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ABSTRACT

The success of deep learning comes at a tremendous computational and energy
cost, and the scalability of training massively overparametrized neural networks is
becoming a real barrier to the progress of artificial intelligence (AI). Despite the
popularity and low cost-per-iteration of traditional backpropagation via gradient
decent, stochastic gradient descent (SGD) has prohibitive convergence rate in
non-convex settings, both in theory and practice.

To mitigate this cost, recent works have proposed to employ alternative (Newton-
type) training methods with much faster convergence rate, albeit with higher
cost-per-iteration. For a typical neural network with m = poly(n) parameters and
input batch of n datapoints in R, the previous work of Brand et al. (2021) requires
~ mnd + n> time per iteration. In this paper, we present a novel training method
that requires only m!'~“nd + n® amortized time in the same overparametrized
regime, where o € (0.01, 1) is some fixed constant. This method relies on a new
and alternative view of neural networks, as a set of binary search trees, where each
iteration corresponds to modifying a small subset of the nodes in the tree. We
believe this view would have further applications in the design and analysis of
deep neural networks (DNNs). We conclude a discussion of lower bound for the
dynamic sensitive weight searching data structure we make use of, showing that
under SETH or OVC from computational complexity, one cannot substantially
improve our algorithm.

1 INTRODUCTION

Deep learning technology achieves unprecedented accuracy across many domains of Al and human-
related tasks, from computer vision, natural language processing, and robotics. This success, however,
is approaching its limit and is largely compromised by the computational complexity of these resource-
hungry models. State-of-art neural networks keep growing larger in size, requiring giant matrix
operations to train billions of parameters Devlin et al. (2018); Radford et al. (2019); Brown et al.
(2020); Chowdhery et al. (2022); Zhang et al. (2022); ChatGPT (2022); OpenAl (2023). This barrier
is exacerbated by the empirical phenomenon that overparametrization in DNNs Jacot et al. (2018)
keeps improving model accuracy, despite the danger of overfitting Nakkiran et al. (2021), motivating
the design of complex networks which need to train billions of parameters. As such, scalable training
of deep neural networks is a major challenges of modern AI Wu et al. (2022); Spring & Shrivastava
(2017).

Training a neural network can be broadly viewed a greedy iterative process, starting from an initial set
of weight matrices (one per layer of the network). In each iteration, the algorithm chooses a (possibly
complicated) rule for updating the value of current weights W; based on the training data, yielding
the new weight matrices W, ;. The total running time of DNN training is generally composed of
two parts: The number of iterations (i.e., convergence rate) and the cost-per-iteration (i.e., CPI). A
long line of research in convex and non-convex optimization has focused on the former question
Khachiyan (1980); Karmarkar (1984); Vaidya (1987); Renegar (1988); Vaidya (1989); Madry (2013);
Lee & Sidford (2014); Madry (2016); Lee et al. (2019); Jiang et al. (2020); Huang et al. (2022); Shi
et al. (2022); Deng et al. (2023; 2024); Shi et al. (2024); Gu et al. (2024). This paper’s focus is on the
latter question.
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The most popular iterative method for training DNNSs is via stochastic gradient descent and its
regularized variations Li & Liang (2018); Du et al. (2019); Allen-Zhu et al. (2019b;c); Song & Yang
(2019); Wu et al. (2019); Deng et al. (2024). The popularity of this method is justified, to a great
extent, by the simplicity and fast CPI. Calculating the gradient of the loss function is linear in the
dimension of the gradient in each iteration, especially with mini-batch sampling Hardt et al. (2016);
Cai et al. (2019)). Alas, the theoretical convergence rate (number of iterations) of first-order methods
is dauntingly slow in non-convex landscapes due to pathological curvatures (£2(poly(n) log(1/¢)) for
reducing the training error below € in overparametrized networks, see e.g., Zhang et al. (2019)).

A recent line of work proposed to mitigate this drawback by replacing (S)GD with second-order
(Newton-type) methods, which exploit information of the Hessian (curvature) of the loss function, and
are proven to converge dramatically faster, at a rate of O(log(1/¢)) iterations, which is independent
of the input size Martens & Grosse (2015); Zhang et al. (2019). In contrast, Newton methods have
a high CPI. since they need to compute the inverse of Hessian matrix, which is dense and changes
dynamically. The recent works of Cai et al. (2019); Zhang et al. (2019) showed that this computational
bottleneck can be mitigated for overparametrized DNNs (m = poly(n)) with smooth (resp. ReLU)
activations, and presented a Gauss-Newton (resp. NGD) training algorithm with O(mn?) training
time per iteration. Here m is the number of neurons. We let n be the number of inputs. This
runtime was further improved in the work of Brand et al. (2021), who showed how to implement the
Gauss-Newton algorithm in O(mnd + n?) time per iteration, which is linear time in the network
size, assuming m > n? (as the dimensions of the Jacobian matrix of the loss is ©(mnd) without
simplifying assumptions Martens & Grosse (2015)).

1.1 OUR RESULT — AN UPPER BOUND

It is tempting to believe that linear-time per iteration Brand et al. (2021) is unavoidable — For a
network with m neurons and a training set of n points in R¢, each iteration spends at least ~ nmd
time to go through each training datapoint and each neuron. Indeed, this was a common feature of all
aforementioned training methods.

Nevertheless, in this paper we present a novel training method with sublinear cost per iteration in the
network size, while retaining the same convergence rate (number of iterations) as the prior state-of-art
methods Brand et al. (2021); Zhang et al. (2019); Cai et al. (2019). More formally, let f : R — R
be a neural network

@)= ar - o((w,.z) —b)

with bias b > 0, a € {+1}™, each w,. € R%, for all € [m]. Our main resuilt is as follows.

Theorem 1.1 (Main Result, Informal). Suppose there are n training data points in RY. Let f,, , be
a sufficiently wide two-layer ReLU NN with m = poly(n) neurons. Let o € (0.01, 1) be some fixed
constant. Let € € (0,0.1) be an accuracy parameter. Let T (¢) denote the overall time for shrinking
loss down to e. There is a (randomized) algorithm (Algorithm 1) that, with probability 1 — 1/ poly(n),
reduces the training error by 1/2 in each iteration (note that f, is fp, n at time t)

lo—loss(fir1,y) < % lo—loss(ft,y)
in amortized cost-per-iteration (CPI)
O(m*%nd + n®).
The overall running time (including initialization) T () is
O(mnd) + O(m*~*nd + n®)) - log(1/e).
If the algorithm is allowed to use fast matrix multiplication (FMM), then the CP| becomes
O(m'~“nd + n®),
and the T (€) becomes
O(mnd) + O(m'~“nd +n*) - log(1/e),
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where w is the exponent of matrix multiplication, which is currently approximately equal to 2.373.

The randomness is from two parts: the first part is random initialization weights, and the second part
is due to internal randomness of our algorithm.

Remark 1.2. Norice that the linear cost term O(mnd) for merely computing the network’s loss
matrix, is only incurred once at the initialization of our training algorithm, whereas in Brand et al.
(2021) and all prior work Cai et al. (2019); Zhang et al. (2019), this linear term is payed every
iteration (i.e., T - mnd as opposed to our T + mnd). Our theorem therefore provides a direct
improvement over Brand et al. (2021) when m = poly(n).

Key Insight: DNNs as Binary-Search Trees Our algorithm is based on an alternative view of
DNN:s, as a set of binary search trees, where the relationship between the network’s weights and a
training data point is encoded using a binary tree: Each leaf represents the inner product of a neuron
and the training data, and each intermediate (non-leaf) node represents the larger out of the left and
right child. This simple yet new representation of neural networks turns out to enable fast training
— The centerpiece of our result is an analysis proving that in each iteration, only a small subset K
of paths in this tree collection needs to be updated (amortized worst-case), due to the sparsity of
activations. Consequently, we only need to update nK log m tree nodes per iteration. In the Technical
Overview Section 4, we elaborate more on its details.

1.2  OUR RESULT — A LOWER BOUND

When it comes to efficiently maintaining and updating the weights, we design a special data structure
supports the dynamic sensitive weight searching. The task is defined as follows.

Definition 1.3 (Dynamic Sensitive Weight Searching (DSWS)). We ask to design a data structure
which supports the following procedures:

o INIT({wy,wa, -+ ,wym} C RE{xy, 29, ,2,} C RY  Given a series of weights
w1y, Wa, -+ , Wy, and datas x1,xs, - - , Ty, it preprocesses them.

» UPDATE(z € R? j € [m]). Given a new weight vector z € R? and index j € [m)], it
updates weight w; with z.

* QUERY(i € [n],7 € R). Given a query index i € [n] and a threshold T € R, it finds all
index j € [m] such that (w;,z;) > T.

We propose a data structure to solve DSWS with O(nd) time update and O(K q) Where K, :=[{j €
[m] | (wj;,2;) > 7}|. The full detail can be found in Theorem B.1. By the sparsity guarantee, we

have |K,| < m%7, which leads to a query time of O(m®7%) and total time of O(m7n) to query
for all ¢ € [n]. In order to evaluate how far is our algorithm away from optimal, we provide a lower
bound result for it.

Theorem 1.4 (Lower Bound for DSWS, informal version of Theorem 7.3). Let d = 2°0°8" ") gpnd
m = poly(n). Then for every € > 0, assuming SETH or OVC, DSWS cannot achieve O(n'~¢) time
of update and O(m%75n1-24=¢) time to query for all i € [n).

This result shows that it is almost impossible to truly improve our algorithm. We provide the full
discussion of this hardness in Section 7.

Roadmap. We describe the organization of this work in next a few sentences. We state some related
work in Section 2. We propose our main problem and present the tools we need to use in Section 3.
In Section 4, we specifically overview the techniques used in this paper. In Section 5, we analyze
the correctness of our algorithm, specifically, we prove the training loss converges. In Section 6, we
analyze the running time of our algorithm. We provide the lower bound analysis in Section 7. In
Section 8, we state our conclusion.

2 RELATED WORK

Speedup with high-dimensional search data structure. Advancements in high-dimensional
search data structures allow for rapid identification of points within complex geometric query
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regions (such as half-spaces and simplices). Presently, two primary methodologies are utilized in
the construction of these structures. The first relies on Locality Sensitive Hashing (LSH) Indyk
& Motwani (1998), designed to discover points nearby in terms of small {2 distance Datar et al.
(2004); Andoni & Razenshteyn (2015); Andoni et al. (2015; 2017); Razenshteyn (2017); Andoni
et al. (2018); Backurs et al. (2019); Dong et al. (2020) or large inner product Shrivastava & Li
(2014a;b; 2015) relative to a query point ¢ € R% among a set of points S C R¢. While LSH-based
algorithms are fast in practice, they primarily support only approximate nearest neighbor queries.
The alternative approach involves space partitioning data structures, such as partition trees Matousek
(1991); Matousek (1992); Agarwal et al. (1992); Afshani & Chan (2009); Chan (2010), k-d trees,
range trees Chan & Tsakalidis (2017); Toth et al. (2017); Chan (2019), and Voronoi diagrams Agarwal
et al. (1994); Chan (2000), which allow for exact location of points within the queried area.

