) denote a graph with |V| = n nodes and |E| edges, which contains partial
information on causal relationships between nodes in V and some noisy relationships. We refer to
this graph as proxy causal graph. Let T = {T1, ..., TvM} be a dataset with an individual sample
being a 3-tuple T =< xh,U , xd > with xh ∈ [0, 1]n being the node states (attributes) of healthy
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cell sample (before perturbation), U being the set of disease-causing perturbed nodes in V , and
xd ∈ [0, 1]n being the node states (attributes) of diseased cell sample (after perturbation). We denote
by GU = (V, EU ) the graph resulting from the mutilation of edges in G as a result of perturbing
nodes in U (one graph per perturbagen; we avoid using superindices for simplicity). Here again, we
refer to the desired variable states as treated (xt). Our goal is then to learn a function:

f : GU ′
, xd, xt → argmax U ′PGU′

(x = xt|xd,U ′) (4)

That, given the graph GU ′
, the diseased xd and treated xt node states, predicts the combinatorial set

of nodes U ′ that if perturbed have the highest chance of shifting the node states to the treated state
xt. We note here that PGU′

represents probabilities over graph GU mutilated upon perturbations in
nodes in U ′. Under Causal Markov Condition, we can factorize PGU′

over graph GU ′
:

f : GU ′
, xd, xt → argmax U ′

∏
i

P (xi = xti|xPAi
) (5)

that is, the probability of each node depending only on its parents PAi in graph GU ′
.

We assume (i) real-valued node states, (ii) G is fixed and given, and (iii) atomic and non-atomic
perturbagens (intervening on individual nodes or sets of nodes). Given that the value of each node
should depend only on its parents on the graph GU ′

, a message-passing framework appears espe-
cially suited to compute the factorized probabilities P . We comment on the problem formulation
and its similarity to canonical graph prediction tasks in Appendix A.4.

Intuitively, an exhaustive approach to solving Equation 5 would be to search the space of all potential
sets of therapeutic targets U ′ and score how effective each is in achieving the desired treated state.
This is, indeed, how many cell response prediction approaches can be used for perturbagen dis-
covery (Hetzel et al., 2022; Lotfollahi et al., 2019; 2023). However, with moderately sized graphs,
this is highly computationally expensive, if not intractable. Instead, we propose to search for po-
tential perturbagens efficiently with a 2-module approach. First, a perturbagen discovery module
fp searches the space of potential gene sets to predict a suitable candidate U ′. Next, a response
prediction module fr checks the goodness of the predicted set U ′, that is, how effective intervening
on variables in U ′ is to shift node states to the desired treated state xt.

(1) xd, xt
fp→ Û ′

(2) xd, Û ′ fr→ x̂t

Model optimization. We optimize our response prediction module fr using cross-entropy loss on
known triplets < xh,U , xd > and < xd,U ′, xt >:

Lfr = CE
(
xd, fr(xh, U)

)
+ CE

(
xt, fr(xd, U ′)

)
We optimize our intervention discovery module fp using a cycle loss such that the response upon a
predicted U ′ is as close to the desired treated state as possible. In addition, we provide a supervisory
signal for predicting U ′ in the form of cross-entropy loss.

Lfp = CE
(
xt, fr(xd, fp(xd, xt))

)
+ CE

(
U ′, fp(xd, xt)

)
(with fr frozen)

We train fp and fr in parallel and implement early stopping separately (see Appendix A.9 for more
details). Trained modules fp and fr are then used to predict, for each diseased cell sample, which
nodes should be perturbed (U ′) to achieve a desired treated state (Figure 1A). Both fp and fr and
GNN-based models that model interventions as mutilations in the proxy causal graphs. More details
can be found in Appendix A.5.

3 DATASETS, AND EVALUATION

A description of the data sources and preprocessing steps can be found in Appendix A.6. We built
datasets comprising gene expression measurements from healthy, diseased, and treated cell lines
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to study disease and treatment interventions. We have a total of eight datasets across two treat-
ment types (genetic and chemical interventions), two cancer types (lung cancer cell line A549
and breast cancer cell line MCF7), and two proxy causal graphs (PPI, and GRN), which we de-
note as follows: Genetic-PPI-Lung, Genetic-PPI-Breast, Chemical-PPI-Lung, Chemical-PPI-Breast,
Genetic-GRN-Lung, Genetic-GRN-Breast, Chemical-GRN-Lung, and Chemical-GRN-Breast. Ge-
netic interventions are single-gene knockout experiments by CRISPR/Cas9-mediated gene knock-
outs, while chemical interventions are multiple-gene treatments induced using chemical compounds.
Each dataset is made up of disease and treatment intervention data. Disease intervention data con-
tains paired healthy and diseased gene expression samples and disease-associated genes. Treatment
intervention data contains paired diseased and treated gene expression samples and genetic or chem-
ical perturbagens. More details on intervention data can be found in Appendix A.7. Figure 3 sum-
marizes the number of samples for each cell line and intervention dataset type. We benchmark the
performance of PDGRAPHER against a set of baselines: Random baseline, Cancer genes, Cancer
drug targets, and scGen (Lotfollahi et al., 2019). More details can be found in Appendix A.8. We
evaluate PDGRAPHER and baseline methods on a random and a leave-cell-line-out split, using 5-
fold cross-validation (Figure 4BC). More details on splits, evaluation setup and metrics can be found
in Appendix A.9.

4 RESULTS

PDGRAPHER efficiently predicts genetic and chemical perturbagens to shift cells from dis-
eased to treated states. Given pairs of diseased and treated samples, PDGRAPHER is trained to
output a ranking of genes, with the top-predicted genes identified as candidate combinatorial thera-
peutic targets to shift gene expression phenotype from a diseased to a treated state in each sample.
In held out folds that contain novel samples, PDGRAPHER ranks ground-truth therapeutic targets
up to 34% higher in chemical intervention datasets and 16% higher in genetic intervention datasets
than existing methods (Table 1). Even in held-out folds containing novel samples from a previously
unseen disease, PDGRAPHER maintains robust performance (Table 4). Because perturbagens target
multiple genes, we measure the fraction of samples in the test set for which we obtain a partially
accurate prediction, where at least one of the predicted gene targets corresponds to an actual gene
target. PDGRAPHER consistently provides accurate predictions for more samples in the test set than
baselines (Tables 1, 4). We observe consistently strong performance of PDGRAPHER across chem-
ical and genetic intervention datasets in the random and leave-cell-out setting using GRNs as the
proxy causal graph (Figure 7).

