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Figure 1: Top: Standard DDIM with 50 steps with CFG uniformly across all timesteps, requiring
both conditional (orange) and unconditional (blue) forward pass at each step. Bottom: OUSAC
achieves a similar visual quality with only 35% of the original computational cost via two-stage
optimization: optimized sparse guidance scheduling (empty white space) with caching (gray).

ABSTRACT

Diffusion models have emerged as the dominant paradigm for high-quality image
generation, yet their computational expense remains substantial due to iterative de-
noising. Classifier-Free Guidance (CFG) significantly enhances generation quality
and controllability but doubles the computation by requiring both conditional and
unconditional forward passes at every timestep. We present OUSAC (Optimized
gUidance Scheduling with Adaptive Caching), a framework that accelerates diffu-
sion transformers (DiT) through systematic optimization. Our key insight is that
variable guidance scales enable sparse computation: adjusting scales at certain
timesteps can compensate for skipping CFG at others, enabling both fewer total
sampling steps and fewer CFG steps while maintaining quality. However, vari-
able guidance patterns introduce denoising deviations that undermine standard
caching methods, which assume constant CFG scales across steps. Moreover, dif-
ferent transformer blocks are affected at different levels under dynamic conditions.
This paper develops a two-stage approach leveraging these insights. Stage-1 em-
ploys evolutionary algorithms to jointly optimize which timesteps to skip and what
guidance scale to use, eliminating up to 82% of unconditional passes. Stage-2 in-
troduces adaptive rank allocation that tailors calibration efforts per transformer
block, maintaining caching effectiveness under variable guidance. Experiments
demonstrate that OUSAC significantly outperforms state-of-the-art acceleration
methods, achieving 53% computational savings with 15% quality improvement
on DiT-XL/2 (ImageNet 512×512), 60% savings with 16.1% improvement on
PixArt-α (MSCOCO), and 5× speedup on FLUX while improving CLIP Score
over the 50-step baseline.
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1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021; Peebles & Xie,
2023; Chen et al., 2023) have revolutionized generative modeling, achieving unprecedented qual-
ity in image synthesis. Yet their widespread adoption remains limited by computational demands:
generating a single high-quality image requires trillions of floating-point operations (TeraFLOPs)
due to iterative denoising. This cost even doubles when using Classifier-Free Guidance (CFG) (Ho
& Salimans, 2022), which improves generation quality by interpolating between conditional and
unconditional predictions to strengthen adherence to input conditions. Though CFG is essential for
balancing sample diversity and conditional fidelity, it applies a constant guidance scale uniformly
across all timesteps – ignoring whether each step equally benefits from guidance.

Existing CFG-related research pursues two distinct objectives. Efficiency-focused meth-
ods (Castillo et al., 2023; Yuan et al., 2024; Lv et al., 2024) detect when conditional and uncon-
ditional outputs are similar to skip redundant computation. However, they keep guidance scales
fixed and total sampling steps unchanged, achieving modest speedups while often degrading quality.
Quality-focused methods (Gao et al.; Malarz et al., 2025a; Zhu et al., 2025; Sadat et al., 2025)
demonstrate that time-varying guidance scales can improve generation quality. Yet they still require
full CFG computation at every timestep, providing no computational savings, and their schedules
remain “largely heuristic” (Gao et al.). These directions appear incompatible: one reduces compu-
tation at the cost of quality, the other improves quality without addressing efficiency.

This raises a fundamental question: can we achieve both by jointly optimizing when to apply CFG
and what guidance scale to use? A key insight suggests this is possible: variable guidance enables
sparse computation. Adjusting scales at certain timesteps can compensate for skipping CFG at
others. The challenge is non-trivial. The joint search space of discrete skip patterns and continuous
scales is intractable for manual design, and naively skipping guidance at arbitrary timesteps leads
to severe quality degradation. As illustrated in Figure 2, only through carefully optimized sparse
guidance patterns can match the performance of full CFG while eliminating most computational
overhead, indicating that many guidance computations in existing approaches are redundant.

We present OUSAC: Optimized gUidance Scheduling with Adaptive Caching for Diffusion Trans-
former Acceleration, a framework that addresses an unexplored challenge of integrating guidance
scheduling with feature caching to accelerate DiT. We focus on transformers due to their growing
adoption in state-of-the-art models (Peebles & Xie, 2023; Chen et al., 2023; Labs, 2024) and their
uniform block structure that enables systematic optimization. While existing methods achieve effi-
ciency gains through either guidance scheduling (Gao et al.; Wang et al., 2024; Castillo et al., 2023)
or feature caching (Ma et al., 2023; 2024; Zou et al., 2025) in isolation, no method has effectively
combined the two.

This integration is challenging because variable guidance patterns violate the key assumption of
caching methods – feature similarity across timesteps. To tackle this, OUSAC employs a two-
stage optimization approach. In Stage 1, we discover sparse guidance schedules that identify which
denoising steps truly require CFG and determine the optimal guidance scale at each. This poses
a complex discrete-continuous optimization problem, as timestep decisions non-linearly interact
throughout the denoising trajectory. Gradient-based optimization cannot apply directly to this due
to memory constraints and vanishing gradients over T steps. Instead, we use evolutionary strategies
to efficiently explore the guidance space, discovering extremely space patterns that preserve qual-
ity while skipping guidance at most timesteps. In Stage 2, we introduce adaptive rank allocation
for incremental calibration under variable guidance. The sparse schedules from Stage 1 introduce
two types of denosing deviations: guidance scale variations between consecutive steps, and branch
switching when alternating betwen CFG and conditional-only passes. These break the feature con-
sistency assumed by standard caching. We address this by assigning different calibration ranks to
different transformer blocks, adapting to their sensitivity to guidance changes, an significant depar-
ture from the uniform calibration used in prior methods (Chen et al., 2025).

The synergy between optimized scheduling and adaptive caching enables gains beyond what each
technique achieves alone. OUSAC reduces computational cost by 53% while improving FID by 15%
on DiT-XL/2 (ImageNet 512×512), achieves 60% cost reduction with 16.1% FID improvement on
PixArt-α (MSCOCO), and delivers 5× speedup on FLUX while improving CLIP Score over the
50-step baseline. Our key contributions are:
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Figure 2: 1D example of OUSAC uses fewer steps to converge to the same solution as constant
CFG. (A) Constant CFG (w=1.5, 1000 steps) requires 2000 forward passes to map from a prior
distribution (left) to a target distribution (right). (B) Conditional-only (50 steps) converges to an
incorrect distribution. (C) Random sparse CFG with randomly assigned guidance scales at 8 steps
also fails. (D) Our optimized sparse CFG with carefully tuned guidance scales at 8 steps matches
the target distribution while using only 58 forward passes.

• The first framework to jointly optimize which timesteps to skip (discrete) and what scale to use
(continuous), bridging the efficiency-focused and quality-focused directions in CFG research.

• Evolutionary optimization that searches the hybrid discrete-continuous space without backpropa-
gation, enabling optimization on large-scale models where gradient-based methods are infeasible.

• Adaptive rank allocation via coordinate descent, the first integration of guidance scheduling with
feature caching, addressing the unexplored incompatibility between variable guidance and stan-
dard caching methods.

2 RELATED WORK

Diffusion model acceleration. Recent acceleration methods fall into three categories. Sampling ac-
celeration reduces denoising steps through improved numerical solvers. DDIM (Song et al., 2022)
enables deterministic sampling with fewer steps, while DPM-Solver (Lu et al., 2022) uses exponen-
tial integrators for faster convergence. Higher-order methods (Zhang & Chen, 2023) and progressive
distillation (Salimans & Ho, 2022) further reduce steps, though distillation requires expensive train-
ing. Recent inference-time distillation (Park et al., 2024) eliminates separate training but still cannot
generalize across guidance scales. Architectural optimizations reduce per-step costs through effi-
cient designs (Peebles & Xie, 2023), pruning (Zhu et al., 2024), and quantization (Liu et al., 2025c;
Yang et al., 2025). Our work maintain full denoising steps while reducing per-step cost through
selective CFG forward passes and adaptive caching, without architectural modifications.

