
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRAINING OVERPARAMETRIZED NEURAL NETWORKS
IN SUBLINEAR TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

The success of deep learning comes at a tremendous computational and energy
cost, and the scalability of training massively overparametrized neural networks is
becoming a real barrier to the progress of artificial intelligence (AI). Despite the
popularity and low cost-per-iteration of traditional backpropagation via gradient
decent, stochastic gradient descent (SGD) has prohibitive convergence rate in
non-convex settings, both in theory and practice.

To mitigate this cost, recent works have proposed to employ alternative (Newton-
type) training methods with much faster convergence rate, albeit with higher
cost-per-iteration. For a typical neural network with m = poly(n) parameters and
input batch of n datapoints in Rd, the previous work of Brand et al. (2021) requires
∼ mnd+ n3 time per iteration. In this paper, we present a novel training method
that requires only m1−αnd + n3 amortized time in the same overparametrized
regime, where α ∈ (0.01, 1) is some fixed constant. This method relies on a new
and alternative view of neural networks, as a set of binary search trees, where each
iteration corresponds to modifying a small subset of the nodes in the tree. We
believe this view would have further applications in the design and analysis of
deep neural networks (DNNs). We conclude a discussion of lower bound for the
dynamic sensitive weight searching data structure we make use of, showing that
under SETH or OVC from computational complexity, one cannot substantially
improve our algorithm.

1 INTRODUCTION

Deep learning technology achieves unprecedented accuracy across many domains of AI and human-
related tasks, from computer vision, natural language processing, and robotics. This success, however,
is approaching its limit and is largely compromised by the computational complexity of these resource-
hungry models. State-of-art neural networks keep growing larger in size, requiring giant matrix
operations to train billions of parameters Devlin et al. (2018); Radford et al. (2019); Brown et al.
(2020); Chowdhery et al. (2022); Zhang et al. (2022); ChatGPT (2022); OpenAI (2023). This barrier
is exacerbated by the empirical phenomenon that overparametrization in DNNs Jacot et al. (2018)
keeps improving model accuracy, despite the danger of overfitting Nakkiran et al. (2021), motivating
the design of complex networks which need to train billions of parameters. As such, scalable training
of deep neural networks is a major challenges of modern AI Wu et al. (2022); Spring & Shrivastava
(2017).

Training a neural network can be broadly viewed a greedy iterative process, starting from an initial set
of weight matrices (one per layer of the network). In each iteration, the algorithm chooses a (possibly
complicated) rule for updating the value of current weights Wi based on the training data, yielding
the new weight matrices Wi+1. The total running time of DNN training is generally composed of
two parts: The number of iterations (i.e., convergence rate) and the cost-per-iteration (i.e., CPI). A
long line of research in convex and non-convex optimization has focused on the former question
Khachiyan (1980); Karmarkar (1984); Vaidya (1987); Renegar (1988); Vaidya (1989); Madry (2013);
Lee & Sidford (2014); Madry (2016); Lee et al. (2019); Jiang et al. (2020); Huang et al. (2022); Shi
et al. (2022); Deng et al. (2023; 2024); Shi et al. (2024); Gu et al. (2024). This paper’s focus is on the
latter question.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The most popular iterative method for training DNNs is via stochastic gradient descent and its
regularized variations Li & Liang (2018); Du et al. (2019); Allen-Zhu et al. (2019b;c); Song & Yang
(2019); Wu et al. (2019); Deng et al. (2024). The popularity of this method is justified, to a great
extent, by the simplicity and fast CPI. Calculating the gradient of the loss function is linear in the
dimension of the gradient in each iteration, especially with mini-batch sampling Hardt et al. (2016);
Cai et al. (2019)). Alas, the theoretical convergence rate (number of iterations) of first-order methods
is dauntingly slow in non-convex landscapes due to pathological curvatures (Ω(poly(n) log(1/ϵ)) for
reducing the training error below ϵ in overparametrized networks, see e.g., Zhang et al. (2019)).

A recent line of work proposed to mitigate this drawback by replacing (S)GD with second-order
(Newton-type) methods, which exploit information of the Hessian (curvature) of the loss function, and
are proven to converge dramatically faster, at a rate of O(log(1/ϵ)) iterations, which is independent
of the input size Martens & Grosse (2015); Zhang et al. (2019). In contrast, Newton methods have
a high CPI. since they need to compute the inverse of Hessian matrix, which is dense and changes
dynamically. The recent works of Cai et al. (2019); Zhang et al. (2019) showed that this computational
bottleneck can be mitigated for overparametrized DNNs (m = poly(n)) with smooth (resp. ReLU)
activations, and presented a Gauss-Newton (resp. NGD) training algorithm with O(mn2) training
time per iteration. Here m is the number of neurons. We let n be the number of inputs. This
runtime was further improved in the work of Brand et al. (2021), who showed how to implement the
Gauss-Newton algorithm in O(mnd + n3) time per iteration, which is linear time in the network
size, assuming m ≳ n2 (as the dimensions of the Jacobian matrix of the loss is Θ(mnd) without
simplifying assumptions Martens & Grosse (2015)).

1.1 OUR RESULT – AN UPPER BOUND

It is tempting to believe that linear-time per iteration Brand et al. (2021) is unavoidable – For a
network with m neurons and a training set of n points in Rd, each iteration spends at least ∼ nmd
time to go through each training datapoint and each neuron. Indeed, this was a common feature of all
aforementioned training methods.

Nevertheless, in this paper we present a novel training method with sublinear cost per iteration in the
network size, while retaining the same convergence rate (number of iterations) as the prior state-of-art
methods Brand et al. (2021); Zhang et al. (2019); Cai et al. (2019). More formally, let f : Rd → R
be a neural network

f(x) :=

m∑
r=1

ar · ϕ(⟨wr, x⟩ − b)

with bias b > 0, a ∈ {±1}m, each wr ∈ Rd, for all r ∈ [m]. Our main resuilt is as follows.
Theorem 1.1 (Main Result, Informal). Suppose there are n training data points in Rd. Let fm,n be
a sufficiently wide two-layer ReLU NN with m = poly(n) neurons. Let α ∈ (0.01, 1) be some fixed
constant. Let ϵ ∈ (0, 0.1) be an accuracy parameter. Let T (ϵ) denote the overall time for shrinking
loss down to ϵ. There is a (randomized) algorithm (Algorithm 1) that, with probability 1−1/ poly(n),
reduces the training error by 1/2 in each iteration (note that ft is fm,n at time t)

ℓ2−loss(ft+1, y) ≤
1

2
· ℓ2−loss(ft, y)

in amortized cost-per-iteration (CPI)

Õ(m1−αnd+ n3).

The overall running time (including initialization) T (ϵ) is

O(mnd) + Õ(m1−αnd+ n3)) · log(1/ϵ).

If the algorithm is allowed to use fast matrix multiplication (FMM), then the CPI becomes

Õ(m1−αnd+ nω),

and the T (ϵ) becomes

O(mnd) + Õ(m1−αnd+ nω) · log(1/ϵ),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where ω is the exponent of matrix multiplication, which is currently approximately equal to 2.373.

The randomness is from two parts: the first part is random initialization weights, and the second part
is due to internal randomness of our algorithm.
Remark 1.2. Notice that the linear cost term O(mnd) for merely computing the network’s loss
matrix, is only incurred once at the initialization of our training algorithm, whereas in Brand et al.
(2021) and all prior work Cai et al. (2019); Zhang et al. (2019), this linear term is payed every
iteration (i.e., T · mnd as opposed to our T + mnd). Our theorem therefore provides a direct
improvement over Brand et al. (2021) when m = poly(n).

Key Insight: DNNs as Binary-Search Trees Our algorithm is based on an alternative view of
DNNs, as a set of binary search trees, where the relationship between the network’s weights and a
training data point is encoded using a binary tree: Each leaf represents the inner product of a neuron
and the training data, and each intermediate (non-leaf) node represents the larger out of the left and
right child. This simple yet new representation of neural networks turns out to enable fast training
– The centerpiece of our result is an analysis proving that in each iteration, only a small subset K
of paths in this tree collection needs to be updated (amortized worst-case), due to the sparsity of
activations. Consequently, we only need to update nK logm tree nodes per iteration. In the Technical
Overview Section 4, we elaborate more on its details.

1.2 OUR RESULT – A LOWER BOUND

When it comes to efficiently maintaining and updating the weights, we design a special data structure
supports the dynamic sensitive weight searching. The task is defined as follows.
Definition 1.3 (Dynamic Sensitive Weight Searching (DSWS)). We ask to design a data structure
which supports the following procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd. Given a series of weights
w1, w2, · · · , wm and datas x1, x2, · · · , xn, it preprocesses them.

• UPDATE(z ∈ Rd, j ∈ [m]). Given a new weight vector z ∈ Rd and index j ∈ [m], it
updates weight wj with z.

• QUERY(i ∈ [n], τ ∈ R). Given a query index i ∈ [n] and a threshold τ ∈ R, it finds all
index j ∈ [m] such that ⟨wj , xi⟩ ≥ τ .

We propose a data structure to solve DSWS with Õ(nd) time update and Õ(Kq) where Kq := |{j ∈
[m] | ⟨wj , xi⟩ ≥ τ}|. The full detail can be found in Theorem B.1. By the sparsity guarantee, we
have |Kq| ≤ m0.76, which leads to a query time of Õ(m0.76) and total time of Õ(m0.76n) to query
for all i ∈ [n]. In order to evaluate how far is our algorithm away from optimal, we provide a lower
bound result for it.
Theorem 1.4 (Lower Bound for DSWS, informal version of Theorem 7.3). Let d = 2O(log∗ n) and
m = poly(n). Then for every ϵ > 0, assuming SETH or OVC, DSWS cannot achieve O(n1−ϵ) time
of update and O(m0.76n1.24−ϵ) time to query for all i ∈ [n].

This result shows that it is almost impossible to truly improve our algorithm. We provide the full
discussion of this hardness in Section 7.

Roadmap. We describe the organization of this work in next a few sentences. We state some related
work in Section 2. We propose our main problem and present the tools we need to use in Section 3.
In Section 4, we specifically overview the techniques used in this paper. In Section 5, we analyze
the correctness of our algorithm, specifically, we prove the training loss converges. In Section 6, we
analyze the running time of our algorithm. We provide the lower bound analysis in Section 7. In
Section 8, we state our conclusion.

