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Abstract
We propose semantic entropy probes (SEPs), a
cheap and reliable method for uncertainty quantifi-
cation in Large Language Models (LLMs). Hal-
lucinations, which are plausible-sounding but fac-
tually incorrect and arbitrary model generations,
present a major challenge to the practical adoption
of LLMs. Recent work by Farquhar et al. (2024)
proposes semantic entropy (SE), which can reli-
ably detect hallucinations by quantifying the un-
certainty over different generations by estimating
entropy over semantically equivalent sets of out-
puts. However, the 5-to-10-fold increase in com-
putation cost associated with SE computation hin-
ders practical adoption. To address this, we pro-
pose SEPs, which directly approximate SE from
the hidden states of a single generation. SEPs are
simple to train and do not require sampling mul-
tiple model generations at test time, reducing the
overhead of semantic uncertainty quantification to
almost zero. We show that SEPs retain high per-
formance for hallucination detection and general-
ize better to out-of-distribution data than previous
probing methods that directly predict model accu-
racy. Our results across models and tasks suggest
that model hidden states capture SE, and our abla-
tion studies give further insights into the token po-
sitions and model layers for which this is the case.

1. Introduction
Large Language Models (LLMs) have demonstrated impres-
sive capabilities across a wide variety of natural language
processing tasks (Touvron et al., 2023a;b; OpenAI, 2023;
Team, 2023; Brown et al., 2020). They are increasingly
deployed in real-world settings, including in high-stakes
domains such as medicine, journalism, or legal services
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(Singhal et al., 2022; Weiser, 2023; Opdahl et al., 2023;
Shen et al., 2023). It is therefore paramount that we can
trust the outputs of LLMs. Unfortunately, LLMs have a
tendency to hallucinate. Originally defined as “content that
is nonsensical or unfaithful to the provided source” (Maynez
et al., 2020; Filippova, 2020; Ji et al., 2023), the term is now
used to refer to nonfactual, arbitrary content generated by
LLMs. For example, when asked to generate biographies,
even capable LLMs such as GPT-4 will often fabricate facts
entirely (Min et al., 2023; Tian et al., 2023).

Various approaches have been proposed to address halluci-
nations in LLMs (see Appendix A). An effective strategy
for detecting hallucinations is to sample multiple responses
for a given prompt and check if the different samples convey
the same meaning (Farquhar et al., 2024; Kuhn et al., 2023;
Kadavath et al., 2022; Duan et al., 2023; Cole et al., 2023;
Chen & Mueller, 2023; Elaraby et al., 2023; Manakul et al.,
2023b; Min et al., 2023). The core idea is that if the model
knows the answer, it will consistently provide the same an-
swer. If the model is hallucinating, its responses may vary
across generations.

One explanation for why this works is that LLMs have cali-
brated uncertainty (Kadavath et al., 2022; OpenAI, 2023),
i.e., “language models (mostly) know what they know” (Ka-
davath et al., 2022). When an LLM is certain about an
answer, it consistently provides the correct response. Con-
versely, when uncertain, it generates arbitrary answers. This
suggests that we can leverage model uncertainty to detect
hallucinations. However, we cannot use token-level prob-
abilities to estimate uncertainty directly. This is because
different sequences of tokens may convey the same mean-
ing. To address this, Farquhar et al. (2024) proposed seman-
tic entropy (SE). SE estimates uncertainty across different
generations by identifying sets of semantically equivalent
responses. These sets are then used to estimate the entropy
over the generations (see Appendix B for SE definition).

A major limitation of SE and other sampling-based ap-
proaches is that they require multiple model generations for
each input query, typically between 5 and 10. This results
in a 5-to-10-fold higher cost compared to naive generation
without SE, presenting a major hurdle to practical adoption.

We propose Semantic Entropy Probes (SEPs), linear probes
that capture semantic uncertainty from the hidden states of
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Figure 1: SEPs predict model hallucinations better than accuracy probes when generalizing to unseen tasks. In-distribution,
accuracy probes perform better. Short generation setting with Llama-2-7B, SEPs trained on the second-last-token (SLT). For
the generalization setting, probes are trained on all tasks except the one that we evaluate on.

LLMs, presenting a cost-effective and reliable hallucination
detection method. Similar to sampling-based hallucination
detection, SEPs capture the semantic uncertainty of the
model. Furthermore, they address some of the shortcom-
ings of previous approaches. Contrary to sampling-based
hallucination detection, SEPs act directly on a single model
hidden state and do not require generating multiple samples
at test time. SEPs are trained to predict semantic entropy
(Kuhn et al., 2023) rather than model accuracy, which can
be computed without access to ground truth accuracy labels
that can be expensive to curate.