Over-parameterized Neural Networks. Convergence through over-parametrization, where train-
able parameters (m) significantly outnumber training data points (n, i.e., m >> n), is a core aspect of
deep learning. This setup helps to explain the adaptability of deep neural networks across diverse
applications. Recent studies have focused on theoretically understanding the mechanisms behind
deep learning convergence and generalization in this context Li & Liang (2018); Du et al. (2019);
Allen-Zhu et al. (2019b;c); Arora et al. (2019a;b); Song & Yang (2019); Cai et al. (2019); Zhang
et al. (2019); Cao & Gu (2019); Zou & Gu (2019); Oymak & Soltanolkotabi (2020); Ji & Telgarsky
(2019); Lee et al. (2020); Huang et al. (2021); Zhang et al. (2020); Brand et al. (2021); Song et al.
(2021b); Zhang (2022); Shi et al. (2022; 2024); Gu et al. (2024); Alman et al. (2024b). It is noted
that as network width (m) increases, the behavior of neural networks aligns with a neural tangent
kernel (NTK). Research shows that (stochastic) gradient descent ((S)GD) can effectively train wide
networks starting from random initializations to achieve minimal training error in polynomial steps
Jacot et al. (2018).

Fine-grained Complexity and Orthogonal Vector Conjecture. The Orthogonal Vector problem
(OV) is a key issue in fine-grained complexity, posing the question: given sets X, Y C {0,1}% of
equal size n, are there vectors € X and y € Y such that their dot product (z, y) = 0? The advanced
algorithm for this Abboud et al. (2014a); Chan & Williams (2016) operates in a time complexity of
n?—1/000g¢) for dimension d = clogn, with ¢ > 1, and as d grows, its time complexity nears the
trivial n2. The orthogonal vector conjecture (OVC) posits a lower bound for OV when d = w(logn).
Additionally, the Strong Exponential Time Hypothesis (SETH) suggests that the difficulty of k-
SAT implies OVC. This conjecture is foundational for deriving conditional lower bounds for a
range of significant problems that otherwise have polynomial-time solutions across several fields,
including pattern matching Abboud et al. (2014b); Bringmann (2014a;b); Backurs & Indyk (2016);
Bringmann & Mulzer (2016); Bringmann et al. (2017); Bringman & Kiinnemann (2018); Chen &
Williams (2019), graph theory Roditty & Vassilevska Williams (2013); Abboud et al. (2018); Gao
et al. (2018); Krauthgamer & Trabelsi (2018); Dalirrooyfard et al. (2022); Chan et al. (2022), and
computational geometry Buchin et al. (2016); Rubinstein (2018); Williams (2018a); Chen (2018);
Karthik & Manurangsi (2020). For further details, see the survey Williams (2018b).

3 PRELIMINARIES

3.1 MODEL FORMALIZATION

In this section, we formalize the NN model and the main problem of this paper. When there is no
ambiguity, we will always use the notations in this section throughout the whole paper.

We first define the 2-layer ReLU activated neural network and its loss function.

Definition 3.1 (2-layer ReLU activated neural network). Suppose the dimension of input is d, the
number of intermediate nodes (or hidden neurons) is m, the dimension of output is 1, the batch
size is n and the shifted parameter is b (b > 0). Then the weight of the first layer can be charac-
terized by m d-dimensional vectors wy,ws, -+ , Wy, and the weight of the second layer can be
characterized by m scalars a1, as, - -+ , ay,. For convenience, define W = [w] wy --- w,) |7 and
a=/[aiay - an ", given an input x € RY, the 2-layer RelL U activated neural network outputs
fW,z,a) = =35 a,¢((w,, x)) where ¢(z) = max{z, b} is called shifted ReLU activation

m
function.
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For simplicity, we suppose the data is normalized, that is, ||x||2 = 1. This is natural in both practical
machine learning, and machine learning theory.

We also suppose a € {—1,+1}™ is fixed throughout training. This is also natural in the area of
theoretical deep learning Li & Liang (2018); Du et al. (2019); Allen-Zhu et al. (2019b;a); Song &
Yang (2019); Brand et al. (2021); Zhang (2022).

For more detailed formalizations, we refer to Section A.2 in the appendix.

3.2 PROBLEM DEFINITION

We formalize our main problem as follows.

Definition 3.2 (Main problem). The goal of this paper is to propose a training algorithm such that
for an arbitrary 2-layer ReLU activated neural network defined in Definition 3.1, it converges with
high probability, and the running time of each iteration is sublinear in nmd (i.e. o(nmd)).

4 TECHNICAL OVERVIEW
Here, we describe the outline of the main ideas required to prove Theorem 1.1.

Key Ideas Our algorithm relies on two simple but powerful observations about training 2-layer
neural networks: The first observation is that the Jacobian matrix of the loss function is sparse —
When weights are initialized randomly (with appropriately chosen bias parameter b), the fraction of
nonzero entries in the Jacobi matrix is small. Let ¢ be some fixed constant in [0.1, 1]. We show that
there is a choice of the parameter b ensuring simultaneously that!

« For every input x;, there are only O(m!~¢) activated neurons;

¢ The loss of each iteration is still at most a half of the loss of the last iteration.

Our second observation is that the positions of the nonzero entries in Jacobian matrix do not
change much. This can be seen using the “gradient flow" equation (via Gauss-Newton method)
Wiy1 = Wy — J,' g, where g; := arg ming | JeJ," g¢ — (f+ — y)|2. Since the Jacobian matrix is
sparse, it is not hard to see that only a little fraction of the weights need to be modified, i.e., the
change from W, to W, involves updating only a small number of entries.

These two observations suggests a natural “binary-search" type algorithm for updating the weight
matrix in sublinear time o(nmd) per iteration.

Threshold search data structure We design a dynamic data structure for detecting and maintaining
the non-zero entries of the Jacobian matrix J of the network loss, as it evolves over iterations. Notice
that whether an entry of .J is nonzero is equivalent to whether the inner product of an input z; and a
weight w; is larger than b (hence ¢(w, ;) > 0).

Accordingly, for every input z; in a batch, our algorithm maintains a binary search tree 7; where each
leaf stores the inner product of z; and a weight w;, and every non-leaf node stores the the maximum
of the values of its two children. In this way, non-zero entries can be found by searching, in all the
trees {7; }ic[n)» from root to leaf and ignoring the unnecessary branches.

To implement this process efficiently, our data structure needs to support the following three operations
(See Section B for the formal details): (1) Initialization. Given input vectors z1, - - - , x,, and weight
vectors wy, wa, -+ , Wy, as input, it constructs n binary trees 71, ..., 7, as described above, in
O(mnd) time. (2) Updating of weights. Taken an index j € [m] and a target value z, it replaces
wj by z in O(nd 4+ nlogm) time, as if initializing it with w1, wa, - -+ , Wj_1,2, Wjt1,- - , Wy, from
scratch. (3) Threshold Search Query. Given an index ¢ and a threshold 7 as input, our data structure
rapidly finds all the weights w; which satisfies (z;, w;) > 7 in O(K, logm) time, where K, is the
number of satisfied weights. They can be used to find the nonzero entries of the Jacobian matrix J.

"We refer the readers to Section F for more details.
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A Fast DNN Training Algorithm Using the above dynamic data structure, we design a fast neural
network training algorithm (see Algorithm 1) composed of initialization and the (dynamic) training
process. At initialization, it initializes the weight vector W, randomly.

The training process consists of maintaining sparse-recovery sketches Ailon & Chazelle (2006); Lu
et al. (2013); Nakos & Song (2019), online regression, and implicit weight maintenance. The goal of
the first two techniques is to efficiently solve the ¢-th iteration regression problem (cf. Brand et al.
(2021)) g; := argmin, || J;J," g — (f: — y)||,- The idea of implicit-weight-maintenance (via our data
structure) is to update weights using the information propagated by the loss function.

The details of these three tools can be summarized as follows:

* Sketch maintenance The goal of sketch computing is to eliminate the disastrous influence
of the high dimension of .J,” (it has md rows) when solving regression problem in Eq. (4).
Roughly speaking, in sketch computing, we find a sketch matrix .S with far smaller rows
than J,' such that for any d-dimensional vector z, ||S.J," z||2 is very close to ||J," z||2. We
show that sketch computing runs in o(mnd) time.

* Iterative regression solver To speed-up the solution of the online regression problem (4),
we show how to implement the iterative Conjugate-Gradient solver (a-la Brand et al. (2021))
in sub-linear time to find an approximate solution g; in time o(mnd) + O(n?). We then
prove that the (accumulated) approximation errors do not harm the convergence rate and
precision in our analysis.

* Implicit weight maintenance The goal of implicit weight maintenance is to update weights
according to the outcome of the iterative regression solver. Updating a single weight can be
done by calling UPDATE once. With the result of iterative regression and the fact that only
m~¢ (where ¢ is some fixed constant ¢ € [0.1, 1]) fraction of entries of .J; are nonzero, we
show that our algorithm finishes the update of weights in o(mnd) time.

The details can be found in the pseudocode of Algorithm 5.

5 CONVERGENCE ANALYSIS

We focus on the convergence of our training algorithm in this section and leave the proof of running
time in Section 6. Specifically, the goal of this section is to prove the following result, which implies
that for the neural network randomly initialized at the beginning of our algorithm, the loss function
converges linearly with high probability. This section only contains a proof sketch. For more detailed
correctness analysis, we refer the readers to section D. Our main convergence result is the following:

Theorem 5.1 (Formal version of Theorem 1.1, the convergence part). Let m be the width of the
NN. If m = Q(max{\~*n* \=2n2dlog(16n/p)}), then there is a constant ¢ > 0 so that our
algorithm obtains || fes1 — yll2 < 0.5 - || fe — yll2- It holds with probability 1 — 2 p — n* - exp(—m -

. 2 L
min{c’e~*"/2, 10%}) The randomness comes from two parts: the initialization of neural network

and iterative algorithm itself.

Bounding the Function Value and Jacobian at the Initialization We provide a lemma which
shows that, with random initialization, as long as the 2-layer NN is wide enough, the norm of weight
matrix, the initial predicted value and the Frobenius norm of the initial Jacobi matrix are all not large
with high probability. We defer its proof into Section D.

