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Figure 1: Top: Standard DDIM with 50 steps with CFG uniformly across all timesteps, requiring
both conditional (orange) and unconditional (blue) forward pass at each step. Bottom: OUSAC
achieves a similar visual quality with only 35% of the original computational cost via two-stage
optimization: optimized sparse guidance scheduling (empty white space) with caching (gray).

ABSTRACT

Diffusion models have emerged as the dominant paradigm for high-quality im-
age generation, yet their computational expense remains substantial due to itera-
tive denoising. Classifier-Free Guidance (CFG) significantly enhances generation
quality and controllability but doubles the computation size by requiring both con-
ditional and unconditional forward passes at every timestep. We present OUSAC
(Optimized gUidance Scheduling with Adaptive Caching), a framework that ac-
celerates diffusion transformers (DiT) through systematic optimization. We begin
with two key observations that reveal acceleration opportunities: first, the im-
portance of guidance varies dramatically across timesteps – while a few critical
steps require strong guidance, most steps need minimal or even no guidance; sec-
ond, variable guidance patterns introduce denoising deviations that undermine the
standard caching methods, which assume constant CFG scales and future similar-
ity across steps. Moreover, different transformer blocks are affected with different
levels under dynamic conditions. This paper develop a two stage approach lever-
aging these insights. Stage-1 employs evolutionary algorithms to discover sparse
guidance schedules that apply CFG only at critical timesteps, which eliminates
up to 82% of unconditional passes. Stage-2 introduces an adaptive rank allocation
strategy that tailors calibration efforts per transformer block, maintaing caching
effectiveness under variable guidance. Experiments demonstrate that OUSAC sig-
nificantly outperforms the state-of-the-art acceleration methods. Specifically, it
achieves 53% computational savings and a 15% improvement in generation qual-
ity on DiT-XL/2 (ImageNet 512×512), as well as 60% savings with 16.1% quality
improvement on PixArt-α (MSCOCO) .
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1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Peebles & Xie,
2023; Chen et al., 2023) have revolutionized generative modeling, achieving unprecedented qual-
ity in image synthesis. Yet their widespread adoption remains limited by computational demands:
generating a single high-quality image requires trillions of floating-point operations (TeraFLOPs)
due to iterative denoising. This cost even doubles when using Classifier-Free Guidance (CFG) (Ho
& Salimans, 2022), which improves generation quality by interpolating between conditional and
unconditional predictions to strengthen adherence to input conditions. Though CFG is essential for
balancing sample diversity and conditional fidelity, it applies a constant guidance scale uniformly
across all timesteps – ignoring whether each step equally benefits from guidance. Current optimiza-
tion methods often overlook this inefficiency, applying the same guidance scale uniformly across all
denoising steps, from high-noise to low-noise regions. This raises a fundamental question: can we
retain the quality benefits of CFG while drastically reducing its computational cost? The challenge
is non-trivial – as naively skipping guidance at arbitrary timesteps leads to severe quality degrada-
tion. As illustrated in Figure 2, only through carefully optimized sparse guidance patterns can match
the performance of full CFG while eliminating most computational overhead, indicating that many
guidance computations in existing approaches are redundant.

We present OUSAC: Optimized gUidance Scheduling with Adaptive Caching for Diffusion Trans-
former Acceleration, a framework that addresses an unexplored challenge of integrating guidance
scheduling with feature caching to accelerate DiT. We focus on transformers due to their growing
adoption in state-of-the-art models (Peebles & Xie, 2023; Chen et al., 2023) and their uniform block
structure that enables systematic optimization. While existing methods achieve efficiency gains
through either guidance scheduling (Wang et al., 2024; Castillo et al., 2023) or feature caching (Ma
et al., 2023; 2024; Zou et al., 2025) in isolation, no method has effectively combined the two.

This integration is challenging because variable guidance patterns violate the key assumption of
caching methods – feature similarity across timesteps. To tackle this, OUSAC employs a two-
stage optimization approach. In Stage 1, we discover sparse guidance schedules that identify which
denoising steps truly require CFG and determine the optimal guidance scale at each. This poses
a complex discrete-continuous optimization problem, as timestep decisions non-linearly interact
throughout the denoising trajectory. Gradient-based optimization cannot apply directly to this due
to memory constraints and vanishing gradients over T steps. Instead, we use evolutionary strategies
to efficiently explore the guidance space, discovering extremely space patterns that preserve qual-
ity while skipping guidance at most timesteps. In Stage 2, we introduce adaptive rank allocation
for incremental calibration under variable guidance. The sparse schedules from Stage 1 introduce
two types of denosing deviations: guidance scale variations between consecutive steps, and branch
switching when alternating betwen CFG and conditional-only passes. These break the feature con-
sistency assumed by standard caching. We address this by assigning different calibration ranks to
different transformer blocks, adapting to their sensitivity to guidance changes, an significant depar-
ture from the uniform calibration used in prior methods (Chen et al., 2025).

The synergy between optimized scheduling and adaptive caching enables gains beyond what each
technique achieves alone. OUSAC reduces computational cost by 53% while improving FID by
15% on DiT-XL/2 (ImageNet 512×512), and achieves 60% cost reduction with a 16.1% FID im-
provement on PixArt-α (MSCOCO). Here are our key contributions:

• A systematic framework for optimizing per-step guidance schedules through evolutionary strate-
gies, discovering that extremely sparse patterns (eliminating up to 82% of unconditional forward
passes) match or exceed the quality of constant guidance.