2. Semantic Entropy Probes
Training SEPs. SEPs are constructed as linear logis-
tic regression models, trained on the hidden states of
LLMs to predict semantic entropy. We create a dataset
of (hl

p(x), HSE(x)) pairs, where x is an input query,
hl
p(x) ∈ Rd is the model hidden state at token position p and

layer l, d is the hidden state dimension, and HSE(x) ∈ R
is the semantic entropy (as defined in Appendix B). Given
an input query x, we first generate a high-likelihood model
response via greedy sampling and store the hidden state at
a particular layer and token position, hl

p(x). We then sam-
ple N = 10 responses from the model at high temperature
(T = 1) and compute the likelihood that high semantic
entropy is high. For inputs, we rely on questions from popu-
lar QA datasets (see Section 3 for details), although we do
not need the ground-truth labels provided by these datasets
and could alternatively compute semantic entropy for any
unlabeled set of LLM inputs.

Binarization. Semantic entropy scores are real numbers.
However, for the purposes of this paper, we convert them
into binary labels, indicating whether semantic entropy is
high or low, and then train a logistic regression classifier to
predict these labels. Our motivation for doing so is two-fold.

For one, we ultimately want to use our probes for predicting
binary model correctness, so we eventually need to construct
a binary classifier regardless. Additionally, we would like
to compare the performance of semantic entropy probes
and accuracy probes. This is easier if both probes target
binary classification problems. We note that the logistic
regression classifier returns probabilities, such that we can
always recover fine-grained signals even after transforming
the problem into binary classification. See Appendix B for
more details.

Probing Locations. We collect hidden states, hl
p(x), across

all layers, l, of the LLM to investigate which layers best
capture semantic entropy. We consider two different token
positions, p. Firstly, we consider the hidden state at the
last token of the input x, i.e. the token before generating
(TBG) the model response. Secondly, we consider the last
token of the model response, which is the token before the
end-of-sequence token, i.e. the second last token (SLT).

3. Experiment Setup
Tasks. We evaluate SEPs on four datasets: TriviaQA (Joshi
et al., 2017), SQuAD (Rajpurkar et al., 2018), BioASQ
(Tsatsaronis et al., 2015), and NQ Open (Kwiatkowski et al.,
2019). We use the input queries of these tasks to derive
training sets for SEPs and evaluate the performance of each
method on the validation/test sets, creating splits if needed.
We consider a short- and a long-form setting: Short-form
answers are generated by few-shot prompting the LLM to
answer “as briefly as possible” and long-form answers asks
for a “single brief but complete sentence”, leading to an
approximately six-fold increase in the number of generated
tokens. For short-form generations, we follow Kuhn et al.
(2023) and assess model accuracy via the SQuAD F1 score,
and for long-form generations, we use GPT-4 (OpenAI,
2023) to compare model answers to ground truth labels. We
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Figure 2: Semantic Entropy Probes (SEPs) achieve high fidelity for predicting semantic entropy. Across datasets and models,
SEPs are consistently able to capture semantic entropy from hidden states of mid-to-late layers. Short generation scenario
with probes trained on second-last token (SLT).
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Figure 3: SEPs successfully capture semantic entropy in Llama-2-70B for long generations across layers and for both SLT
and TBG token positions.

provide prompt templates in Appendix D.1.

Models. We evaluate SEPs on four different models. For
short generations, we generate hidden states and answers
for Llama-2 7B and 70B (Touvron et al., 2023b), Mistral
7B (Jiang et al., 2023), and Phi-3 Mini (Abdin et al., 2024),
and use DeBERTa-Large (He et al., 2021) as the entailment
model for calculating semantic entropy (Kuhn et al., 2023).
For long generations, we generate hidden states and answers
with Llama-2-70B (Touvron et al., 2023b) and use GPT-
3.5 (Brown et al., 2020) to predict entailment.

Baselines. We compare SEPs against the ground truth se-
mantic entropy, accuracy probes supervised with model
correctness labels, naive entropy, log likelihood, and the
p(True) method of Kadavath et al. (2022). For naive en-
tropy, following Farquhar et al. (2024), we compute the
length-normalized average log token probabilities across
the same number of generations as for SE. For log like-
lihood, we use the length-normalized log likelihood of a
single model generation. The p(True) method works by con-
structing a custom few-shot prompt that contains a number
of examples – each consisting of a training set input, a corre-
sponding low-temperature model answer, high-temperature
model samples, and a model correctness score. Essentially,

p(True) treats sampling-based truthfulness detection as an
in-context learning task, where the few-shot prompt teaches
the model that model answers with high semantic variety
are likely incorrect. We refer to Kadavath et al. (2022) for
more details.

Linear Probe. For both SEPs and our accuracy probe
baseline, we use the logistic regression model from scikit-
learn (Pedregosa et al., 2011) with default hyperparameters
for L2 regularization and the LBFGS optimizer.

Evaluation. We evaluate SEPs both in terms of their ability
to capture semantic entropy as well as their ability to predict
model hallucinations. In both cases, we compute the area
under the receiver operating characteristic curve (AUROC),
with gold labels given by binarized SE or model accuracy.