A key innovative feature of PDGRAPHER is its direct prediction of perturbagens that can shift gene
expression from diseased to treated states in contrast with existing methods that indirectly predict
perturbagens through extensive computational modeling of cell responses (Figure 4A). This feature
of PDGRAPHER enables model training up to 30 times faster than indirect prediction methods like
scGen (Lotfollahi et al., 2019) (Table 1). We also find that in chemical intervention datasets, candi-
date therapeutic targets predicted by PDGRAPHER are closer to ground-truth therapeutic targets in
the gene-gene interaction network than what would be expected by chance (Figure 5). This result
implies that PDGRAPHER not only identifies relevant gene targets but does so in a manner that re-
flects the underlying biological and network-based relationships (Kamimoto et al., 2023), suggesting
that its predictions are rooted in the inherent structure of the gene interaction network which governs
gene similarity (Barabási et al., 2011; Ruiz et al., 2021; Eyuboglu et al., 2023).

PDGRAPHER illuminates mode of action of chemical perturbagens. We demonstrate PDGRA-
PHER’s capability to elucidate therapeutic perturbagens’ mechanisms of action through the analysis
of Raloxifene and Sertindole effects within the Chemical-PPI-Lung dataset (Figure 2). Utilizing net-
work visualization tools, we visually represent the predicted therapeutic targets and their interaction
communities, revealing PDGRAPHER’s accuracy in predicting known and potentially novel targets
for both drugs. Raloxifene’s analysis highlights PDGRAPHER’s ability to predict its established tar-
gets (ESR1, ESR2) and suggests novel targets (SHBG, PDE5A) that align with known physiological
effects, offering insights into Raloxifene’s broader impact on estrogen-related pathways. Similarly,
for Sertindole, PDGRAPHER accurately predicts its primary targets and suggests additional genes
(HTR1A, BRAF, HOXC6), enriching our understanding of its mechanism in modulating GPCR
signaling pathways. These findings underscore PDGRAPHER’s potential in identifying therapeutic
targets and understanding drug actions. More details can be found in Appendix A.10.
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Table 1: Model performance across genetic and chemical datasets in test folds containing novel
samples

Dataset Model Relative position of ground-truth
genes in the predicted ranking

Proportion of samples with a
partially accurate prediction

Training time
(mins)

Random 0.50 ± 0.00 0.00 ± 0.00 0
Cancer genes 0.50 ± 0.00 0.00 ± 0.00 0

Genetic-PPI-Lung Cancer targets 0.51 ± 0.00 0.00 ± 0.00 0
scGen - - ✓3,644.2
PDGrapher 0.65 ± 0.06 0.02 ± 0.00 119.09
Random 0.50 ± 0.00 0.00 ± 0.00 0
Cancer genes 0.50 ± 0.00 0.00 ± 0.00 0

Genetic-PPI-Breast Cancer targets 0.51 ± 0.01 0.00 ± 0.00 0
scGen - - ✓1,287.89
PDGrapher 0.67 ± 0.11 0.01 ± 0.00 135.07
Random 0.50 ± 0.00 0.00 ± 0.00 0
Cancer genes 0.50 ± 0.00 0.02 ± 0.00 0

Chemical-PPI-Lung Cancer targets 0.56 ± 0.00 0.05 ± 0.00 0
scGen - 0.03 ± 0.01 2,018.23
PDGrapher 0.83 ± 0.09 0.13 ± 0.01 78.20
Random 0.50 ± 0.00 0.00 ± 0.00 0
Cancer genes 0.50 ± 0.00 0.02 ± 0.00 0

Chemical-PPI-Breast Cancer targets 0.55 ± 0.00 0.05 ± 0.00 0
scGen - 0.03 ± 0.00 2,782.65
PDGrapher 0.89 ± 0.05 0.14 ± 0.02 118.72
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Figure 2: PDGRAPHER illuminates mode of action of perturbagens. (A,B) We visualize ground-
truth, and predicted therapeutic targets for Raloxifene (A) and Sertindole (B) in Chemical-PPI-Lung
using Gephi with ForceAtlas embedding. We highlight in different colors distinct communities
identified by Gephi’s modularity algorithm.

Ablation study. We perform an ablation study to analyze components in PDGRAPHER’s ob-
jective function across the chemical datasets. We train PDGRAPHER using only the cycle loss
(PDGRAPHER-Cycle), using only the supervision loss (PDGRAPHER-Super), and using both
(PDGRAPHER-SuperCycle) in the random splitting setting on Chemical-PPI-Lung and Chemical-
PPI-Breast datasets. PDGRAPHER-SuperCycle appears as the best compromise between accuracy
in predicting therapeutic genes and reconstruction of treated samples from diseased samples upon
intervening on the predicted genes (Figure 6).

5 CONCLUSIONS

We introduce a novel problem formulation for phenotype-driven lead discovery. Given a diseased
sample, the goal is to find genes that a genetic or chemical perturbagen should target to shift the
sample to a treated state. In practice, this problem translates to predicting a combination of gene
targets; therefore, we refer to this formulation as a combinatorial prediction of therapeutic targets.
To address this problem, we introduce PDGRAPHER. Given a diseased cell state represented as a
gene expression signature and a proxy causal graph of gene-gene interactions, PDGRAPHER pre-
dicts candidate target genes to shift the cells to a desired treated state. PDGRAPHER demonstrates
superior performance in identifying therapeutic targets across diverse cancer types and intervention
datasets. PDGRAPHER’s training is also up to 30 times faster than indirect prediction methods like
scGen (Lotfollahi et al., 2019) and it can aid in elucidating mechanisms of action of chemical per-
turbagens, as exemplified in the case of Raloxifene and Sertindole. By flexibly selecting sets of
therapeutic targets for intervention, rather than a specific perturbagen, PDGRAPHER enhance the
versatility of phenotype-driven lead discovery.
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Choi, Atina G. Coté, Meaghan Daley, Steven Deimling, Alice Desbuleux, Amélie Dricot,
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Sheynkman, Eyal Simonovsky, Murat Taşan, Alexander Tejeda, Vincent Tropepe, Jean Claude
Twizere, Yang Wang, Robert J. Weatheritt, Jochen Weile, Yu Xia, Xinping Yang, Esti Yeger-
Lotem, Quan Zhong, Patrick Aloy, Gary D. Bader, Javier De Las Rivas, Suzanne Gaudet, Tong
Hao, Janusz Rak, Jan Tavernier, David E. Hill, Marc Vidal, Frederick P. Roth, and Michael A.
Calderwood. A reference map of the human binary protein interactome. Nature 2020 580:7803,
580(7803):402–408, 4 2020.
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A APPENDIX

A.1 SPATIAL ENRICHMENT ANALYSIS OF PDGRAPHER’S PREDICTED GENES.