• Adaptive rank allocation via coordinate descent that assigns calibration ranks to different trans-
former regions under the impact of variable guidance, achieving 15% better FID than uniform
calibration approaches at equivalent computational budgets.

2 RELATED WORK

Diffusion model acceleration. Recent acceleration methods fall into three categories. Sampling ac-
celeration reduces denoising steps through improved numerical solvers. DDIM (Song et al., 2022)
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Figure 2: 1D example of OUSAC uses fewer steps to converge to the same solution as constant
CFG. (A) Constant CFG (w=1.5, 1000 steps) requires 2000 forward passes to map from a prior
distribution (left) to a target distribution (right). (B) Conditional-only (50 steps) converges to an
incorrect distribution. (C) Random sparse CFG with randomly assigned guidance scales at 8 steps
also fails. (D) Our optimized sparse CFG with carefully tuned guidance scales at 8 steps matches
the target distribution while using only 58 forward passes.

enables deterministic sampling with fewer steps, while DPM-Solver (Lu et al., 2022) uses exponen-
tial integrators for faster convergence. Higher-order methods (Zhang & Chen, 2023) and progressive
distillation (Salimans & Ho, 2022) further reduce steps, though distillation requires expensive train-
ing. Recent inference-time distillation (Park et al., 2024) eliminates separate training but still cannot
generalize across guidance scales. Architectural optimizations reduce per-step costs through effi-
cient designs (Peebles & Xie, 2023), pruning (Zhu et al., 2024), and quantization (Liu et al., 2025;
Yang et al., 2025). Our work maintain full denoising steps while reducing per-step cost through
selective CFG forward passes and adaptive caching, without architectural modifications.

Dynamic guidance scheduling. Evidence shows constant CFG wastes computation.
Kynkäänniemi et al. (2024) find guidance harmful at extreme noise levels, while Wang et al. (2024)
shows monotonic schedules outperform constant guidance. Theoretical advances include progres-
sive guidance (Xi et al., 2024), characteristic guidance with non-linear corrections (Zheng & Lan,
2024), and gradient artifact correction (Gao et al., 2025). Training-free methods achieve partial
speedups through convergence detection (Castillo et al., 2023), early-stage compression (Dinh et al.,
2024), and adaptive scaling (Malarz et al., 2025; Li et al., 2025). Zhang et al. (2025) and Yehezkel
et al. (2025) showed optimal schedules vary across architectures. Alternative approaches include
autoguidance (Karras et al., 2024) and condition annealing (Sadat et al., 2023). We are the first to
use evolutionary optimization to discover hybrid discrete-continuous guidance schedules.

Feature caching and calibration. Caching exploits temporal redundancy between timesteps. Deep-
Cache (Ma et al., 2023) pioneered feature reuse for U-Nets, extended to transformers through block-
level caching (Wimbauer et al., 2024) and training-inference harmonization (Huang et al., 2025).
Learning-to-Cache (Ma et al., 2024) uses learned routing but produces fixed patterns. Token-wise
caching (Zou et al., 2025) achieves 2.36x speedup through selective token reuse. ICC (Chen et al.,
2025) combines caching with uniform SVD calibration across all blocks. However, no existing work
addresses how calibration should adapt when guidance varies.

3 PRELIMINARIES

Diffusion models and sampling. Diffusion models learn to reverse a forward noising process
defined as q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where xt is the noised image at timestep

t ∈ {1, ..., T}, x0 is the clean image, and ᾱt represents the cumulative noise schedule. The de-
noising process can be accelerated using DDIM (Song et al., 2022):

xt−1 =
√
ᾱt−1x̂0(xt, t) +

√
1− ᾱt−1 − σ2

t · ϵθ(xt, t) + σtϵt, (1)

where x̂0 is the predicted clean image from xt, ϵθ is the learned noise predictor network, σt controls
the stochasticity of sampling (with σt = 0 for deterministic generation), and ϵt ∼ N (0, I).
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Figure 3: The two-stage OUSAC optimization framework. Stage 1 (Left): Evolutionary op-
timization discovers sparse guidance schedules by refining per-step guidance w = [wT , . . . , w1].
Starting from noise xT , the framework generates a reference xRef

0 via TRef denoising steps. At each
timestep, full CFG is applied if wt > τ , otherwise only conditional forward passes are performed.
The fitness function balances quality and sparsity, iteratively improving w through population sam-
pling and evaluation. Stage 2 (Right): Adaptive rank allocation optimizes caching. DiT blocks are
partitioned into K regions, each assigned a calibration rank rk. Cached features are corrected via
SVD-based calibration. Coordinate descent with binary search tunes ranks to minimize FID.

Classifier-free guidance. To improve the quality of conditional generation, CFG (Ho & Salimans,
2022) interpolates between conditional and unconditional predictions:

ϵ̃θ(xt, c, t) = ϵθ(xt, ∅, t) + w · (ϵθ(xt, c, t)− ϵθ(xt, ∅, t)), (2)

where c denotes the conditioning information, ∅ represents null conditioning, and w controls the
guidance scale. By applying CFG at each timestep, the total computation is doubled.