4. Experiments
We evaluate Semantic Entropy Probes (SEPs) across various
models and datasets. We compare SEPs against the ground
truth semantic entropy, accuracy probes supervised with
model correctness labels, naive entropy, and the p(True)
method by Kadavath et al. (2022). See Section 3 for tasks,
baselines, and evaluation details.
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4.1. LLM Hidden States Implicitly Capture Semantic
Entropy

We explore whether LLM hidden states encode semantic
entropy. We study SEPs across different tasks, models, and
layers, and compare them to accuracy probes both in- and
out-of-distribution.

Hidden States Capture Semantic Entropy. Figure 2
shows that SEPs are consistently able to capture semantic
entropy across different models and tasks. Here, probes
are trained on hidden states of the second-last-token for the
short-form generation setting (see Section 3). In general,
we observe that AUROC values increase for later layers in
the model, reaching values between 0.7 and 0.95.

Semantic Entropy Can Be Predicted Before Generating.
Next, we investigate if semantic entropy can be predicted
before even generating the output. Similar to before, Fig-
ure C.1 shows AUROC values for predicting binarized se-
mantic entropy from the SEP probes. Perhaps surprisingly
(although in line with related work, cf. Appendix A), we
find that SEPs can capture semantic entropy even before
generation. SEPs consistently achieve good AUROC val-
ues, with performance slightly below the SLT experiments
in Figure 2. Further, the performance is consistently bet-
ter at layer 1. The TBG variant provides even larger cost
savings than SEPs already do, as it allows us to quantify
uncertainty before generating any novel tokens, i.e. with a
single forward pass through the model.

SEPs Capture Semantic Uncertainty for Long Genera-
tions. While experiments with short generations are popular
even in the recent literature (Kuhn et al., 2023; Kadavath
et al., 2022; Duan et al., 2023; Cole et al., 2023; Chen &
Mueller, 2023), this scenario is increasingly disconnected
from popular use cases of LLMs as free-form natural lan-
guage generators. In recognition of this, we also study our
probes in a long-form generation setting, which increases
the average length of model responses from ∼15 characters
in the short-length scenario to ∼100 characters.

Figure 3 shows that, even in the long-form setting, SEPs are
able to capture semantic entropy well in both the second-
last-token and token-before-generation scenarios for Llama-
2-70B. Compared to the short-form generation scenario,
we now observe more often that AUROC values peak for
intermediate layers. This makes sense as hidden states closer
to the final layer will likely be preoccupied with predicting
the next token. In the long-form setting, the next token
is more often unrelated to the semantic uncertainty of the
overall answer, and instead concerned with syntax or lexis.

Counterfactual Context Addition Experiment. To con-
firm that SEPs capture SE rather than relying on spurious
correlations, we perform a counterfactual intervention
experiment for Llama-2-7B on TriviaQA. For each input

question of TriviaQA, the dataset contains a “context”, from
which the ground truth answer can easily be predicted. We
usually exclude this context, because including it makes the
task too easy. However, for the purpose of this experiment,
we add the context and study how this affects SEP
predictions. Figure 5 shows a kernel density estimate of the
distribution over the predicted probability for high semantic
entropy, p(high SE), for Llama-2-7B on the TriviaQA
dataset with context (blue) and without context (orange) in
the short generation setting using the SLT. Without context,
the distribution for p(high SE) from the SEP is concentrated
around 0.9. However, as soon as we provide the context,
p(high SE) decreases, as shown by the shift in distribution.
As the task becomes much easier – accuracy increases from
26% to 78% – the model becomes more certain – ground
truth SE decreases from 1.84 to 0.50. This indicates SEPs
accurately capture model behavior for the context addition
experiment, with predictions for p(high SE) following
ground truth SE behavior when context is added, despite
never being trained on inputs with context.

4.2. SEPs Are Cheap and Reliable Hallucination
Detectors

We explore the use of SEPs to predict hallucinations, com-
paring them to accuracy probes and other baselines. Cru-
cially, we also evaluate probes in a challenging generaliza-
tion setting, testing them on tasks that they were not trained
for. This setup is much more realistic than evaluating probes
in-distribution, as, for most deployment scenarios, inputs
will rarely match the training distribution exactly.

Table 1: ∆AUROC (x100) of SEPs and acc. probes over
tasks in-distribution and for task generalization. Avg ± std
error, (S)hort- and (L)ong-form gens.

Model In-distribution Generalization
(SEP − Acc Pr.) (SEP − Acc Pr.)