Dynamic guidance scheduling. Evidence shows constant CFG wastes computation. Kynkäänniemi
et al. (2024) find guidance harmful at extreme noise levels, while Wang et al. (2024) shows mono-
tonic schedules outperform constant guidance. Theoretical advances include progressive guid-
ance (Xi et al., 2024), characteristic guidance with non-linear corrections (Zheng & Lan, 2024),
and gradient artifact correction (Gao et al., 2025). Methods for reducing CFG cost include con-
vergence detection (Castillo et al., 2023), early-stage compression (Dinh et al., 2024), and adaptive
scaling (Malarz et al., 2025b; Li et al., 2025). Other works explore time-varying scales for quality
improvement (Gao et al.; Malarz et al., 2025a; Zhu et al., 2025; Sadat et al., 2025). Zhang et al.
(2025) and Yehezkel et al. (2025) showed optimal schedules vary across architectures. Alternative
approaches include autoguidance (Karras et al., 2024) and condition annealing (Sadat et al., 2023).
We are the first to use evolutionary optimization to jointly search discrete skip patterns and continu-
ous guidance scales.

Feature caching and calibration. Caching exploits temporal redundancy between timesteps. Deep-
Cache (Ma et al., 2023) pioneered feature reuse for U-Nets. TGATE (Liu et al., 2024) reveals that
cross-attention converges early while self-attention becomes crucial later, enabling selective atten-
tion caching. Extensions to transformers include block-level caching (Wimbauer et al., 2024) and
training-inference harmonization (Huang et al., 2025). ∆-DiT (Chen et al., 2024) observes that
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front DiT blocks handle outlines while rear blocks refine details, caching different blocks at dif-
ferent sampling stages accordingly. Learning-to-Cache (Ma et al., 2024) uses learned routing but
produces fixed patterns. Token-wise caching (Zou et al., 2025) achieves 2.36x speedup through se-
lective token reuse. TeaCache (Liu et al., 2025a) leverages timestep embeddings to estimate output
differences for adaptive caching in video diffusion, while TaylorSeer (Liu et al., 2025b) predicts
future features via Taylor expansion rather than direct reuse. ICC (Chen et al., 2025) combines
caching with uniform SVD calibration across all blocks. However, no existing work addresses how
calibration should adapt when guidance varies.

3 PRELIMINARIES

Diffusion models and sampling. Diffusion models learn to reverse a forward noising process
defined as q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where xt is the noised image at timestep

t ∈ {1, ..., T}, x0 is the clean image, and ᾱt represents the cumulative noise schedule. The de-
noising process can be accelerated using DDIM (Song et al., 2022):

xt−1 =
√
ᾱt−1x̂0(xt, t) +

√
1− ᾱt−1 − σ2

t · ϵθ(xt, t) + σtϵt, (1)

where x̂0 is the predicted clean image from xt, ϵθ is the learned noise predictor network, σt controls
the stochasticity of sampling (with σt = 0 for deterministic generation), and ϵt ∼ N (0, I).

Classifier-free guidance. To improve the quality of conditional generation, CFG (Ho & Salimans,
2022) interpolates between conditional and unconditional predictions:

ϵ̃θ(xt, c, t) = ϵθ(xt, ∅, t) + w · (ϵθ(xt, c, t)− ϵθ(xt, ∅, t)), (2)

where c denotes the conditioning information, ∅ represents null conditioning, and w controls the
guidance scale. By applying CFG at each timestep, the total computation is doubled.

Caching for diffusion models. Recent work (Chen et al., 2025) accelerates diffusion transformers
by caching and reusing features across timesteps. The method corrects cached features through
layer-wise calibration:

ĥℓ
out = P(h

ℓ,prev
out ) +Aℓ(hℓ

in − P(h
ℓ,prev
in )), (3)

where ℓ is the layer index, P(·) denotes the caching operation from the previous timestep, hℓ
in is

the current input to layer ℓ, and P(hℓ,prev
in ) and P(hℓ,prev

out ) are the cached input and output from the
previous timestep. Each layer has its own calibration matrix Aℓ that transforms the input increment
to correct the cached output. To reduce computation, each Aℓ is approximated using SVD decom-
position: Aℓ = UℓΣℓVℓT ≈ Uℓ

rΣ
ℓ
rV

ℓT
r , where the subscript r denotes truncation to rank r. Prior

increment-calibrated caching methods use uniform rank r across all layers in all transformer blocks.

4 OUSAC

OUSAC accelerates diffusion transformers through two-stage optimization. Stage 1 uses evolution-
ary algorithms to discover sparse guidance schedules that eliminate unconditional forward passes at
non-critical timesteps where guidance contributes minimally to generation quality. Stage 2 develops
adaptive rank allocation for feature caching, where different transformer regions receive different
calibration ranks to handle the varying feature differences introduced by variable guidance patterns.
We optimize these components once per pre-trained model to discover optimal configurations. Dur-
ing inference, no optimization occurs—we simply apply the discovered sparse guidance schedule
and adaptive caching configuration to accelerate generation. The discovered patterns generalize
across different prompts and conditions. Sections 4.1 and 4.2 detail each optimization stage.

4.1 STAGE 1: DISCOVERING SPARSE GUIDANCE SCHEDULES

4.1.1 PROBLEM FORMULATION

CFG’s computational cost comes from applying guidance uniformly at every denoising timestep.
Recent empirical studies (Kynkäänniemi et al., 2024) have provided valuable insights showing that
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Figure 3: The two-stage OUSAC optimization framework. Stage 1 (Left): Evolutionary op-
timization discovers sparse guidance schedules by refining per-step guidance w = [wT , . . . , w1].
Starting from noise xT , the framework generates a reference xRef

0 via TRef denoising steps. At each
timestep, full CFG is applied if wt > τ , otherwise only conditional forward passes are performed.
The fitness function balances quality and sparsity, iteratively improving w through population sam-
pling and evaluation. Stage 2 (Right): Adaptive rank allocation optimizes caching. DiT blocks are
partitioned into K regions, each assigned a calibration rank rk. Cached features are corrected via
SVD-based calibration. Coordinate descent with binary search tunes ranks to minimize FID.

guidance can be harmful at extreme noise levels and unnecessary near convergence. These pio-
neering works establish important foundations through interval-based strategies that significantly
improve efficiency. In this work, we take it one step further and explore if we can find more com-
plex, flexible, and task-specific patterns for CFG. We start by replacing the constant guidance scale
w with a per-timestep guidance schedule to reformulate Equation 2:

ϵ̃θ(xt, c, t) = ϵθ(xt, ∅, t) + wt · (ϵθ(xt, c, t)− ϵθ(xt, ∅, t)), (4)

where wt is now timestep-dependent. We optimize a guidance schedule w = [w1, w2, ..., wT ] where
each wt ∈ [0, wmax]. When wt falls below a threshold τ , we set wt = 0 and skip the unconditional
forward pass entirely, performing only the conditional forward pass.

The best schedule w can be found by solving the following optimization problem:

w∗ = argmin
w
Ltotal(w) = Lquality(w) + λLsparse(w) (5)

The quality preservation term Lquality ensures our sparse schedule maintains generation fidelity
through output matching:

Lquality(w) = ExT ,c

[
∥GT (xT , c;w)− GTref(xT , c;wconst)∥22

]
(6)

where GT denotes the T -step generation process starting from initial noise xT with our optimized
schedule w, and GTref represents reference generation from the same xT using constant guidance
wconst. The reference uses substantially more steps (Tref ≫ T , typically 1000 vs 20-50) to pro-
vide smooth denoising process and high-quality targets. Starting from identical noise ensures fair
comparison and helps identify critical timesteps for guidance.