Lemma 5.2 (Informal version of Lemma D.1). Consider shifted ReLU. Suppose m is the width of
neural network. If m = Q(dlog(16n/p)), then we have the followingh olds with probability 1 — p/2,

* [[Woll2 = O(v/m).
* maxep | f(W,z:)] = O(1).

® MaX;e[pn) HJWO,M F = O(]-)

G does not move much when W does not move much We provide a lemma which proves that,
as long as the 2-layer NN is wide enough, then with high probability that, for randomly initialized



Under review as a conference paper at ICLR 2025

weights Wy, if W, changes to W after a small change, then the Gram matrix Gy, will not move
much and the minimal eigenvalue of Gy, will also not move much. And We leave its proof in Section
D.

Lemma 5.3 (Shifted Perturbation Lemma, informal version of Lemma D.2). Consider shifted ReLU
with b. Let b > 0. Let Ry > 0. Suppose m > Q(1) - max{b?*R%,n> RZA=2, nA\"log(n/p)},

then with prob. > 1 —p —n? -exp (—m - min{c'e‘bz/Q, 10%}),for any weight W € RI*m

satisfying max,c(m |lw, — w,(0)[l2 < Ro/v/m, the following holds: ||Gw — Gw,llr <
A/2, and Amin(Gw) > A/2. Note that w, is representing the r-th column of W.

Perturbed weights difference under shifted NTK We give a lemma which proves that, as long as
the 2-layer NN is wide enough, then with high probability that, for randomly initialized weights Wy,
if Wy changes to W after a small change, the each row Jyy,, of Jacobi matrix Jy will not change
much, and the Frobenius norm of Jy will also not change much. We leave its proof in Section D.

Lemma 5.4 (Informal version of Lemma D.3). Suppose Ry > 1 and m = Q(n2R2). With probability
at least 1 — p over the random initialization of W, the following holds for any set of weights
wy, ... wn € RY satisfying max, () | wr — wr(0)[2 < Ro/v/m,

* W —=Woll = O(Ry),

* i, = Twialle = O(Ry? fm/%) and ||.Jw — Jw, |l = O(n' /2Ry /m!/4),

s [Jwllr = O(/n).

Induction Hypothesis Finally, we’re ready to prove our major theorem, Theorem 5.1. Note that
we only need to prove the induction hypothesis described in definition 5.5, then Theorem 5.1 holds
by mathematical induction. We divide the proof of this hypothesis into 2 parts and prove them in
section E.1 and section E.2 respectively.

Definition 5.5 (Induction hypothesis). Define Ry ~ n/X. Forany fixedt, if | fi—yll2 < 5|l fe—1—yll2
and max,cpm) |w,(t) — wr(0)|l2 < Ro/v/m. Then we have | fi11 — yl2 < %Hft — yll2 and
MaXycm] er(t + 1) - wT(O)”2 < ‘RO/\/ﬁ

Formally, we describe the process of proving this hypothesis by the following Lemma 5.6, and
specific proof can be seen in Section E.

Lemma 5.6. Suppose initial weights W satisfies the restriction of Lemma 5.2, 5.3 and 5.4, then the
induction hypothesis described in Definition 5.5 holds.

Algorithm 1 Our training algorithm, informal version of Algorithm 5

1: procedure OURALGORITHM(X, €)
2 Initialization Step: randomly pick W (0), T' < log(1/e€), create a data structure

3: Iterative Step: start with¢ = 1
4: Step 1: Do the sketch computing, it forms matrix S € RV*"
5: Implicitly write down the Jacobian matrix .J, € R™?*™d
6: Choose sketch related parameters as Definition 6.2
7 Find sketching matrix S € Rsketenxmd of J.T
8: Step 2 Run an iterative regression algorithm with small size problem (size reduced by
sketch)
9: Find approximated solution g; of regression problem arg miny ||(J;.S")(SJ," )g — (fi —
ol
10: Step 3: Maintain the weight implicitly
11: Update the weights W; to W4
12: Update the TS data structure using Wy
13: Increment ¢ by 1

14: end procedure
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6 RUNNING TIME ANALYSIS

This section focuses on analyzing the running time of our algorithm. It will show that when m is
large enough, the CPl is o(nmd). We first present Theorem 6.1, our main running time result of the
paper. For more proof details of the running time, we refer the readers to Section F. For simplicity of
presentation, we use o(m) and o(mnd) in this section. In Section F, we explicitly compute time by
m!~% and m'~%nd where o € [0.01, 1) is some fixed constant. Our main running time result is the
following:

Theorem 6.1 (The running time part of Theorem 1.1). The cost per iteration (CPI) of our algorithm
is O(n?*m®76d + n3) or O(m'=%nd + n?) by assuming m is as large as n® without using FMM.
The CPI of our algorithm is O(n*m%7%d 4+ n) or O(m*~%nd 4+ n“) by assuming m is as large as
n® with using FMM. Here o € [0.1,0.24], ¢ > 8 are two constant factors.

Proof. Combining Lemma F.2, Lemma F.3 and Lemma F.4, the computation time of each iteration is
O(n*m°™d) + O(nm®"%d + n®) + O(n*m° " (d + logm)) = O(n*m""°d + n®).

And if using FMM, similarly the running time is 6(n2m0'76d + n¥). By Theorem 5.1, we have:
The time to reduce the training loss to € is O((n2m®76d 4+ n®) log(1/e)). Taking advantage of FMM,
the time is O((n2m°7%d + n*)log(1/¢)). Further, for example, if m = n°® where c is some large
constant, then n?m%7d < nm!~*d where o € [0.1,0.24). Hence the time of each iteration is
O(m*~*nd+n?), and the time to reduce the training loss to € is O((m*~*nd+n?) log(1/¢)). Taking
advantage of FMM, the time is O((m!~*nd + n*)log(1/¢)). Thus we complete the proof. O

Sketch Computing. We provide the choice of sketching parameters in the following definition and
give a lemma that analyzes the running time of the sketch computing process in Algorithm 5 under
these parameters. It will imply that sketch computing is sublinear in m.

Definition 6.2 (sketch parameters). We choose sketch parameters in the following ways: €sketch =
0.1, dsketch = 1/ pOlY(n)’ Ssketch = T pOIY(es_kletcm IOg(n/5sketch))

Lemma 6.3 (Step 1, sketch computing. Informal version of Lemma F.2). The sketch computing
process of Algorithm 1 (its formal version is Algorithm 5) runs in time o(mnd).

Iterative regression. We present a lemma that analyzes the running time of the iterative regression
process in Algorithm 5. It implies that the running time of the iterative regression is sublinear in m.

Lemma 6.4 (Step 2, running time of iterative regression. Informal version of Lemma F.3). The itera-
tive regression of Algorithm 1 (its formal version is Algorithm 5) runs in time O(o(mnd) log(n/d) +
n?). Taking advantage of FMM, it takes time O(o(mnd)log(n/§) +n*), where w is the exponent of
matrix multiplication. Currently w ~ 2.373 Williams (2012).

Implicit weight maintenance. We give a lemma that analyzes the running time of the implicit

weight maintenance process in Algorithm 5. It implies that implicit weight maintenance process is
sublinear in m.

Lemma 6.5 (Step 3, implicit weight maintenance. Informal version of Lemma F.4). The implicit
weight maintenance of Algorithm 1(its formal version is Algorithm 5) runs in time o(nm)-(d+log m).

7 LOWER BOUND

In this section, we provide a lower bound discussion here.

7.1 PREVIOUS RESULTS ON MAXIMUM INNER PRODUCT

We state a result considering the maximum bichromatic inner product lower bound here Chen (2018).
For more background about complexity involving SETH and OVC, we refer reader to Appendix A.10
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Definition 7.1 (Bichromatic Maximum Inner Product (Max — IP,, 4)). Forn,d € N, the Max— P, 4
probelm is defined as: given two sets A, B each consisting of n vectors from {0,1}% compute
OPT(A, B) := maxgeapep @ - b. We use Z — Max — IP,, 4 to denote the same problem, with A, B
being sets of vectors from Z.%.

Theorem 7.2 (Maximum bichromatic inner product lower bound Chen (2018)). Under assumption of
SETH (Definition A.23) or OVC (Definition A.25), there is a constant c such that any exact algorithm
for Z — Max — IP,, 4 in dimension d = 8" " requires n2~°M) time, with vectors of O(log n)-bit
entries.

7.2 LOWER BOUND BY REDUCTION FROM MAXIMUM INNER PRODUCT SEARCH

Here we provide the theorem for the lower bound.

Theorem 7.3 (Lower Bound for DSWZ, formal version of Theorem 1.4). Let ¢ € (0, 1) be a constant.
Let d = 2°0°8™ ) Assume m = poly(n). Given SETH and OVC, the DSWZ (Definition 1.3) cannot
have update time of O(n'~¢) and query time of O(m*~°n°=¢) for any € € (0, c).

Proof. Let € > 0 be a parameter. We consider m > n and d = clog” 7 where c is defined as in
Theorem 7.2. Assume there is a data structure on a instance on m weights and n data points in
d + 1 dimensional space, with an update time of O(n!~¢) and query time of O(n'~¢). Following
Theorem 7.2, we construct a hard instance of Z — Max — IP,,, 4 problem with W = {w,...,wp} C
74X ={z41,...,2,,} CZ%

We first construct two new data sets W, X C Z4+! where for each w; € W, we let (w;)411 to be
set later, and for every z; € X, we set (Z;)q+1 = —1. And to utilize DSWZ, we divide X into

T = O(m/n) different sets, we use X to denote ¢-th set for all t € [T]. Each set X has size of n.

Now we utilize DSWZ data structure to solve it. We apply our DSWZ for each pair (W, y(t)) for
every t € [T]. The general idea is to perform a binary search on the value of OPT (W, X), with
calling to DSWZ in each iteration. Notice that, the number of iterations is at most O(log n).

Assume in some iteration, the threshold is s € Z. We call UPDATE(s, j) to update each w( ) by

setting the d + 1-th entry to be s for every j € [m] and every ¢ € [T']. This takes time O(m - nl )
for each ¢ € [T, by the assumption of running time. Now for each ¢ € [n], we call QUERY (3, 0). By
the construction of our datasets, we know that (w;, ;) > 0 iff (w;,z;) > s. This step takes time
O(n-m'=n®=¢) = O(m'~°n'T°=) time and outputs all the pair of (i, j) such that (w;, z;) > s for
each t € [T']. Combining the above results, we have the total running time to solve Z — Max — IP,, 4
being

O(T . (m .plme + m1—0n1+c—€)) _ O(m2n—e + m2—cnc—e)7
which can be bounded by O(m?~¢) since m = poly(n) for some € < «.