Mistral-7B (S) 2.8± 1.4 10.5± 3.5
Phi-3-3.8B (S) 2.1± 0.8 9.9± 2.9
Llama-2-7B (S) −0.5± 2.6 7.7± 1.3
Llama-2-70B (S) 1.3± 0.7 7.9± 3.0
Llama-2-70B (L) −1.9± 7.5 2.2± 0.4

Figure 1 shows both in-distribution and generalization per-
formance of SEPs and accuracy probes across different
layers for Llama-2-7B in a short-form generation setting
trained on the SLT. In-distribution, accuracy probes outper-
form SEPs across most layers and tasks, with the exception
of NQ Open. In Table 1 (In-distribution), we report the
average difference in AUROC between SEP and accuracy
probes for predicting model hallucinations, taking a repre-
sentative set of high-performing layers (see Appendix D).
We find that SEPs and accuracy probes perform similarly on
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Figure 5: SEPs capture drop in SE due to added context.

in-distribution data across models. We report unaggregated
results in Figure C.9. The performance of SEPs here is
commendable: SEPs are trained without any ground truth
answers or accuracy labels, and yet can capture truthfulness.

When evaluating probe generalization to new tasks, SEPs
show their true strength. We evaluate probes in a leave-one-
out fashion – training on all datasets except one, which we
evaluate on. As shown in Figure 1 (right), SEPs consistently
outperform accuracy probes across various layers and tasks
for short-form generations in the generalization setting. For
BioASQ, the difference is particularly large. SEPs clearly
generalize better to unseen tasks than accuracy probes.

In Figure 4 and Table 1 (Generalization), we report re-
sults for more models, taking a representative set of high-
performing layers. We again find that SEPs generalize bet-
ter than accuracy probes to novel tasks. We additionally
compare to the sampling-based semantic entropy, naive en-
tropy, and p(True) methods. While SEPs cannot match the
performance of these methods, it is important to note the
significantly higher cost these baselines incur, requiring 10
additional model generations, whereas SEPs and accuracy
probes operate on single generations at test time.

We further evaluate SEPs for long-form generations. As

shown in Figure C.10 (right), SEPs outperform accuracy
probes for Llama-2-70B for the generalization setting. We
also provide in-distribution results for long generations on
Llama-2-70B in Figure C.10 (left). Both results confirm the
trend discussed above. Overall, our results clearly suggest
that SEPs are the best choice for cost-effective uncertainty
quantification in LLMs, especially if the distribution of the
query data is unknown.

5. Discussion
Our experiments show that SEPs generalize better than accu-
racy probes – in terms of detecting hallucinations – to inputs
from unseen tasks. One potential explanation for this is that
semantic uncertainty is a better probing target than correct-
ness, because semantic uncertainty is a more model-internal
characteristic that can be better predicted from model hidden
states. Model correctness labels required for accuracy prob-
ing on the other hand are external and can be noisy, which
may make more them difficult to predict from hidden states.
We can see evidence for this by comparing in-distribution
AUROC for SEPs (for predicting binarized SE) with the
AUROC of the accuracy probes for predicting accuracy in
Figures C.6 and C.7.

Another possible explanation for the gap in OOD general-
ization could be that accuracy probes capture model cor-
rectness that is specific to the training dataset. For example,
the probe may latch on to discriminative features for model
correctness that relate to the task at hand but do not general-
ize. Conversely, semantic probes may capture more inherent
model states – e.g., uncertainty from failure to gather rel-
evant facts or attributes for the query. The literature on
mechanistic interpretability (Nanda et al., 2023) supports
the idea that such information is likely contained in model
hidden states. We believe that concretizing these links is a
fruitful area for future research.
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A. Related Work
LLM Hallucinations. We refer to Rawte et al. (2023); Zhang et al. (2023b) for extensive surveys on hallucinations in
LLMs and here briefly review the most relevant related work to this paper. Early work on hallucinations in language models
typically refers to issues in summarization tasks where models “hallucinate” content that was not faithful to the provided
source text (Maynez et al., 2020; Deutsch et al., 2021; Durmus et al., 2020; Cao et al., 2021; Wang et al., 2020; Manakul
et al., 2023a; Nan et al., 2021). Around the same time, research emerged that showed LLMs themselves could store and
retrieve factual knowledge (Petroni et al., 2019), leading to the currently popular closed-book setting, where LLMs are
queried without any additional context (Roberts et al., 2020). Since then, a large variety of work has focused on detecting
hallucinations in LLMs for general natural language generation tasks. These can typically be classified into one of two
directions: sampling-based and retrieval-based approaches.

Sampling-Based Hallucination Detection. For sampling-based approaches, a variety of methods have been proposed
that sample multiple model completions for a given query and then quantify the semantic difference between the model
generations (Kuhn et al., 2023; Kadavath et al., 2022; Duan et al., 2023; Cole et al., 2023; Chen & Mueller, 2023; Elaraby
et al., 2023). For this paper, Kuhn et al. (2023) is particularly relevant, as we use their semantic entropy measure to supervise
our hidden state probes (we summarize their method in Appendix B). A different line of work does not directly re-sample an-
swers for the same query, but instead asks follow-up questions to uncover inconsistencies in the original answer (Dhuliawala
et al., 2023; Agrawal et al., 2023). Recent work has also proposed to detect hallucinations in scenarios where models generate
entire paragraphs of text by decomposing the paragraph into individual facts or sentences, and then validating the uncertainty
of those individual facts separately (Luo et al., 2023; Mündler et al., 2023; Manakul et al., 2023b; Dhuliawala et al., 2023).