We quantify the spatial enrichment for PDGRAPHER ’s predicted therapeutic targets using SAFE
(Baryshnikova, 2016), a systematic approach that identifies regions that are over-represented for a
feature of interest (Figure 1B-D). SAFE requires networks and annotations for each node as an input.
We use the PPI network as input and label gene nodes based on PDGRAPHER’s predictions: nodes
are labeled as 1 if they are predicted to belong to the therapeutic targets set, and 0 otherwise. We
compute enrichment analyses for two chemical compounds in the lung cancer cell line A549 test
set: Raloxifene and Sertindole. We apply SAFE with the recommended settings: neighborhoods
are defined using the short-path weighted layout metric for node distance and neighborhood radius
of 0.15, and p-values are computed using the hypergeometric test with multiple testing correction
(1,000 iterations). We use the Python implementation of SAFE: https://github.com/baryshnikova-
lab/safepy.

A.2 RELATED WORK

Learning optimal interventions. The problem of learning interventions to achieve a desired state
has gained interest in recent years. A few recent works formulate this problem as finding optimal
interventions to optimize an associated outcome (Mueller et al., 2016; Pacchiano & Barton, 2022;
Mueller et al., 2017; Hie et al., 2020). These works offer varied approaches. For example, Mueller
et al. (2016) aim to learn an intervention policy defined by a covariate transformation that pro-
duces the largest post-intervention improvement with high uncertainty. Pacchiano & Barton (2022)
formalize the task as a bandit optimization problem in which each bandit’s arm corresponds to a
covariate to intervene, and the goal is to recover an almost optimal arm in the least number of arm
pulls possible. Mueller et al. (2017) and Hie et al. (2020) approach the problem of sequence-based
data where each sequence is associated with an outcome, and the goal is to find mutations in the in-
put sequence that increase a desired outcome. Other recent works formulate this problem as finding
optimal interventions to shift the system to a desired state. Zhang et al. (2021; 2022) aimed to find
an intervention that applied to a distribution helps match a desired distribution. Specifically, given
a distribution P over X and a desired distribution Q over X, the goal is to find an optimal matching
intervention I such that P I best matchesQ under some metric. They address the special case of soft
interventions (shift interventions) and use the expectation of distributions as the distance metric.

Neural networks and Structural Causal Models (SCMs). Causal representation learning has been
a growing trend in recent years (Deng et al., 2022). It aims to combine the strength of traditional
causal learning methods with the robust capabilities of deep learning in the face of large and noisy
data. Bottlenecks of traditional causal learning methods include unstructured high-dimensional vari-
ables, combinatorial optimization problems, unknown intervention, unobserved confounders, selec-
tion bias, and estimation bias (Deng et al., 2022). There are three areas in which deep learning helps
to overcome these bottlenecks (Deng et al., 2022). First, in learning causal variables from high-
dimensional unstructured data. Second, in learning the causal structure between causal variables,
called causal discovery within the causal inference literature. And third, in facilitating inference
of interventional and counterfactual queries. Within the last branch, a promising approach aims to
join SCMs and neural models to facilitate interventional and counterfactual querying. Parafita &
Vitrià (2020) put forward the requirements that any DL model should fulfill to approximate causal
queries and introduced normalizing causal flows as a specific instantiation. Pawlowski et al. (2020)
followed a similar approach to introduce a model capable of computing counterfactual queries. Xia
et al. (2021) approached the problem differently, introducing a Neural Causal Model (NCM), a type
of SCM with neural networks as structural equations. Together with the NCM, they introduced an
algorithm that provably performs identification and inference of interventional queries. A follow-up
work extended the NCM framework for identification and inference of counterfactual queries (Xia
et al., 2022). The concept of NCMs inspires our work by considering the graph in which we op-
erate as a noisy version of a causal graph and our model operating on the graph as a proxy for the
structural equations.

Interventions in Graph Neural Networks (GNNs). GNNs are a type of neural model that falls
under the umbrella term of geometric deep learning (Bronstein et al., 2017; 2021; Li et al., 2022).
These models use graph-structured data to compute transformed representations useful for down-
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stream predictive tasks. Their ability to operate over graphs makes them especially relevant to
NCMs. Zečević et al. (2021) explored this connection by introducing interventional GNNs, a GNN
in which interventions are represented through mutilations in the input graph, and interventional
inference as GNN computations on the mutilated graph. We borrow this concept in our work and
extend the representational capabilities of GNNs by assigning learnable embeddings to input nodes.

A.3 NOTATION

A calligraphic letter X indicates a set, an italic uppercase letter X denotes a graph, uppercase X
denotes a matrix, lowercase x denotes a vector, and a monospaced letter X indicates a tuple. Up-
percase letter vX indicates a random variable and lowercase letter vx indicates its corresponding
value; bold uppercase X denotes a set of random variables, and lowercase letter x indicates its cor-
responding values. We denote P (X) as a probability distribution over a set of random variables X
and P (X = x) as the probability of X is equal to the value of x under the distribution P (X). For
simplicity, P (X = x) is abbreviated as P (x).

A.4 COMMENT ON PROBLEM FORMULATION.

In the SCM framework, the conditional probabilities in equation 3 are computed recursively on the
graph, each being an expectation over exogenous variables E. Therefore, node states of the previous
time point are not necessary. To translate this query into the representation learning realm, we dis-
card the existence of noise variables and directly try to learn a function encoding the transition from
an initial state to a desired state. In transitioning the SCM framework to representation learning, we
justify omitting explicit noise variables by focusing on learning deterministic transition functions
between states. This approach is underpinned by the SCM’s ability to abstract away the specifics
of exogenous noise through expected outcomes, thus enabling a simplified yet effective representa-
tion of causal mechanisms. By concentrating on these transition functions, we capture the essence
of causal relationships, ensuring the model’s ability to predict outcomes under interventions with
reduced complexity and enhanced interpretability.