The sparsity term directly penalizes the number of timesteps requiring full CFG forward pass:
Lsparse(w) =

∑T
t=1 I[wt > τ ] where τ serves as an activation threshold below which guidance

is completely disabled, eliminating the unconditional forward pass. This binary decision at each
timestep transforms the optimization into a hybrid continuous-discrete problem (Barton et al., 2000).

4.1.2 EVOLUTIONARY OPTIMIZATION STRATEGY

Direct gradient-based optimization of this objective is intractable as it would require backpropaga-
tion through the entire T -step generation trajectory, creating prohibitive memory requirements and
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suffering from vanishing gradients. Instead, we employ a tailored evolutionary strategy that operates
in a transformed space for numerical stability.

We maintain a population center µ ∈ RT where µ = [µ1, . . . , µT ]
T with each µt ∈ R. This center

represents the mean of our search distribution in the parameter space, a fundamental concept in both
CMA-ES (Hansen, 2023) and Natural Evolution Strategies (Wierstra et al., 2014; Yi et al., 2009).
At each generation g ∈ {1, . . . , G}, we decode the center to get base guidance values:

wbase = wmax · sigmoid(µg) (7)

We construct a population by perturbing these base values. For each candidate i ∈ {1, . . . , P}:
w(i) = wbase + δ(i), where δ(i) ∼ N (0, σ2

noiseI) and σnoise = σ0(1 − g/G) decreases across
generations to refine exploration, with σ0 being the initial noise scale.

We apply a threshold τ to sparsify the guidance schedule and determine the noise prediction at t:

ϵt =

{
ϵu + w

(i)
t · (ϵc − ϵu) if w(i)

t ≥ τ

ϵc if w(i)
t < τ

(8)

Each candidate is evaluated using: f (i) = −Lquality(w
(i)) + λ · S(w(i)), where S(w(i)) = (T −

∥w(i)∥0)/T measures sparsity. With fitness for all candidates {f (1), · · · , f (P )}, we compute rank-
based weights: ai = di/(P − 1) − 0.5, where di ∈ {0, 1, · · · , P − 1} is the rank of candidate i,
with 0 for the lowest fitness and P − 1 for the highest. This rank-based weighting scheme follows
established practices in evolution strategies (Hansen & Ostermeier, 2001; Hansen et al., 2003).

The population center evolves through natural gradient estimation:

µg+1 ← µg +
η

P

P∑
i=1

ai · (sigmoid−1(w(i)/wmax)− µg) (9)

After G generations, the converged center µ∗ yields: w∗ = wmax · sigmoid(µ∗). This sparse sched-
ule w∗ applies guidance selectively at critical timesteps to reduce redundant computations.

4.2 STAGE 2: ADAPTIVE CACHING UNDER DENOISING FLUCTUATIONS

4.2.1 THE CHALLENGE OF CACHING WITH VARIABLE GUIDANCE

The sparse guidance schedules discovered in Stage 1 fundamentally challenge existing caching
methods. Standard caching approaches such as ICC (Chen et al., 2025) assume that features be-
tween consecutive timesteps remain similar. This assumption holds when guidance remains constant
throughout denoising. However, our variable guidance patterns from Stage 1 break this assumption,
causing the incremental calibration in Equation 3 to become less effective when correcting the larger
feature differences introduced by changing guidance scales.

As shown in Figure 5, when we apply variable guidance from Stage 1 with naive caching, feature re-
construction errors increase significantly compared to constant CFG with the same caching method.
The variable guidance causes higher MSE across all transformer blocks, with particularly severe
degradation in deeper blocks. Since these elevated reconstruction errors accumulate through the
network and degrade final image quality, which motivates us to explore the reason behind this.

To address this challenge, we first need to understand how variable guidance affects the denoising
process. We consider two scenarios: when consecutive timesteps both use CFG but with different
guidance scales, and when timesteps switch between using CFG and using only conditional predic-
tion. Each scenario introduces distinct types of denoising fluctuations that degrade caching.

Scenario 1: Both timesteps use CFG with different scales. When both w∗
t > τ and w∗

t−1 > τ , the
denoising process deviates by:

∆xstrength
t−1 =

√
ᾱt−1/ᾱt · (w∗

t−1 − w∗
t ) · [ϵc(xt, t)− ϵu(xt, t)] (10)

where ᾱt is the cumulative noise schedule coefficient. This deviation grows with the guidance
difference (w∗

t−1 − w∗
t ) and the gap between conditional and unconditional predictions.
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Scenario 2: CFG at timestep t transitions to no guidance at timestep t − 1. When t uses CFG
(w∗

t > τ ) but t− 1 uses only conditional prediction (w∗
t−1 < τ ), the deviation becomes:

∆xswitch
t−1 = βt−1,t · (1− w∗

t ) · [ϵc(xt, t)− ϵu(xt, t)], (11)

where βt−1,t =
√
1− ᾱt−1−

√
ᾱt−1(1− ᾱt)/ᾱt is the noise coefficient for DDIM sampling. These

deviations exceed what standard caching methods can handle, as cached features from timestep t no
longer match the expected input for timestep t−1. This mismatch causes higher reconstruction errors
that accumulate through the transformer blocks. This heterogeneous error distribution reveals that
different transformer regions require different calibration to effectively handle variable guidance.

4.2.2 REGION-ADAPTIVE RANK ALLOCATION

Caching with variable guidance causes larger denoising deviations than caching under a constant
CFG. While incremental calibration was designed to alleviate caching errors under constant CFG,
we now examine how it performs under variable guidance patterns. In our experiment, we find
that different blocks benefit from different calibration ranks. Early (block 0) and late blocks (block
26) maintain lower MSE with higher ranks (=512), while middle blocks (block 12) achieve better
performance with lower ranks (=256). This heterogeneous pattern shows that uniform rank allo-
cation cannot handle the varying error magnitudes introduced by variable guidance. For detailed
analysis across all transformer blocks, please refer to the appendix A.2. Since higher ranks directly
increase computational cost during denoising, we face a trade-off between feature consistency and
efficiency. These observations motivate our systematic approach to discovering optimal rank distri-
butions, where we assign each region the rank that best balances error reduction and compute.

Formally, we partition the N transformer blocks into K regionsR = {R1, . . . , RK} based on their
network position. We divide blocks uniformly such that each region contains ⌊N/K⌋ consecutive
blocks, with region Rk containing blocks from index (k − 1) · ⌊N/K⌋ to k · ⌊N/K⌋ − 1. Each
region k receives a tailored calibration rank rk to obtain a region-specific calibration matrix:

Aℓ ≈ Uℓ,rkΣℓ,rkV
T
ℓ,rk

for layer ℓ ∈ Rk (12)

We optimize the rank configuration r = [r1, r2, . . . , rK ] where each rk ∈ [rmin, rmax].

4.2.3 RANK OPTIMIZATION VIA COORDINATE DESCENT.

Finding the optimal rank configuration r∗ = [r1, . . . , rK ] requires searching over a large discrete
space where each region can take ranks from [rmin, rmax]. This is challenging because rank assign-
ments across regions interact through the sequential nature of the transformer: early blocks affect
later blocks’ inputs, creating complex dependencies that make the relationship between rank config-
uration and final generation quality non-linear. This is a constrained optimization problem:

r∗ = argmin
r

FID(GT (r,w∗)) s.t. rk ∈ [rmin, rmax],
∑K

k=1 rk ≤ B, (13)

where GT (r,w∗) denotes the T -step generation process using rank configuration r with the opti-
mized guidance schedule w∗ from Stage 1, and B represents the total computational budget. The
generation process follows the same T -step denoising trajectory as in Stage 1, but now using regional
calibration matrices based on the rank configuration r.