Retrieval-Based Methods. A different strategy to mitigate hallucinations is to rely on external knowledge bases, e.g. web
search, to verify the factuality of model responses (Feldman et al., 2023; Zhang et al., 2023a; Peng et al., 2023; Dziri et al.,
2021; Gao et al., 2022; Li et al., 2023; Varshney et al.; Su et al., 2022). An advantage of such approaches is that they do
not rely on good model uncertainties and can be used directly to fix errors in model generations. However, retrieval-based
approaches can add significant cost and latency. Further, they may be less effective for domains such as reasoning, where
LLMs are also prone to produce unfaithful and misleading generations (Turpin et al., 2024; Lanham et al., 2023). Thus,
retrieval- and uncertainty-based methods should be combined for maximum effect.

Sampling and Finetuning Strategies. A number of different strategies exist to reduce, rather than detect, the number of
hallucinations that LLMs generate. Previous work has proposed simple adaptations to LLM sampling schemes (Lee et al.,
2022; Chuang et al., 2023; Shi et al., 2023), preference optimization targeting factuality (Tian et al., 2023), or finetuning to
align “verbal” uncertainties of LLMs with model accuracy (Mielke et al., 2022; Lin et al., 2023; Band et al., 2024).

Understanding Hidden States. Recent work suggests that simple operations on LLM hidden states can qualitatively
change model behavior (Zou et al., 2023; Subramani et al., 2022; Rimsky et al., 2023) manipulate knowledge (Hernandez
et al., 2023), or reveal deceitful intent (MacDiarmid et al., 2024). Probes can be a valuable tool to better understand the
internal representations of neural networks like LLMs (Alain & Bengio, 2016; Belinkov, 2021). Previous work has shown
that hidden state probes can predict LLM outputs one or multiple tokens ahead with high accuracy (Belrose et al., 2023;
Pal et al., 2023). Relevant to our paper is recent work that suggests there is a “truthfulness” direction in latent space that
predicts correctness of statements and generations (Marks & Tegmark, 2023; Azaria & Mitchell, 2023; Burns et al., 2022;
Li et al., 2024; Azaria & Mitchell, 2023). Our work extends this – we are also interested in predicting if the model is
hallucinating nonfactual responses, however, rather than directly supervising probes with accuracy labels, we argue that
capturing semantic entropy is key for generalization performance.

B. Semantic Entropy
Measuring uncertainty in free-form natural language generation tasks is challenging. The uncertainties over tokens output
by the language model can be misleading because they conflate semantic uncertainty, uncertainty over the meaning of the
generation, with lexical and syntactic uncertainty, uncertainty over how to phrase the answer (see the example in Section 1).
To address this, Farquhar et al. (2024) propose semantic entropy, which aggregates token-level uncertainties over clusters of
semantic equivalence. Semantic entropy is important in the context of this paper because we use it as the supervisory signal
to train our hidden state SEP probes.

Semantic entropy is calculated in three steps: (1) for a given query x, sample model completions from the LLM, (2)
aggregate the generations into clusters (C1, . . . , CK) of equivalent semantic meaning, (3) calculate semantic entropy, HSE,
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by aggregating uncertainties within each cluster. Step (1) is trivial, and we detail steps (2) and (3) below.

Semantic Clustering. To determine if two generations convey the same meaning, Kuhn et al. (2023) use natural language
inference (NLI) models, such as DeBERTa (He et al., 2021), to predict entailment between the generations. Concretely, two
generations sa and sb are identical in meaning if sa entails sb and sb entails sa, i.e. they entail each other bi-directionally.
Kuhn et al. (2023) then propose a greedy algorithm to cluster generations semantically: for each sample sa, we either add it
to an existing cluster Ck if bi-directional entailment holds between sa and a sample sb ∈ Ck, or add it to a new cluster if the
semantic meaning of sa is distinct from all existing clusters. After processing all generations, we obtain a clustering of the
generations by semantic meaning.

Semantic Entropy. Given an input context x, the joint probability of a generation s consisting of tokens (t1, . . . , tn) is
defined as the product of conditional token probabilities in the sequence,

p(s | x) =
∏n

i=1
p(ti | t1:i−1, x). (B.1)

The probability of the semantic cluster C is then the aggregate probability of all possible generations s which belong to that
cluster,

p(C | x) =
∑

s∈C
p(s | x). (B.2)

The uncertainty associated with the distribution over semantic clusters is the semantic entropy,

H[C | x] = Ep(C|x)[− log p(C | x)]. (B.3)

Estimating SE in Practice. In practice, we cannot compute the above exactly. The expectations with respect to p(s|x) and
p(C|x) are intractable, as the number of possible token sequences grows exponentially with sequence length. Instead, Kuhn
et al. (2023) sample N generations (s1, . . . , sN ) at non-zero temperature from the LLM (typically and also in this paper
N = 10). They then treat (C1, . . . , CK) as Monte Carlo samples from the true distribution over semantic clusters p(C|x),
and approximate semantic entropy as