Relationship between our task and conventional graph prediction tasks. Given that the predic-
tion for each variable in our problem formulation is dependent only on its parents in a graph, GNNs
appear especially suited for this problem. We can formulate the query of interest under a graph
representation learning paradigm as: Given a graph G = (V, E), and paired sets of node attributes
X = {X1,X2, . . . ,Xm} and node labels Y = {Y1,Y2, . . . ,Ym} where each Y = {y1, . . . , yn},
with yi ∈ [0, 1], we aim at training a neural message passing architecture that given node attributes
Xi predicts the corresponding node labels Yi. There are, however, some major differences between
our problem formulation and the conventional graph prediction tasks, namely, graph and node clas-
sification (summarized in Table 2).

In node classification, a single graph G is paired with node attributes X, and the task is to predict the
node labels Y. Our formulation differs in that we have m paired sets of node attributes X and labels
Y instead of a single set, yet they are similar in that there is a single graph in which GNNs operate.
In graph classification, a set of graphs G = {G1, . . . , Gm} is paired with a set of node attributes
X = {X1,X2, . . . ,Xm} and the task is to predict a label for each graph Y = {y1, . . . , ym}. Here,
graphs have a varying structure, and both the topological information and node attributes predict
graph labels. In our formulation, a single graph is combined with each node attribute Xi, and the
goal is to predict a label for each node, not for the whole graph.

Table 2: Our problem formulation is similar to conventional node and graph classification tasks,
albeit some major differences exist.

Task Number of graphs Number of node attribute sets Label dimensions
Graph Classification m m m x 1 (one for each graph)
Node Classification 1 1 1 x n (one for each node)

Ours 1 m m x n (one for each node of each graph)
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A.5 ADDITIONAL METHODOLOGY DETAILS

Response prediction module. Our response prediction module fr should learn to map pre-
perturbagen node values to post-perturbagen node values through learning relationships between
connected nodes (equivalent to learning structural equations in SCMs) and propagating the effects
of perturbations downstream in the graph (analogous to the recursive nature of query computations
in SCMs).

Given a triplet < xh,U , xd >, we propose a neural model operating on a mutilated graph, GU

where the node attributes are the concatenation of xh and x′U , predicting diseased node values xd.
Each node i has a two-dimensional attribute vector di = [xhi || x′U ], where the first element is its gene
expression value xhi , and the second is a perturbation flag: a binary label indicating whether a pertur-
bation occurs at node i. In practice, we embed each node feature into a high-dimensional continuous
space by assigning learnable embeddings to each node based on the value of each input feature di-
mension. Specifically, for each node, we use the binary perturbation flag to assign a d-dimensional
learnable embedding, which is different between nodes but shared across samples for each node. To
embed the gene expression value xhi ∈ [0, 1], we first calculate thresholds using quantiles to assign
the gene expression value into one of the B bins. We use the bin index to assign a d-dimensional
learnable embedding, which is different between nodes but shared across samples for each node. To
increase our model’s representation power, we concatenate a d-dimensional positional embedding
(d-dimensional vector initialized randomly following a normal distribution). Concatenating these
three embeddings results in an input node representation of dimensionality 3.d

For each node i ∈ V , an embedding zi is computed using a graph neural network operating on the
node’s neighbors’ attributes. The most general formulation of a GNN layer is:

h′
i = ϕ

hi,
⊕
j∈N i

ψ(hi,hj)


where h′

i represents the updated information of node i, and hi represents the information of node i
in the previous layer, with embedded di being the input to the first layer. ψ is a MESSAGE function,⊕

an AGGREGATE function (permutation-invariant), and ϕ is an UPDATE function. We obtain
an embedding zi for node i by stacking K GNN layers. Node embedding zi ∈ R is then passed to
a multilayer feed-forward neural network to obtain an estimate of the post-perturbation node values
xd.

Perturbation discovery module. Our perturbagen prediction module fp should learn the nodes
in the graph that should be perturbed to shift node states (attributes) from diseased xd to a desired
treated state xt.

Given a triplet< xd,U ′, xt >, we propose a neural model operating on graphGU ′
with node features

xd and xt that predicts a ranking for each node where the top P ranked nodes should be predicted as
the nodes in U ′. Each node i has a two-dimensional attribute vector: di = [xdi || xt

i]. In practice, we
represent these binary features in a continuous space using the same approach as described for our
response prediction module fr.

For each node i ∈ V , an embedding zi is computed using a graph neural network operating on the
node’s neighbors’ attributes. We obtain an embedding zi for node i by stacking K GNN layers.
Node embedding zi ∈ R is then passed to a multilayer feed-forward neural network to predict a
real-valued number for node i.

A.6 DATASETS PREPROCESSING

We compiled and processed six primary data sources and two additional repositories of biological
information.

Human protein-protein interaction network. We built a PPI network by aggregating proteins and
connections from BIOGRID (Oughtred et al., 2019) (accessed in March 2022), HuRI (Luck et al.,
2020), and Menche et al. (Menche et al., 2015). In this graph, nodes represent human proteins, and
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edges exist between nodes if there is physical interaction between the proteins. We downloaded a
gene ID mapping file from the HUGO Gene Nomenclature Committee. Using this file, we mapped
proteins in BIOGRID and Menche et al. (Menche et al., 2015) from Entrez Gene ID (Maglott et al.,
2007) to HUGO Gene Nomenclature Committee ID (Tweedie et al., 2021), and proteins in HuRI
from Ensembl Gene ID (Cunningham et al., 2022) to HUGO Gene Nomenclature Committee ID
(Tweedie et al., 2021). Our final PPI comprises the union of nodes and edges, resulting in a graph
with 15,742 nodes and 222,498 undirected edges.

Gene expression data. We downloaded Library of Integrated Network-Based Cellular Signa-
tures (LINCS (Stathias et al., 2020)) level 3 gene expression data from https://clue.io/
releases/data-dashboard (accessed in February 2022). Level 3 data consists of quantile-
normalized samples across each plate and is the lowest level in the LINCS library that can be com-
pared across plates. LINCS contains gene expression measurements for 12,327 genes upon genetic
and chemical interventions. There are 387,317 samples upon CRISPR genetic interventions (treated
samples), with 5,156 unique knocked-out genes across 27 unique cell lines. There is an average of
17.18 replicates per cell line-knocked-out gene pair. The number of unique genes knocked out in
each cell line varies from 1 to 5,114, with an average of 2,042.14 unique genes knocked out per cell
line.