Caching for diffusion models. Recent work (Chen et al., 2025) accelerates diffusion transformers
by caching and reusing features across timesteps. The method corrects cached features through
layer-wise calibration:

ĥℓ
out = P(h

ℓ,prev
out ) +Aℓ(hℓ

in − P(h
ℓ,prev
in )), (3)

where ℓ is the layer index, P(·) denotes the caching operation from the previous timestep, hℓ
in is

the current input to layer ℓ, and P(hℓ,prev
in ) and P(hℓ,prev

out ) are the cached input and output from the
previous timestep. Each layer has its own calibration matrix Aℓ that transforms the input increment
to correct the cached output. To reduce computation, each Aℓ is approximated using SVD decom-
position: Aℓ = UℓΣℓVℓT ≈ Uℓ

rΣ
ℓ
rV

ℓT
r , where the subscript r denotes truncation to rank r. Prior

increment-calibrated caching methods use uniform rank r across all layers in all transformer blocks.

4 OUSAC

OUSAC accelerates diffusion transformers through two-stage optimization. Stage 1 uses evolution-
ary algorithms to discover sparse guidance schedules that eliminate unconditional forward passes at
non-critical timesteps where guidance contributes minimally to generation quality. Stage 2 develops
adaptive rank allocation for feature caching, where different transformer regions receive different
calibration ranks to handle the varying feature differences introduced by variable guidance patterns.
We optimize these components once per pre-trained model to discover optimal configurations. Dur-
ing inference, no optimization occurs—we simply apply the discovered sparse guidance schedule
and adaptive caching configuration to accelerate generation. The discovered patterns generalize
across different prompts and conditions. Sections 4.1 and 4.2 detail each optimization stage.
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4.1 STAGE 1: DISCOVERING SPARSE GUIDANCE SCHEDULES

4.1.1 PROBLEM FORMULATION

CFG’s computational cost comes from applying guidance uniformly at every denoising timestep.
Recent empirical studies (Kynkäänniemi et al., 2024) have provided valuable insights showing that
guidance can be harmful at extreme noise levels and unnecessary near convergence. These pio-
neering works establish important foundations through interval-based strategies that significantly
improve efficiency. In this work, we take it one step further and explore if we can find more com-
plex, flexible, and task-specific patterns for CFG. We start by replacing the constant guidance scale
w with a per-timestep guidance schedule to reformulate Equation 2:

ϵ̃θ(xt, c, t) = ϵθ(xt, ∅, t) + wt · (ϵθ(xt, c, t)− ϵθ(xt, ∅, t)), (4)

where wt is now timestep-dependent. We optimize a guidance schedule w = [w1, w2, ..., wT ] where
each wt ∈ [0, wmax]. When wt falls below a threshold τ , we set wt = 0 and skip the unconditional
forward pass entirely, performing only the conditional forward pass.

The best schedule w can be found by solving the following optimization problem:

w∗ = argmin
w
Ltotal(w) = Lquality(w) + λLsparse(w) (5)

The quality preservation term Lquality ensures our sparse schedule maintains generation fidelity
through output matching:

Lquality(w) = ExT ,c

[
∥GT (xT , c;w)− GTref(xT , c;wconst)∥22

]
(6)

where GT denotes the T -step generation process starting from initial noise xT with our optimized
schedule w, and GTref represents reference generation from the same xT using constant guidance
wconst. The reference uses substantially more steps (Tref ≫ T , typically 1000 vs 20-50) to pro-
vide smooth denoising process and high-quality targets. Starting from identical noise ensures fair
comparison and helps identify critical timesteps for guidance.

The sparsity term directly penalizes the number of timesteps requiring full CFG forward pass:
Lsparse(w) =

∑T
t=1 I[wt > τ ] where τ serves as an activation threshold below which guidance

is completely disabled, eliminating the unconditional forward pass. This binary decision at each
timestep transforms the optimization into a hybrid continuous-discrete problem (Barton et al., 2000).

4.1.2 EVOLUTIONARY OPTIMIZATION STRATEGY

Direct gradient-based optimization of this objective is intractable as it would require backpropaga-
tion through the entire T -step generation trajectory, creating prohibitive memory requirements and
suffering from vanishing gradients. Instead, we employ a tailored evolutionary strategy that operates
in a transformed space for numerical stability.

We maintain a population center µ ∈ RT where µ = [µ1, . . . , µT ]
T with each µt ∈ R. This center

represents the mean of our search distribution in the parameter space, a fundamental concept in both
CMA-ES (Hansen, 2023) and Natural Evolution Strategies (Wierstra et al., 2014; Yi et al., 2009).
At each generation g ∈ {1, . . . , G}, we decode the center to get base guidance values:

wbase = wmax · sigmoid(µg) (7)

We construct a population by perturbing these base values. For each candidate i ∈ {1, . . . , P}:
w(i) = wbase + δ(i), where δ(i) ∼ N (0, σ2

noiseI) and σnoise = σ0(1 − g/G) decreases across
generations to refine exploration, with σ0 being the initial noise scale.