2 RELATED WORK

Speedup with high-dimensional search data structure. Advancements in high-dimensional
search data structures allow for rapid identification of points within complex geometric query

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

regions (such as half-spaces and simplices). Presently, two primary methodologies are utilized in
the construction of these structures. The first relies on Locality Sensitive Hashing (LSH) Indyk
& Motwani (1998), designed to discover points nearby in terms of small ℓ2 distance Datar et al.
(2004); Andoni & Razenshteyn (2015); Andoni et al. (2015; 2017); Razenshteyn (2017); Andoni
et al. (2018); Backurs et al. (2019); Dong et al. (2020) or large inner product Shrivastava & Li
(2014a;b; 2015) relative to a query point q ∈ Rd among a set of points S ⊆ Rd. While LSH-based
algorithms are fast in practice, they primarily support only approximate nearest neighbor queries.
The alternative approach involves space partitioning data structures, such as partition trees Matoušek
(1991); Matousek (1992); Agarwal et al. (1992); Afshani & Chan (2009); Chan (2010), k-d trees,
range trees Chan & Tsakalidis (2017); Toth et al. (2017); Chan (2019), and Voronoi diagrams Agarwal
et al. (1994); Chan (2000), which allow for exact location of points within the queried area.

Over-parameterized Neural Networks. Convergence through over-parametrization, where train-
able parameters (m) significantly outnumber training data points (n, i.e., m≫ n), is a core aspect of
deep learning. This setup helps to explain the adaptability of deep neural networks across diverse
applications. Recent studies have focused on theoretically understanding the mechanisms behind
deep learning convergence and generalization in this context Li & Liang (2018); Du et al. (2019);
Allen-Zhu et al. (2019b;c); Arora et al. (2019a;b); Song & Yang (2019); Cai et al. (2019); Zhang
et al. (2019); Cao & Gu (2019); Zou & Gu (2019); Oymak & Soltanolkotabi (2020); Ji & Telgarsky
(2019); Lee et al. (2020); Huang et al. (2021); Zhang et al. (2020); Brand et al. (2021); Song et al.
(2021b); Zhang (2022); Shi et al. (2022; 2024); Gu et al. (2024); Alman et al. (2024b). It is noted
that as network width (m) increases, the behavior of neural networks aligns with a neural tangent
kernel (NTK). Research shows that (stochastic) gradient descent ((S)GD) can effectively train wide
networks starting from random initializations to achieve minimal training error in polynomial steps
Jacot et al. (2018).

Fine-grained Complexity and Orthogonal Vector Conjecture. The Orthogonal Vector problem
(OV) is a key issue in fine-grained complexity, posing the question: given sets X,Y ⊆ {0, 1}d of
equal size n, are there vectors x ∈ X and y ∈ Y such that their dot product ⟨x, y⟩ = 0? The advanced
algorithm for this Abboud et al. (2014a); Chan & Williams (2016) operates in a time complexity of
n2−1/O(log c) for dimension d = c log n, with c ≥ 1, and as d grows, its time complexity nears the
trivial n2. The orthogonal vector conjecture (OVC) posits a lower bound for OV when d = ω(log n).
Additionally, the Strong Exponential Time Hypothesis (SETH) suggests that the difficulty of k-
SAT implies OVC. This conjecture is foundational for deriving conditional lower bounds for a
range of significant problems that otherwise have polynomial-time solutions across several fields,
including pattern matching Abboud et al. (2014b); Bringmann (2014a;b); Backurs & Indyk (2016);
Bringmann & Mulzer (2016); Bringmann et al. (2017); Bringman & Künnemann (2018); Chen &
Williams (2019), graph theory Roditty & Vassilevska Williams (2013); Abboud et al. (2018); Gao
et al. (2018); Krauthgamer & Trabelsi (2018); Dalirrooyfard et al. (2022); Chan et al. (2022), and
computational geometry Buchin et al. (2016); Rubinstein (2018); Williams (2018a); Chen (2018);
Karthik & Manurangsi (2020). For further details, see the survey Williams (2018b).

3 PRELIMINARIES

3.1 MODEL FORMALIZATION

In this section, we formalize the NN model and the main problem of this paper. When there is no
ambiguity, we will always use the notations in this section throughout the whole paper.

We first define the 2-layer ReLU activated neural network and its loss function.
Definition 3.1 (2-layer ReLU activated neural network). Suppose the dimension of input is d, the
number of intermediate nodes (or hidden neurons) is m, the dimension of output is 1, the batch
size is n and the shifted parameter is b (b ≥ 0). Then the weight of the first layer can be charac-
terized by m d-dimensional vectors w1, w2, · · · , wm, and the weight of the second layer can be
characterized by m scalars a1, a2, · · · , am. For convenience, define W = [w⊤

1 w⊤
2 · · · w⊤

m]⊤ and
a = [a1 a2 · · · am]⊤, given an input x ∈ Rd, the 2-layer ReLU activated neural network outputs
f(W,x, a) = 1√

m

∑m
r=1 arϕ(⟨wr, x⟩) where ϕ(x) = max{x, b} is called shifted ReLU activation

function.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For simplicity, we suppose the data is normalized, that is, ∥x∥2 = 1. This is natural in both practical
machine learning, and machine learning theory.

We also suppose a ∈ {−1,+1}m is fixed throughout training. This is also natural in the area of
theoretical deep learning Li & Liang (2018); Du et al. (2019); Allen-Zhu et al. (2019b;a); Song &
Yang (2019); Brand et al. (2021); Zhang (2022).

For more detailed formalizations, we refer to Section A.2 in the appendix.

3.2 PROBLEM DEFINITION

We formalize our main problem as follows.

Definition 3.2 (Main problem). The goal of this paper is to propose a training algorithm such that
for an arbitrary 2-layer ReLU activated neural network defined in Definition 3.1, it converges with
high probability, and the running time of each iteration is sublinear in nmd (i.e. o(nmd)).

4 TECHNICAL OVERVIEW

Here, we describe the outline of the main ideas required to prove Theorem 1.1.

Key Ideas Our algorithm relies on two simple but powerful observations about training 2-layer
neural networks: The first observation is that the Jacobian matrix of the loss function is sparse –
When weights are initialized randomly (with appropriately chosen bias parameter b), the fraction of
nonzero entries in the Jacobi matrix is small. Let c be some fixed constant in [0.1, 1]. We show that
there is a choice of the parameter b ensuring simultaneously that1

• For every input xi, there are only O(m1−c) activated neurons;

• The loss of each iteration is still at most a half of the loss of the last iteration.

Our second observation is that the positions of the nonzero entries in Jacobian matrix do not
change much. This can be seen using the “gradient flow" equation (via Gauss-Newton method)
Wt+1 = Wt − J⊤

t gt, where gt := argming ∥JtJ⊤
t gt − (ft − y)∥2. Since the Jacobian matrix is

sparse, it is not hard to see that only a little fraction of the weights need to be modified, i.e., the
change from Wt to Wt+1 involves updating only a small number of entries.

These two observations suggests a natural “binary-search" type algorithm for updating the weight
matrix in sublinear time o(nmd) per iteration.

Threshold search data structure We design a dynamic data structure for detecting and maintaining
the non-zero entries of the Jacobian matrix J of the network loss, as it evolves over iterations. Notice
that whether an entry of J is nonzero is equivalent to whether the inner product of an input xi and a
weight wj is larger than b (hence ϕ(w⊤

j xi) > 0).

Accordingly, for every input xi in a batch, our algorithm maintains a binary search tree Ti where each
leaf stores the inner product of xi and a weight wj , and every non-leaf node stores the the maximum
of the values of its two children. In this way, non-zero entries can be found by searching, in all the
trees {Ti}i∈[n], from root to leaf and ignoring the unnecessary branches.

To implement this process efficiently, our data structure needs to support the following three operations
(See Section B for the formal details): (1) Initialization. Given input vectors x1, · · · , xn and weight
vectors w1, w2, · · · , wm as input, it constructs n binary trees T1, . . . , Tn as described above, in
O(mnd) time. (2) Updating of weights. Taken an index j ∈ [m] and a target value z, it replaces
wj by z in O(nd+n logm) time, as if initializing it with w1, w2, · · · , wj−1, z, wj+1, · · · , wm from
scratch. (3) Threshold Search Query. Given an index i and a threshold τ as input, our data structure
rapidly finds all the weights wj which satisfies ⟨xi, wj⟩ ≥ τ in O(Kq logm) time, where Kq is the
number of satisfied weights. They can be used to find the nonzero entries of the Jacobian matrix J .

1We refer the readers to Section F for more details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A Fast DNN Training Algorithm Using the above dynamic data structure, we design a fast neural
network training algorithm (see Algorithm 1) composed of initialization and the (dynamic) training
process. At initialization, it initializes the weight vector W0 randomly.

The training process consists of maintaining sparse-recovery sketches Ailon & Chazelle (2006); Lu
et al. (2013); Nakos & Song (2019), online regression, and implicit weight maintenance. The goal of
the first two techniques is to efficiently solve the t-th iteration regression problem (cf. Brand et al.
(2021)) gt := argming ∥JtJ⊤

t g − (ft − y)∥,. The idea of implicit-weight-maintenance (via our data
structure) is to update weights using the information propagated by the loss function.

The details of these three tools can be summarized as follows:

• Sketch maintenance The goal of sketch computing is to eliminate the disastrous influence
of the high dimension of J⊤

t (it has md rows) when solving regression problem in Eq. (4).
Roughly speaking, in sketch computing, we find a sketch matrix S with far smaller rows
than J⊤

t such that for any d-dimensional vector x, ∥SJ⊤
t x∥2 is very close to ∥J⊤

t x∥2. We
show that sketch computing runs in o(mnd) time.

• Iterative regression solver To speed-up the solution of the online regression problem (4),
we show how to implement the iterative Conjugate-Gradient solver (a-la Brand et al. (2021))
in sub-linear time to find an approximate solution gt in time o(mnd) + Õ(n3). We then
prove that the (accumulated) approximation errors do not harm the convergence rate and
precision in our analysis.

• Implicit weight maintenance The goal of implicit weight maintenance is to update weights
according to the outcome of the iterative regression solver. Updating a single weight can be
done by calling UPDATE once. With the result of iterative regression and the fact that only
m−c (where c is some fixed constant c ∈ [0.1, 1]) fraction of entries of Jt are nonzero, we
show that our algorithm finishes the update of weights in o(mnd) time.

The details can be found in the pseudocode of Algorithm 5.

5 CONVERGENCE ANALYSIS

We focus on the convergence of our training algorithm in this section and leave the proof of running
time in Section 6. Specifically, the goal of this section is to prove the following result, which implies
that for the neural network randomly initialized at the beginning of our algorithm, the loss function
converges linearly with high probability. This section only contains a proof sketch. For more detailed
correctness analysis, we refer the readers to section D. Our main convergence result is the following:
Theorem 5.1 (Formal version of Theorem 1.1, the convergence part). Let m be the width of the
NN. If m = Ω(max{λ−4n4, λ−2n2d log(16n/ρ)}), then there is a constant c′ > 0 so that our
algorithm obtains ∥ft+1 − y∥2 ≤ 0.5 · ∥ft − y∥2. It holds with probability 1− 5

2ρ− n2 · exp(−m ·
min{c′e−b2/2, R

10
√
m
}) The randomness comes from two parts: the initialization of neural network

and iterative algorithm itself.