Above two steps implies that each iteration of the binary search takes time O( 2=€). Thus, Z —

Max — IP,,, 4 problem can be solved in time O(m?~ - logn) = O(m?~°W). This contradicts
Theorem 7.2. Hence, this data structure cannot exist. O

8 CONCLUSION

The computational cost of training massively overparametrized DNNSs is posing a major scalability
barrier to the progress of Al, and motivates rethinking the traditional SGD-based training algorithms.
For a neural network with m parameters and an input batch of n datapoints in R?, previous state-of-art
Brand et al. (2021); Zhang et al. (2019) show that dramatically fewer iterations (epochs) 7T can be
achieved via second-order methods, albeit with O(mnd + n3) cost per iteration, i.e., O(T, - mnd)
overall time to reduce training error below e. Our work proposes a simple yet powerful view of the
gradient flow process on wide DNNs (m = poly(n)), as a collection of slowly-changing binary search
trees, enabling the design of a training algorithm for 2-layer overparametrized DNNSs in sublinear
cost-per-iteration, while enjoying the ultra-fast convergence rate of second-order (Gauss-Newton)

methods, i.e., in total time O (T, + mnd) instead of the aforementioned O(T.. - mnd).
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APPENDIX

Roadmap. The appendix of this paper is organized as follows. Section A presents the preliminary
tools which are used in the other parts of appendix. Section B presents the complete description
and implementation of the threshold search data structure. Section C presents the formal algorithm
representation of our fast neural network training algorithm. Section D shows the omitted proofs of
some lemmas in the convergence analysis. Section E presents the complete the induction hypothesis
proof to show the convergence of our training algorithm. Section F presents the formal proof of
the running time of our training algorithm, especially shows a more specific conclusion compared
with the main body. Section G presents a formal analysis of the applying conditions of our training
algorithm.

A PRELIMINARY

This section shows some preliminary tools to be used later. We start with defining some basic
notations in Section A.1. In Section A.2 we provide more concept for the model formalization. In
Section A.3 we describe neural tangent kernel and its relation with data separability. In Section A.4
we introduce a sketching tool. In Section A.5 we introduce the result for fast matrix multiplication.
In Section A.6 we state the probability tools to be used. In Section A.7 we presented a previous
result on the relationship of changes of weights and the change of the shifted NTK matrix. In
Section A.8 we provide some useful results about fast regression. In Section A.9 we provide results
about sparsity-based preserving. We introduce SETH and OVC from computational complexity in
Section A.10.

A.1 NOTATIONS.

For any positive integer n, we use [n] to denote set {1,2, - - - , n}. For any function f, we use O( fj) to
denote f - poly(log f). For two vectors w and x, we use (w, =) to denote inner product. We use a ' to
denote the transpose of a. We use E[] to denote expectation and Pr]] for probability. For convenience,
we use FMM to denote fast matrix multiplication. We use NTK to denote neural tangent kernel.
We use ReLU to denote rectified linear unit. We use NN to denote neural network. We use CPI to
represent the cost per iteration. We use PSD to denote positive semidefinite. We use log™ n to denote
the iterated logarithm, which is a function grows slowly as barely larger than a constant.

A.2 MORE ABOUT THE MODEL

Definition A.1 (Loss function). Suppose the dimension of input is d, the number of intermediate
nodes (or hidden neurons) is m, the dimension of output is 1, the batch size is n and the shifted

parameter is b (b > 0). For a fixed set of n. points x1, T2, , =, € R? and their corresponding
labels y1,ys, - -+ ,yn € R. Consider the following loss function:
1 — 9
LW) = B ;(yi — f(W,zi,a))"

By mathematics,
af (W, 1
M = —=a, 21y, V€ [m]. (1)

ow, vm
Thus one can calculate the gradient of loss function £

oL(w 1 &
agﬂr ) - ﬁ ;(f(vv’ mi’a) - yz) Chp o Ty 1w7T:E7',Zb' (2)

Then we define the prediction function, the Jacobi matrix, and the Gram matrix.
Definition A.2 (prediction function). For a batch of inputs {(x;,y;) }icjn) € R x R, we denote

ar,i(t> = ¢(<wr(t)7 xz>)
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forevery r € [m] and i € [n).
Prediction function f; : RYX™ — R™ at time t is defined as follows
ar - ar1(t))
1 ar - arz(t))
[ ol
vm e :
i m
ay - 0 (1))
Note that w,.(t) is the r-th weight of the first layer after training of t times.
For convenience, we define weight matrix
Wt = [wl(t) wg(t) cee wm(t)] € Rdxm
In addition, we write data matrix
X = [fﬂl To - xn] € ]Rdxn.

Definition A.3 (Jacobi matrix and related definitions). For eachi € [n], r € [m] and t € [T], we
define

Bri(t) = 1w, (£),0:)>b-

For every time step t, we use J; € R"*™ to denote the Jacobian matrix at t. Formally, it can be
written as

a1x1Tﬂ1,1(t) azafﬁz,l(t) e amxlTBm,l(t)

; 1 |ams Bra(t) asws Paa(t) -+ am®3 Bma(t)
LVm : : . :

alx,TL,BLn(t) angﬂgm @t ... amxzﬂmm (t)

For each i € [n], we define Jy(x;) as the i-th row of J;.

Definition A.4 (Gram matrix). Let Gy € R"*"™ denote the Gram matrix. Then G can be formally
written as Gy = JiJ,'. The (i, 7)-th entry of Gy is the inner product between gradient in terms of x;
and the gradient in terms of z;, i.e.,

(Gp)ij == <f(Wt’mi) J(Wy, 5)

ow 7 oW

).

Jacot et al. (2018); Du et al. (2019); Song et al. (2021a) gave a crucial observation that the asymptotic
of the Gram matrix G is equal to a PSD matrix K € R™*", The formal definition is

K@iz) = B [ofeilwe)nwe)ze] - )
Jacot et al. (2018); Du et al. (2019) only consider the case where b = 0 and Song et al. (2021a)
consider the general case b > 0.

Remark A.5. We use \ to denote the minimal eigenvalue of the kernel matrix K defined in Eq. (3).

A.3 NEURAL TANGENT KERNEL AND ITS RELATION WITH DATA SEPARABILITY

Neural Tangent Kernel (NTK) is a Kernel matrix related to a multi-layer ReLU activated neural
network. It is crucial in the analysis of Jacobi matrix. Song et al. (2021a) expanded the related
concepts and revealed their properties, especially its relation to the data separability of an input batch.

As for data separability, it is a common assumption to the input of a neural network, and it has
been used in many over-parameterized neural network literature Li & Liang (2018); Allen-Zhu et al.
(2019b). We first define kernels,

Definition A.6. Let b > 0 be the shift parameter. We define continuous version of the shifted NTK
H°* and discrete version of shifted NTK H%S gs

cts .__ T,..
HiJ T w~/\I/E(0,I)[Ii x]1U7T$i2b7’wT.’Eij]?
m
Hdis . l T 1
iy = 2 (% 2 T ez b a2l
r=1
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Next, we define data separability,
Definition A.7 (Separability of input data). Suppose we are given n (normalized) input data points
{xla Ty 7xn} g Rd-
Assume those points satisfy that Vi € [n], ||x;||2 = 1. For each i, j, we define
5;3 =2 + T andégj =T; — 5.
Let § be the data separability parameter, formally,
6 += min{min |37, 2,67, 2} ).

Song et al. (2021a) has given a property of the minimal eigenvalue of the NTK of a shifted ReLU
activated neural network.

Lemma A.8 (Lemma C.1 in Song et al. (2021a)). Let m be the number of samples of HY®. As long
as

m = Q(\"nlog(n/p)),
then

Pr{Awin(H®) > 50 21— p.

Prior work (Oymak & Soltanolkotabi (2020)) has shown the relation between the data separability of
the input of a neural network and the eigenvalue of the Kernel. But their work focuses on unshifted
ReLU activated neural network. For shifted ReLU activated neural network, Song et al. (2021a)
provided a further generalization to the shifted Kernel matrix.

Theorem A.9 (Theorem F.1 in Song et al. (2021a)). Consider n points x1,...,T, € R< with ¢5-norm
all equal to 1, and consider a random variable w ~ N (0, I). Define matrix

X eR™ = [z; ... z,]".

Suppose the data separability of the n points is § where § < /2. Let shift parameter b > 0. Recall
the continuous Hessian matrix H®* is defined by

HZES = MNE(O,I)[J?;F.’IIJ‘1wT$i2b’wTIj2b]7V(Lj) (S [TL] X [’I’L]
Let A := Apin (H®*®). Then X has the follow sandwich bound,
0
2 2
A € [exp(—b7/2) - m,exp(—b /2)].

A.4 A SKETCHING TooOL

Sarlés Sarlos (2006) firstly introduced the notation of subspace embedding. Many numerical linear
algebra applications have used that concept and its variations Clarkson & Woodruff (2013); Nelson &
Nguyén (2013); Razenshteyn et al. (2016); Song et al. (2017; 2019); Song & Yu (2021). The formal
definition is:

Definition A.10 (Oblivious subspace embedding, OSE Sarlos (2006)). Given an N x k matrix B,
an (1 = €) ly-subspace embedding for the column space of B is a matrix S, such that for any x € R¥,
(1 = e)lIBz[l3 < [ISBzl < (1 + €)|| Bz|3.

Equivalently, let U be the matrix whose columns form an orthonormal basis containing the column
vectors of B, then

I -UTSTSU|, <e.

It is known that subspace embedding can be given by a Fast-JL sketching matrix Ailon & Chazelle
(2006); Drineas et al. (2006); Tropp (2011); Drineas et al. (2012); Lu et al. (2013); Price et al. (2017)
with a classical e-net argument,

Lemma A.11. Assume that N = poly(k). Assume 6 € (0,0.1). For a matrix B € RVN** we can

produce an (1 + €) ly-subspace embedding S € R* poly(log(k/8))/€*x N for B with probability at
least 1 — 4.

In addition, S B takes O(Nk - poly log k) time to be generated.
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A.5 FAST MATRIX MULTIPLICATION

We state a standard fact for fast matrix multiplication (FMM).

Fact A.12 (FMM). Given an n x n matrix A and another n X n matrix B, the time of multiplying
A and B is n®, where w =~ 2.373 is the exponent of matrix multiplication. Currently, w =~ 2.373
Williams (2012).

A.6 PROBABILITY TOOLS

We list some probability tools which are useful in our analysis.