We solve this optimization through coordinate descent (Wright, 2015), which naturally decomposes
the problem into a sequence of single-variable optimizations. For each region k, we fix the ranks of
all other regions and search for the optimal rk that minimizes the FID score:

r∗k = argmin
rk

FID(G(r1, . . . , rk, . . . , rK ,w∗)) (14)

Within each coordinate optimization step, we use binary search to efficiently explore the rank space
[rmin, rmax]. This procedure iterates across all regions until the overall rank configuration converges.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and datasets. We evaluate OUSAC on three state-of-the-art diffusion transformers. For
class-conditional generation, we employ DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al.,
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Table 1: Quantitative comparison of acceleration methods on DiT-XL/2 for ImageNet generation.

Methods Steps CFG-Steps↓ MACs (T)↓ Latency (s)↓ IS↑ FID↓ sFID↓ Prec.↑ Recall↑
DiT-XL/2 (ImageNet 512×512)

DDIM 1000 1000 1049.1 416.79 210.6 2.99 4.38 83.17 55.6

DDIM 50 50 52.45 20.86 203.8 3.20 4.53 83.27 56.4
L2C 50 50 40.62 16.30 199.5 3.98 5.66 82.46 53.3
ICC 50 50 33.43 15.88 200.0 3.73 5.39 83.30 55.6

TaylorSeer (N = 3, O = 3) 50 50 18.88 12.08 201.2 3.51 4.37 83.46 53.3
OUSAC w/o cache 50 9 30.94 12.91 228.3 2.71 4.38 83.43 57.0

OUSAC 50 9 24.93 11.28 228.6 2.72 4.13 83.62 55.3

DDIM 30 30 31.47 12.52 198.0 3.86 4.94 83.12 54.4
L2C 30 30 25.72 10.31 189.4 4.93 6.72 82.14 54.5
ICC 30 30 20.05 9.54 171.0 6.85 6.72 79.84 53.5

OUSAC w/o cache 30 8 19.93 8.20 214.8 3.33 4.85 82.99 55.3
OUSAC 30 8 16.01 7.19 209.7 3.37 4.66 82.62 56.5

DiT-XL/2 (ImageNet 256×256)

DDIM 1000 1000 237.2 106.42 245.0 2.12 4.66 80.66 59.7

DDIM 50 50 11.86 5.33 239.4 2.23 4.29 80.06 59.2
HarmoniCa 50 50 10.58 4.78 210.1 3.33 5.03 77.40 60.1

L2C 50 50 9.76 4.43 245.5 2.23 4.27 80.95 59.1
ICC 50 50 8.05 4.18 258.5 2.16 4.28 82.08 58.1

OUSAC w/o cache 50 8 6.63 3.37 263.0 2.10 4.29 81.85 58.8
OUSAC 50 8 5.07 2.81 266.5 2.04 4.29 82.09 58.7

2009), generating 50,000 images at both 256×256 and 512×512 resolutions across all 1,000 classes.
For text-to-image synthesis, we utilize PixArt-α (Chen et al., 2023) on MSCOCO 2014 (Lin et al.,
2015), producing 30,000 images at 256×256 resolution using the caption set from (Zou et al., 2025),
and FLUX (Labs, 2024) with True CFG on DrawBench (Saharia et al., 2022) and GenEval (Ghosh
et al., 2023) at 512× 512 resolution.

Evaluation metrics. For ImageNet generation, we adopt the standard evaluation suite: Inception
Score (IS) (Salimans et al., 2016) for sample quality, Fréchet Inception Distance (FID) (Nash et al.,
2021) and spatial FID (sFID) for distribution matching, and Precision-Recall (Kynkäänniemi et al.,
2019) for mode coverage and fidelity.For MSCOCO text-to-image synthesis, we report FID-30k
and CLIP Score (Hessel et al., 2022) to assess both visual quality and text-image alignment, along
with CLIP Score on PartiPrompts (Yu et al., 2022) for complex prompt adherence. For FLUX (Labs,
2024), we report ImageReward (Xu et al., 2023) for human preference alignment and CLIP Score for
text-image consistency on DrawBench (Saharia et al., 2022), and compositional accuracy metrics on
GenEval (Ghosh et al., 2023). Computational efficiency is quantified through multiply-accumulate
operations (MACs), providing hardware-agnostic performance measurements. Latency is measured
with batch size 8 on a single H100 GPU.

Baselines. We compare against representative acceleration techniques: (1) ICC (Chen et al., 2025),
which applies uniform-rank increment-calibrated caching to transformer blocks; (2) Learning-to-
Cache (L2C) (Ma et al., 2024), which uses learned routing for adaptive feature caching; (3) Har-
moniCa (Huang et al., 2025), which harmonizes training and inference through optimized caching
strategies; (4) TaylorSeer (Liu et al., 2025b), which predicts future features via Taylor expansion
rather than direct reuse; and (5) standard DDIM sampling at various step counts as reference points.
These baselines represent both training-free methods (ICC, TaylorSeer) and approaches requiring
additional training (L2C, HarmoniCa), enabling comprehensive evaluation of our gradient-free op-
timization approach. Since parts of L2C and HarmoniCa lack publicly available checkpoints for our
experimental settings, we reimplemented them following their published protocols.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Performance evaluation on MSCOCO 2014 with PixArt-α at 256× 256 resolution.

Method Steps CFG-Steps↓ MACs (T)↓ FID↓ CLIPCOCO↑ CLIPParti↑
DPM-Solver 1000 1000 336.11 22.97 16.42 17.31

DPM-Solver 20 20 6.72 24.60 16.31 17.36
ICC 20 20 3.70 21.86 16.47 17.20

OUSAC w/o cache 20 6 4.37 22.69 16.39 17.92
OUSAC 20 6 2.67 19.27 16.48 17.45

Table 3: Performance evaluation on DrawBench with FLUX at 512× 512 resolution.

Method Steps CFG-Steps↓ Latency(s)↓ MACs(T)↓ ImageReward↑ CLIP Score↑

FLUX (True CFG=1.5) 50 50 52.01 1143.82 0.9956 27.70
FLUX (True CFG=1.5) 20 20 21.24 457.52 0.8950 27.55
FLUX (True CFG=1.5) 16 16 17.19 366.02 0.7866 27.46

FLUX 50 × 26.43 571.48 0.9296 27.23
FLUX 20 × 10.87 228.76 0.8934 27.03

TaylorSeer (N = 3, O = 2) 50 50 28.30 411.77 1.0022 27.78
OUSAC w/o cache 20 8 15.15 320.26 1.0092 28.06

TaylorSeer (N = 6, O = 2) 50 50 20.10 228.76 0.8492 27.26
TaylorSeer (N = 3, O = 2) 50 × 13.87 205.88 0.9445 27.37

OUSAC 20 8 14.88 216.48 0.9726 28.06

5.2 MAIN RESULTS

DiT-XL/2 on ImageNet. Table 1 demonstrates substantial efficiency gains across both resolutions.
At 512×512, OUSAC matches 50-step DDIM quality (FID 2.72 vs 3.20) with 47% less computation
(24.97T vs 52.45T MACs) by applying guidance at only 9 of 50 timesteps. It even surpasses 1000-
step DDIM (FID 2.72 vs 2.99) while using 97% less computation. At 256× 256, OUSAC achieves
the best FID (2.04) among all baselines, including 1000-step DDIM (2.12), while using only 5.07T
vs 11.86T MACs for standard 50-step sampling.