We apply a threshold τ to sparsify the guidance schedule and determine the noise prediction at t:

ϵt =

{
ϵu + w

(i)
t · (ϵc − ϵu) if w(i)

t ≥ τ

ϵc if w(i)
t < τ

(8)

Each candidate is evaluated using: f (i) = −Lquality(w
(i)) + λ · S(w(i)), where S(w(i)) = (T −

∥w(i)∥0)/T measures sparsity. With fitness for all candidates {f (1), · · · , f (P )}, we compute rank-
based weights: ai = di/(P − 1) − 0.5, where di ∈ {0, 1, · · · , P − 1} is the rank of candidate i,
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with 0 for the lowest fitness and P − 1 for the highest. This rank-based weighting scheme follows
established practices in evolution strategies (Hansen & Ostermeier, 2001; Hansen et al., 2003).

The population center evolves through natural gradient estimation:

µg+1 ← µg +
η

P

P∑
i=1

ai · (sigmoid−1(w(i)/wmax)− µg) (9)

After G generations, the converged center µ∗ yields: w∗ = wmax · sigmoid(µ∗). This sparse sched-
ule w∗ applies guidance selectively at critical timesteps to reduce redundant computations.

4.2 STAGE 2: ADAPTIVE CACHING UNDER DENOISING FLUCTUATIONS

4.2.1 THE CHALLENGE OF CACHING WITH VARIABLE GUIDANCE

The sparse guidance schedules discovered in Stage 1 fundamentally challenge existing caching
methods. Standard caching approaches such as ICC (Chen et al., 2025) assume that features be-
tween consecutive timesteps remain similar. This assumption holds when guidance remains constant
throughout denoising. However, our variable guidance patterns from Stage 1 break this assumption,
causing the incremental calibration in Equation 3 to become less effective when correcting the larger
feature differences introduced by changing guidance scales.

As shown in Figure 5, when we apply variable guidance from Stage 1 with naive caching, feature re-
construction errors increase significantly compared to constant CFG with the same caching method.
The variable guidance causes higher MSE across all transformer blocks, with particularly severe
degradation in deeper blocks. Since these elevated reconstruction errors accumulate through the
network and degrade final image quality, which motivates us to explore the reason behind this.

To address this challenge, we first need to understand how variable guidance affects the denoising
process. We consider two scenarios: when consecutive timesteps both use CFG but with different
guidance scales, and when timesteps switch between using CFG and using only conditional predic-
tion. Each scenario introduces distinct types of denoising fluctuations that degrade caching.

Scenario 1: Both timesteps use CFG with different scales. When both w∗
t > τ and w∗

t−1 > τ , the
denoising process deviates by:

∆xstrength
t−1 =

√
ᾱt−1/ᾱt · (w∗

t−1 − w∗
t ) · [ϵc(xt, t)− ϵu(xt, t)] (10)

where ᾱt is the cumulative noise schedule coefficient. This deviation grows with the guidance
difference (w∗

t−1 − w∗
t ) and the gap between conditional and unconditional predictions.

Scenario 2: CFG at timestep t transitions to no guidance at timestep t − 1. When t uses CFG
(w∗

t > τ ) but t− 1 uses only conditional prediction (w∗
t−1 < τ ), the deviation becomes:

∆xswitch
t−1 = βt−1,t · (1− w∗

t ) · [ϵc(xt, t)− ϵu(xt, t)], (11)

where βt−1,t =
√
1− ᾱt−1−

√
ᾱt−1(1− ᾱt)/ᾱt is the noise coefficient for DDIM sampling. These

deviations exceed what standard caching methods can handle, as cached features from timestep t no
longer match the expected input for timestep t−1. This mismatch causes higher reconstruction errors
that accumulate through the transformer blocks. This heterogeneous error distribution reveals that
different transformer regions require different calibration to effectively handle variable guidance.

4.2.2 REGION-ADAPTIVE RANK ALLOCATION

Caching with variable guidance causes larger denoising deviations than caching under a constant
CFG. While incremental calibration was designed to alleviate caching errors under constant CFG,
we now examine how it performs under variable guidance patterns. In our experiment, we find
that different blocks benefit from different calibration ranks. Early (block 0) and late blocks (block
26) maintain lower MSE with higher ranks (=512), while middle blocks (block 12) achieve better
performance with lower ranks (=256). This heterogeneous pattern shows that uniform rank allo-
cation cannot handle the varying error magnitudes introduced by variable guidance. For detailed
analysis across all transformer blocks, please refer to the appendix A.2. Since higher ranks directly
increase computational cost during denoising, we face a trade-off between feature consistency and
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efficiency. These observations motivate our systematic approach to discovering optimal rank distri-
butions, where we assign each region the rank that best balances error reduction and compute.

Formally, we partition the N transformer blocks into K regionsR = {R1, . . . , RK} based on their
network position. We divide blocks uniformly such that each region contains ⌊N/K⌋ consecutive
blocks, with region Rk containing blocks from index (k − 1) · ⌊N/K⌋ to k · ⌊N/K⌋ − 1. Each
region k receives a tailored calibration rank rk to obtain a region-specific calibration matrix:

Aℓ ≈ Uℓ,rkΣℓ,rkV
T
ℓ,rk

for layer ℓ ∈ Rk (12)

We optimize the rank configuration r = [r1, r2, . . . , rK ] where each rk ∈ [rmin, rmax].