Bounding the Function Value and Jacobian at the Initialization We provide a lemma which
shows that, with random initialization, as long as the 2-layer NN is wide enough, the norm of weight
matrix, the initial predicted value and the Frobenius norm of the initial Jacobi matrix are all not large
with high probability. We defer its proof into Section D.
Lemma 5.2 (Informal version of Lemma D.1). Consider shifted ReLU. Suppose m is the width of
neural network. If m = Ω(d log(16n/ρ)), then we have the followingh olds with probability 1− ρ/2,

• ∥W0∥2 = O(
√
m).

• maxi∈[n] |f(W,xi)| = O(1).

• maxi∈[n] ∥JW0,xi
∥F = O(1).

G does not move much when W does not move much We provide a lemma which proves that,
as long as the 2-layer NN is wide enough, then with high probability that, for randomly initialized

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

weights W0, if W0 changes to W after a small change, then the Gram matrix GW will not move
much and the minimal eigenvalue of GW will also not move much. And We leave its proof in Section
D.

Lemma 5.3 (Shifted Perturbation Lemma, informal version of Lemma D.2). Consider shifted ReLU
with b. Let b ≥ 0. Let R0 > 0. Suppose m ≥ Ω(1) · max{b2R2

0, n
2R2

0λ
−2, nλ−1 log(n/ρ)},

then with prob. ≥ 1 − ρ − n2 · exp
(
−m · min{c′e−b2/2, R0

10
√
m
}
)
, for any weight W ∈ Rd×m

satisfying maxr∈[m] ∥wr − wr(0)∥2 ≤ R0/
√
m, the following holds: ∥GW − GW0∥F ≤

λ/2, and λmin(GW) ≥ λ/2. Note that wr is representing the r-th column of W .

Perturbed weights difference under shifted NTK We give a lemma which proves that, as long as
the 2-layer NN is wide enough, then with high probability that, for randomly initialized weights W0,
if W0 changes to W after a small change, the each row JW,xi

of Jacobi matrix JW will not change
much, and the Frobenius norm of JW will also not change much. We leave its proof in Section D.

Lemma 5.4 (Informal version of Lemma D.3). Suppose R0 ≥ 1 and m = Ω̃(n2R2
0). With probability

at least 1 − ρ over the random initialization of W0, the following holds for any set of weights
w1, . . . wm ∈ Rd satisfying maxr∈[m] ∥wr − wr(0)∥2 ≤ R0/

√
m,

• ∥W −W0∥ = O(R0),

• ∥JW,xi − JW0,xi∥2 = Õ(R
1/2
0 /m1/4) and ∥JW − JW0∥F = Õ(n1/2R

1/2
0 /m1/4),

• ∥JW ∥F = O(
√
n).

Induction Hypothesis Finally, we’re ready to prove our major theorem, Theorem 5.1. Note that
we only need to prove the induction hypothesis described in definition 5.5, then Theorem 5.1 holds
by mathematical induction. We divide the proof of this hypothesis into 2 parts and prove them in
section E.1 and section E.2 respectively.

Definition 5.5 (Induction hypothesis). Define R0 ≈ n/λ. For any fixed t, if ∥ft−y∥2 ≤ 1
2∥ft−1−y∥2

and maxr∈[m] ∥wr(t) − wr(0)∥2 ≤ R0/
√
m. Then we have ∥ft+1 − y∥2 ≤ 1

2∥ft − y∥2 and
maxr∈[m] ∥wr(t+ 1)− wr(0)∥2 ≤ R0/

√
m.

Formally, we describe the process of proving this hypothesis by the following Lemma 5.6, and
specific proof can be seen in Section E.

Lemma 5.6. Suppose initial weights W0 satisfies the restriction of Lemma 5.2, 5.3 and 5.4, then the
induction hypothesis described in Definition 5.5 holds.

Algorithm 1 Our training algorithm, informal version of Algorithm 5
1: procedure OURALGORITHM(X , ϵ)
2: Initialization Step: randomly pick W (0), T ← log(1/ϵ), create a data structure
3: Iterative Step: start with t = 1
4: Step 1: Do the sketch computing, it forms matrix S ∈ RN×n

5: Implicitly write down the Jacobian matrix Jt ∈ Rn×md

6: Choose sketch related parameters as Definition 6.2
7: Find sketching matrix S ∈ Rssketch×md of J⊤

t
8: Step 2 Run an iterative regression algorithm with small size problem (size reduced by

sketch)
9: Find approximated solution gt of regression problem argming ∥(JtS⊤)(SJ⊤

t)g − (ft −
y)∥

10: Step 3: Maintain the weight implicitly
11: Update the weights Wt to Wt+1

12: Update the TS data structure using Wt+1

13: Increment t by 1
14: end procedure

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 RUNNING TIME ANALYSIS

This section focuses on analyzing the running time of our algorithm. It will show that when m is
large enough, the CPI is o(nmd). We first present Theorem 6.1, our main running time result of the
paper. For more proof details of the running time, we refer the readers to Section F. For simplicity of
presentation, we use o(m) and o(mnd) in this section. In Section F, we explicitly compute time by
m1−α and m1−αnd where α ∈ [0.01, 1) is some fixed constant. Our main running time result is the
following:

Theorem 6.1 (The running time part of Theorem 1.1). The cost per iteration (CPI) of our algorithm
is Õ(n2m0.76d + n3) or Õ(m1−αnd + n3) by assuming m is as large as nc without using FMM.
The CPI of our algorithm is Õ(n2m0.76d+ nω) or Õ(m1−αnd+ nω) by assuming m is as large as
nc with using FMM. Here α ∈ [0.1, 0.24], c ≥ 8 are two constant factors.

Proof. Combining Lemma F.2, Lemma F.3 and Lemma F.4, the computation time of each iteration is

Õ(n2m0.76d) + Õ(nm0.76d+ n3) +O(n2m0.76(d+ logm)) = Õ(n2m0.76d+ n3).

And if using FMM, similarly the running time is Õ(n2m0.76d + nω). By Theorem 5.1, we have:
The time to reduce the training loss to ϵ is Õ((n2m0.76d+n3) log(1/ϵ)). Taking advantage of FMM,
the time is Õ((n2m0.76d + nω) log(1/ϵ)). Further, for example, if m = nc where c is some large
constant, then n2m0.76d ≤ nm1−αd where α ∈ [0.1, 0.24). Hence the time of each iteration is
Õ(m1−αnd+n3), and the time to reduce the training loss to ϵ is Õ((m1−αnd+n3) log(1/ϵ)). Taking
advantage of FMM, the time is Õ((m1−αnd+ nω) log(1/ϵ)). Thus we complete the proof.

Sketch Computing. We provide the choice of sketching parameters in the following definition and
give a lemma that analyzes the running time of the sketch computing process in Algorithm 5 under
these parameters. It will imply that sketch computing is sublinear in m.

Definition 6.2 (sketch parameters). We choose sketch parameters in the following ways: ϵsketch =
0.1, δsketch = 1/poly(n), ssketch = n poly(ϵ−1

sketch, log(n/δsketch))

Lemma 6.3 (Step 1, sketch computing. Informal version of Lemma F.2). The sketch computing
process of Algorithm 1 (its formal version is Algorithm 5) runs in time o(mnd).

Iterative regression. We present a lemma that analyzes the running time of the iterative regression
process in Algorithm 5. It implies that the running time of the iterative regression is sublinear in m.

Lemma 6.4 (Step 2, running time of iterative regression. Informal version of Lemma F.3). The itera-
tive regression of Algorithm 1 (its formal version is Algorithm 5) runs in time O(o(mnd) log(n/δ) +
n3). Taking advantage of FMM, it takes time O(o(mnd) log(n/δ) + nω), where ω is the exponent of
matrix multiplication. Currently ω ≈ 2.373 Williams (2012).

Implicit weight maintenance. We give a lemma that analyzes the running time of the implicit
weight maintenance process in Algorithm 5. It implies that implicit weight maintenance process is
sublinear in m.

Lemma 6.5 (Step 3, implicit weight maintenance. Informal version of Lemma F.4). The implicit
weight maintenance of Algorithm 1(its formal version is Algorithm 5) runs in time o(nm)·(d+logm).

7 LOWER BOUND

In this section, we provide a lower bound discussion here.

7.1 PREVIOUS RESULTS ON MAXIMUM INNER PRODUCT

We state a result considering the maximum bichromatic inner product lower bound here Chen (2018).
For more background about complexity involving SETH and OVC, we refer reader to Appendix A.10

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Definition 7.1 (Bichromatic Maximum Inner Product (Max− IPn,d)). For n, d ∈ N , the Max− IPn,d

probelm is defined as: given two sets A,B each consisting of n vectors from {0, 1}d compute
OPT(A,B) := maxa∈A,b∈B a · b. We use Z−Max− IPn,d to denote the same problem, with A,B
being sets of vectors from Zd.

Theorem 7.2 (Maximum bichromatic inner product lower bound Chen (2018)). Under assumption of
SETH (Definition A.23) or OVC (Definition A.25), there is a constant c such that any exact algorithm
for Z −Max − IPn,d in dimension d = clog

∗ n requires n2−o(1) time, with vectors of O(log n)-bit
entries.

7.2 LOWER BOUND BY REDUCTION FROM MAXIMUM INNER PRODUCT SEARCH

Here we provide the theorem for the lower bound.
Theorem 7.3 (Lower Bound for DSWZ, formal version of Theorem 1.4). Let c ∈ (0, 1) be a constant.
Let d = 2O(log∗ n). Assume m = poly(n). Given SETH and OVC, the DSWZ (Definition 1.3) cannot
have update time of O(n1−ϵ) and query time of O(m1−cnc−ϵ) for any ϵ ∈ (0, c).

Proof. Let ϵ > 0 be a parameter. We consider m ≥ n and d = clog
∗ n, where c is defined as in

Theorem 7.2. Assume there is a data structure on a instance on m weights and n data points in
d+ 1 dimensional space, with an update time of O(n1−ϵ) and query time of O(n1−ϵ). Following
Theorem 7.2, we construct a hard instance of Z−Max− IPm,d problem with W = {w1, . . . , wm} ⊆
Zd, X = {x1, . . . , xm} ⊆ Zd.