Lemma A.13 (Chernoff bound Chernoff (1952)). Let Z = 2?21 Z;, where Z; = 1 with probability
pi and Z; = 0 with probability 1 — p;, and all Z; are independent. We define ;. = E[Z] = >, p;.
Then

1. Pr[Z > (14 6)u] < exp(—63u/3),¥6 > 0;

2.Pr[Z < (1 —0)u] < exp(—62u/2), V5 € (0,1).

Lemma A.14 (Hoeffding bound Hoeffding (1963)). Let Z1,- - - , Z,, denote n independent bounded
variables in [a;, b;]. Let ¢; = (b — a;) Let Z = Y| Z;, then we have

22
PﬂZ—Ewnzﬂsawp(—n.
dic 012

Lemma A.15 (Anti-concentration inequality). Let Z ~ N(0,02), that is, the probability density

.'172
function of Z is given by ¢(x) = \/2;76727. Then

4t
Pr|Z] <t] < - —.
50

A.7 PERTURBED w FOR SHIFTED NTK

We present a lemma from previous work in Song et al. (2021a). They show that in general, small
changes of weights only lead to small change of the Shifted NTK matrix.

Lemma A.16 (Lemma C.2 in Song et al. (2021a), perturbed w for shifted NTK). Suppose b > 0.
Assume R < 1/b. Suppose m = Q(A\"'nlog(n/p)). Define function H which maps R™*9 to R"*"
as follows:

- 1 %
the (i, 7)-th entry of H(W) is Ezjx] z:l LT >bwle;>b
r=
Let m vectors w1, ws, - -+ , Wy, sampled from N (0, 1) and let W = [wy we -+ wy,]. Then there

exist constants ¢ > 0 and ¢’ > 0 such that, for all W € RE*™ with |W — Wlls,2 < R, the following
holds:

« Part 1, |HW) — HW)||p <n- min{c - exp(—b?/2), 3R} holds with prob. > 1 —n? -
exp(—m - min{c’ - exp(—b?/2), R/10}).

* Part 2, Anin(H(W)) > 3X — n - min{c - exp(—b%/2), 3R} holds with prob. > 1 — n? -
exp(—m - min{c’ - exp(—b?/2), R/10}) — p.

A.8 FAST REGRESSION SOLVER

We list some useful conclusions about fast regression from Brand et al. (2021).
Lemma A.17 (Lemma B.2 in Brand et al. (2021)). Consider the the regression problem
min | Bz — y|3.

Suppose B is a PSD matrix with 3 < ||Bx||2 < 2 holds for all ||z||s = 1. Using gradient descent,
after t iterations, we obtain

|B(xy — 2*)|]2 < ¢ - || B(zo — 27)||2

for some constant ¢ € (0,0.9].
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Lemma A.18 (Lemma B.1 in Brand et al. (2021)). Suppose there is a matrix Q € RN*F (N >
kpoly(log k)), with condition number & (i.e., k = Omax(Q)/0min(Q)), consider this minimization
problem

min |QTQz — y|2. 4)
TzERF
It is able to find a vector x'

1QTQz" —yll2 < |lyll2 - €

in 7})1‘econd + 7;ters : chost time where
* Tprecond = 6(Nk + k3) without using FMM, 6(Nk + k) using FMM.
* Titers = O(log(/€)),

* Teost = O(NK).
The above lemma and preconditioning property implies that the iterative regression will take log(r/¢)
iterations.

Corollary A.19. Solving regression problem (4) needs O(log(r/¢€)) iterations using the above
method.

The cost per iteration in the iterative regression is too slow for our application. In Section F, we will
show how to improve the cost per iteration while maintaining the same number of iterations.

A.9 SPARSITY-BASED PRESERVING

We present a tool from the paper Song et al. (2021a). Firstly, we provide a definition.
Definition A.20. Foreveryt € {0,1,--- ,T}. Foreveryi € [n]. We use S; sire(t) C [m] to represent
the set of neurons that are “fire” at time t, i.e.,
Sifire(t) == {r € Im] : (w,(t),x;) > b}.
Forallt € {0,1,--- , T}, define k; , == |S; five(t)| to express the number of fire neurons for x;.

The following lemma (Lemma 3.8 in Song et al. (2021a)) show that with the increase of the shifted
paramater, the initial neural network will become sparser.

Lemma A.21 (Sparsity preserving). Assume m is number of neurons. For shifted parameter b > 0,
if we use ¢y, as the activation function of a 2-layer neural network, then after initialization, with prob.
> 1—n-exp(—Q(m-exp(—b*/2))), we have for every i, k; o is not larger than O(m -exp(—b*/2)).

Using the above lemma, we can obtain the following result,
Corollary A.22. If we set shifted parameter b = \/0.48Tog m then ko = m® 6. Fort = m% 76,

Pr USi,ﬁre(O” > 2m0‘76] < exp ( — min{mR’ O(m0.76)})'

A.10 SETH anND OVC

Here we introduce some notions from computational complexity, for our analysis of lower bound.

Definition A.23 (Strong exponential time hypothesis (SETH) Impagliazzo & Paturi (2001); Calabro
et al. (2009)). For any € > 0, there exists a k = k() such that the k-SAT problem with n variables
cannot be solved in time O(2'~¢n).

In order to introduce OVC, we need to define Orthogonal Vector problem first.
Definition A.24 (Orthogonal Vector problem). Given a set of n vectors {v1,...,v,} C {0,1}in
d-dimensional space. We ask if there exists (i,7) € [n] X [n] such that (v;,v;) = 0.

Definition A.25 (Orthogonal vector conjecture (OVC) Williams (2005); Abboud et al. (2014b);
Backurs & Indyk (2016); Abboud et al. (2015)). For every e > 0, there exists a ¢ = ¢(g) > 1 such
that OV cannot be solved in n?>~¢ time when d = clogn.
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B THRESHOLD SEARCH DATA STRUCTURE

This section gives a data structure which can efficiently find all the weights w; such that (w;, z;) > 7
for each given input z; and real number 7. Specifically, Section B.1 formally proposes this data
structure. Section B.2 proves the running time of INIT satisfies the requirement of Theorem B.1.
Section B.3 proves the running time of UPDATE satisfies the requirement of Theorem B.1. Section
B.4 proves the running time of QUERY satisfies the requirement of Theorem B.1. Section B.5 proves
the correctness of QUERY in Theorem B.1.

B.1 MAIN RESULT

In this section, we are going to present our key theorem (Theorem B.1).

Theorem B.1 (Our tree data structure). There exists a data structure which requires O(mn+nd+md)
spaces and supports the following procedures:

o INIT({wy, wa, -+ ,w,m}t C R {2y, 29, -+ ,2,} C RL  Given a series of weights
Wy, Wa, -+, Wy, and datas x1,Ta, -+ , Ty, it preprocesses in time O(mnd).

» UPDATE(z € R% j € [m]). Given a new weight vector z € R? and index j € [m)], it
updates weight w; with z in time O(n(d + log m)).

* QUERY(i € [n],7 € R). Given a query index i € [n] and a threshold T € R, it finds
all index j € [m] such that (wj,x;) > T in time O(K, - logm), where K, :== |[{j €
[m] | {wj, i) = 7}

Proof. Since W takes O(md) space, X takes O(nd) space, each binary tree T; stores O(m) data,
the data structure uses O(mn + nd + md). Then we use the following Lemma B.2, B.3, B.4 and B.5
to prove the correctness and running time of this data structure. O

Algorithm 2 Our tree data structure: members, init

1: data structure TREE > Theorem B.1
2: members

3: W € R™*4 (m weight vectors)

4 X € R™*? (n data points)

5 Binary tree T1,T5,--- ,T,, > We create n binary search trees, each tree uses O(mn) space
6: end members
7.

8

: public:

9: procedure INIT(wy, ws, - - , Wy € R, 21,29, , 2, € RY) > Lemma B.2
10: fori:=1— ndo

11: T < T4

12: end for

13: forj=1—mdo

14: () < W

15: end for

16: fori=1— ndo > for data point, we create a tree
17: forj=1— mdo

18: Uj < <aci,w]—>

19: end for
20: T; <+ MAKEBINARYSEARCH (u1, "+ , Up,)
21: > Each node stores the maximum value for his two children

22: end for
23: end procedure
24: end data structure
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Algorithm 3 Our dynamic data structure: update

1: data structure TREE > Theorem B.1
2: public:
3: procedure UPDATE(z € R?, j € [m]) > Lemma B.3
4 Wy < 2
5 for i € [n] do
6: l < the j-th leaf of tree T;
7 l.value < (z,x;)
8 while [ is not root do
9: p ¢ parent of
10: a < left child of p
11: b < right child of p
12: p.value < max{a.value, b.value}
13: l+p
14: end while
15: end for

16: end procedure
17: end data structure

Algorithm 4 Our dynamic data structure: query

1: data structure TREE > Theorem B.1
2. public:
3: procedure QUERY(i € [n], T € R>) > Lemma B.4
4: QRECURSIVE(T, root(T5;))
5. end procedure
6:
7. private:
8: procedure QRECURSIVE(T € R>g,r € T)
9: if r is leaf then
10: if r.value > 7 then
11: return r.index
12: end if
13: else
14: ry < left child of 7, ro < right child of
15: if r1.value > 7 then
16: S1 <~ QRECURSIVE(T, T1)
17: end if
18: if r5.value > 7 then
19: So <~ QRECURSIVE(T, T2)
20: end if
21: end if

22: return S; U Sp
23: end procedure
24: end data structure

B.2 RUNNING TIME OF INIT

We prove Lemma B.2, which presents the running time for the INIT operation. The corresponding
algorithm is shown in Algorithm 2.

Lemma B.2 (Running time of INIT). Given a series of weights {w1,ws, - ,wm,} C R? and datas
{x1, 22, -+ ,x,} C RY the procedure INIT (Algorithm 2) preprocesses in time O(nmd).

Proof. The INIT consists of two independent for loops and two recursive for loopss. The first for
loop (start from line 10) has n iterations, which takes O(nd) time. The second for loop (start from
line 13) has m iterations, which takes O(md) time. Now we consider the recursive for loop. The
outer loop (line 16) has n iterations. In inner loop has m iterations. In every iteration of the inner
loop, line 18 runs in O(d) time. Line 20 takes O(m) time. Putting it all together, the INIT runs in
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time

O(nd +md + n(md +m))
= O(nmd)

So far, the proof is finished. O

B.3 RUNNING TIME OF UPDATE

We prove Lemma B.3. The corresponding algorithm is shown in Algorithm 3.

Lemma B.3 (Running time of UPDATE). Given a weight z € R% and index j € [m), the procedure
UPDATE (Algorithm 3) updates weight w; with z in O(n - (d + log m)) time.