H[C | x] ≈ − 1

K

∑K

k=1
log p(Ck|x). (B.4)

We use an additional approximation, employing a discrete variant of semantic entropy that yields equal performance without
access to token probabilities, making it compatible with black-box models (Farquhar et al.). For the discrete SE variant, we
estimate cluster probabilities p(C|x) as the fraction of generations in that cluster, p(Ck|x) =

∑N
j=1 1[sj ∈ Ck]/K, and then

compute semantic entropy as the entropy of the resulting categorical distribution, HSE(x) := −
∑K

k=1 p(Ck|x) log p(Ck|x).
Discrete SE further avoids problems when estimating Equation (B.4) for generations of different lengths (Malinin & Gales,
2021; Murray & Chiang, 2018; Kuhn et al., 2023).

Binarization. We discuss SE binarization as introduced in Section 2 in more technical detail.

More formally, we compute H̃SE(x) = 1[HSE(x) > γ⋆], where γ⋆ is a threshold that optimally partitions the raw SE scores
into high and low values according to the following objective:

γ⋆ = argminγ
∑

j∈SElow
(HSE(xj)− Ĥlow)

2 +
∑

j∈SEhigh
(HSE(xj)− Ĥhigh)

2, (B.5)

where

SElow = {j : HSE(xj) < γ}, SEhigh = {j : HSE(xj) ≥ γ},

Ĥlow =
1

|SElow|
∑

j∈SElow
HSE(xj), Ĥhigh =

1

|SEhigh|
∑

j∈SEhigh
HSE(xj).

This procedure is inspired by splitting objectives used in regression trees (Loh, 2011) and we have found it to perform well
in practice compared to alternatives such as soft labelling, cf. Appendix D.

In summary, given a input dataset of queries, {xj}Qj=1, we compute a training set of hidden state – binarized semantic
entropy pairs, {(hl

p(xj), H̃SE(xj))}Qj=1, and use this to train a linear classifier, which is our semantic entropy probe (SEP).
At test time, SEPs predict the probability that a model generation for a given input query x has high semantic entropy.
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Figure C.1: Semantic entropy can be predicted from the hidden states of the last input token, without generating any novel
tokens. Short generations with SEPs trained on the token before generating (TBG).

Table C.1: Task accuracy of models across datasets, for (S)hort- and (L)ong-form Generation.

Model BioASQ (%) TriviaQA (%) NQ Open (%) SQuAD (%)

Llama-2-70B (L) 60.3 85.0 58.3 43.9
Llama-2-70B (S) 48.4 75.7 49.5 31.4
Llama-2-7B (S) 43.3 64.8 38.3 23.5
Mistral-7B (S) 39.3 52.3 28.3 20.7
Phi-3-3.8B (S) 45.5 48.3 26.1 24.3

C. Additional Results
High AUROC on Predicting BioASQ. AUROC values for Llama-2-7B on BioASQ, in both Figure 2 and Figure C.1,
reach very high values, even for early layers. We investigated this and believe it is likely related to the particularities of
BioASQ. Concretely, it is the only of our tasks to contain a significant number of yes-no questions, which are generally
associated with lower semantic entropy as the possible number of semantic meanings in outcome space is limited. For
a model with relatively low accuracy such as Llama-2-7B, simply identifying whether or not the given input is a yes-no
question, will lead to high AUROC values.

Model Task Accuracies. We report the accuracies achieved by the models on the various datasets used in this work in
Table C.1.

Predicting Model Correctness from Hidden States. Figures C.2 and C.3 give additional results that show we can predict
model correctness from hidden states using SEPs trained on the second-last-token (SLT) or token-before-generating (TBG)
in the short-form in-distribution scenario across models and tasks. In Figures C.4 and C.5, we further demonstrate that
accuracy probes also perform similarly when trained on the SLT or TBG in the short-form in-distribution scenario across
models and tasks.

Predicting Correctness vs. Semantic Entropy. Figures C.6 and C.7 show that predicting semantic entropy from hidden
states is generally easier than directly predicting model correctness, suggesting that semantic entropy is implicitly encoded
in the hidden states.

Additional Comparisons to Baselines. In, Figure C.8 we additionally report results comparing SEPs to accuracy probes
across layers for Mistral-7B for the in-distribution and generalization settings. In Figure C.9, we compare the performance of
SEPs to baselines for the in-distribution setting across models and datasets, finding that SEPs and accuracy probes perform
similarly, with SEPs performing slightly better for 3 out of 5 models. In Figure C.10 we report in- and out-of-distribution
results for Llama-2-70B in the long-form generation setting.