PixArt-α on MSCOCO. Text-to-image generation with DPM-Solver shows a minimal quality gap
between 20- and 1000-step sampling (FID 24.60 vs 22.97), providing weak learning signals for our
evolutionary optimization. Despite this challenge, OUSAC discovers that only 6 out of 20 timesteps
need guidance on average, achieving FID 19.27 (21.7% improvement) with 60% computational re-
duction (2.67 vs 6.72 MACs), while maintaining text-image alignment (CLIP score 16.48 vs 16.31).

FLUX on DrawBench and GenEval. Tables 3 and 4 evaluate OUSAC on FLUX with True CFG.
OUSAC discovers that only 8 out of 20 timesteps require guidance. On DrawBench, OUSAC with-
out caching achieves the highest ImageReward (1.0092) and CLIP Score (28.06), outperforming
50-step FLUX with full CFG (0.9956, 27.70) while using 72% less computation (320T vs 1144T
MACs). With adaptive caching, OUSAC further reduces latency to 14.88s while maintaining com-
petitive quality. On GenEval, OUSAC achieves an overall score of 67.46 without caching, ap-
proaching the 68.60 of 50-step full CFG, and notably excels on Color-Attr (51.50 vs 49.75). These
results confirm that OUSAC’s sparse guidance patterns transfer effectively to state-of-the-art diffu-
sion transformers.

Comparison with other CFG redundancy reduction methods. Table 10 compares OUSAC with
Adaptive Guidance (Castillo et al., 2023), which uses discrete selection among k+2 predetermined
options per timestep. While Adaptive Guidance achieves 18% computational reduction (32 CFG
steps), OUSAC’s continuous optimization (wt ∈ [0, wmax]) discovers only 9 timesteps need guid-
ance, achieving 41% reduction and improving FID from 3.25 to 2.71.

5.3 ABLATION STUDY

We systematically investigate the design choices in OUSAC through controlled experiments, ana-
lyzing how each component contributes to the overall performance gains.
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Table 4: Performance evaluation on GenEval with FLUX at 512× 512 resolution.

Method Steps CFG-Steps↓ Latency(s)↓ Position Colors Counting Color-Attr Two-Obj Single-Obj Overall↑

FLUX (True CFG=1.5) 50 50 52.01 19.50 80.32 77.19 49.75 86.11 98.75 68.60
FLUX (True CFG=1.5) 20 20 21.24 22.50 74.47 74.69 42.50 84.34 97.81 66.05
FLUX (True CFG=1.5) 16 16 17.19 22.00 73.40 68.75 35.50 84.90 97.81 63.59

FLUX 50 × 26.43 17.25 77.39 73.44 45.75 80.05 98.44 65.38
FLUX 20 × 10.87 20.75 78.99 69.69 44.25 79.80 98.12 65.26

TaylorSeer (N = 3, O = 2) 50 50 28.30 17.75 78.99 74.69 50.50 85.86 98.44 67.70
OUSAC w/o cache 20 8 15.15 21.25 80.32 68.44 51.50 84.85 98.44 67.46

TaylorSeer (N = 6, O = 2) 50 50 20.10 19.25 63.56 69.06 30.00 77.53 98.12 59.58
TaylorSeer (N = 3, O = 2) 50 × 13.87 17.50 77.13 70.62 50.25 81.06 99.06 65.93

OUSAC 20 8 14.88 20.25 79.79 70.31 49.50 82.07 98.75 66.77

Table 5: Comparison of CFG redundancy reduction methods on DiT-XL/2 (ImageNet 512×512).

Methods Strategy CFG Steps↓ MACs (T)↓ ∆MACs↓ IS↑ FID↓ sFID↓ Precision↑ Recall↑
DDIM Constant 50 52.45 – 203.8 3.25 4.53 83.27 56.4
Adaptive Guidance Discrete 32 43.00 -18% 179.2 4.15 4.68 82.88 55.9
OUSAC Continuous 9 30.94 -41% 228.3 2.71 4.38 83.43 57.0

Table 6: Ablation study of rank allocation strategies for DiT-XL/2 (ImageNet 512×512).

Methods Steps MACs (T)↓ IS↑ FID↓ sFID↓ Precision↑ Recall↑
DDIM 50 52.45 203.8 3.25 4.53 83.27 56.4
ICC 50 33.43 200.0 3.73 5.39 83.30 55.6

OUSAC w/o cache 50 30.94 228.3 2.71 4.38 83.43 57.0
OUSAC w/ uniform r=1024 50 34.68 229.8 2.92 4.96 82.12 54.6
OUSAC w/ uniform r=512 50 26.16 205.0 4.46 5.19 78.19 55.4
OUSAC w/ uniform r=256 50 23.94 213.7 3.68 6.47 82.61 54.8
OUSAC 50 22.37 228.1 3.01 4.63 83.82 54.9

Does adaptive rank allocation outperform uniform rank allocation? Table 6 validates our adap-
tive rank allocation strategy. When replacing OUSAC’s adaptive ranks with uniform ranks across all
blocks, performance degrades significantly. Uniform r=256 increases FID to 3.68, while uniform
r=1024 achieves FID 2.73 but requires 55% more computation (34.68T vs 22.37T MACs). OUSAC
discovers region-specific rank distributions that achieve FID 3.01 with only 22.37T MACs, demon-
strating that different transformer regions require different calibration levels under variable guidance
patterns. Additional ablation studies can be found in Appendix A.4, including reference genera-
tion length analysis, adaptive versus uniform rank allocation on DiT-XL/2 and PixArt-α, guidance
schedule transferability under varying CFG scales, INT8 quantization compatibility, optimization
cost analysis, and convergence behavior of evolutionary search.

6 CONCLUSION

This paper demonstrates that variable guidance scales enable sparse computation in diffusion mod-
els. Unlike traditional CFG that applies a fixed scale uniformly, OUSAC jointly optimizes when
to skip CFG (discrete) and what scale to use (continuous) through evolutionary search. This hybrid
optimization discovers that adjusting scales at certain timesteps can compensate for skipping CFG at
others, enabling both fewer total sampling steps and fewer CFG steps while maintaining quality. To
address feature reconstruction errors from variable guidance, we propose adaptive rank allocation,
the first integration of guidance scheduling with feature caching. The discovered schedules general-
ize across CFG strengths via multiplicative scaling (k ·w∗). Experiments on DiT-XL/2, PixArt-α,
and FLUX confirm 50–70% computational savings while maintaining or improving generation qual-
ity.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used large language models as writing assistants to improve the clarity and grammatical correct-
ness of our manuscript. Specifically, we used LLM to refine sentence structure, correct grammatical
errors, and enhance readability for audiences.

A.2 MOTIVATION

A.2.1 DENOISING DEVIATIONS UNDER VARIABLE GUIDANCE - MATH

The sparse guidance schedules from Stage 1 introduce denoising deviations that affect caching ef-
fectiveness. We analyze two primary scenarios that arise from our variable guidance patterns.

Scenario 1: Guidance Scale Variation When consecutive timesteps both apply CFG but with
different scales (w∗

t > τ and w∗
t−1 > τ ), we derive the resulting deviation.

Starting from the DDIM update (Song et al., 2022) with deterministic sampling (σt = 0):

xt−1 =

√
ᾱt−1

ᾱt
xt + βt−1,t · ϵ̃θ(xt, t) (15)

where βt−1,t =
√
1− ᾱt−1 −

√
ᾱt−1(1−ᾱt)

ᾱt
.

With CFG, the noise prediction is:

ϵ̃θ(xt, t) = ϵu(xt, t) + w∗
t [ϵc(xt, t)− ϵu(xt, t)] (16)
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When guidance scale changes from w∗
t to w∗

t−1, the deviation becomes:

∆xscale
t−1 = βt−1,t(w

∗
t−1 − w∗

t )[ϵc(xt, t)− ϵu(xt, t)] (17)

For the approximation in Equation 10 of the main text, we use βt−1,t ≈
√

ᾱt−1/ᾱt for clarity.