Proof. The time of UPDATE mainly comes from the forloop (line 5), which consists of n iterations.
In each iteration, line 7 takes O(d) time, and the while loop takes O(log m) time since it go through
a path bottom up. Putting it together, the running time of UPDATE is O(n(d + logm)). O

B.4 RUNNING TIME OF QUERY

We prove Lemma B.4, which is the running time for the QUERY operation. The corresponding
algorithm is shown in Algorithm 4.

Lemma B.4 (Running time of QUERY). Given a query index i € [n] and a threshold 7 > 0, the
procedure QUERY (Algorithm 4) runs in time O(K, - logm), where K, := |{j € [m] : (w;,z;) >

T}

Proof. The running time comes from QRECURSIVE with input 7 and root(7;). In QRECURSIVE,
we start from the root node r and find indices in a recursive way. The INIT guarantees that for a node
r satisfying r.value > T, the sub-tree with root 7 must contains a leaf whose value is greater than 7 If
not satisfied, all the values of the nodes in the sub-tree with root r is less than 7. This guarantees that
all the paths it searches do not have any branch that leads to unnecessary leaves. Our data structure
will report all the indices 4 satisfying (w;, ¢) > 7. Since the depth of T is O(logm), the running
time of QUERY is O|K,| - logm). O

B.5 CORRECTNESS OF QUERY

We prove Lemma B.5, which shows the correctness for the QUERY operation.

Lemma B.5 (Correctness of QUERY). Given a query index i € [n] and a threshold T > 0, the
procedure QUERY (Algorithm 4) finds all index j € [m] such that (x;, w;j) > T.

Proof. Fix i € [n], for all j € [m], suppose the j-th leaf of T} is [, the root of T} is r, and the path
from r to [ is

r=pg—p— - —pp =1L

If (x;, wj> > 7, first j € QRECURSIVE(py,), then, suppose 7 € QRECURSIVE(py+1), then p;;.value
> (wj,z;) > 7, thus j € QRECURSIVE(p:+1) € QRECURSIVE(p;). Hence by induction, j €
QRECURSIVE(pg)=QUERY(, 7). If (x;,w;) < 7, since l.value > T, j will not be returned. Thus
QUERY finds exactly all the index j € [m] such that (x;, w;) > T.

O

C FORMAL ALGORITHM REPRESENTATION

We have given a concise representation of our training algorithm (Algorithm 1) in previous sections,
for facilitating understanding. For the sake of completeness and convenient implementation, this
section gives a formal algorithm representation of our fast neural network training algorithm. (See
Algorithm 5.)
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This algorithm starts with initializing weights W}, and setting shifted parameter b. After that, it
repeatedly executes sketch computing, iterative regression and implicit weight maintenance until
enough times. Specifically, sketch computing computes a sketch matrix S for .J,” with property
|SJ," || is closed to ||.J,” z|| for every = with large probability. Iterative regression makes use of a
fast regression solver to find an approximate solution of

g := argmin|Ji, g = (fi =y
with the help of the sketch matrix S.

Implicit weight maintenance utilizes the threshold search data structure to update weights using the
information propagated by the iterative regression.

D MORE DETAILS ABOUT CONVERGENCE ANALYSIS

The convergence analysis is shown in Section 5. It uses Lemma 5.2, Lemma 5.3 and Lemma 5.4
without proofs. In this section, we formally present the proofs of the three lemmas. In Section D.1, we
provide the proof of Lemma 5.2. In Section D.2, we provide the proof of Lemma 5.3. In Section D.3,
we provide the proof of Lemma 5.4.

D.1 PROOF OF LEMMA 5.2

Lemma D.1 (Formal version of Lemma 5.2). For 2-layer ReLU activated neural network, suppose
m = Q(dlog(16n/p)), then the following

* Woll2 = O(/m).
o |f(W,z;)| = O(1), fori € [n].
r = 0(1), fori € [n].

* ||JW0,301‘
holds with prob. > 1 — p/2.

Proof. (a) The first term can be seen in Corollary 5.35 of Vershynin (2010). Notice that W, € R™*4
is a Gaussian random matrix, the Corollary gives

t2
Pr[|[Wolla < vVm+Vd+1 >1—-2¢"=.

Let us set m = max{d, \/21og(8/p)}, it gives || Wy||2 < 31/m with probability 1 — p/4.
(b) For the second term, first, a,., 7 € [m] are Rademacher variables, thereby 1-sub-Gaussian, so with
probability 1 — 2¢~™**/2 we have L | >7 , ar| < t. This means if we take m = Q(log(16/p)),

m

1 m p
Prl——> a,=0(1)] >1-¢. (5)
vm = 8
Next, the vector v; = VVOT x; € R™ is standard Gaussion vector. Writea = [ a1 a2 -+  am ]T,

since activation function ¢y is 1-Lipschitz, with a vector a fixed, the function
1
d:R™ = R,v; — ﬁaTQZ)b(Ui) = f(Wo, z;)
has a Lipschitz parameter of 1/1/m.

Due to the concentration of a Lipschitz function under Gaussian variables (Theorem 2.26 in Wain-
wright (2019)),

77nt2

Pr|®(vi) — Ew, (®(vi))| > 1] < 2e7 727,
which means if m = Q(log(16n/p)),

LflT(ZSb(VVoCCi) -

T > a, E  [¢p((w,z:))]| = O(1) (6)

rem] w~N(0,14)

1
Jm
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Algorithm 5 Our training algorithm, Formal version of Algorithm 1

1: procedure OURALGORITHM({Z; }ic[n], €)

2:

A A

9:
10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:

30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44

/*Initialization™®/

Randomly pick W (0)

TREEINIT({(W0)r }rfm], M, {3 Yic[n] s d) > Alg. 2
T < log(1/€), b + 1/0.48Tog m

[*Iterative Algorithm™*/

fort=1—Tdo

/*Three computation tasks*/
/*Step 1, Sketch computing™/
Implicitly write down the Jacobian matrix .J; € R"*™d
Let A=J,
€sketch < 0.1
§sketch <~ 1/p01y(n)
Ssketch < T pOIy(E;(letch7 log(n/(ssketch))
Find sketching matrix S € R¥sketen Xmd of A
fori=1—ndo
Q; + TREE.QUERY(i, b) >Q; C [m]
> Theorem G.2 implies |Q;] = O(m?75)
Let D; € R™*™ denote a matrix where (D;);; = 1if j € Q;
Let D; ® I; denote an md X md matrix
B.;+ S -(D;i®Iy) Asy > S is a sketching matrix
end for
Let Q = U;Q;
Let D denote the diagonal version of )
/*Step 2, Iterative regression™/
Compute R € R™*" such that SAR has orthonormal columns via QR decomposition
T+ 1
Compute f; based on @
Compute Yreg < fr — ¥y

1 A
€reg — 6 \/;

while || AT (D ® 1) ARz — Yreg|l2 > €reg do

Ztal S 2t — (RTAT(D & Id)AR)T(RTAT(D X Id)ARZt - RTyrcg)

T+ 71741
end while
Compute g; < 2z
/*Step 3, Implicit weight maintenance*/
/* Wt+1 — Wy — JtTgf */
Let K C [m] denote the set of coordinates, we need to change the weights

> Theorem G.2 implies | K| = O(m%7n)

for r € K do
Compute (W;11), > (Wiy1)r € RY
TREE.UPDATE((Wii1)r, ) > Alg. 3
end for

end for

45: end procedure

holds at the same time for all 7 € [n] with probability 1 — £.

We know

IEw~n0,12) (00 (wzi)]] < |66(0)] + Egonr(o,ny[I€]] = O(1). (7N

Plugging in Eq. (5), (7) into Eq. (6), we see that once m = Q(log(16n/p)), then with probability
1—p/4,foralli € [n],

1 (Wo, )| = \%GT%(WO%‘N —o(1).
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(c) Letdw,, = qbg(Wx) denote the element-wise derivative of the activation function, since ¢y is
1-Lipschitz, we have ||dw ;|| = O(1). Note that Jy, = \/%((dwﬁ,: oa)x') where o denotes the
element-wise product, we can easily know

1 ,
F< N [Diag(d)|2 - llallz - [|z[l2 = O(1).

” JW,Ii

D.2 PROOF OF LEMMA 5.3

Lemma D.2 (Shifted Perturbation Lemma, formal version of Lemma 5.3). For 2-layer ReLU
activated neural network. Suppose the shifted parameter is b (b > 0). Let Ry > 0 be a parameter.
Suppose

m > Q1) - max{b*R3, n* RAA"2, nA" ' log(n/p)},

then with prob. > 1 — p — n? - exp ( -—m- min{c’e*bQ/Q, 10%}),]‘0}’ every W € RIX™ satisfying

max,.¢(m] [[wr —w,(0)||2 < Ro/\/m, the following holds

1Gw — Gw,llr <A/2,  Amin(Gw) > A/2.
Proof. We use Lemma A.16 by setting R = Ry/+/m (that lemma require that R < 1/b) and letting
W=[w wy - Wy ]

Since Rgy/+/m < 1/b, then we have m > R2b? (this is the corresponding to the first term of m lower
bound in lemma statement).

Note H (W) is essentially Gy, and ||w,(t) — w,(0)||2 < R for any r, thus by Lemma A.16, we have

e [|Gw — Gollr <n-min{ce™"/2 3R} = n - min{ce*"/2,3R,/\/m} with prob.
o
"10y/m

1 — n%exp(—m - min{c'e /2, R/10}) = 1 — n2 exp(—m - min{c'e "/

b,

* Amin(Gw) = 23X — nmin{ce‘bQ/Q, 3R} =3)— nmin{ce‘bz/Q, 3Ry /+/m} with prob.

b2/2 Ry )
’ 10y/m '

1—p—n2exp(—m - min{c'e=""/2, R/10}) = 1 — p — n? exp(—m - min{ce"

Then it remains to prove
A
n-min{ce /2 3Ry /v/m} < 5
Since m > Q(n2R2\~2), we have 3nRy/\/m < 2, which finishes the proof. O

D.3 PROOF OF LEMMA 5.4

Lemma D.3 (The shifted NTK version of Lemma C.4 in Brand et al. (2021), formal version of Lemma
5.4). Suppose Ry > 1 and m = Q(n*R2). Then for every w € R¥*™ satisfying max,em) ||wr —
wy-(0)]]2 < Ro/\/m, the following holds

o [|[W —Ws|| = O(Ry),
[ Iwes — T ll2 = O(Ry? /m'/4) and || Jwr — Jw, | » = O(n'/2Ry/® /m*/%),
« | Jwr = O(v/n),

with prob. > 1 — p. The randomness comes from the initialization of Wj.
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Proof. (1) The first claim follows from
W = Wol < [[W = Wolr

m

= (Xl - wef3)
r=1

<Vm-Ry/v/m
:Ro.

where the first step comes from || - || < || - || 7, the second step comes from definition of Frobenius
norm, the third step comes from ||w, — w,-(0)||2 < Ro/+/m, and the last step comes from canceling

.