Control data for CRISPR interventions, that is, diseased samples, are genetic interventions that
either do not contain a gene-specific sequence or whose gene-specific sequence targets a gene not
expressed in the human genome. There is a total of 47,781 diseased samples across 50 cell lines.
The number of diseased samples for each cell line varies from 1 to 6,890, with an average of 955.62
diseased samples per cell line.

There are 1,313,292 samples upon chemical interventions (treated samples), with 31,234 unique
compounds across 229 unique cell lines. There is an average of 7.96 replicates per cell line-
compound pair. The number of compounds tested in each cell line varies from 1 to 19,509, with
an average of 719.69 unique compounds tested per cell line. Drugs are administered at different
doses and measured at varying time points after treatment. On average, there are 2.73 different
doses per compound-cell line pair, with a minimum of 1 and a maximum of 26 different doses.
On average, gene expression is measured at 1.25 time points per compound-cell line pair, with a
minimum of 1 and a maximum of 13 different time points.

Control data for chemical interventions, that is, diseased samples, is treatment with vehicle (dimethyl
sulfoxide). There is a total of 76,795 diseased samples across 226 cell lines. The number of diseased
samples for each cell line varies from 1 to 7,336, with an average of 339.80 diseased samples per
cell line. On average, gene expression of diseased samples is measured at 1.4 time points, with a
minimum of 1 and a maximum of 5 different time points.

We filter cell lines to keep those treated with at least 4,000 unique genetic or chemical perturbagens,
resulting in 10 selected cell lines for each genetic and chemical dataset. To find healthy cell line
counterparts, we extracted all cell lines with the “Unknown” tumor phase in the downloaded LINCS
dataset (N=145). Then, we filtered the cell lines by tissue type. To find the exact match to diseased
cell lines, we performed a manual literature search to confirm their experimental use as healthy
counterparts. We extracted healthy counterparts for three of the ten diseased cell lines: cell line
NL20 as the healthy counterpart for A549, cell line MCF10A as the healthy counterpart for MCF7,
and cell line RWPE1 as the healthy counterpart for PC3.

Genetic interventions correspond to gene experiment knockouts in which the gene expression of
the knocked-out gene after the intervention is zero. Chemical interventions correspond to small
molecule treatments, where each molecule targets one or more proteins. Chemical interventions
were performed at different dose levels and measured at different time points. We included replicates
measured at all time points and doses. For each cell line and condition (healthy, diseased, and
treated), we log-normalized level 3 gene expression data. We applied a min-max normalization to
transform gene expression values into the range [0, 1] following established practices in the field.

We match genes in LINCS to proteins in our PPI using the HUGO Gene Nomenclature Committee
ID (Tweedie et al., 2021), resulting in 10,716 overlapping genes and 151,839 undirected edges.
Furthermore, we excluded treated samples from our datasets whose targeted genes were not included
in the PPI.
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Table 3: Table with several healthy, diseased, and treated samples for lung cancer (A549), breast
cancer (MCF7), and prostate cancer (PC3) across genetic and chemical perturbagens.

Dataset type Cancer type Sample type N samples Category N perturbagens

Genetic

Lung
cancer

healthy 50 vehicle -
diseased 4,327 vector -
treated 24,255 CRISPR 3,711

Breast
cancer

healthy 113 untreated -
diseased 4,852 vector -
treated 18,774 CRISPR 3,090

Prostate
cancer

healthy 185 vector -
diseased 6,890 vector -
treated 21,229 CRISPR 3,710

Chemical

Lung
cancer

healthy 50 vehicle -
diseased 5,261 vehicle -
treated 23,100 compound 1,041

Breast
cancer

healthy 2,675 untreated -
diseased 7,336 vehicle -
treated 35,421 compound 1,154

Prostate
cancer

healthy 185 vector -
diseased 7,202 vehicle -
treated 32,555 compound 1,182

We have healthy, diseased, and treated gene expression samples for each cell line treated with several
genetic or chemical perturbagens (Table 3). For healthy counterparts, samples with the correspond-
ing treatment (“vector” for genetic perturbagens, and “vehicle” for chemical perturbagens) are not
available, therefore, we use the closest possible one (see “Sample category” in Table 3).

Gene regulatory networks. We computed one gene regulatory network (GRN) for each diseased
cell line in each condition (genetic and chemical datasets), using the GENIE3 (Huynh-Thu et al.,
2010) algorithm on gene expression values of each diseased cell line. We filtered genes in our gene
expression dataset (LINCS) to contain only those in the PPI before running the GRN algorithm for
consistency between the PPI and GRNs. GENIE3, introduced in 2010, won the Dialogue for Reverse
Engineering Assessments and Methods 4 (DREAM4) challenge (Greenfield et al., 2010), which
evaluates the success of GRN inference algorithms on benchmarks of simulated data. GENIE3 was
introduced in the open source software for bioinformatics Bioconductor (Gentleman et al., 2004)
in 2017 and is still used as a gold-standard for GRN generation (Aibar et al., 2017; Seçilmiş et al.,
2022; Qin et al., 2023; Song et al., 2023). It is a model based on an ensemble of regression trees
and requires as input a matrix of gene expression levels under various conditions. Notably, this
expression data is multifactorial. This means that they represent expression levels resulting from a
perturbation over a set of genes rather than from a targeted experiment. Multifactorial expression
can be obtained as samples from different patients or other biological systems. Therefore, cell
line diseased samples are the closest to the ideal input data for GENIE3. GENIE3 produces a
directed graph representing gene-gene regulatory interactions. This is achieved by assigning weights
to regulatory links and maximizing weights for more significant links. Then, a significance threshold
is used to determine which links are substantial enough to be predicted as a regulatory link. We
adapted the threshold to generate GRNs with the same network density as our PPI, which was
achieved by keeping 303,678 directed edges.