Hidden State Alternatives. In addition to investigating the performance of probes on the hidden states, we study whether
residual stream or MLP outputs can also be used for semantic entropy prediction. Figure C.11 shows that probing the hidden
states results in consistently higher performance across layers.
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Figure C.2: Semantic Entropy Probes (SEPs) capture model hallucinations. Short generations with SEPs trained on the
hidden states of the model at the second-last-token (SLT).
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Figure C.3: Semantic Entropy Probes (SEPs) capture model hallucinations. Short generations with SEPs trained on the
hidden states of the model at the token-before-generation (TBG).
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Figure C.4: Accuracy probes for in-distribution short-form generation trained on the second-last-token (SLT).
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Figure C.5: Accuracy probes for in-distribution short-form generation trained on the token-before-generation (TBG).
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Figure C.6: Predicting semantic entropy from hidden states with SEPs works better than predicting accuracy from the hidden
states with accuracy probes. Llama-2-7B and 70B in the short generation setting with probes trained on hidden states of the
SLT, evaluated in-distribution.
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Figure C.7: Predicting semantic entropy from hidden states with SEPs works better than predicting accuracy from the hidden
states with accuracy probes. Mistral-7B and Phi-3 Mini in short generation setting with probes trained on hidden states of
the SLT, evaluated in-distribution.
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Figure C.8: SEPs predict model hallucinations better than accuracy probes when generalizing to unseen tasks (right).
In-distribution, accuracy probes have comparable performance (left). Mistral-7B in the short generations setting with probes
trained hidden states from the SLT. For the generalization setting, probes are trained on all tasks except the one that we
evaluate on.
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Figure C.9: Short generation performance for the in-distribution setting across models compared to baseline methods.
Hatched bars indicate more computationally expensive methods.
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Figure C.10: Semantic entropy probes outperform accuracy probes for hallucination detection in the long-form generation
generalization setting with Llama-2-70B. In-distribution, accuracy probes sometimes outperform and sometimes underper-
form. Probes cannot match the performance of the significantly more expensive baselines.
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Figure C.11: Probing different model components for SEPs. The hidden states are more predictive than residual streams and
MLP outputs. TriviaQA, Llama-2-7B, in-distribution, short-form generations, SLT.

1 17 33 49 65 81

Layer

0.5

0.6

0.7

0.8

0.9

A
U

C

BioASQ
TriviaQA

NQ Open
SQuAD

Best Split
Even Split

Figure C.12: Comparing binarization methods for semantic entropy. Our “best split” procedure slightly outperforms the
“even split” strategy, although SEPs do not appear overly sensitive to the binarization procedure. Long-form generations for
Llama-2-70B, SLT, in-distribution.

Different Binarization Procedures. In addition to the “best split” procedure discussed in Section 2 and used in all of our
experiments, we here explore the performance of a simple “even split” alternative, which splits semantic entropy into high
and low classes such that there are an equal number samples in both classes. Figure C.12 shows that performance is similar,
with our optimal splitting procedure slightly outperforming the even split ablation. For illustration purposes, Figure C.13
shows the behavior of the best split objective Equation (B.5) across different thresholds. We have also explored a “soft
labelling” strategy as an alternative to hard binarization, for which we obtain soft labels by transforming raw semantic
entropies into probabilities with a sigmoid function centered around the best-split threshold, and then train SEPs on the
resulting soft labels. Early results did not improve performance.
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Figure C.13: MSE of the best-split objective Equation (B.5) for different binarization thresholds γ for models in either
short-form generation or (L)ong-form generation settings (SLT).
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D. Experiment Details
Here we provide additional details to reproduce the experiments of the main paper.

D.1. Prompt Templates

We use the following prompt templates across experiments.

For long-form generations, we use the following prompt template:

Answer the following question in a single brief but complete sentence.
Question: [query question]
Answer:

For short-form generations, we adjust the instruction and additionally provide 5 demonstration examples with short ground
truth answers, to elicit a short answer from the model:

Answer the following question as briefly as possible.
Question: [example question 1]
Answer: [example answer 1]
...
Question: [example question 5]
Answer: [example answer 5]
Question: [query question]
Answer:

Finally, for the counterfactual context addition experiment, we prepend the context, prior to the question:

Context: [query context]
Question: [query question]
Answer:

D.2. Semantic Entropy Calculation

We compute semantic entropy with N = 10 generations sampled at temperature T = 1.0 and using default values of top-p
(p = 0.9) and top-K (K = 50).

For short-form generations, we predict entailment using DeBERTa-Large (He et al., 2021) and assess model accuracy via
the SQuAD F1 score.

For long-form generations, we predict entailment with GPT-3.5 (Brown et al., 2020) and the following prompt:

Here are two possible answers:
Possible Answer 1: [model generation a]
Possible Answer 2: [model generation b]
Does Possible Answer 1 semantically entail Possible Answer 2?
Respond with entailment, contradiction, or neutral.