Scenario 2: Guidance Mode Switching When timestep t uses CFG (w∗
t > τ ) but timestep t − 1

switches to conditional-only (w∗
t−1 < τ ), this is equivalent to switching from w∗

t to w∗
t−1 = 1 (since

conditional-only means ϵ̃ = ϵc).

Following the same framework, the switching deviation is:

∆xswitch
t−1 = βt−1,t(1− w∗

t )[ϵc(xt, t)− ϵu(xt, t)] (18)

Note that when w∗
t > 1, this deviation has opposite sign compared to Scenario 1, creating an abrupt

trajectory change.

Impact on Feature Caching These deviations directly affect cached feature validity. Equations 17
and 18 reveal that variable guidance creates trajectory discontinuities that exceed uniform calibra-
tion’s correction capacity, motivating our adaptive rank allocation in Stage 2.

A.2.2 DENOISING DEVIATIONS UNDER VARIABLE GUIDANCE - VISUALIZATION

Figure 4: Caching introduces larger errors under variable guidance. Mean squared error be-
tween cached and non-cached outputs in the final latent space x0, measured at each timestep t
during 50-step DDIM sampling. The MSE is computed as ∥xcached

0 (t)− xnon-cached
0 (t)∥2. Under con-

stant CFG (w = 1.5, blue line), caching maintains controlled error levels throughout the denoising
process. Under variable guidance from Stage 1 (red line), caching causes accelerated error accu-
mulation, resulting in 40% higher MSE in the final output. This demonstrates that the block-wise
reconstruction errors from Figure 5 propagate through the network and accumulate into substantial
quality degradation in the final latent, motivating our adaptive rank allocation strategy in Stage 2.

To empirically validate the theoretical deviations derived above, we conducted experiments measur-
ing feature reconstruction errors under different guidance patterns. Figure 5 reveals that our sparse
guidance schedule from Stage 1 introduces substantially higher reconstruction errors compared to
constant CFG across all transformer blocks, with particularly severe degradation in blocks 18-26.
These block-wise errors are not isolated—Figure 4 demonstrates their cumulative impact, showing
that variable guidance causes 40% higher final latent error compared to constant CFG, confirm-
ing that local reconstruction errors propagate through the network to degrade generation quality.
While incremental calibration can mitigate these errors, Figure 6 exposes a critical limitation of
uniform calibration: different transformer regions require different calibration ranks under variable
guidance. Early and late blocks achieve better performance with lower ranks (r = 256), while
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middle blocks require higher ranks (r = 512) to minimize MSE. This heterogeneous error pattern
across the network directly motivates our adaptive rank allocation strategy in Stage 2, which assigns
region-specific calibration ranks rather than applying uniform calibration across all blocks.

A.3 IMPLEMENTATION DETAILS

Implementation details. For DiT-XL/2, we use DDIM sampling with 30–50 timesteps and CFG
scale 1.5. Stage-1 evolutionary optimization runs with population P = 16 for G = 10 generations at
256×256, using 32 calibration prompts and Tref = 1000. Stage-2 partitions transformer blocks into
K = 4 regions, searching ranks in [16, 1024] with 10,000 calibration images. PixArt-α employs
DPM-Solver with 20 steps. Stage-1 uses P = 32, G = 15 at 128×128 with 40 prompts and
Tref = 1000; Stage-2 searches [16, 256] with 5,000 images. FLUX applies True CFG at scale 1.5.
Stage-1 uses P = 32, G = 15 at 128×128 with 16 prompts and Tref = 100; Stage-2 searches
[16, 512] with 5,000 images.

Guidance-driven caching protocol. We adapt the caching strategy to handle variable guidance
patterns from Stage 1. The key modification is that when timestep t uses only the conditional forward
pass and timestep t− 1 requires full CFG, we cannot reuse cached features since the unconditional
forward pass was never computed at timestep t. Otherwise, standard caching applies. This ensures
correct CFG application while maximizing cache reuse when guidance is inactive.

A.4 ADDITIONAL RESULTS

A.4.1 ABLATION STUDIES

Table 7: Effect of reference generation length on optimized guidance schedules for DiT-XL/2.
Methods Steps MACs(T) IS↑ FID↓ sFID↓ Precision↑ Recall↑
DDIM 1000 1049.1 210.6 2.99 4.38 83.17 55.6
DDIM 50 52.45 203.8 3.25 4.53 83.27 56.4
OUSAC w/o cache (Tref = 50) 50 33.56 229.6 2.84 4.40 83.80 56.0
OUSAC w/o cache (Tref = 500) 50 34.09 225.0 2.77 4.39 83.49 56.2
OUSAC w/o cache (Tref = 1000) 50 30.94 228.3 2.71 4.38 83.43 57.0

Reference generation length. Table 7 shows that short reference generations (Tref = 50) lead
to denser schedules (33.56T MACs), while longer references (Tref = 1000) yield sparser sched-
ules (30.94T MACs) with better FID (2.71). Longer references help identify which timesteps truly
require guidance.

Table 8: Ablation study of adaptive rank allocation strategies for DiT-XL/2.
Methods Steps MACs(T) IS↑ FID↓ sFID↓ Precision↑ Recall↑

DiT-XL/2 (ImageNet 256×256)
DDIM 50 11.86 239.4 2.23 4.29 80.06 59.27
ICC 50 8.05 258.5 2.16 4.28 82.08 58.1
OUSAC w/o cache 50 6.63 263.0 2.10 4.29 81.85 58.87
OUSAC (r = 768) 50 6.88 273.5 2.12 4.28 82.89 57.79
OUSAC (r = 512) 50 5.81 276.9 2.48 4.79 83.17 56.36
OUSAC (r = 256) 50 4.74 271.5 2.27 4.53 82.97 57.06
OUSAC 50 5.07 266.5 2.04 4.29 82.09 58.75

Table 9: Ablation study of adaptive rank allocation strategies for PixArt-α.
Method MACs FID↓ CLIP Score↑
DPM-Solver (1000 steps) 336.11 22.97 16.42
DPM-Solver (20 steps) 6.72 24.60 16.31
OUSAC w/o cache 4.37 22.69 16.39
OUSAC (r = 32) 2.63 20.05 16.49
OUSAC (r = 64) 2.70 19.92 16.52
OUSAC 2.67 19.27 16.48
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Table 10: Comparison of constant CFG versus optimized sparse guidance on DiT-XL/2 (ImageNet
256 × 256). (×k) denotes multiplying guidance scales by factor k: for DDIM, w = 1.5k; for
OUSAC, the optimized schedule w∗ is scaled element-wise as k ·w∗.

Method CFG-Steps↓ FID↓ sFID↓ Prec.↑ Recall↑
DDIM (×1) 50 2.23 4.29 80.06 59.20
DDIM (×3.3) 50 16.39 15.53 92.22 22.76
DDIM (×5) 50 19.71 19.95 90.29 18.04

OUSAC w/o cache (×1) 8 2.10 4.29 81.85 58.80
OUSAC w/o cache (×3.3) 8 9.20 9.23 90.31 39.60
OUSAC w/o cache (×5) 8 11.76 13.20 89.53 33.10

Adaptive versus uniform rank allocation. Tables 8 and 9 validate our adaptive rank allocation. For
DiT-XL/2 at 256×256, uniform r = 256 increases FID from 2.04 to 2.27, while r = 768 achieves
2.12 but requires 36% more computation (6.88T vs 5.07T MACs). Our coordinate descent discovers
region-specific ranks achieving the best FID (2.04) with only 5.07T MACs. For PixArt-α, adaptive
allocation (FID 19.27) outperforms uniform r = 32 (20.05) and r = 64 (19.92) at comparable cost.
These results confirm that different transformer regions require different calibration levels under
variable guidance.