Disease-associated genes. We extracted disease-associated genes from COSMIC (Tate et al., 2019)
(Accessed in October 2022) in addition to expert-curated genes available at https://cancer.
sanger.ac.uk/cosmic/curation. Genes were represented using the HUGO Gene Nomen-
clature Committee ID. For each cell line in our dataset, we extracted cancer-causing mutations as the
list of genes with “Verified” Mutation verification status in COSMIC and present in the list of genes
curated by experts. Mapping the resulting genes to our list of genes in the PPI resulted in eight
disease-associated genes for lung cancer cell line A549, eight disease-associated genes for breast
cancer cell line MCF7, and one disease-associated gene for prostate cancer cell line PC3. Therefore,
we filtered out the cell line PC3 and proceeded with only MCF7 and A549.
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Drug targets. We downloaded drug-related data from DrugBank (Wishart et al., 2018) (accessed in
November 2022). We extracted drug names and synonyms, chemical identifiers, drug-gene targets,
and all available synonyms for each gene target. We mapped drugs in DrugBank with chemical
perturbagens in LINCS by InChI Key (Heller et al., 2015), resulting in 1,522 out of 31,234 unique
LINCS compounds mapped to DrugBank with information of at least one target. We mapped drug
targets to our PPI network using the HUGO Gene Nomenclature Committee ID, excluding any drug
target that was not mapped. Chemical interventions target multiple genes, with a minimum of 1, a
maximum of 300, and an average of 2.44 targets per compound.

List of cancer drugs for cancer targets baseline. We extracted the list of cancer
drugs by cancer type from NCI (https://www.cancer.gov/about-cancer/
treatment/types/targeted-therapies/approved-drug-list#
targeted-therapy-approved-for-breast-cancer; Accessed in November 2022).
We mapped drug names to DrugBank to obtain cancer drug-gene targets. In total, there are 24 drugs
associated with breast cancer (cell line MCF7) and 30 drugs associated with lung cancer (cell line
A549).

A.7 INTERVENTIONAL DATASETS

Disease intervention data. Disease intervention datasets consist of gene expression measurements
of healthy cell lines, disease-associated genes, and gene expression measurements of diseased cell
lines. Gene expression samples of healthy and diseased cell lines were retrieved from LINCS
(Stathias et al., 2020), and disease-associated genes were retrieved from COSMIC (Tate et al., 2019),
as detailed previously. Each dataset T = {T1, . . . , TM} is a collection of paired healthy-diseased
cell lines where in each sample T =< xh,U , xd >, xh corresponds to gene expression values of
the healthy cell line, set U is comprised by a randomized subset of disease-associated genes, and
xd corresponds to gene expression values of diseased cell lines (that is, upon mutations on genes in
U). To select the randomized set of disease-associated genes, we first choose at random a proportion
p ∈ {0.25, 0.50, 0.75, 1}, and then select N disease-associated genes at random where N is the
proportion multiplied by the total number of disease-associated genes. Given that more diseased
samples are available than healthy samples (see Table 3) when building the triplets, we select a ran-
dom sample from the set of healthy samples and, therefore, have non-unique healthy samples during
training. In total, we built two datasets of disease interventions: one comprised of gene expression
of healthy cell line MCF10A, breast cancer mutations, and gene expression of breast cancer cell
line MCF7; the second comprised of gene expression of healthy cell line NL20, lung cancer muta-
tions, and gene expression of lung cancer cell line A549. Find more details on data compilation and
processing in previous subsections.

Treatment intervention data - genetic. Genetic treatment intervention datasets consist of single-
gene knockout experiments using CRISPR / Cas9-mediated gene knockout. Genetic treatment in-
tervention data comprises gene expression measurements of diseased cell lines, single knocked-out
genes, and gene expression measurements of treated cell lines. Gene expression samples of diseased
and treated cell lines and knocked-out genes were retrieved from LINCS (Stathias et al., 2020). Each
dataset T = {T1, . . . , TM} is a collection of paired diseased-treated cell lines where in each sample
T =< xd,U ′, xt >, xd corresponds to gene expression values of the diseased cell line, set U ′ is
comprised by the knocked-out gene, and xt corresponds to gene expression values of treated cell
lines (that is, upon knocking-out the gene in U ′). Given that more treated samples are available than
diseased samples (see Table 3) when building the triplets, we select a random sample from the set
of diseased samples and, therefore, have non-unique diseased samples during training. In total, we
built two datasets of treatment interventions: one comprised of gene expression of diseased cell line
MCF7, knocked-out genes, and gene expression of treated cell line MCF7; the second comprised of
gene expression of diseased cell line A549, knocked-out genes, and gene expression of treated cell
line A549. Find more details on data compilation and processing in previous subsections.

Treatment intervention data - chemical. Chemical treatment intervention datasets consist of
chemical compound treatment experiments. Chemical treatment intervention data comprises gene
expression measurements of diseased cell lines, chemical compound therapeutic targets, and gene
expression measurements of treated cell lines. Gene expression samples of diseased and treated cell
lines were retrieved from LINCS, and chemical compound targets were retrieved from DrugBank,
as detailed previously. Each dataset T = {T1, . . . , TM} is a collection of paired diseased-treated
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cell lines where in each sample T =< xd,U ′, xt >, xd corresponds to gene expression values of the
diseased cell line, set U ′ is comprised by the chemical compound targets, and xt correspond to gene
expression values of treated cell lines (that is, upon treated with the chemical perturbagen targeting
genes in U ′). Given that more treated samples are available than diseased samples (see Table 3)
when building the triplets, we select a random sample from the set of diseased samples and, there-
fore, have non-unique diseased samples during training. In total, we built two datasets of treatment
interventions: one comprised of gene expression of diseased cell line MCF7, chemical compound
target genes, and gene expression of treated cell line MCF7; the second comprised of gene expres-
sion of diseased cell line A549, chemical compound target genes, and gene expression of treated
cell line A549. Find more details on data compilation and processing in previous subsections.

A.8 BASELINES

• Random baseline: Given a sample T =< xd,U ′, xt >, the random baseline returns N
random genes as the prediction of genes in U ′, where N is the number of genes in U ′.

• Cancer genes: Given a sample T =< xd,U ′, xt >, the cancer genes baseline returns the
top N genes from an ordered list where the first M genes are disease-associated genes
(cancer-driver genes) and the remaining genes are ranked randomly, and where N is the
number of genes in U ′.

• Cancer drug targets: Given a sample T =< xd,U ′, xt >, the cancer genes baseline returns
the top N genes from an ordered list where the first M genes are cancer drug targets and
the remaining genes are ranked randomly, and where N is the number of genes in U ′.