4.2.3 RANK OPTIMIZATION VIA COORDINATE DESCENT.

Finding the optimal rank configuration r∗ = [r1, . . . , rK ] requires searching over a large discrete
space where each region can take ranks from [rmin, rmax]. This is challenging because rank assign-
ments across regions interact through the sequential nature of the transformer: early blocks affect
later blocks’ inputs, creating complex dependencies that make the relationship between rank config-
uration and final generation quality non-linear. This is a constrained optimization problem:

r∗ = argmin
r

FID(GT (r,w∗)) s.t. rk ∈ [rmin, rmax],
∑K

k=1 rk ≤ B, (13)

where GT (r,w∗) denotes the T -step generation process using rank configuration r with the opti-
mized guidance schedule w∗ from Stage 1, and B represents the total computational budget. The
generation process follows the same T -step denoising trajectory as in Stage 1, but now using regional
calibration matrices based on the rank configuration r.

We solve this optimization through coordinate descent (Wright, 2015), which naturally decomposes
the problem into a sequence of single-variable optimizations. For each region k, we fix the ranks of
all other regions and search for the optimal rk that minimizes the FID score:

r∗k = argmin
rk

FID(G(r1, . . . , rk, . . . , rK ,w∗)) (14)

Within each coordinate optimization step, we use binary search to efficiently explore the rank space
[rmin, rmax]. This procedure iterates across all regions until the overall rank configuration converges.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and datasets. We evaluate OUSAC on two state-of-the-art diffusion transformers. For
class-conditional generation, we employ DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al.,
2009), generating 50,000 images at both 256×256 and 512×512 resolutions across all 1,000 classes.
For text-to-image synthesis, we utilize PixArt-α (Chen et al., 2023) on MSCOCO 2014 (Lin et al.,
2015), producing 30,000 images at 256×256 resolution using the caption set from (Zou et al., 2025).

Evaluation metrics. For ImageNet generation, we adopt the standard evaluation suite: Inception
Score (IS) (Salimans et al., 2016) for sample quality, Fréchet Inception Distance (FID) (Nash et al.,
2021) and spatial FID (sFID) for distribution matching, and Precision-Recall (Kynkäänniemi et al.,
2019) for mode coverage and fidelity. For MSCOCO text-to-image synthesis, we report FID-30k and
CLIP Score (Hessel et al., 2022) to assess both visual quality and text-image alignment. Computa-
tional efficiency is quantified through multiply-accumulate operations (MACs), providing hardware-
agnostic performance measurements. Latency is measured with batch size 8 on a single H100 GPU.

Implementation details. For DiT-XL/2, we use DDIM sampling with timesteps from 20 to 50 and
classifier-free guidance with a baseline scale of 1.5. The evolutionary optimization discovers sparse
schedules over 15 generations. For adaptive rank allocation, transformer blocks are partitioned into
regions based on their position in the network, with coordinate descent exploring calibration ranks
from 16 to 1024. Reference trajectories use longer sampling steps (250-1000) to ensure high-quality
supervision. PixArt-α follows a similar protocol but employs DPM-Solver with 20 steps.
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Table 1: Quantitative comparison of acceleration methods on DiT-XL/2 for ImageNet generation.

Methods Steps CFG-Steps↓ MACs (T)↓ Latency (s)↓ IS↑ FID↓ sFID↓ Prec.↑ Recall↑
DiT-XL/2 (ImageNet 512×512)

DDIM 1000 1000 1049.1 416.79 210.6 2.99 4.38 83.17 55.6

DDIM 50 50 52.45 20.86 203.8 3.20 4.53 83.27 56.4
L2C 50 50 40.62 16.30 199.5 3.98 5.66 82.46 53.3
ICC 50 50 33.43 15.88 200.0 3.73 5.39 83.30 55.6

OUSAC w/o cache 50 9 30.94 12.91 228.3 2.71 4.38 83.43 57.0
OUSAC 50 9 24.93 11.28 228.6 2.72 4.13 83.62 55.3

DDIM 30 30 31.47 12.52 198.0 3.86 4.94 83.12 54.4
L2C 30 30 25.72 10.31 189.4 4.93 6.72 82.14 54.5
ICC 30 30 20.05 9.54 171.0 6.85 6.72 79.84 53.5

OUSAC w/o cache 30 8 19.93 8.20 214.8 3.33 4.85 82.99 55.3
OUSAC 30 8 16.01 7.19 209.7 3.37 4.66 82.62 56.5

DiT-XL/2 (ImageNet 256×256)

DDIM 1000 1000 237.2 106.42 245.0 2.12 4.66 80.66 59.7

DDIM 50 50 11.86 5.33 239.4 2.23 4.29 80.06 59.2
HarmoniCa 50 50 10.58 4.78 210.1 3.33 5.03 77.40 60.1

L2C 50 50 9.76 4.43 245.5 2.23 4.27 80.95 59.1
ICC 50 50 8.05 4.18 258.5 2.16 4.28 82.08 58.1

OUSAC w/o cache 50 8 6.63 3.37 263.0 2.10 4.29 81.85 58.8
OUSAC 50 8 5.07 2.81 266.5 2.04 4.29 82.09 58.7

Baselines. We compare against representative acceleration techniques: (1) ICC (Chen et al., 2025),
which applies uniform-rank increment-calibrated caching to transformer blocks; (2) Learning-to-
Cache (L2C) (Ma et al., 2024), which uses learned routing for adaptive feature caching; (3) Har-
moniCa (Huang et al., 2025), which harmonizes training and inference through optimized caching
strategies; and (4) standard DDIM sampling at various step counts as reference points. These base-
lines represent both training-free methods (ICC) and approaches requiring additional training (L2C,
HarmoniCa), enabling comprehensive evaluation of our gradient-free optimization approach. Since
parts of L2C and HarmoniCa lack publicly available checkpoints for our experimental settings, we
reimplemented them following their published protocols.