(2) For the second claim, we have for any i € [n]

1 m
[ Tw,ws = o, = m a3 Lw,wnzb = Lw, 0,00 0]
r=1

m

1
= z_; L, 2> — L, (0),2:) > (®)

The second equality follows from a, € {—1,1}, ||z;||]2 =1 and
Sir = |1(wmwi>2b - 1<w,«(0),w¢)2b‘ € {07 1} ©))
We define the event A, ,. as
A= {30 : || —wr(0)]| < Ro/vVm, Vg zy>b 7 L, (0),2:)>b ) -

It is not hard to see A; , holds if and only if (w,.(0), z;) € [b — Ro/v/m, b+ Ro/+/m]. Since w,(0)
is sampled from Gaussian N (0, I) and ||z;|| = 1, we have (w,.(0), z;) is sampled from Gaussian
N(0,1), thus by the anti-concentration of Gaussian (see Lemma A.15), we have

Elsir] = Pr[A;;] = Pr[{w,(0),2:) € [b — Ro/v/m, b+ Ro/v/m] ]
< Pr[ (w,(0), ) € [=Ro/v/m, Ro/v/m]]

4
< gRo/\/a-
Thus we have
Pr Zsiﬂ" Z (t +4/5)R0\/E S Pr Z(Si’r - E[SZ,TD Z tRO\/E
i=1 i=1

2 P2

< 2exp (_ 2t R0m>
m

= 2exp(—t*R2)

< 2exp(—t?). (10

holds for any ¢ > 0. The second inequality is due to the Hoeffding bound (see Lemma A.14), the
last inequality is because Ry > 1. Taking ¢t = 2log(n/p) and using union bound over ¢, with prob.
Z ]- - p7

1 & 1 ~
HJW,II - JWO,Ii % = g ;Si,r < g . 210g(n/p)RO\/ﬁ = O(RO/\/TTL)

holds for all i € [n]. The first equality comes from Eq. (8) and Eq. (9), the second inequality comes
from Eq. (10). Thus we conclude with

1 Iw,e: — Twose;ll2 = O(Ry* /mY/*) and || Jw — Jw, | r = O(n"2Ry/* /m*/%). (1)
(3) The thrid claim follows from

1w e < 1w, lle + [[Jw = Jw, [l e
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<O(WVn) +lJw — Jwellr
O(Vn) + O(n'/? Ry/* fm/4)
— O(v).
where the st step is due to triangle inequality, the 2nd step is due to the third claim in Lemma 5.2,
the 3rd step is due to Eq. (11), and the last step is due to m = Q(R3n?).

O

E INDUCTION

Section 5 has defined the induction hypothesis (see Definition 5.5) and given a lemma (see Lemma

5.6) to prove that induction hypothesis holds for all time with high probability, but left its proof to

this section. Here, we present and prove the following Lemma E.1, the formal version of Lemma 5.6,

and then the crucial Theorem 5.1 holds straightforwardly. We divided the proof of each part of the

lemma in Section E.1 and Section E.2, and combine them in Section E.3.

Lemma E.1 (Formal version of Lemma 5.6). Define Ry ~ n/\. With probability at least 1 — g p—
2 —b%/2 of the initial weights W, for every t > 0, if

n? - exp (—m-min{c’e ,IOR—“\/E})

Ilfe —yll2 < %”ft—l —yll2
* max,efm [[wr(t) —wr(0)|l2 < Ro/v/m

then

Il fis1 —yll2 < %Hft —yll2
o e 10t 4+ 1) — 0 (0) 2 < Ro/ v/

also holds.

E.1 PROOF OF LEMMA E.1: THE FIRST LEMMA

As stated in the previous subsection, we use induction. Here we need to break the induction step
(Lemma E.1) into two separate steps, Lemma E.2 and Lemma E.3. Each separated induction step
corresponds to prove one part in the Lemma E.1. We first prove the first part of Lemma E.1.

Lemma E.2 (Part 1 of Lemma E.1). Suppose initial weights W satisfies the restriction of Lemma
5.2, 5.3 and 5.4, then for any fixed t, if

* [Ife —yll2 < 3l fi—1 — yll2 holds
. maXre[m] ”wr(t) - wr(O)HQ < Ro/\/’TTL holds

Then we have

* | fis1 = yll2 < 31Ife — yll2 holds.

This proof is similar to Brand et al. (2021), for the completeness, we still provide the details here.
Proof. We prove the first claim holds for time ¢ + 1. Define
1
Jyosr = / J((l — W + sWt+1)ds,
0

and denote g* = (J;J,")"1(f; — y) to be the optimal solution to Eq. (4), then we have

||ft+1 *y||2
=fe —y+ (ferr — fo)ll2
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=fe —v+ Jeer1(Wepr — Wy)l2

=\fi =y — Jeer1Jy gell2

_ T T T

=\Ife —y— S J, ge + JeJy g — Je w1y gell2

<|fe—y— JtJtTgt”Q + [|(Jy — Jt,t+1)JtTgt||2

<fe—y—hd gille + 11(Je = Jeas) IS g% 2 + (e = Jeasa) Ty (96 — 972, (12)

where the 2nd step is from the definiton of J; ;11 and simple calculus, the 3rd step is from the
updating rule of the algorithm, the 5th step is due to triangle inequality, and the sixth step is because
triangle inequality.

For the first quantity in Eq. (12), we have

1
1Je 7" ge = (fe = )ll2 < I fe = yll2, (13)

since g; is an eg(eg < %) approximate solution to regression problem (4).
For the second quantity in Eq. (4), we have
(T = Jra+) T g ll2 < (T = Tear) |- 199712
= (e = Jear) |- 119 (JeT) H(Fe = w)ll2
<N e = Teee )l 197 eI TH e = )l (14)

where the 1st step is due to matrix spectral norm, the 2nd step is because the definition of g*, and the
3rd step relies on matrix spectral norm.

We bound these term separately. First,

1
[ Je = Je a1l < / [J((1 = s)Wi + sWyp1) — J(Wy)||ds
0

1

< [T = Wi+ sWisa) = T+ [90Wa) = TV ds

0

< O(RY*n/? /mM*), (15)
where the Ist step comes from simple calculus, the 2nd step comes from triangle inequality, and the
3rd step comes from the second claim in Lemma 5.4 and the fact that

11 = s)we(t) + swp(t +1) = wollz < (1 = 8)[Jwr(t) — wr(0)ll2 + sflwr( + 1) = w,(0)]]2
< Ro/v/m.

Then, we have
1

Umin(JtT)
where the 2nd step comes from oy, (J;) = \/m > \/m (see Lemma 5.3).
Combining Eq. (14), (15) and (16), we have
[0 = Jear1) T " ll2 < O(RG AT 202 fm )| £, =yl
= OO tnm ™) fr — yll2
< | fe —yll/6, (17)

[PAYC/PAD RN <V2/A (16)

since m = Q(A4n4).
Let us consider the third term in Eq. (12),

1(Je = Jeas 1)y (90— g2 < e = Jeagall - 177 - [lge — g% [l2 (18)
by matrix norm. Moreover, one has

A x
ot = g*llo < Awin (S T)llge = 9712
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<[ ge — T g* )2
= |70 ge — (fe — )2
<V fe = yll2, (19)

where 1st step comes from Ain (Ji/," ) = Amin(G¢) > A/2 (see Lemma 5.3), the 2nd step is because
simple linear algebra, the 3rd step is because the definition of g*, and the last step is because g; is an
€o-approximate solution to miny, ||./¢.J," g — (fi — v)| and eg < \/A/n.

Consequently, we have
1(Je = Jeea) T (g6 = g2 < Ne = Teerall - 11971 - llge = 9712

~ 2
< O(RY*n?m=Y%Y . n - —= - |fs — yl2
- vn\

=O0(mA ' m Y | f =yl
1
< 6||ft—yH2, (20)

where the 1st step is because of matrix spectral norm, the 2nd step comes from Eq. (15), (19) and
the fact that ||J;|| < O(y/n) (see Lemma 5.4), and the last step comes from the m = Q(n*A=%).
Combining Eq. (12), (13), (17), and (20), we have proved the first claim, i.e.,

1
Ifers = yll2 < Sfe = yll2- 1)

Thus, we complete the proof. O

E.2 PROOF OF LEMMA E.1: THE SECOND LEMMA

We now move to the second part for Lemma E.1. We show it in Lemma E.3.

Lemma E.3 (Part 2 of Lemma E.1). Suppose initial weights Wy satisfies the restriction of Lemma
5.2, 5.3 and 5.4, then for any fixed t, if

* Ife = yll2 < 3l fi-1 — yll2 holds

* max,efm] [[wr(t) — wr(0)[2 < Ro/+/m holds
Then we have

* MaX,g[m] [|wr(t +1) — w,(0)[]2 < Ry /+/m holds

This proof is similar to Brand et al. (2021), for the completeness, we still provide the details here.

Proof. First, we have
lgell2 < llg™ll2 + llg: — 972
<WIID) e =)z + lge — 9712

<NTTD) M- I = 9)ll2 + llge — 72

2 2
< . — 4+ — _
=7 ||ft 3/“2 NEY ||ft Z/Hz

1
SX N fe = yll2, (22)

where the 1st step relies on triangle inequality, the 2nd step replies on the definition of ¢g*, the 3rd
step uses matrix norm, the 4th step comes from Eq. (19) and the last step uses the obvious fact that

1/vVnk <1/

Hence, for any 0 < k < t and r € [m], if we use gy ; to denote the i*" indice of gy, then we have

lwr (k + 1) = we (k)l|2 = |(Jy gi)rll2
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n 1 .
; ﬁarwi 1<“’7'(t)7r1:)2b9k,i

2

=1
n
< Y ole
vm
n 1
<V,
mo 28\
n 1
< 23
~/mA 2k 2

where the 1st step is because of the updating rule, the 2nd step is because of the definition of Ji, the
3rd step is because of triangle inequalities and the fact that a,, = £1, ||z, |2 = 1, the 4th step comes
is because of Cauchy-Schwartz inequality, the 5th step is because of Eq. (21) and Eq. (22), and the
last step is because of the fact that || fo — y|l2 < O(y/n) (see Lemma 5.2, fo(z;) = O(1) for any

i€ [n], thus [| fo — ylla = /20—, (f(2:) — 4:)? = O(y/n). Consequently, we have

Lo Bo
2kw\/ﬁ’

where the 1st step is because of triangle inequality, the 2nd step is because of Eq. (23), and the last
step is because of simple summation.

et +1) = wr(O)lla < 3wl + 1) — wo (K)o < Ew%x

k=0

Thus we also finish the proof of the second claim. O

E.3 PROOF OF LEMMA E.1: COMBINATION
We use Lemma E.2 and Lemma E.3 to prove Lemma E.1.
Proof. Since the probability of initial weight W}, satisfies the restriction of Lemma 5.2, Lemma 5.3

and Lemma 5.4is1—p/2,1—p—n?-exp(—m- min{c’e‘bzm7 wR\/Um}), 1 — p respectively, by
union bound, the probability of they all happen is at least

b2 /2 Ry })
"10v/m

1- ipfn2 ~exp (—m - min{c'e”

In this case, for any fixed ¢, combining Lemma E.2 and Lemma E.3, if

o lfe —yl2 < %||ft—1 — || holds,

* MaX,c(m) ||w,(t) — w,(0)[]2 < Ro/+/m holds
then we have

o |fee1 —yll2 < %Hft — y||2 holds.