To assess the correctness of long-form generations, we prompt GPT-4 (OpenAI, 2023) as follows:

We are assessing the quality of answers to the following question: [query question]
The expected answer is: [ground truth label].
The proposed answer is: [model generation].
Within the context of the question,
does the proposed answer mean the same as the expected answer?
Respond only with yes or no.
Response:
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D.3. Semantic Entropy Probes

SEPs are trained on the hidden states, which vary in dimensionality between models. We detail the dimensionality of the
hidden states, and number of layers in Table D.1.

Table D.1: Models properties and selected layers for concatenation for SEPs and (Acc)uracy (P)robe, in (L)ong-form and
(S)hort-form generation settings.

Model Name No. of Layers Hidden Dim. Layers for SEPs Layers for Acc. P.

Llama-2-70B (L) 80 8192 [74, 75, 76, 77, 78] [76, 77, 78, 79, 80]
Llama-2-70B (S) 80 8192 [76, 77, 78, 79, 80] [75, 76, 77, 78, 79]
Llama-2-7B (S) 32 4096 [28, 29, 30, 31, 32] [18 ,19 ,20 ,21, 22]
Mistral-7B (S) 32 4096 [28, 29, 30, 31, 32] [12 ,13 ,14 ,15, 16]
Phi-3-3.8B (S) 32 3072 [21, 22, 23, 24, 25] [25, 26, 27, 28, 29]

Layer Concatenation. For any aggregate results presented in the main paper or appendix, i.e. any barplots or tables, we
report SEP and accuracy probe performance on a representative set of high-performing layers. Concretely, we select a set of
adjacent layers and concatenate their hidden states to train both types of probes based on the highest mean AUROC value
achieved in the interval (on un-concatenated hidden states) in the in-distribution setting. We report the layers across which
we concatenate in Table D.1.

Filtering for Long-form Generations. In order to provide a clearer signal to the SEP on what constitutes high and low
semantic entropy inputs, we filter out training samples with semantic entropy in between the 55% and 80% quantiles for
long generations, as we have found this to give a mild increase in performance. Note that this filtering did not improve
performance for the accuracy probes, and we report results for the accuracy probes without filtering.

Training Set Size. For long-generation experiments, we collect 1000 samples across tasks. For short-generation experiments,
we collect 2000 samples of hidden state–semantic entropy pairs across tasks. We match the training set sizes between
accuracy probes and SEPs.

D.4. Baselines

For the p(True) baseline, we construct a few-shot prompt with 10 examples, where each example is formatted as below:

Question: [example question 1]
Brainstormed Answers: [model generation a]
[model generation b]
[model generation c]
..
[model generation j]
Possible answer: [greedy model generation]
Is the possible answer:
A) True
B) False
The possible answer is: [A / B depending on correctness of possible answer]

We give an illustrative example below for what this could look like in practice:

Question: What is the capital of France?
Brainstormed Answers: The capital of France is Paris.
Paris is the capital of France.
It’s Paris.
Possible answer: The capital of France is Paris.
Is the possible answer:
A) True
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B) False
The possible answer is: A

For p(True), we obtain the probability of model truthfulness by measuring the token probability of A at the end of the
prompt.

D.5. Evaluation

To evaluate the performance of the probes in the generalization setting for both long-form and short-form generations, we
employ the following leave-one-out procedure for the aggregate results reported in the barplots and tables.

First, each probe is trained on a single dataset. Then, the trained probes are evaluated on all other datasets in terms of AUROC
of detecting hallucinations, excluding the dataset used for training. We then report the mean across all probes evaluated on
that specific dataset. This allows us to assess the generalization capability of the probes by measuring their performance on
datasets that were not used during the training phase. This scenario is important in practice, as the distribution of the query
data will rarely be known.

E. Future Work
We believe it should be possible to fully close the performance gap between sampling-based approaches, such as semantic
entropy, and SEPs. One avenue to achieve this could be to increase the scale of the training datasets used to train SEPs. In
this work, we relied on established QA tasks to train SEPs to allow for easy comparison to accuracy probes. However, future
work could explore training SEPs on unlabelled data, such as inputs generated from another LLM or natural language texts
used for general model training or finetuning.

This could massively increase in the amount of training data for SEPs, which should improve probe accuracy, and also allow
us to explore other more complex probing techniques that require more training data. We have further proven the usefulness
of SEPs in long-form generation settings (Kossen et al., 2024) on Llama-3-70B (Meta, 2024).

F. Compute Resources
We make use of an internal cluster of 24 Nvidia A100 80GB GPUs. We use GPT 3.5 and 4 to calculate calculate the
semantic uncertainty and correctness of an answer.

For experiments requiring the use of Llama 70B models, we require 2 A100s to do inference and calculate the hidden states.
The smaller models require only a slice of an A100 80GB. However, once the training data for the semantic entropy probes
has been created, a CPU-only computing resource is sufficient to fit the logistic regression models.

Based on tracked finished runs, we estimate ∼270 GPU-hours plus ∼280 CPU-hours to obtain the results in the paper.
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