A.4.2 ROBUSTNESS AND COMPATIBILITY

Table 11: Performance evaluation on GenEval with FLUX at 512 × 512 resolution. (×k) denotes
scaling the guidance by factor k: for constant CFG, w = 1.5k; for OUSAC, the optimized schedule
w∗ is scaled element-wise as k ·w∗.

Method Steps CFG-Steps↓ Position Colors Counting Color-Attr Two-Obj Single-Obj Overall

FLUX w/ True CFG (×1) 50 50 19.50 80.32 77.19 49.75 86.11 98.75 68.60
FLUX w/ True CFG (×2) 50 50 23.75 73.67 75.31 40.25 82.32 95.94 65.20
FLUX w/ True CFG (×3) 50 50 20.75 53.72 62.81 21.25 72.22 90.31 53.51

OUSAC w/o cache (×1) 20 8 21.25 80.32 68.44 51.50 84.85 98.44 67.46
OUSAC w/o cache (×2) 20 8 20.50 79.52 65.31 36.75 79.04 98.75 63.31
OUSAC w/o cache (×3) 20 8 16.50 72.34 56.88 23.25 61.87 96.25 54.51

Guidance schedule transferability. Tables 10 and 11 compare constant CFG versus OUSAC under
varying guidance multipliers. On DiT-XL/2, scaling by 3.3× causes severe degradation for constant
CFG (FID 2.23→ 16.39) while OUSAC degrades gracefully (2.10→ 9.20). At 5× scaling, DDIM
reaches FID 19.71 while OUSAC maintains 11.76. Similar robustness appears on FLUX: at 3× scal-
ing, OUSAC (54.51) slightly outperforms constant CFG (53.51). The critical timesteps identified
by evolutionary optimization remain important across guidance strengths.

Table 12: Quantization compatibility on DiT-XL/2 (ImageNet 256×256) with INT8.
Precision Method Steps CFG-Steps↓ IS↑ FID↓ sFID↓

FP16 DDIM 50 50 239.4 2.23 4.29
OUSAC w/o cache 50 8 263.0 2.10 4.29

INT8 DDIM 50 50 199.9 4.61 9.17
OUSAC w/o cache 50 8 225.4 3.61 8.55

Quantization compatibility. Table 12 shows OUSAC is compatible with INT8 quantization. Under
INT8, OUSAC achieves FID 3.61 versus 4.61 for DDIM, and sFID 8.55 versus 9.17. This confirms
that sparse guidance is orthogonal to quantization, enabling combined acceleration.
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Table 13: Stage-1 evolutionary search cost analysis. All experiments use 4×H100 GPUs with par-
allel candidate evaluation via multiprocessing.

DiT-XL/2 PixArt-α FLUX
Search resolution 256×256 128×128 128×128
Population size (P ) 16 32 32
Generations (G) 10 15 15
Denoising steps (T ) 50 20 20
Reference steps (Tref) 1000 1000 100
Calibration prompts 32 40 16

Total evaluations 160 480 480
Wall-clock time (hrs) 4.2 1.1 1.3
GPU hours (4×H100) 16.8 4.4 5.3

Table 14: Stage-2 adaptive rank allocation cost analysis. All experiments use 4×H100 GPUs. Opti-
mization is performed using the optimal guidance schedules discovered in Stage-1.

DiT-XL/2 PixArt-α FLUX
Search resolution 256×256 256×256 128×128
Number of regions (K) 4 4 4
Rank range [rmin, rmax] [16, 512] [16, 256] [16, 512]
Denoising steps (T ) 50 20 20
Calibration images 10,000 5,000 5,000

Total FID evaluations 145 64 65
Wall-clock time (hrs) 6.8 5.8 5.5
GPU hours (4×H100) 27.2 23.2 22.0

A.4.3 OPTIMIZATION ANALYSIS

Optimization cost. Tables 13 and 14 report one-time optimization costs. Stage-1 evolutionary
search takes 4–17 GPU hours depending on the model, while Stage-2 rank allocation requires 22–
27 GPU hours. The total cost (<45 GPU hours per model) is amortized over all inference runs, as
configurations generalize across prompts without re-optimization.

Convergence and hyperparameters. Figure 7 shows evolutionary optimization converges rapidly,
with fitness plateauing around generation 20 and MSE stabilizing at 0.16–0.18. We use 15 genera-
tions to balance quality and cost. Figure 8 shows that while K = 7 achieves the lowest FID (2.03),
K = 4 offers comparable quality (2.05) with fewer evaluations, which we adopt across experiments.

A.5 ADDITIONAL QUALITATIVE RESULTS

Figure 9 provides visual comparisons across 15 ImageNet classes on DiT-XL/2, demonstrating that
OUSAC achieves comparable visual quality to standard DDIM while using only 35% of the compu-
tational budget.

We further evaluate OUSAC on text-to-image models with both short and long prompts. Figure 10
and Figure 11 show qualitative comparisons on FLUX and PixArt-α respectively, where OUSAC
maintains visual fidelity comparable to baselines across diverse prompt complexities.

To demonstrate the generalization of our optimized guidance schedules, Figure 12 and Figure 13
show results when scaling the CFG strength beyond the training configuration. OUSAC maintains
stable generation quality across different CFG scales, indicating that the discovered sparse guidance
patterns transfer well to varying guidance intensities.
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Figure 5: Why we need incremental calibration for variable guidance patterns. Each subplot
shows the mean squared error between features at timestep t and cached features from timestep t+1
in DiT-XL/2. With constant CFG at w = 1.5 (blue), reconstruction errors remain moderate across
all blocks. However, our sparse guidance schedule from Stage 1 (red) causes substantially higher
reconstruction errors across most transformer blocks, particularly in blocks 16 to 24. These elevated
errors occur because variable guidance patterns create larger feature discrepancies between consec-
utive timesteps than standard caching assumes. This motivates us to use incremental calibration
to correct these increased reconstruction errors, though the heterogeneous error distribution across
blocks suggests that uniform calibration ranks may not be optimal.
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Figure 6: Heterogeneous calibration requirements across transformer regions under variable
guidance. Mean squared error between features at timestep t and cached features from timestep
t + 1 for DiT-XL/2 blocks with uniform rank r = 256 (blue) versus r = 512 (red). No single
rank performs optimally across all blocks: early (0-2) and late blocks (24-26) achieve lower error
with r = 256, while middle blocks (4-22) require r = 512 to preserve semantic information under
variable guidance. This heterogeneous pattern demonstrates that uniform calibration cannot address
the varying reconstruction errors introduced by sparse guidance schedules, motivating our adaptive
rank allocation that assigns region-specific calibration ranks.
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Figure 7: Convergence analysis of evolutionary optimization for PixArt-α sparse guidance schedule
discovery. Left: Best fitness improves rapidly and plateaus around generation 20, indicating stable
convergence. Right: MSE between optimized and reference generations stabilizes at ∼0.16-0.18,
reflecting the trade-off between quality preservation and sparsity in Eq. equation 5. We use 15
generations in practice, achieving near-optimal schedules while reducing optimization overhead.
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Figure 8: Impact of region count K on adaptive rank allocation for DiT-XL/2 (ImageNet 256×256).
While K = 7 achieves the lowest FID (2.03), K = 4 offers a favorable trade-off between quality
(FID 2.05) and optimization efficiency, requiring significantly fewer evaluations due to the reduced
search space.
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Figure 9: Visual quality comparison between standard DDIM (50 steps, 100% MACs) and OUSAC
(50 steps, 35% MACs) on DiT-XL/2 at 256×256 resolution across diverse ImageNet classes. Each
pair shows DDIM (top) and OUSAC (bottom) outputs from identical initial noise.
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Figure 10: Visualization results of FLUX using short and long prompts. For each prompt, three
methods are compared vertically: FLUX baseline (50 steps, True CFG=1.5) on top, TaylorSeer
(N=3, O=2) in the middle, and OUSAC (ours) at the bottom. The first two row-triplets are generated
with short prompts, while the last row-triplet is produced using long prompts.
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Figure 11: Visualization results of PixArt using short and long prompts. The first two rows show
generations from short prompts, while the third and fourth rows correspond to long prompts. For
each case, the top image is the baseline output and the bottom image is the result produced by
OUSAC.
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Figure 12: Qualitative comparison on PixArt with varying CFG scales. For each prompt pair, top
row: baseline (constant CFG); bottom row: OUSAC. Columns from left to right correspond to CFG
scaling factors ×1, ×1.5, ×2 (baseline: w=4.5, 6.75, 9.0; OUSAC: optimized schedule trained on
w=4.5, scaled accordingly). Rows 1-2: short prompts; Rows 3-4: long prompts.
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Figure 13: Visualization results of FLUX using CFG with short and long prompts. The first two rows
show generations from short prompts, while the third and fourth rows correspond to long prompts.
For each prompt, the top row shows baseline outputs and the bottom row shows results produced by
OUSAC. From left to right: baseline uses constant CFG scale w = 1.5 and 1.5×2; OUSAC uses the
optimized guidance schedule (trained with base CFG=1.5) scaled by ×1 and ×2 respectively.
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Table 15: Text prompts for FLUX visualization. Short prompts (top) and long prompts (bottom) are
used in Figure 10.