We first construct two new data sets W,X ⊆ Zd+1 where for each wi ∈ W , we let (wi)d+1 to be
set later, and for every xi ∈ X , we set (xi)d+1 = −1. And to utilize DSWZ, we divide X into

T = O(m/n) different sets, we use Xt to denote t-th set for all t ∈ [T]. Each set X
(t)

has size of n.

Now we utilize DSWZ data structure to solve it. We apply our DSWZ for each pair (W,X
(t)
) for

every t ∈ [T]. The general idea is to perform a binary search on the value of OPT(W,X), with
calling to DSWZ in each iteration. Notice that, the number of iterations is at most O(log n).

Assume in some iteration, the threshold is s ∈ Z. We call UPDATE(s, j) to update each w
(t)
j by

setting the d+ 1-th entry to be s for every j ∈ [m] and every t ∈ [T]. This takes time O(m · n1−ϵ)
for each t ∈ [T], by the assumption of running time. Now for each i ∈ [n], we call QUERY(i, 0). By
the construction of our datasets, we know that ⟨wi, xj⟩ ≥ 0 iff ⟨wi, xj⟩ ≥ s. This step takes time
O(n ·m1−cnc−ϵ) = O(m1−cn1+c−ϵ) time and outputs all the pair of (i, j) such that ⟨wi, xj⟩ ≥ s for
each t ∈ [T]. Combining the above results, we have the total running time to solve Z−Max− IPn,d

being

O(T · (m · n1−ϵ +m1−cn1+c−ϵ)) = O(m2n−ϵ +m2−cnc−ϵ),

which can be bounded by O(m2−ϵ̃) since m = poly(n) for some ϵ̃ < ϵ.

Above two steps implies that each iteration of the binary search takes time O(m2−ϵ̃). Thus, Z −
Max − IPm,d problem can be solved in time O(m2−ϵ̃ · log n) = O(m2−o(1)). This contradicts
Theorem 7.2. Hence, this data structure cannot exist.

8 CONCLUSION

The computational cost of training massively overparametrized DNNs is posing a major scalability
barrier to the progress of AI, and motivates rethinking the traditional SGD-based training algorithms.
For a neural network with m parameters and an input batch of n datapoints in Rd, previous state-of-art
Brand et al. (2021); Zhang et al. (2019) show that dramatically fewer iterations (epochs) Tϵ can be
achieved via second-order methods, albeit with O(mnd+ n3) cost per iteration, i.e., O(Tϵ ·mnd)
overall time to reduce training error below ϵ. Our work proposes a simple yet powerful view of the
gradient flow process on wide DNNs (m = poly(n)), as a collection of slowly-changing binary search
trees, enabling the design of a training algorithm for 2-layer overparametrized DNNs in sublinear
cost-per-iteration, while enjoying the ultra-fast convergence rate of second-order (Gauss-Newton)
methods, i.e., in total time Õ(Tϵ +mnd) instead of the aforementioned Õ(Tϵ ·mnd).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to
algorithm design. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pp. 218–230. SIAM, 2014a.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment
of sequences. In Automata, Languages, and Programming: 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I 41, pp. 39–51. Springer, 2014b.

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for lcs and
other sequence similarity measures. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pp. 59–78. IEEE, 2015.

Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Or Zamir. Subtree isomorphism revisited. ACM Transactions on Algorithms (TALG), 14(3):1–23,
2018.

Peyman Afshani and Timothy M Chan. Optimal halfspace range reporting in three dimensions. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pp. 180–186.
SIAM, 2009.

Pankaj K Agarwal, David Eppstein, and Jirí Matousek. Dynamic half-space reporting, geometric
optimization, and minimum spanning trees. In Annual Symposium on Foundations of Computer
Science, volume 33, pp. 80–80. IEEE COMPUTER SOCIETY PRESS, 1992.

Pankaj K Agarwal, Mark De Berg, Jiří Matoušek, and Otfried Schwarzkopf. Constructing levels in
arrangements and higher order voronoi diagrams. In Proceedings of the tenth annual symposium
on Computational geometry, pp. 67–75, 1994.

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss
transform. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pp. 557–563, 2006.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. Advances in neural information processing systems, 32,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019c.

Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou.
More asymmetry yields faster matrix multiplication. arXiv preprint arXiv:2404.16349, 2024a.

Josh Alman, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time preprocessing:
Fast neural network training via weight-data correlation preprocessing. Advances in Neural
Information Processing Systems, 36, 2024b.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pp. 793–801, 2015.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical
and optimal lsh for angular distance. Advances in neural information processing systems, 28, 2015.

Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh forest: Practical algorithms
made theoretical. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 67–78. SIAM, 2017.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search in high
dimensions. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pp. 3287–3318. World Scientific, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019b.

Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 457–466. IEEE, 2016.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation in
high dimensions. Advances in neural information processing systems, 32, 2019.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS. arXiv preprint arXiv:2006.11648, 2021.

Karl Bringman and Marvin Künnemann. Multivariate fine-grained complexity of longest common
subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1216–1235. SIAM, 2018.

Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pp. 661–670. IEEE, 2014a.

Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pp. 661–670. IEEE, 2014b.

Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete fréchet distance. Journal of
Computational Geometry, 7(2):46–76, 2016.

Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expression
membership testing. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 307–318. IEEE, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Kevin Buchin, Maike Buchin, Maximilian Konzack, Wolfgang Mulzer, and André Schulz. Fine-
grained analysis of problems on curves. EuroCG, Lugano, Switzerland, 3, 2016.

Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei Wang.
A gram-gauss-newton method learning overparameterized deep neural networks for regression
problems. arXiv preprint arXiv:1905.11675, 2019.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of small
depth circuits. In International Workshop on Parameterized and Exact Computation, pp. 75–85.
Springer, 2009.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in neural information processing systems, 32, 2019.

Timothy M Chan. Random sampling, halfspace range reporting, and construction of \ lowercase
(≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

Timothy M Chan. Optimal partition trees. In Proceedings of the twenty-sixth annual symposium on
Computational geometry, pp. 1–10, 2010.

Timothy M Chan. Orthogonal range searching in moderate dimensions: kd trees and range trees
strike back. Discrete & Computational Geometry, 61:899–922, 2019.

Timothy M Chan and Konstantinos Tsakalidis. Dynamic orthogonal range searching on the ram,
revisited. Leibniz International Proceedings in Informatics, LIPIcs, 77:281–2813, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more: Quickly
derandomizing razborov-smolensky. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms, pp. 1246–1255. SIAM, 2016.

Timothy M Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for triangle problems
under even more believable hypotheses: reductions from real apsp, real 3sum, and ov. In Pro-
ceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1501–1514,
2022.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
Proceedings of the 33rd Computational Complexity Conference, pp. 1–45, 2018.

Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 21–40. SIAM, 2019.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity
time. In STOC, 2013.

Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. Hardness of approximate diameter:
Now for undirected graphs. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 1021–1032. IEEE, 2022.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Yichuan Deng, Zhao Song, and Shenghao Xie. Convergence of two-layer regression with nonlinear
units. arXiv preprint arXiv:2308.08358, 2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Enhancing stochastic gradient descent: A unified frame-
work and novel acceleration methods for faster convergence. arXiv preprint arXiv:2402.01515,
2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yihe Dong, Piotr Indyk, Ilya P Razenshteyn, and Tal Wagner. Learning space partitions for nearest
neighbor search. ICLR, 2020.

Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for l 2
regression and applications. In Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pp. 1127–1136, 2006.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approxima-
tion of matrix coherence and statistical leverage. The Journal of Machine Learning Research, 13
(1):3475–3506, 2012.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. ICLR, 2019.

Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic applications. ACM Transactions on
Algorithms (TALG), 15(2):1–35, 2018.

12

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiuxiang Gu, Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers
of softmax: Provable optimization, applications in diffusion model, and beyond. arXiv preprint
arXiv: 2405.03251, 2024.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent kernel-based
framework for federated learning analysis. In International Conference on Machine Learning, pp.
4423–4434. PMLR, 2021.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In FOCS, 2022.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2019.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane method
for convex optimization, convex-concave games and its applications. In STOC, 2020.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of
the sixteenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

CS Karthik and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic is as hard as
bichromatic. Combinatorica, 40(4):539–573, 2020.

Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathe-
matics and Mathematical Physics, 20(1):53–72, 1980.

Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow. ACM
Transactions on Algorithms (TALG), 14(4):1–15, 2018.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, et al. Generalized leverage score sampling for
neural networks. Advances in Neural Information Processing Systems, 33:10775–10787, 2020.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in O(

√
rank) iterations and faster algorithms for maximum flow. In 55th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), pp. 424–433, 2014.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory (COLT), pp. 2140–2157. PMLR, 2019.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in Neural Information Processing Systems, 31, 2018.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. Advances in neural information processing systems,
26, 2013.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and back.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 253–262.
IEEE, 2013.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 593–602. IEEE, 2016.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Jiří Matoušek. Efficient partition trees. In Proceedings of the seventh annual symposium on
Computational geometry, pp. 1–9, 1991.

Jiri Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics: Theory
and Experiment, 2021(12):124003, 2021.

Vasileios Nakos and Zhao Song. Stronger l2/l2 compressed sensing; without iterating. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 289–297, 2019.

Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In 2013 ieee 54th annual symposium on foundations of computer science,
pp. 117–126. IEEE, 2013.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Eric Price, Zhao Song, and David P Woodruff. Fast regression with an ℓ∞ guarantee. In ICALP.
arXiv preprint arXiv:1705.10723, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Ilya Razenshteyn. High-dimensional similarity search and sketching: algorithms and hardness. PhD
thesis, Massachusetts Institute of Technology, 2017.

Ilya Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’16, pp. 250–263, 2016.

James Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming.
Mathematical programming, 40(1):59–93, 1988.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pp. 515–524, 2013.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pp. 1260–1268, 2018.

Tamas Sarlos. Improved approximation algorithms for large matrices via random projections. In
2006 47th annual IEEE symposium on foundations of computer science (FOCS’06), pp. 143–152.
IEEE, 2006.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2022.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product
search (mips). Advances in neural information processing systems, 27, 2014a.

Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing (alsh) for
maximum inner product search (mips). arXiv preprint arXiv:1410.5410, 2014b.

Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for indexing binary inner products
and set containment. In Proceedings of the 24th international conference on world wide web, pp.
981–991, 2015.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise ℓ1-norm
error. In Proceedings of the 49th Annual Symposium on the Theory of Computing (STOC), 2017.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems (NeurIPS), 34, 2021a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

Ryan Spring and Anshumali Shrivastava. A new unbiased and efficient class of lsh-based sam-
plers and estimators for partition function computation in log-linear models. arXiv preprint
arXiv:1703.05160, 2017.