Guidance-driven caching protocol. We adapt the caching strategy to handle variable guidance
patterns from Stage 1. The key modification is that when timestep t uses only the conditional forward
pass and timestep t− 1 requires full CFG, we cannot reuse cached features since the unconditional
forward pass was never computed at timestep t. Otherwise, standard caching applies. This ensures
correct CFG application while maximizing cache reuse when guidance is inactive.

5.2 MAIN RESULTS

DiT-XL/2 on ImageNet. Table 1 demonstrates substantial efficiency gains across both resolutions.
At 512×512, OUSAC matches 50-step DDIM quality (FID 2.72 vs 3.20) with 47% less computation
(24.97T vs 52.45T MACs) by applying guidance at only 9 of 50 timesteps. It even surpasses 1000-
step DDIM (FID 2.72 vs 2.99) while using 97% less computation. At 256× 256, OUSAC achieves
the best FID (2.04) among all baselines, including 1000-step DDIM (2.12), while using only 5.07T
vs 11.86T MACs for standard 50-step sampling.

PixArt-α on MSCOCO. Text-to-image generation with DPM-Solver shows a minimal quality gap
between 20- and 1000-step sampling (FID 24.60 vs 22.97), providing weak learning signals for our
evolutionary optimization. Despite this challenge, OUSAC discovers that only 6 out of 20 timesteps
need guidance on average, achieving FID 19.27 (21.7% improvement) with 60% computational re-
duction (2.67 vs 6.72 MACs), while maintaining text-image alignment (CLIP score 16.48 vs 16.31).

Comparison with other CFG redundancy reduction methods. Table 3 compares OUSAC with
Adaptive Guidance (Castillo et al., 2023), which uses discrete selection among k+2 predetermined
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Table 2: Performance evaluation on MSCOCO 2014 with PixArt-α at 256× 256 resolution.

Method Steps CFG-Steps↓ MACs (T)↓ FID↓ CLIP Score↑
DPM-Solver 1000 1000 336.11 22.97 16.42

DPM-Solver 20 20 6.72 24.60 16.31
ICC 20 20 3.70 21.86 16.47

OUSAC w/o cache 20 6 4.37 22.69 16.39
OUSAC 20 6 2.67 19.27 16.48

Table 3: Comparison of CFG redundancy reduction methods on DiT-XL/2 (ImageNet 512×512).

Methods Strategy CFG Steps↓ MACs (T)↓ ∆MACs↓ IS↑ FID↓ sFID↓ Precision↑ Recall↑
DDIM Constant 50 52.45 – 203.8 3.25 4.53 83.27 56.4
Adaptive Guidance Discrete 32 43.00 -18% 179.2 4.15 4.68 82.88 55.9
OUSAC Continuous 9 30.94 -41% 228.3 2.71 4.38 83.43 57.0

options per timestep. While Adaptive Guidance achieves 18% computational reduction (32 CFG
steps), OUSAC’s continuous optimization (wt ∈ [0, wmax]) discovers only 9 timesteps need guid-
ance, achieving 41% reduction and improving FID from 3.25 to 2.71.

5.3 ABLATION STUDY

We systematically investigate the design choices in OUSAC through controlled experiments, ana-
lyzing how each component contributes to the overall performance gains.

Table 4: Ablation study of rank allocation strategies for DiT-XL/2 (ImageNet 512×512).

Methods Steps MACs (T)↓ IS↑ FID↓ sFID↓ Precision↑ Recall↑
DDIM 50 52.45 203.8 3.25 4.53 83.27 56.4
ICC 50 33.43 200.0 3.73 5.39 83.30 55.6

OUSAC w/o cache 50 30.94 228.3 2.71 4.38 83.43 57.0
OUSAC w/ uniform r=1024 50 34.68 229.8 2.92 4.96 82.12 54.6
OUSAC w/ uniform r=512 50 26.16 205.0 4.46 5.19 78.19 55.4
OUSAC w/ uniform r=256 50 23.94 213.7 3.68 6.47 82.61 54.8
OUSAC 50 22.37 228.1 3.01 4.63 83.82 54.9

Does adaptive rank allocation outperform uniform rank allocation? Table 4 validates our adap-
tive rank allocation strategy. If we replace OUSAC’s adaptive ranks with uniform ranks for all
blocks, performance drops. Uniform r=256 increases FID to 3.68, while uniform r=1024 achieves
FID 2.92 but requires 55% more computation (34.68T vs 22.37T MACs). OUSAC discovers region-
specific rank distributions that achieve FID 3.01 with only 22.37T MACs, demonstrating that differ-
ent transformer regions require different calibration levels under variable guidance patterns.

Additional ablation studies can be found in Appendix A.3.