• scGen (Lotfollahi et al., 2019): scGen is a widely-used gold-standard latent variable
model for response prediction (Heumos et al., 2023; Gayoso et al., 2022; Jovic et al., 2022;
Luecken et al., 2021). Given a set of observed cell type in control and perturbed state, sc-
Gen predicts the response of a new cell type to the perturbagen seen in training. To utilize
scGen as a baseline, we first fit it to our LINCS gene expression data for each dataset type
to predict response to perturbagens, training one model per perturbagen (chemical or ge-
netic). Then, given a sample of paired diseased-treated cell line states, T =< xd,U ′, xt >,
we compute the response of cell line with gene expression xd to all perturbagens. The
predicted perturbagen is that whose predicted response is closest to xt in R2 score.

A.9 EXPERIMENTAL SETUP

• Random splits: Our dataset is split randomly into train and test sets to measure our model
performance in an IID setting.

• Leave-cell-line-out splits: To measure model performance on unseen cell lines, we train
our model with random splits on one cell line and test on a new cell line.

Evaluation setup. For all dataset split settings, our model is trained using 5-fold cross-validation,
and metrics are reported as the average on the test set. Within each fold, we further split the training
set into training and validation sets (8:2) to perform early stopping: we train the model on the
training set until the validation loss has not decreased at least 10−5 for 15 continuous epochs.

Evaluation metrics. We report average sample-wise R2 score, and average perturbagen-wise R2

score to measure performance in the prediction of xt. The sample-wise R2 score is computed as
the square of Pearson correlation between the predicted sample x̂t ∈ RN and real sample xt ∈ RN .
The perturbagen-wise R2 score is adopted from scGen. It is computed as the square of Pearson
correlation of a linear least-squares regression between a set of predicted treated samples X̂

t
∈

RN×S and a set of real treated samples Xt ∈ RN×S for the same perturbagen. Higher values
indicate better performance in predicting the treated sample xt given the diseased sample xd and
predicted perturbagen.

We also report the average ranking of real therapeutic gene targets in the predicted ordered list of
therapeutic targets to measure the ability of our model to rank targets correctly. We normalize the
ranking to the range [0, 1] as 1 − ranking/N where N is the total number of genes in our dataset.
Higher values indicate better performance; that is, the model ranks ground truth therapeutic targets
closer to the top of the predicted list. In addition, we report the proportion of test samples for
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which the predicted therapeutic targets set has at least one overlapping gene with the ground-truth
therapeutic targets set.

Model implementation and training. We implement PDGRAPHER using PyTorch 1.10.1 (Paszke
et al.) and the Torch Geometric 2.0.4 Library (Fey & Lenssen, 2019). The implemented architecture
yields a neural network with the following hyperparameters: number of GNN layers and number of
prediction layers. We set the number of prediction layers to two and performed a grid search over
the number of GNN layers (1-3 layers). We train our model using a 5-fold cross-validation strategy
and report PDGRAPHER’s performance resulting from the best-performing hyperparameter setting.

Network proximity between predicted and ground truth perturbagens. Let P be the set of
predicted therapeutic targets, R be the set of ground truth therapeutic targets, and spd(p, r) be the
shortest-path distance between nodes in P and R. We measure the closest distance between P and
R as:

d(P,R) =
1

|R||P |
∑
r∈R

∑
p∈P

spd(p, r)

A.10 PDGRAPHER ILLUMINATES MODE OF ACTION OF CHEMICAL PERTURBAGENS

To demonstrate PDGRAPHER’s ability to illuminate the mechanism of action of therapeutic per-
turbagens, we analyze PDGRAPHER’s predictions for Raloxifene (Figure 2A) and Sertindole (Figure
2B) in Chemical-PPI-Lung in the random splitting setting. We visualize ground truth and predicted
combinations of therapeutic targets together with their one-hop neighbors in the protein interaction
network using Gephi (Bastian et al., 2009) and the ForceAtlas graphical layout. We utilized the
modularity algorithm in Gephi to identify distinct communities within the network. The nodes were
subsequently colored based on their modularity class to represent these communities visually.

Raloxifene is a second-generation selective estrogen receptor modulator (SERM) with anti-
estrogenic impacts on breast and uterine tissues and estrogenic effects on bone, lipid metabolism,
and blood clotting (Wishart et al., 2018). It targets a combination of Estrogen Receptor 1 (ESR1),
Estrogen Receptor 2 (ESR2), Trefoil Factor 1 (TFF1), and Serpin Family B Member 9 (SERPINB9).
PDGRAPHER correctly predicted ESR1, and ESR2. Additionally, PDGRAPHER predicted Sex Hor-
mone Binding Globulin (SHBG) and Phosphodiesterase 5A (PDE5A) genes as combinatorial thera-
peutic targets. Notably, Raloxifene treatment has been documented to raise SHBG levels in healthy
middle-aged and older men (Uebelhart et al., 2004; Reindollar et al., 2002), and post-menopausal
women (Duschek et al., 2004). Therefore, PDGRAPHER’s prediction of SHBG can be explained
due to the strong connection between Raloxifene and downstream effects on SHBG. The prediction
of PDE5A by PDGRAPHER is through its functional relationship with estrogen receptors. Estrogen
facilitates vasodilation by engaging its receptors, increasing nitric oxide (NO) production. This NO
production is pivotal as it stimulates the synthesis of cyclic guanosine monophosphate (cGMP), re-
sulting in the relaxation of smooth muscle cells and the subsequent dilation of blood vessels (Chen
et al., 1999). PDE5A plays a crucial role in this mechanism by hydrolyzing cGMP, thereby mod-
ulating the vasodilation process to be both controlled and reversible (Yan, 2023). A disruption in
this intricate pathway might lead to changes in the expression or functionality of PDE5A. Such
alterations potentially explain the observed link between Raloxifene, a selective estrogen receptor
modulator, and the modulation of PDE5A activity.