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computational
geometry. CRC press, 2017.

Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances in
Adaptive Data Analysis, 3(01n02):115–126, 2011.

Pravin M. Vaidya. An algorithm for linear programming which requires o(((m+n)nˆ2 + (m+n)ˆ1.5 n)l)
arithmetic operations. In Alfred V. Aho (ed.), Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pp. 29–38. ACM, 1987.

Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets. In 30th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 338–343, 1989.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge University Press, 2019.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical
Computer Science, 348(2-3):357–365, 2005.

Ryan Williams. On the difference between closest, furthest, and orthogonal pairs: Nearly-linear
vs barely-subquadratic complexity. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1207–1215. SIAM, 2018a.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceed-
ings of the forty-fourth annual ACM symposium on Theory of computing (STOC), pp. 887–898.
ACM, 2012.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447–3487.
World Scientific, 2018b.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustainable ai: Environmental
implications, challenges and opportunities. Proceedings of Machine Learning and Systems, 4,
2022.

Xiaoxia Wu, Simon S Du, and Rachel Ward. Global convergence of adaptive gradient methods for an
over-parameterized neural network. arXiv preprint arXiv:1902.07111, 2019.

Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent
for over-parameterized neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and maintenance.
Master’s thesis, Carnegie Mellon University, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora. Over-
parameterized adversarial training: An analysis overcoming the curse of dimensionality. Advances
in Neural Information Processing Systems, 33:679–688, 2020.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural
networks. Advances in neural information processing systems, 32, 2019.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

Roadmap. The appendix of this paper is organized as follows. Section A presents the preliminary
tools which are used in the other parts of appendix. Section B presents the complete description
and implementation of the threshold search data structure. Section C presents the formal algorithm
representation of our fast neural network training algorithm. Section D shows the omitted proofs of
some lemmas in the convergence analysis. Section E presents the complete the induction hypothesis
proof to show the convergence of our training algorithm. Section F presents the formal proof of
the running time of our training algorithm, especially shows a more specific conclusion compared
with the main body. Section G presents a formal analysis of the applying conditions of our training
algorithm.

A PRELIMINARY

This section shows some preliminary tools to be used later. We start with defining some basic
notations in Section A.1. In Section A.2 we provide more concept for the model formalization. In
Section A.3 we describe neural tangent kernel and its relation with data separability. In Section A.4
we introduce a sketching tool. In Section A.5 we introduce the result for fast matrix multiplication.
In Section A.6 we state the probability tools to be used. In Section A.7 we presented a previous
result on the relationship of changes of weights and the change of the shifted NTK matrix. In
Section A.8 we provide some useful results about fast regression. In Section A.9 we provide results
about sparsity-based preserving. We introduce SETH and OVC from computational complexity in
Section A.10.

A.1 NOTATIONS.

For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For any function f , we use Õ(f) to
denote f ·poly(log f). For two vectors w and x, we use ⟨w, x⟩ to denote inner product. We use a⊤ to
denote the transpose of a. We use E[] to denote expectation and Pr[] for probability. For convenience,
we use FMM to denote fast matrix multiplication. We use NTK to denote neural tangent kernel.
We use ReLU to denote rectified linear unit. We use NN to denote neural network. We use CPI to
represent the cost per iteration. We use PSD to denote positive semidefinite. We use log∗ n to denote
the iterated logarithm, which is a function grows slowly as barely larger than a constant.

A.2 MORE ABOUT THE MODEL

Definition A.1 (Loss function). Suppose the dimension of input is d, the number of intermediate
nodes (or hidden neurons) is m, the dimension of output is 1, the batch size is n and the shifted
parameter is b (b ≥ 0). For a fixed set of n points x1, x2, · · · , xn ∈ Rd and their corresponding
labels y1, y2, · · · , yn ∈ R. Consider the following loss function:

L(W) :=
1

2

n∑
i=1

(yi − f(W,xi, a))
2.

By mathematics,

∂f(W,x, a)

∂wr
=

1√
m
arx1w⊤

r x≥b, ∀r ∈ [m]. (1)

Thus one can calculate the gradient of loss function L

∂L(W)

∂wr
=

1√
m

n∑
i=1

(f(W,xi, a)− yi) · ar · xi · 1w⊤
r xi≥b. (2)

Then we define the prediction function, the Jacobi matrix, and the Gram matrix.
Definition A.2 (prediction function). For a batch of inputs {(xi, yi)}i∈[n] ∈ Rd × R, we denote

αr,i(t) := ϕ(⟨wr(t), xi⟩)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for every r ∈ [m] and i ∈ [n].

Prediction function ft : Rd×n → Rn at time t is defined as follows

ft =
1√
m

∑
r∈[m]


ar · αr,1(t))
ar · αr,2(t))

...
ar · αr,n(t))


Note that wr(t) is the r-th weight of the first layer after training of t times.

For convenience, we define weight matrix

Wt = [w1(t) w2(t) · · · wm(t)] ∈ Rd×m

In addition, we write data matrix

X = [x1 x2 · · · xn] ∈ Rd×n.

Definition A.3 (Jacobi matrix and related definitions). For each i ∈ [n], r ∈ [m] and t ∈ [T], we
define

βr,i(t) := 1⟨wr(t),xi⟩≥b.

For every time step t, we use Jt ∈ Rn×m to denote the Jacobian matrix at t. Formally, it can be
written as

Jt =
1√
m


a1x

⊤
1 β1,1(t) a2x

⊤
1 β2,1(t) · · · amx⊤

1 βm,1(t)
a1x

⊤
2 β1,2(t) a2x

⊤
2 β2,2(t) · · · amx⊤

2 βm,2(t)
...

...
. . .

...
a1x

⊤
n β1,n(t) a2x

⊤
n β2,n(t) . . . amx⊤

n βm,n(t)

 .

For each i ∈ [n], we define Jt(xi) as the i-th row of Jt.
Definition A.4 (Gram matrix). Let Gt ∈ Rn×n denote the Gram matrix. Then Gt can be formally
written as Gt = JtJ

⊤
t . The (i, j)-th entry of Gt is the inner product between gradient in terms of xi

and the gradient in terms of xj , i.e.,

(Gt)i,j := ⟨
f(Wt, xi)

∂W
,
f(Wt, xj)

∂W
⟩.

Jacot et al. (2018); Du et al. (2019); Song et al. (2021a) gave a crucial observation that the asymptotic
of the Gram matrix G is equal to a PSD matrix K ∈ Rn×n. The formal definition is

K(xi, xj) := E
w∼N (0,I)

[
x⊤
i xj1⟨w,xi⟩≥b,⟨w,xj⟩≥b

]
. (3)

Jacot et al. (2018); Du et al. (2019) only consider the case where b = 0 and Song et al. (2021a)
consider the general case b ≥ 0.
Remark A.5. We use λ to denote the minimal eigenvalue of the kernel matrix K defined in Eq. (3).

A.3 NEURAL TANGENT KERNEL AND ITS RELATION WITH DATA SEPARABILITY

Neural Tangent Kernel (NTK) is a Kernel matrix related to a multi-layer ReLU activated neural
network. It is crucial in the analysis of Jacobi matrix. Song et al. (2021a) expanded the related
concepts and revealed their properties, especially its relation to the data separability of an input batch.

As for data separability, it is a common assumption to the input of a neural network, and it has
been used in many over-parameterized neural network literature Li & Liang (2018); Allen-Zhu et al.
(2019b). We first define kernels,
Definition A.6. Let b ≥ 0 be the shift parameter. We define continuous version of the shifted NTK
Hcts and discrete version of shifted NTK Hdis as

Hcts
i,j := E

w∼N (0,I)
[x⊤

i xj1w⊤xi≥b,w⊤xj≥b],

Hdis
i,j :=

1

m

m∑
r=1

[x⊤
i xj1w⊤

r xi≥b,w⊤
r xj≥b].

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Next, we define data separability,
Definition A.7 (Separability of input data). Suppose we are given n (normalized) input data points

{x1, x2, · · · , xn} ⊆ Rd.

Assume those points satisfy that ∀i ∈ [n], ∥xi∥2 = 1. For each i, j, we define

δ+i,j = xi + xj and δ−i,j = xi − xj .

Let δ be the data separability parameter, formally,
δ := min

i̸=j
{min{∥δ+i,j∥2, ∥δ

−
i,j∥2}}.

Song et al. (2021a) has given a property of the minimal eigenvalue of the NTK of a shifted ReLU
activated neural network.
Lemma A.8 (Lemma C.1 in Song et al. (2021a)). Let m be the number of samples of Hdis. As long
as

m = Ω(λ−1n log(n/ρ)),

then

Pr[λmin(H
dis) ≥ 3

4
λ] ≥ 1− ρ.

Prior work (Oymak & Soltanolkotabi (2020)) has shown the relation between the data separability of
the input of a neural network and the eigenvalue of the Kernel. But their work focuses on unshifted
ReLU activated neural network. For shifted ReLU activated neural network, Song et al. (2021a)
provided a further generalization to the shifted Kernel matrix.
Theorem A.9 (Theorem F.1 in Song et al. (2021a)). Consider n points x1, . . . , xn ∈ Rd with ℓ2-norm
all equal to 1, and consider a random variable w ∼ N (0, Id). Define matrix

X ∈ Rn×d = [x1 . . . xn]
⊤.

Suppose the data separability of the n points is δ where δ <
√
2. Let shift parameter b ≥ 0. Recall

the continuous Hessian matrix Hcts is defined by

Hcts
i,j := E

w∼N (0,I)
[x⊤

i xj1w⊤xi≥b,w⊤xj≥b],∀(i, j) ∈ [n]× [n].

Let λ := λmin(H
cts). Then λ has the follow sandwich bound,

λ ∈ [exp(−b2/2) · δ

100n2
, exp(−b2/2)].

A.4 A SKETCHING TOOL

Sarlós Sarlos (2006) firstly introduced the notation of subspace embedding. Many numerical linear
algebra applications have used that concept and its variations Clarkson & Woodruff (2013); Nelson &
Nguyên (2013); Razenshteyn et al. (2016); Song et al. (2017; 2019); Song & Yu (2021). The formal
definition is:
Definition A.10 (Oblivious subspace embedding, OSE Sarlos (2006)). Given an N × k matrix B,
an (1± ϵ) ℓ2-subspace embedding for the column space of B is a matrix S, such that for any x ∈ Rk,

(1− ϵ)∥Bx∥22 ≤ ∥SBx∥22 ≤ (1 + ϵ)∥Bx∥22.
Equivalently, let U be the matrix whose columns form an orthonormal basis containing the column
vectors of B, then

∥I − U⊤S⊤SU∥2 ≤ ϵ.