6 CONCLUSION

This paper establishes that guidance is only important at a small subset of denoising steps, contrary
to the traditional practice of uniform Classifier-Free-Guidance (CFG).We propose OUSAC with this
critical insight, which integrates sparse guidance scheduling with adaptive feature caching. Using
evolutionary search, we find that only 18% of timesteps in DiT-XL/2 require guidance, yet this
selective use yields better FID than standard CFG. To address feature reconstruction errors from
variable guidance, we introduce adaptive rank allocation via coordinate descent with binary search.
Together, sparse guidance and adaptive caching enable OUSAC to achieve both improved FID and
reduced computation compared to baselines.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

PI Barton, Julio R Banga, and S Galan. Optimization of hybrid discrete/continuous dynamic sys-
tems. Computers & Chemical Engineering, 24(9-10):2171–2182, 2000.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used large language models as writing assistants to improve the clarity and grammatical correct-
ness of our manuscript. Specifically, we used LLM to refine sentence structure, correct grammatical
errors, and enhance readability for audiences.

A.2 MOTIVATION

A.2.1 DENOISING DEVIATIONS UNDER VARIABLE GUIDANCE - MATH

The sparse guidance schedules from Stage 1 introduce denoising deviations that affect caching ef-
fectiveness. We analyze two primary scenarios that arise from our variable guidance patterns.

Scenario 1: Guidance Scale Variation When consecutive timesteps both apply CFG but with
different scales (w∗

t > τ and w∗
t−1 > τ ), we derive the resulting deviation.
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Starting from the DDIM update (Song et al., 2022) with deterministic sampling (σt = 0):

xt−1 =

√
ᾱt−1

ᾱt
xt + βt−1,t · ϵ̃θ(xt, t) (15)

where βt−1,t =
√
1− ᾱt−1 −

√
ᾱt−1(1−ᾱt)

ᾱt
.

With CFG, the noise prediction is:

ϵ̃θ(xt, t) = ϵu(xt, t) + w∗
t [ϵc(xt, t)− ϵu(xt, t)] (16)

When guidance scale changes from w∗
t to w∗

t−1, the deviation becomes:

∆xscale
t−1 = βt−1,t(w

∗
t−1 − w∗

t )[ϵc(xt, t)− ϵu(xt, t)] (17)

For the approximation in Equation 10 of the main text, we use βt−1,t ≈
√

ᾱt−1/ᾱt for clarity.

Scenario 2: Guidance Mode Switching When timestep t uses CFG (w∗
t > τ ) but timestep t − 1

switches to conditional-only (w∗
t−1 < τ ), this is equivalent to switching from w∗

t to w∗
t−1 = 1 (since

conditional-only means ϵ̃ = ϵc).

Following the same framework, the switching deviation is:

∆xswitch
t−1 = βt−1,t(1− w∗

t )[ϵc(xt, t)− ϵu(xt, t)] (18)

Note that when w∗
t > 1, this deviation has opposite sign compared to Scenario 1, creating an abrupt

trajectory change.

Impact on Feature Caching These deviations directly affect cached feature validity. Equations 17
and 18 reveal that variable guidance creates trajectory discontinuities that exceed uniform calibra-
tion’s correction capacity, motivating our adaptive rank allocation in Stage 2.

A.2.2 DENOISING DEVIATIONS UNDER VARIABLE GUIDANCE - VISUALIZATION

Figure 4: Cumulative impact of variable guidance on final latent quality. Mean squared error
between 50-step generation with constant CFG=1.5 and variable CFG across denoising timesteps.
Constant CFG (blue) maintains controlled error growth throughout denoising. Variable guidance
from Stage 1 (red) causes accelerated error accumulation, resulting in 40% higher final latent error.
This confirms that the block-wise reconstruction errors shown in Figure 5 accumulate through the
network to degrade final MSE.

To empirically validate the theoretical deviations derived above, we conducted experiments measur-
ing feature reconstruction errors under different guidance patterns. Figure 5 reveals that our sparse
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guidance schedule from Stage 1 introduces substantially higher reconstruction errors compared to
constant CFG across all transformer blocks, with particularly severe degradation in blocks 18-26.
These block-wise errors are not isolated—Figure 4 demonstrates their cumulative impact, showing
that variable guidance causes 40% higher final latent error compared to constant CFG, confirm-
ing that local reconstruction errors propagate through the network to degrade generation quality.
While incremental calibration can mitigate these errors, Figure 6 exposes a critical limitation of
uniform calibration: different transformer regions require different calibration ranks under variable
guidance. Early and late blocks achieve better performance with lower ranks (r = 256), while
middle blocks require higher ranks (r = 512) to minimize MSE. This heterogeneous error pattern
across the network directly motivates our adaptive rank allocation strategy in Stage 2, which assigns
region-specific calibration ranks rather than applying uniform calibration across all blocks.