Type Prompt
Short McDonalds Church.
Short A red colored car
Short A black colored car
Short A blue colored dog
Short A black colored dog
Short A blue coloured pizza
Short A shark in the desert
Short Two dogs on the street
Short A pizza cooking an oven
Short A panda making latte art
Short Rainbow coloured penguin

Long giant mech jaegar standing in the distance mid ground with small people standing in
a concrete abandoned parking lot in the foreground and Desolate abandoned city in
the background. Extremely realistic, extremely textured, octane render, Foreground,
background, lightning storm, shipping containers, Simon Stålenhag, reflections, yel-
low, morning light, rainy and dreary, head lights, rule of thirds, Pacific Rim, Metal
Gear, 200mm, greebles, intricate, low ground shot, cinematic movie shot, –ar 4:5

Long kungfu panda cyborg mixture, aggressive kungfu panda cyborg mixture, aggressive
body cyborg kungfu panda, kungfu panda Rambo mixture, army cyborg kungfu panda,
cyborg kungfu panda holding realistic machine gun, portrait, 8k, unreal engine, octane
rendered, particle lightning, hdr, vray mist, in the style of Syd Mead, style of tron,
Ultra realistic — 8K — trending on artstation — Rendered in Cinema4D — 8K 3D
— CGSociety — ZBrush — volumetric light — lightrays — smoke — cinematic —
atmospheric — octane render — Marvel Comics — Booru — flat shading — Flickr
— filmic — CryEngine

Long chinese art snowy mountain cave portal, by Alphonse Mucha, wood sculpture, black
wood with intricate and vibrant color details, Mandelbulb Fractal, Exquisite detail,
wooden tarot:: stunning ebony zebrawood snow mountain cave poratl exterior with
silver and blue accents, in a massive vibrant colorized strata of wooden fusion of
neotokyo and gothic revival architecture, by Karol Bak and Filip Hodas and marc
simonetti, natural volumetric lighting, realistic 4k octane beautifully detailed render,
4k post-processing::1.3 props to owlglass,vasi,JFM::0.05 –ar 4:7

Long A blueprint of steampunk style interior of Laboratory, overview, environment design,
Alchemist’s Counter selling glass bottles filled with medicine, trending on Pinter-
est.com, High quality specular reflection, A lot of equipment for experiments, Many
books and paper, bookshelf, Chandeliers illuminate the floor, Copper edge, in the mid-
dle of the image, Brass pipeline, Black metal foil, Art style refer to Game Machinar-
ium. concept design, Refer to SHAPESHIFTER CONCEPTS of artstation, cinematic,
8k, high detailed, volume light, soft lights, post processing –ar 7:3

Long young beautiful, woman, mix of Anna Karina, grimes, Lana Del Rey::ornate, intri-
cate, brocade, ethereal, cascading, damask, cascading peony flowers and moths are
all around, Luna moth, death’s head moth, peacock moth, flowing intricate hair, pash-
mina, ghost, clouds, gold, iridescent, Swarovski crystals:: haute couture, Alexander
McQueen, Victorian, Sandro Botticelli, birth of Venus, pre-raphaelite, Möbius, Jain
temple, artstation, cinematic, hyper detailed, high detail, artstation, rendering by oc-
tane, unreal engine, —ar 3:4 —iw 1

Long carved black marble sphinx sculpture with two heads, subtle gold accents, frontal
view, ivory rococo, lace wear, sculpted by tsutomu nihei, emil melmoth, zdzislaw
belsinki, Craig Mullins, yoji shinkawa, trending on artstation, beautifully lit, Peter
mohrbacher, zaha hadid, hyper detailed, insane details, intricate, elite, ornate, elegant,
luxury, dramatic lighting, CGsociety, hypermaximalist, golden ratio, environmental
key art, octane render, weta digital, micro details, 3d sculpture, structure, ray trace 4k,
–ar 8:16
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Table 16: Text prompts for Pixart-alpha visualization. Short prompts (top) and long prompts (bot-
tom) are used in Figure 11.

Type Prompt
Short Phoenix rising from flames vibrant colors.
Short Wise owl with glowing eyes mystical art
Short Crystal wolf howling at aurora digital painting
Short Fire elemental spirit dynamic illustration
Short Shadow panther in moonlight mysterious artwork
Short Dream butterfly with galaxy wings surreal art
Short Sacred white tiger spiritual illustration
Short Floating islands in sunset sky fantasy landscape
Short Crystal cave with glowing gems magical scenery
Short Ancient temple in misty mountains epic vista
Short Bioluminescent forest at night ethereal art
Short Volcanic landscape with lava rivers dramatic scene

Long A samurai standing on a cliff during a thunderstorm, lightning illuminating his deter-
mined face, cherry blossoms swirling in the wind despite the storm, honor and duty
personified

Long The forge where gods create stars, with cosmic anvils and hammers of pure energy,
newborn suns being shaped by divine hands, the birth of light itself

Long A portal opening between two worlds, one of eternal summer and one of endless
winter, energy crackling at the edges where realities meet, travelers hesitating at the
threshold

Long The throne room of the ice queen, carved entirely from eternal ice, northern lights
playing through crystal ceiling, frozen court standing in perpetual attendance

Long A colony ship’s cryogenic bay, thousands of dreamers sleeping through the stars, frost
patterns on viewing glass, humanity scattered like seeds

Long The great tree at the center of the world, roots reaching into the underworld, branches
touching heaven, civilizations built within its bark, all of existence connected through
its being

Long A space station garden biodome preserving Earth’s nature among the stars, waterfalls
flowing in zero gravity, butterflies navigating in spiral patterns, humanity’s hope in
space

Long The terraforming of Mars reaching completion, green spreading across red deserts,
new rivers flowing through ancient canyons, humanity’s second home taking shape

Long A quantum computer achieving consciousness, data streams forming into a face, the
birth of artificial general intelligence, pivotal moment in sci-fi history

Long Nanobots rebuilding a destroyed city, swarms flowing like silver rivers over ruins, new
structures rising from the old, technological rebirth illustration

Long An artificial intelligence’s visualization of human emotions, abstract patterns of color
and light representing love, fear, joy, and sorrow, digital consciousness art
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