It is known that subspace embedding can be given by a Fast-JL sketching matrix Ailon & Chazelle
(2006); Drineas et al. (2006); Tropp (2011); Drineas et al. (2012); Lu et al. (2013); Price et al. (2017)
with a classical ϵ-net argument,
Lemma A.11. Assume that N = poly(k). Assume δ ∈ (0, 0.1). For a matrix B ∈ RN×k, we can
produce an (1 ± ϵ) ℓ2-subspace embedding S ∈ Rk poly(log(k/δ))/ϵ2×N for B with probability at
least 1− δ.

In addition, SB takes O(Nk · poly log k) time to be generated.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.5 FAST MATRIX MULTIPLICATION

We state a standard fact for fast matrix multiplication (FMM).
Fact A.12 (FMM). Given an n× n matrix A and another n× n matrix B, the time of multiplying
A and B is nω, where ω ≈ 2.373 is the exponent of matrix multiplication. Currently, ω ≈ 2.373
Williams (2012).

A.6 PROBABILITY TOOLS

We list some probability tools which are useful in our analysis.
Lemma A.13 (Chernoff bound Chernoff (1952)). Let Z =

∑n
i=1 Zi, where Zi = 1 with probability

pi and Zi = 0 with probability 1− pi, and all Zi are independent. We define µ = E[Z] =
∑n

i=1 pi.
Then
1. Pr[Z ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[Z ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀δ ∈ (0, 1).
Lemma A.14 (Hoeffding bound Hoeffding (1963)). Let Z1, · · · , Zn denote n independent bounded
variables in [ai, bi]. Let ci = (bi − ai) Let Z =

∑n
i=1 Zi, then we have

Pr[|Z − E[Z]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

Lemma A.15 (Anti-concentration inequality). Let Z ∼ N (0, σ2), that is, the probability density

function of Z is given by ϕ(x) = 1√
2πσ2

e−
x2

2σ2 . Then

Pr[|Z| ≤ t] ≤ 4

5

t

σ
.

A.7 PERTURBED w FOR SHIFTED NTK

We present a lemma from previous work in Song et al. (2021a). They show that in general, small
changes of weights only lead to small change of the Shifted NTK matrix.
Lemma A.16 (Lemma C.2 in Song et al. (2021a), perturbed w for shifted NTK). Suppose b > 0.
Assume R ≤ 1/b. Suppose m = Ω(λ−1n log(n/ρ)). Define function H which maps Rm×d to Rn×n

as follows:

the (i, j)-th entry of H(W) is
1

m
x⊤
i xj

m∑
r=1

1w⊤
r xi≥b,w⊤

r xj≥b.

Let m vectors w1, w2, · · · , wm sampled from N (0, Id) and let W̃ = [w1 w2 · · · wm]. Then there
exist constants c > 0 and c′ > 0 such that, for all W ∈ Rd×m with ∥W̃ −W∥∞,2 ≤ R, the following
holds:

• Part 1, ∥H(W̃)−H(W)∥F ≤ n ·min{c · exp(−b2/2), 3R} holds with prob. ≥ 1− n2 ·
exp(−m ·min{c′ · exp(−b2/2), R/10}).

• Part 2, λmin(H(W)) ≥ 3
4λ − n ·min{c · exp(−b2/2), 3R} holds with prob. ≥ 1 − n2 ·

exp(−m ·min{c′ · exp(−b2/2), R/10})− ρ.

A.8 FAST REGRESSION SOLVER

We list some useful conclusions about fast regression from Brand et al. (2021).
Lemma A.17 (Lemma B.2 in Brand et al. (2021)). Consider the the regression problem

min
x
∥Bx− y∥22.

Suppose B is a PSD matrix with 3
4 ≤ ∥Bx∥2 ≤ 5

4 holds for all ∥x∥2 = 1. Using gradient descent,
after t iterations, we obtain

∥B(xt − x⋆)∥2 ≤ ct · ∥B(x0 − x⋆)∥2
for some constant c ∈ (0, 0.9].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lemma A.18 (Lemma B.1 in Brand et al. (2021)). Suppose there is a matrix Q ∈ RN×k (N ≥
k poly(log k)), with condition number κ (i.e., κ = σmax(Q)/σmin(Q)), consider this minimization
problem

min
x∈Rk

∥Q⊤Qx− y∥2. (4)

It is able to find a vector x′

∥Q⊤Qx′ − y∥2 ≤ ∥y∥2 · ϵ
in Tprecond + Titers · Tcost time where

• Tprecond = Õ(Nk + k3) without using FMM, Õ(Nk + kω) using FMM.

• Titers = O(log(κ/ϵ)),

• Tcost = Õ(Nk).

The above lemma and preconditioning property implies that the iterative regression will take log(κ/ϵ)
iterations.
Corollary A.19. Solving regression problem (4) needs O(log(κ/ϵ)) iterations using the above
method.

The cost per iteration in the iterative regression is too slow for our application. In Section F, we will
show how to improve the cost per iteration while maintaining the same number of iterations.

A.9 SPARSITY-BASED PRESERVING

We present a tool from the paper Song et al. (2021a). Firstly, we provide a definition.
Definition A.20. For every t ∈ {0, 1, · · · , T}. For every i ∈ [n]. We use Si,fire(t) ⊂ [m] to represent
the set of neurons that are “fire” at time t, i.e.,

Si,fire(t) := {r ∈ [m] : ⟨wr(t), xi⟩ > b}.
For all t ∈ {0, 1, · · · , T}, define ki,t := |Si,fire(t)| to express the number of fire neurons for xi.

The following lemma (Lemma 3.8 in Song et al. (2021a)) show that with the increase of the shifted
paramater, the initial neural network will become sparser.
Lemma A.21 (Sparsity preserving). Assume m is number of neurons. For shifted parameter b > 0,
if we use ϕb as the activation function of a 2-layer neural network, then after initialization, with prob.
≥ 1−n ·exp(−Ω(m ·exp(−b2/2))), we have for every i, ki,0 is not larger than O(m ·exp(−b2/2)).

Using the above lemma, we can obtain the following result,
Corollary A.22. If we set shifted parameter b =

√
0.48 logm then k0 = m0.76. For t = m0.76,

Pr
[
|Si,fire(0)| > 2m0.76

]
≤ exp

(
−min{mR,O(m0.76)}

)
.

A.10 SETH AND OVC

Here we introduce some notions from computational complexity, for our analysis of lower bound.
Definition A.23 (Strong exponential time hypothesis (SETH) Impagliazzo & Paturi (2001); Calabro
et al. (2009)). For any ε > 0, there exists a k = k(ε) such that the k-SAT problem with n variables
cannot be solved in time O(21−ϵn).

In order to introduce OVC, we need to define Orthogonal Vector problem first.
Definition A.24 (Orthogonal Vector problem). Given a set of n vectors {v1, . . . , vn} ⊆ {0, 1}d in
d-dimensional space. We ask if there exists (i, j) ∈ [n]× [n] such that ⟨vi, vj⟩ = 0.
Definition A.25 (Orthogonal vector conjecture (OVC) Williams (2005); Abboud et al. (2014b);
Backurs & Indyk (2016); Abboud et al. (2015)). For every ε > 0, there exists a c = c(ε) > 1 such
that OV cannot be solved in n2−ε time when d = c log n.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B THRESHOLD SEARCH DATA STRUCTURE

This section gives a data structure which can efficiently find all the weights wj such that ⟨wj , xi⟩ ≥ τ
for each given input xi and real number τ . Specifically, Section B.1 formally proposes this data
structure. Section B.2 proves the running time of INIT satisfies the requirement of Theorem B.1.
Section B.3 proves the running time of UPDATE satisfies the requirement of Theorem B.1. Section
B.4 proves the running time of QUERY satisfies the requirement of Theorem B.1. Section B.5 proves
the correctness of QUERY in Theorem B.1.

B.1 MAIN RESULT

In this section, we are going to present our key theorem (Theorem B.1).

Theorem B.1 (Our tree data structure). There exists a data structure which requires O(mn+nd+md)
spaces and supports the following procedures:

• INIT({w1, w2, · · · , wm} ⊂ Rd, {x1, x2, · · · , xn} ⊂ Rd. Given a series of weights
w1, w2, · · · , wm and datas x1, x2, · · · , xn, it preprocesses in time O(mnd).

• UPDATE(z ∈ Rd, j ∈ [m]). Given a new weight vector z ∈ Rd and index j ∈ [m], it
updates weight wj with z in time O(n(d+ logm)).

• QUERY(i ∈ [n], τ ∈ R). Given a query index i ∈ [n] and a threshold τ ∈ R, it finds
all index j ∈ [m] such that ⟨wj , xi⟩ ≥ τ in time O(Kq · logm), where Kq := |{j ∈
[m] | ⟨wj , xi⟩ ≥ τ}|.

Proof. Since W takes O(md) space, X takes O(nd) space, each binary tree Ti stores O(m) data,
the data structure uses O(mn+ nd+md). Then we use the following Lemma B.2, B.3, B.4 and B.5
to prove the correctness and running time of this data structure.

Algorithm 2 Our tree data structure: members, init
1: data structure TREE ▷ Theorem B.1
2: members
3: W ∈ Rm×d (m weight vectors)
4: X ∈ Rn×d (n data points)
5: Binary tree T1, T2, · · · , Tn ▷ We create n binary search trees, each tree uses O(mn) space
6: end members
7:
8: public:
9: procedure INIT(w1, w2, · · · , wm ∈ Rd, x1, x2, · · · , xn ∈ Rd) ▷ Lemma B.2

10: for i = 1→ n do
11: xi ← xi

12: end for
13: for j = 1→ m do
14: wj ← wj

15: end for
16: for i = 1→ n do ▷ for data point, we create a tree
17: for j = 1→ m do
18: uj ← ⟨xi, wj⟩
19: end for
20: Ti ← MAKEBINARYSEARCH(u1, · · · , um)
21: ▷ Each node stores the maximum value for his two children
22: end for
23: end procedure
24: end data structure

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 3 Our dynamic data structure: update
1: data structure TREE ▷ Theorem B.1
2: public:
3: procedure UPDATE(z ∈ Rd, j ∈ [m]) ▷ Lemma B.3
4: wj ← z
5: for i ∈ [n] do
6: l← the j-th leaf of tree Ti

7: l.value← ⟨z, xi⟩
8: while l is not root do
9: p← parent of l

10: a← left child of p
11: b← right child of p
12: p.value← max{a.value, b.value}
13: l← p
14: end while
15: end for
16: end procedure
17: end data structure

Algorithm 4 Our dynamic data structure: query
1: data structure TREE ▷ Theorem B.1
2: public:
3: procedure QUERY(i ∈ [n], τ ∈ R≥0) ▷ Lemma B.4
4: QRECURSIVE(τ, root(Ti))
5: end procedure
6:
7: private:
8: procedure QRECURSIVE(τ ∈ R≥0, r ∈ T)
9: if r is leaf then

10: if r.value > τ then
11: return r.index
12: end if
13: else
14: r1 ← left child of r, r2 ← right child of r
15: if r1.value ≥ τ then
16: S1 ←QRECURSIVE(τ, r1)
17: end if
18: if r2.value ≥ τ then
19: S2 ←QRECURSIVE(τ, r2)
20: end if
21: end if
22: return S1 ∪ S2

23: end procedure
24: end data structure

B.2 RUNNING TIME OF INIT

We prove Lemma B.2, which presents the running time for the INIT operation. The corresponding
algorithm is shown in Algorithm 2.
Lemma B.2 (Running time of INIT). Given a series of weights {w1, w2, · · · , wm} ⊂ Rd and datas
{x1, x2, · · · , xn} ⊂ Rd, the procedure INIT (Algorithm 2) preprocesses in time O(nmd).