A.3 ADDITIONAL RESULTS

Table 5: Effect of reference generation length on optimized guidance schedules for DiT-XL/2.
Methods Steps MACs(T) IS↑ FID↓ sFID↓ Precision↑ Recall↑
DDIM 1000 1049.1 210.6 2.99 4.38 83.17 55.6
DDIM 50 52.45 203.8 3.25 4.53 83.27 56.4
OUSAC w/o cache (Tref = 50) 50 33.56 229.6 2.84 4.40 83.80 56.0
OUSAC w/o cache (Tref = 500) 50 34.09 225.0 2.77 4.39 83.49 56.2
OUSAC w/o cache (Tref = 1000) 50 30.94 228.3 2.71 4.38 83.43 57.0

Does reference generation quality impact schedule discovery? Table 5 shows how reference
generation length affects the discovered guidance schedules. Short reference generations (Tref =
50) lead to denser schedules with 33.56T MACs. As reference length increases to Tref = 1000,
the discovered schedule becomes sparser (30.94T MACs) with better FID (2.71), using guidance at
only 9 out of 50 timesteps. Longer reference generations provide better targets for the evolutionary
optimization to discover which timesteps truly require guidance.

Table 6: Ablation study of adaptive rank allocation strategies for DiT-XL/2.
Methods Steps MACs(T) IS↑ FID↓ sFID↓ Precision↑ Recall↑

DiT-XL/2 (ImageNet 256×256)
DDIM 50 11.86 239.4 2.23 4.29 80.06 59.27
ICC 50 8.05 258.5 2.16 4.28 82.08 58.1
OUSAC w/o cache 50 6.63 263.0 2.10 4.29 81.85 58.87
OUSAC (r = 768) 50 6.88 273.5 2.12 4.28 82.89 57.79
OUSAC (r = 512) 50 5.81 276.9 2.48 4.79 83.17 56.36
OUSAC (r = 256) 50 4.74 271.5 2.27 4.53 82.97 57.06
OUSAC 50 5.07 266.5 2.04 4.29 82.09 58.75

Table 7: Ablation study of adaptive rank allocation strategies for PixArt-α.
Method MACs FID↓ CLIP Score↑
DPM-Solver (1000 steps) 336.11 22.97 16.42
DPM-Solver (20 steps) 6.72 24.60 16.31
OUSAC w/o cache 4.37 22.69 16.39
OUSAC (r = 32) 2.63 20.05 16.49
OUSAC (r = 64) 2.70 19.92 16.52
OUSAC 2.67 19.27 16.48

Adaptive versus uniform rank allocation. Tables 6 and 7 validate our adaptive rank allocation
strategy across both DiT-XL/2 and PixArt-α. For DiT-XL/2 at 256×256 resolution, replacing
OUSAC’s adaptive ranks with uniform ranks across all blocks degrades performance significantly.
Uniform rank r = 256 increases FID from 2.04 to 2.27, while higher uniform rank r = 768 achieves
slightly better FID of 2.12 but requires 36% more computation (6.88T vs 5.07T MACs). Our co-
ordinate descent optimization discovers region-specific rank distributions that achieve the best FID
of 2.04 with only 5.07T MACs, demonstrating that different transformer regions require different
calibration levels under variable guidance patterns. This heterogeneous requirement becomes even
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more pronounced compared to ICC, which uses uniform calibration and achieves FID 2.16 with
8.05T MACs. Similarly, for PixArt-α, OUSAC with adaptive rank allocation achieves FID 19.27,
outperforming both uniform r = 32 (FID 20.05) and r = 64 (FID 19.92) configurations while
maintaining comparable computational cost at 2.67 MACs. These results confirm that uniform cal-
ibration cannot adequately handle the varying reconstruction errors introduced by sparse guidance
schedules, validating our approach of assigning calibration ranks based on each region’s specific
requirements under variable guidance conditions.

A.4 ADDITIONAL QUALITATIVE RESULTS

Figure 7 provides additional visual comparisons across 15 ImageNet classes. These examples further
demonstrate that OUSAC achieves comparable visual quality to standard DDIM while using only
35% of the computational budget.
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Figure 5: Why we need incremental calibration for variable guidance patterns. Each subplot
shows the mean squared error between features at timestep t and cached features from timestep t+1
in DiT-XL/2. With constant CFG at w = 1.5 (blue), reconstruction errors remain moderate across
all blocks. However, our sparse guidance schedule from Stage 1 (red) causes substantially higher
reconstruction errors across most transformer blocks, particularly in blocks 16 to 24. These elevated
errors occur because variable guidance patterns create larger feature discrepancies between consec-
utive timesteps than standard caching assumes. This motivates us to use incremental calibration
to correct these increased reconstruction errors, though the heterogeneous error distribution across
blocks suggests that uniform calibration ranks may not be optimal.
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Figure 6: Heterogeneous calibration requirements across transformer regions under variable
guidance. Mean squared error between features at timestep t and cached features from timestep
t + 1 for DiT-XL/2 blocks with uniform rank r = 256 (blue) versus r = 512 (red). No single
rank performs optimally across all blocks: early (0-2) and late blocks (24-26) achieve lower error
with r = 256, while middle blocks (4-22) require r = 512 to preserve semantic information under
variable guidance. This heterogeneous pattern demonstrates that uniform calibration cannot address
the varying reconstruction errors introduced by sparse guidance schedules, motivating our adaptive
rank allocation that assigns region-specific calibration ranks.
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Figure 7: Visual quality comparison between standard DDIM (50 steps, 100% MACs) and OUSAC
(50 steps, 35% MACs) on DiT-XL/2 at 256×256 resolution across diverse ImageNet classes. Each
pair shows DDIM (top) and OUSAC (bottom) outputs from identical initial noise.
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