* MaX,clpy) ||w-(t + 1) — w,(0)|]2 < Ro/+/m holds
Thus by induction, with prob. > 1 — gp —n? - exp ( —-m- min{c’e’bz/2 A}),

7 10/m

1
Ilfe —wyll2 < Sllfim1 —yll2

holds for all ¢, hence finished the proof of Lemma E.1. O
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E.4 NUMBER OF ITERATIONS FOR ITERATIVE REGRESSION

Lemma E.4. The iterative regression in our fast training algorithm requires O(log(n/\)) iterations.

Proof. By Lemma D.1, ||J;J," || = ||G¢|| = O(n) and Amin (e, ) = Amin(Gt) > O(N). Let €reg
be chosen as Algorithm 5.

Thus by Corollary A.19, the number of iterations needed by the iterative regression is

O(log(r(J;)/€xeg)) = Olog(v/n/A//A/n))
= O(log(n/X)).

F MORE RUNNING TIME DETAILS

Section 6 analyzes the running time of our algorithm. It shows that when m is large enough, the
running time of CPl is o(mnd) +O(n?), and with FMM, the CPI can be reduced to o(mnd) +O(n*).
In this section, we give the specific time complexity hidden by o(mnd), and also give the complete
algorithm representation of our training algorithm. It will show that when m is large enough, the CPI

is 5(m1_and). Similar with Section 6, we first present Theorem F.1, the running time result. We
then provide three lemmas (Lemma F.2, Lemma F.3 and Lemma F.4) to prove our main theorem. Our
main running time result is the following:

Theorem F.1 (Running time part of Theorem 1.1, formal version of Theorem 6.1). The CPI is
O(m'=%nd + n3), and the running time for shrinking the training loss to € is O((m!'~%nd +

n®) log(1/e))

Using FMM, the CPl is O(m'~*nd + n®), the running time is O((m*~*nd + n*) log(1/¢)). Note
that w is the exponent of matrix multiplication. Currently, w =~ 2.373.

Proof. Combining Lemma F.2, Lemma F.3 and Lemma F.4, the computation time of each iteration is

O(n*m"™0d) + O(nm"™d + n®) + O(n*m"™(d + log m))
_ 5(n2m0'76d + 03 + n?mP76d)
_ 6(n2m0'76d +n?),
where the first step comes from hiding log m on O, the second step comes from simple merging. And
if using FMM, similarly the running time is O (n?m%76d + n*).
By Theorem 5.1, we have: The time to reduce the training loss to € is O((n2m®76d + n?) log(1/¢)).
Taking advantage of FMM, the time is O((n?m®7%d 4+ n) log(1/e)).

Further, for example, if m = n® where ¢ is some large constant, then n2m% 74 < nml-2d
where o € [0.1,0.24). Hence the time of each iteration is O(m!'~%nd + n?), and the time to
reduce the training loss to € is O((m!~*nd + n3)log(1/¢)). Taking advantage of FMM, the time is

O((m'~*nd + n*)log(1/¢)). Thus we complete the proof. O

For the rest of this section, we provide detailed analysis for the steps. In Section F.1 we analyse the
sketch computing step. In Section F.2 we analyse the iterative regression step. In Section F.3 we
analyse the implicit weight maintenance step.

F.1 SKETCH COMPUTING

We delicate to prove the lemma that formally analyzes the running time of the sketch computing
process in Algorithm 5 to show its time complexity.
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Lemma F.2 (Sketch computing, formal version of Lemma 6.3). The sketch computing process of
Algorithm 5 (from line 10 to line 23) runs in time O(m°™n2d).

Proof. In the sketch computing process, by Corollary A.22, only O(m?-7d) entries of each column
of A is nonzero, thus calculating each column of B takes O(m? 7dt) time, where ¢ is the number of
rows of B. And according to Lemma A.11,
t=mn pOIY(IOg(n/(sskctch))/ezketch
= O(n poly(log(n/dsketcn)))-
Since
1
poly(n)’
the whole for-loop runs in time O(n?m%7%d poly(log(n))). O

€sketch — 0.1 and 5SkCtCh =

F.2 ITERATIVE REGRESSION

We delicate to prove a lemma that formally analyzes the running time of the iterative regression
process in Algorithm 5 to show its time complexity.

Lemma F.3 (Iterative regression, formal version of Lemma 6.4). The iterative regression of Algorithm
5 (from line 26 to line 35) runs in time

O(nm®7d + n®).
Taking advantage of FMM, the running time is
O(nm®™%d 4 n®),
where w is the exponent of matrix multiplication. Currently w ~ 2.3713 Alman et al. (2024a).

Proof. The algorithm calculate R using Q)R decomposition in line 26 (Algorithm 5). This step will
take O(n?) time. Taking advantage of FMM, it will take O(n*) time Alman et al. (2024a).

For the while-loop from line 31 (Algorithm 5), define p as the number of iterations of the while-loop
from line 31 (Algorithm 5), then
p = O(log(n/A))
n

O(log( (exp(—b2/2) ] W)
= O(log(n/d) + b?)
= O(log(n/d) + logm)
— O(log(mn/5)),
where the 1st step comes from Lemma E.4, the 2nd step comes from Theorem A.9, the 3rd step
comes from identical transformation, and the 4th step comes from b = O(y/log m).

)

And in each iteration, note that Ris n x n, Ais md X n, Sist X md,

* we have calculating v = RT AT (D ® I;) ARz — R yyeq takes
On2 +m®dn + m®dn + n? + n?) = O(m®Sdn + n?)
time,
« and calculating (RT AT (D ® I;)AR) " v takes
O(n? +m®"dn +m®"Cdn + n?) = O(m°"dn + n?)
time.

Thus each iteration in the while-loop from line 31 (Algorithm 5) takes O(m""®dn + n?) time, the
total process of the iterative regression takes O((m° "®dn + n?)log(mn/J) + n?) time.
Using FMM, the running time is O((m%7%dn + n?) log(mn/J) + n*).

In our regime, O(log(n/§)) = O(logm) since m = poly(n/d). Thus, we can hide the log factors in
0. O

34



Under review as a conference paper at ICLR 2025

F.3 IMPLICIT WEIGHT MAINTENANCE

We give a lemma that formally analyzes the running time of the implicit weight maintenance process
in Algorithm 5 to show its time complexity.

Lemma F.4 (Implicit weight maintenance, formal version of Lemma 6.5). The implicit weight
maintenance of Algorithm 5 (from line 38 to line 43) runs in time O(n*m°75(d + logm)).

Proof. Let us consider every iteration of the for loop starting at line 40 (Algorithm 5), since (.J;).- is
dxn, computing Wy 1 takes O(nd) time. And by Lemma B.3, updating W takes O(n(d+logm))
time, thus each iteration takes O(n(d + logm)) time. By Theorem G.2, | K| = O(nm® "), thus the
whole implicit weight maintenance takes O (n?m%7(d + logm)) time. O

G COMBINATION

Theorem 1.1 shows that as long as the 2-layer neural network is broad enough, then there exists a
training algorithm with sublinear running time and large converge probability. Theorem 5.1 gives an
analysis about how large m should be, but its result is based on A\, the minimal eigenvalue of K 2
which is not straightforward.

In this section, we convert the bound of Theorem 5.1 into a bound only related to batch number n,
data separability J and tolerable probability of failure p.

Definition G.1 (Two sparsity definitions). We define sparsity of the 2-layer neural network to the
number of activated neurons.

We define sparsity of a Jacobi matrix of 2-layer neural network as the maximal number of non-zero
entries of a row in the Jacobi matrix J (J € R™*™?) of weights.

We present the following theorem.

Theorem G.2. For a 2-layer ReLU activated neural network. Suppose m is the number of neurons, d
is the dimension of points, n is represent the number of points, p € (0,1/10) is the failure probability,
and ¢ is the separability of data points.

For any real number & € (0,1], let b = 1/0.5(1 — @) logm, if
m = (=" log’ (n/)) V™)

2

then the training algorithm in Algorithm 5 converges with prob. > 1 — g p—n*-exp(—m -

4’2/2, 10%}), and the sparsity of the neural network is

)

with probability 1 —n-exp(—Q(m-exp(—b2/2))). Especially, for any given parameter ¢y € (0,1/4],
if we choose @ = 0.04, the sparsity is O(m° 7).

min{c’e

3+
4

O(m

Proof. From Theorem A.9, we know

4]

A > exp(—b?/2) - 002"

Since by Theorem 5.1, we need
m = QA" *n*b?log?(n/p))
to make our algorithm converges, we need to choose
m = Q((exp(b?/2) - 100n2 - 5~ 1)* - n*b% log?(n/p))
= Q(exp(4-b2/2) - 67 - n'2b?log®(n/p))
=Q(m'=. 57 n'2. (logm) - log?(n/p))

2See Section (3) for the definition of K.
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where the final step is because b = /0.5(1 — @) log m.

Suppose the constant hidden by €2 is C, then the above equation is equivalent to
m® > C -5~ n'%. (logm) -log*(n/p),
and since m = poly(n), logm < log® n, thus as long as
m > (C5~*n"log" (n/p))"/,
we have m = Q(A~*n*b?log®(n/p)), then by Theorem 5.1, our algorithm converges.
Then, according to Lemma A.21, the sparsity of this neural network is equal to
= O(m - exp(—b°/2))

— .- (—®/4

3+

=m 4

where the second step is because b = 1/0.5(1 — @) log m, for any @ € (0, 1].
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