Proof. The INIT consists of two independent for loops and two recursive for loopss. The first for
loop (start from line 10) has n iterations, which takes O(nd) time. The second for loop (start from
line 13) has m iterations, which takes O(md) time. Now we consider the recursive for loop. The
outer loop (line 16) has n iterations. In inner loop has m iterations. In every iteration of the inner
loop, line 18 runs in O(d) time. Line 20 takes O(m) time. Putting it all together, the INIT runs in

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

time

O(nd+md+ n(md+m))

= O(nmd)

So far, the proof is finished.

B.3 RUNNING TIME OF UPDATE

We prove Lemma B.3. The corresponding algorithm is shown in Algorithm 3.

Lemma B.3 (Running time of UPDATE). Given a weight z ∈ Rd and index j ∈ [m], the procedure
UPDATE (Algorithm 3) updates weight wj with z in O(n · (d+ logm)) time.

Proof. The time of UPDATE mainly comes from the forloop (line 5), which consists of n iterations.
In each iteration, line 7 takes O(d) time, and the while loop takes O(logm) time since it go through
a path bottom up. Putting it together, the running time of UPDATE is O(n(d+ logm)).

B.4 RUNNING TIME OF QUERY

We prove Lemma B.4, which is the running time for the QUERY operation. The corresponding
algorithm is shown in Algorithm 4.

Lemma B.4 (Running time of QUERY). Given a query index i ∈ [n] and a threshold τ > 0, the
procedure QUERY (Algorithm 4) runs in time O(Kq · logm), where Kq := |{j ∈ [m] : ⟨wj , xi⟩ >
τ}|.

Proof. The running time comes from QRECURSIVE with input τ and root(Ti). In QRECURSIVE,
we start from the root node r and find indices in a recursive way. The INIT guarantees that for a node
r satisfying r.value > τ , the sub-tree with root r must contains a leaf whose value is greater than τ If
not satisfied, all the values of the nodes in the sub-tree with root r is less than τ . This guarantees that
all the paths it searches do not have any branch that leads to unnecessary leaves. Our data structure
will report all the indices i satisfying ⟨wi, q⟩ > τ . Since the depth of T is O(logm), the running
time of QUERY is O|Kq| · logm).

B.5 CORRECTNESS OF QUERY

We prove Lemma B.5, which shows the correctness for the QUERY operation.

Lemma B.5 (Correctness of QUERY). Given a query index i ∈ [n] and a threshold τ > 0, the
procedure QUERY (Algorithm 4) finds all index j ∈ [m] such that ⟨xi, wj⟩ > τ .

Proof. Fix i ∈ [n], for all j ∈ [m], suppose the j-th leaf of Ti is l, the root of Ti is r, and the path
from r to l is

r = p0 → p1 → · · · → pk = l.

If ⟨xi, wj⟩ > τ , first j ∈ QRECURSIVE(pk), then, suppose j ∈ QRECURSIVE(pt+1), then pt+1.value
≥ ⟨wj , xi⟩ > τ , thus j ∈ QRECURSIVE(pt+1) ⊆ QRECURSIVE(pt). Hence by induction, j ∈
QRECURSIVE(p0)=QUERY(i, τ). If ⟨xi, wj⟩ ≤ τ , since l.value ≥ τ , j will not be returned. Thus
QUERY finds exactly all the index j ∈ [m] such that ⟨xi, wj⟩ > τ .

C FORMAL ALGORITHM REPRESENTATION

We have given a concise representation of our training algorithm (Algorithm 1) in previous sections,
for facilitating understanding. For the sake of completeness and convenient implementation, this
section gives a formal algorithm representation of our fast neural network training algorithm. (See
Algorithm 5.)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

This algorithm starts with initializing weights W0 and setting shifted parameter b. After that, it
repeatedly executes sketch computing, iterative regression and implicit weight maintenance until
enough times. Specifically, sketch computing computes a sketch matrix S for J⊤

t with property
∥SJ⊤

t x∥ is closed to ∥J⊤
t x∥ for every x with large probability. Iterative regression makes use of a

fast regression solver to find an approximate solution of

gt := argmin
g
∥JtJ⊤

t g − (ft − y)∥

with the help of the sketch matrix S.

Implicit weight maintenance utilizes the threshold search data structure to update weights using the
information propagated by the iterative regression.

D MORE DETAILS ABOUT CONVERGENCE ANALYSIS

The convergence analysis is shown in Section 5. It uses Lemma 5.2, Lemma 5.3 and Lemma 5.4
without proofs. In this section, we formally present the proofs of the three lemmas. In Section D.1, we
provide the proof of Lemma 5.2. In Section D.2, we provide the proof of Lemma 5.3. In Section D.3,
we provide the proof of Lemma 5.4.

D.1 PROOF OF LEMMA 5.2

Lemma D.1 (Formal version of Lemma 5.2). For 2-layer ReLU activated neural network, suppose
m = Ω(d log(16n/ρ)), then the following

• ∥W0∥2 = O(
√
m).

• |f(W,xi)| = O(1), for i ∈ [n].

• ∥JW0,xi∥F = O(1), for i ∈ [n].

holds with prob. ≥ 1− ρ/2.

Proof. (a) The first term can be seen in Corollary 5.35 of Vershynin (2010). Notice that W0 ∈ Rm×d

is a Gaussian random matrix, the Corollary gives

Pr[∥W0∥2 ≤
√
m+

√
d+ t] ≥ 1− 2e−

t2

2 .

Let us set m = max{d,
√
2 log(8/ρ)}, it gives ∥W0∥2 ≤ 3

√
m with probability 1− ρ/4.

(b) For the second term, first, ar, r ∈ [m] are Rademacher variables, thereby 1-sub-Gaussian, so with
probability 1− 2e−mt2/2 we have 1

m |
∑m

r=1 ar| ≤ t. This means if we take m = Ω(log(16/ρ)),

Pr[
1√
m

m∑
r=1

ar = O(1)] ≥ 1− ρ

8
. (5)

Next, the vector vi = W⊤
0 xi ∈ Rm is standard Gaussion vector. Write a = [a1 a2 · · · am]

⊤,
since activation function ϕb is 1-Lipschitz, with a vector a fixed, the function

Φ : Rm → R, vi 7→
1√
m
a⊤ϕb(vi) = f(W0, xi)

has a Lipschitz parameter of 1/
√
m.

Due to the concentration of a Lipschitz function under Gaussian variables (Theorem 2.26 in Wain-
wright (2019)),

Pr[|Φ(vi)− EW0(Φ(vi))| ≥ t] ≤ 2e−
mt2

2 ,

which means if m = Ω(log(16n/ρ)),∣∣∣∣∣∣ 1√
m
a⊤ϕb(W0xi)−

1√
m

 ∑
r∈[m]

ar

 E
w∼N (0,Id)

[ϕb(⟨w, xi⟩)]

∣∣∣∣∣∣ = O(1) (6)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 5 Our training algorithm, Formal version of Algorithm 1
1: procedure OURALGORITHM({xi}i∈[n], ϵ)
2: /*Initialization*/
3: Randomly pick W (0)
4: TREE.INIT({(W0)r}r∈[m],m, {xi}i∈[n], n, d) ▷ Alg. 2
5: T ← log(1/ϵ), b←

√
0.48 logm

6: /*Iterative Algorithm*/
7: for t = 1→ T do
8: /*Three computation tasks*/
9: /*Step 1, Sketch computing*/

10: Implicitly write down the Jacobian matrix Jt ∈ Rn×md

11: Let A = J⊤
t

12: ϵsketch ← 0.1
13: δsketch ← 1/ poly(n)
14: ssketch ← npoly(ϵ−1

sketch, log(n/δsketch))

15: Find sketching matrix S ∈ Rssketch×md of A
16: for i = 1→ n do
17: Qi ← TREE.QUERY(i, b) ▷ Qi ⊂ [m]
18: ▷ Theorem G.2 implies |Qi| = O(m0.76)
19: Let Di ∈ Rm×m denote a matrix where (Di)j,j = 1 if j ∈ Qi

20: Let Di ⊗ Id denote an md×md matrix
21: B∗,i ← S · (Di ⊗ Id) ·A∗,i ▷ S is a sketching matrix
22: end for
23: Let Q = ∪iQi

24: Let D denote the diagonal version of Q
25: /*Step 2, Iterative regression*/
26: Compute R ∈ Rn×n such that SAR has orthonormal columns via QR decomposition
27: τ ← 1
28: Compute ft based on Q
29: Compute yreg ← ft − y

30: ϵreg ← 1
6

√
λ
n

31: while ∥A⊤(D ⊗ Id)ARzt − yreg∥2 ≥ ϵreg do
32: zt+1 ← zt − (R⊤A⊤(D ⊗ Id)AR)⊤(R⊤A⊤(D ⊗ Id)ARzt −R⊤yreg)
33: τ ← τ + 1
34: end while
35: Compute gt ← zt
36: /*Step 3, Implicit weight maintenance*/
37: /* Wt+1 ←Wt − J⊤

t gt */
38: Let K ⊂ [m] denote the set of coordinates, we need to change the weights
39: ▷ Theorem G.2 implies |K| = O(m0.76n)
40: for r ∈ K do
41: Compute (Wt+1)r ▷ (Wt+1)r ∈ Rd

42: TREE.UPDATE((Wt+1)r, r) ▷ Alg. 3
43: end for
44: end for
45: end procedure

holds at the same time for all i ∈ [n] with probability 1− ρ
8 .