Sertindole is a second-generation antipsychotic to treat schizophrenia. It acts through antagonistic
mechanisms against Dopamine D2 Receptor (DRD2), Serotonin receptors HTR2A, HTR2C, and
HTR6, and Alpha 1 Adrenergic receptors ADRA1A and ADRA1B (Juruena et al., 2011). PDGRA-
PHER accurately predicted DRD2, HTR2A, and HTR2C. It additionally predicted serotonin receptor
HTR1A, B-Raf Proto-Oncogene (BRAF), and Homeobox C6 (HOXC6) genes. All Sertindole’s gene
targets are G-protein coupled receptors (GPCRs), as is the predicted target HTR1A. The predictive
involvement of BRAF in response to Sertindole’s targeting of GPCRs can be explained by its posi-
tion in the downstream cascade of GPCR signaling pathways. GPCRs influence various intracellular
signaling cascades, including the MAPK/Erk signaling pathway of which BRAF is a critical compo-
nent (Dorsam & Gutkind, 2007). Additionally, HOXC6 has been shown to promote cell proliferation
and migration through the activation of the MAPK pathway (Yang et al., 2019). This implies that
changes in BRAF activity, potentially induced by altered GPCR signaling due to Sertindole, may
modify the behavior of PDGRAPHER-predicted HOXC6 in the downstream pathway.
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A.11 SUPPLEMENTARY FIGURES

A
Lung cancer Breast cancer Lung cancer Breast cancer

B

Figure 3: Overview of interventional datasets. (A,B) We train PDGRAPHER across two genetic
(A) and two chemical (B) intervention datasets, where each dataset is comprised of healthy, dis-
eased, and treated gene expression samples for one cell line (lung cancer cell line A549; breast
cancer cell line MCF7), and one proxy causal graph (PPI or GRN). This leads to 8 datasets:
Genetic-PPI-Lung, Genetic-PPI-Breast, Chemical-PPI-Lung, Chemical-PPI-Breast, Genetic-GRN-
Lung, Genetic-GRN-Breast, Chemical-GRN-Lung, and Chemical-GRN-Breast.
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Figure 4: Overview of evaluation settings and data splits. (A) Given a dataset with paired diseased
and treated samples and a set of perturbagens, PDGRAPHER makes a direct prediction of candidate
perturbagens that shift gene expression from a diseased to a treated state, for each disease-treated
sample pair. The direct prediction means that PDGRAPHER directly infers the perturbation neces-
sary to achieve a specific response. In contrast to direct prediction of perturbagens, existing methods
predict perturbagens only indirectly through a two-stage approach: for a given diseased sample, they
learn the response to each one of the perturbagen candidates from an existing library upon interven-
tion and return the perturbagen whose response is as close as possible to the desired treated state.
Existing methods learn the response of cells to a given perturbation (Bunne et al., 2023; Lotfollahi
et al., 2019; Yuan et al., 2021; Kamimoto et al., 2023), whereas PDGRAPHER focuses on the in-
verse problem by learning which perturbagen elicit a given response, even in the most challenging
cases when the combinatorial composition of perturbagen was never seen before. (B-C) We evaluate
PDGRAPHER’s performance across two settings: randomly splitting samples between training and
test set (B), and splitting samples based on the cell line where we train in a cell line and evaluate
PDGRAPHER’s performance on another cell line the model never encountered before (C).

-
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A B C D

Figure 5: PDGRAPHER predicts top-ranked genes that are closer to ground-truth therapeutic
targets than expected by chance. (A-D) Sets of therapeutic genes predicted by PDGRAPHER are
closer in the network to ground-truth therapeutic genes compared to what would be expected by
chance, for Chemical-PPI-Lung (A) and Chemical-PPI-Breast (B) datasets in the random splitting
setting and in the leave-cell-out splitting setting (C, D).

A B

C D

Figure 6: Ablation study of PDGRAPHER’s loss function. (A-D) Shown are performance metrics
of ablation study on PDGRAPHER’s objective function components: PDGRAPHER-Cycle trained
using only the cycle loss, PDGRAPHER-SuperCycle trained using the supervision and cycle loss,
and PDGRAPHER-Super trained using only the supervision loss. Shown is the relative position
of ground-truth therapeutic targets in the predicted ranking (A), the proportion of samples with a
partially accurate prediction (B), and the sample-wise R2 (C) and perturbagen-wise R2 (D) of the
reconstruction of treated samples given diseased samples and predicted perturbagens.
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Table 4: Model performance across genetic and chemical datasets in test folds containing novel
samples and cell lines

Dataset Model Relative position of ground-truth
genes in the predicted ranking

Proportion of samples with a
partially accurate prediction

Random 0.50 ± 0.00 0.00 ± 0.00
Cancer genes 0.50 ± 0.00 0.00 ± 0.00

Genetic-PPI-Lung Cancer targets 0.50 ± 0.00 0.00 ± 0.00
scGen - -
PDGrapher 0.64 ± 0.09 0.01 ± 0.00
Random 0.50 ± 0.00 0.00 ± 0.00
Cancer genes 0.50 ± 0.00 0.00 ± 0.00

Genetic-PPI-Breast Cancer targets 0.50 ± 0.00 0.00 ± 0.00
scGen - -
PDGrapher 0.65 ± 0.07 0.01 ± 0.00
Random 0.50 ± 0.00 0.00 ± 0.00
Cancer genes 0.50 ± 0.00 0.02 ± 0.00

Chemical-PPI-Lung Cancer targets 0.55 ± 0.00 0.04 ± 0.00
scGen - 0.04 ± 0.01
PDGrapher 0.90 ± 0.04 0.13 ± 0.01
Random 0.50 ± 0.00 0.00 ± 0.00
Cancer genes 0.50 ± 0.00 0.03 ± 0.00

Chemical-PPI-Breast Cancer targets 0.55 ± 0.00 0.05 ± 0.00
scGen - 0.03 ± 0.00
PDGrapher 0.82 ± 0.09 0.13 ± 0.02

A
Split type Dataset Relative position of ground-truth 

genes in the predicted ranking
Proportion of samples with a 
partially accurate prediction

Genetic-GRN-Lung 0.65 ± 0.05 0.01 ± 0.00

Genetic-GRN-Breast 0.67 ± 0.07 0.01 ± 0.00

Chemical-GRN-Lung 0.89 ± 0.03 0.14 ± 0.02

Chemical-GRN-Breast 0.91 ± 0.05 0.12 ± 0.03

Genetic-GRN-Lung 0.65 ± 0.06 0.01 ± 0.00

Genetic-GRN-Breast 0.63 ± 0.05 0.01 ± 0.00

Chemical-GRN-Lung 0.90 ± 0.06 0.10 ± 0.03

Chemical-GRN-Breast 0.89 ± 0.03 0.13 ± 0.02

Random

Leave cell out

Figure 7: PDGRAPHER predicts genetic and chemical perturbagens to shift cells from diseased
to treated states using GRNs. (A) Shown are performance metrics of PDGRAPHER on Genetic-
GRN-Lung, Genetic-GRN-Breast, Chemical-GRN-Lung, and Chemical-GRN-Breast, where we ob-
serve similar performance to their counterpart using PPI as the proxy causal graph.
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