We know

|Ew∼N (0,Id)[ϕb(wxi)]| ≤ |ϕb(0)|+ Eξ∼N (0,1)[|ξ|] = O(1). (7)

Plugging in Eq. (5), (7) into Eq. (6), we see that once m = Ω(log(16n/ρ)), then with probability
1− ρ/4, for all i ∈ [n],

|f(W0, xi)| = |
1√
m
a⊤ϕb(W0xi)| = O(1).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(c) Let dW,x = ϕ′
b(Wx) denote the element-wise derivative of the activation function, since ϕb is

1-Lipschitz, we have ∥dW,x∥∞ = O(1). Note that JW,x = 1√
m
((dW,x ◦ a)x⊤) where ◦ denotes the

element-wise product, we can easily know

∥JW,xi∥F ≤
1√
m
· ∥Diag(d)∥2 · ∥a∥2 · ∥x∥2 = O(1).

D.2 PROOF OF LEMMA 5.3

Lemma D.2 (Shifted Perturbation Lemma, formal version of Lemma 5.3). For 2-layer ReLU
activated neural network. Suppose the shifted parameter is b (b ≥ 0). Let R0 > 0 be a parameter.
Suppose

m ≥ Ω(1) ·max{b2R2
0, n

2R2
0λ

−2, nλ−1 log(n/ρ)},

then with prob. ≥ 1− ρ− n2 · exp
(
−m ·min{c′e−b2/2, R0

10
√
m
}
)
, for every W ∈ Rd×m satisfying

maxr∈[m] ∥wr − wr(0)∥2 ≤ R0/
√
m, the following holds

∥GW −GW0
∥F ≤ λ/2, λmin(GW) ≥ λ/2.

Proof. We use Lemma A.16 by setting R = R0/
√
m (that lemma require that R ≤ 1/b) and letting

W = [w1 w2 · · · wm].

Since R0/
√
m ≤ 1/b, then we have m ≥ R2

0b
2 (this is the corresponding to the first term of m lower

bound in lemma statement).

Note H(W) is essentially GW , and ∥wr(t)−wr(0)∥2 ≤ R for any r, thus by Lemma A.16, we have

• ∥GW −G0∥F ≤ n ·min{ce−b2/2, 3R} = n ·min{ce−b2/2, 3R0/
√
m} with prob.

1− n2 exp(−m ·min{c′e−b2/2, R/10}) = 1− n2 exp(−m ·min{c′e−b2/2,
R0

10
√
m
}),

• λmin(GW) ≥ 3
4λ− nmin{ce−b2/2, 3R} = 3

4λ− nmin{ce−b2/2, 3R0/
√
m} with prob.

1− ρ− n2 exp(−m ·min{c′e−b2/2, R/10}) = 1− ρ− n2 exp(−m ·min{c′e−b2/2,
R0

10
√
m
}).

Then it remains to prove

n ·min{ce−b2/2, 3R0/
√
m} ≤ λ

2
.

Since m ≥ Ω(n2R2
0λ

−2), we have 3nR0/
√
m ≤ λ

2 , which finishes the proof.

D.3 PROOF OF LEMMA 5.4

Lemma D.3 (The shifted NTK version of Lemma C.4 in Brand et al. (2021), formal version of Lemma
5.4). Suppose R0 ≥ 1 and m = Ω̃(n2R2

0). Then for every w ∈ Rd×m satisfying maxr∈[m] ∥wr −
wr(0)∥2 ≤ R0/

√
m, the following holds

• ∥W −W0∥ = O(R0),

• ∥JW,xi − JW0,xi∥2 = Õ(R
1/2
0 /m1/4) and ∥JW − JW0∥F = Õ(n1/2R

1/2
0 /m1/4),

• ∥JW ∥F = O(
√
n),

with prob. ≥ 1− ρ. The randomness comes from the initialization of W0.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. (1) The first claim follows from

∥W −W0∥ ≤ ∥W −W0∥F

=
(m∑

r=1

∥wr − wr(0)∥22
)1/2

≤
√
m ·R0/

√
m

= R0.

where the first step comes from ∥ · ∥ ≤ ∥ · ∥F , the second step comes from definition of Frobenius
norm, the third step comes from ∥wr − wr(0)∥2 ≤ R0/

√
m, and the last step comes from canceling√

m.

(2) For the second claim, we have for any i ∈ [n]

∥JW,xi
− JW0,xi

∥2 =
1

m

m∑
r=1

a2r · ∥xr∥22 · |1⟨wr,xi⟩≥b − 1⟨wr(0),xi⟩≥b|2

=
1

m

m∑
r=1

|1⟨wr,xi⟩≥b − 1⟨wr(0),xi⟩≥b|. (8)

The second equality follows from ar ∈ {−1, 1}, ∥xi∥2 = 1 and

si,r := |1⟨wr,xi⟩≥b − 1⟨wr(0),xi⟩≥b| ∈ {0, 1}. (9)

We define the event Ai,r as

Ai,r =
{
∃w̃ : ∥w̃ − wr(0)∥ ≤ R0/

√
m, 1⟨w̃,xi⟩≥b ̸= 1⟨wr(0),xi⟩≥b

}
.

It is not hard to see Ai,r holds if and only if ⟨wr(0), xi⟩ ∈ [b−R0/
√
m, b+R0/

√
m]. Since wr(0)

is sampled from Gaussian N (0, Id) and ∥xi∥ = 1, we have ⟨wr(0), xi⟩ is sampled from Gaussian
N (0, 1), thus by the anti-concentration of Gaussian (see Lemma A.15), we have

E[si,r] = Pr[Ai,r] = Pr[⟨wr(0), xi⟩ ∈ [b−R0/
√
m, b+R0/

√
m]]

≤ Pr[⟨wr(0), xi⟩ ∈ [−R0/
√
m,R0/

√
m]]

≤ 4

5
R0/
√
m.

Thus we have

Pr

[
m∑
i=1

si,r ≥ (t+ 4/5)R0

√
m

]
≤ Pr

[
m∑
i=1

(si,r − E[si,r]) ≥ tR0

√
m

]

≤ 2 exp

(
−2t2R2

0m

m

)
= 2 exp(−t2R2

0)

≤ 2 exp(−t2). (10)

holds for any t > 0. The second inequality is due to the Hoeffding bound (see Lemma A.14), the
last inequality is because R0 > 1. Taking t = 2 log(n/ρ) and using union bound over i, with prob.
≥ 1− ρ,

∥JW,xi − JW0,xi∥22 =
1

m

m∑
r=1

si,r ≤
1

m
· 2 log(n/ρ)R0

√
m = Õ(R0/

√
m)

holds for all i ∈ [n]. The first equality comes from Eq. (8) and Eq. (9), the second inequality comes
from Eq. (10). Thus we conclude with

∥JW,xi
− JW0,xi

∥2 = Õ(R
1/2
0 /m1/4) and ∥JW − JW0

∥F = Õ(n1/2R
1/2
0 /m1/4). (11)

(3) The thrid claim follows from

∥JW ∥F ≤ ∥JW0∥F + ∥JW − JW0∥F

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

≤ O(
√
n) + ∥JW − JW0

∥F
≤ O(

√
n) + Õ(n1/2R

1/2
0 /m1/4)

= O(
√
n).

where the 1st step is due to triangle inequality, the 2nd step is due to the third claim in Lemma 5.2,
the 3rd step is due to Eq. (11), and the last step is due to m = Ω̃(R2

0n
2).

E INDUCTION

Section 5 has defined the induction hypothesis (see Definition 5.5) and given a lemma (see Lemma
5.6) to prove that induction hypothesis holds for all time with high probability, but left its proof to
this section. Here, we present and prove the following Lemma E.1, the formal version of Lemma 5.6,
and then the crucial Theorem 5.1 holds straightforwardly. We divided the proof of each part of the
lemma in Section E.1 and Section E.2, and combine them in Section E.3.
Lemma E.1 (Formal version of Lemma 5.6). Define R0 ≈ n/λ. With probability at least 1− 5

2ρ−
n2 · exp

(
−m ·min{c′e−b2/2, R0

10
√
m
}
)

of the initial weights W0, for every t > 0, if

• ∥ft − y∥2 ≤ 1
2∥ft−1 − y∥2

• maxr∈[m] ∥wr(t)− wr(0)∥2 ≤ R0/
√
m

then

• ∥ft+1 − y∥2 ≤ 1
2∥ft − y∥2

• maxr∈[m] ∥wr(t+ 1)− wr(0)∥2 ≤ R0/
√
m

also holds.

E.1 PROOF OF LEMMA E.1: THE FIRST LEMMA

As stated in the previous subsection, we use induction. Here we need to break the induction step
(Lemma E.1) into two separate steps, Lemma E.2 and Lemma E.3. Each separated induction step
corresponds to prove one part in the Lemma E.1. We first prove the first part of Lemma E.1.
Lemma E.2 (Part 1 of Lemma E.1). Suppose initial weights W0 satisfies the restriction of Lemma
5.2, 5.3 and 5.4, then for any fixed t, if

• ∥ft − y∥2 ≤ 1
2∥ft−1 − y∥2 holds

• maxr∈[m] ∥wr(t)− wr(0)∥2 ≤ R0/
√
m holds

Then we have

• ∥ft+1 − y∥2 ≤ 1
2∥ft − y∥2 holds.

This proof is similar to Brand et al. (2021), for the completeness, we still provide the details here.

Proof. We prove the first claim holds for time t+ 1. Define

Jt,t+1 =

∫ 1

0

J
(
(1− s)Wt + sWt+1

)
ds,

and denote g⋆ = (JtJ
⊤
t)−1(ft − y) to be the optimal solution to Eq. (4), then we have

∥ft+1 − y∥2
= ∥ft − y + (ft+1 − ft)∥2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

= ∥ft − y + Jt,t+1(Wt+1 −Wt)∥2
= ∥ft − y − Jt,t+1J

⊤
t gt∥2

= ∥ft − y − JtJ
⊤
t gt + JtJ

⊤
t gt − Jt,t+1J

⊤
t gt∥2

≤ ∥ft − y − JtJ
⊤
t gt∥2 + ∥(Jt − Jt,t+1)J

⊤
t gt∥2

≤ ∥ft − y − JtJ
⊤
t gt∥2 + ∥(Jt − Jt,t+1)J

⊤
t g⋆∥2 + ∥(Jt − Jt,t+1)J

⊤
t (gt − g⋆)∥2, (12)

where the 2nd step is from the definiton of Jt,t+1 and simple calculus, the 3rd step is from the
updating rule of the algorithm, the 5th step is due to triangle inequality, and the sixth step is because
triangle inequality.

For the first quantity in Eq. (12), we have

∥JtJ⊤
t gt − (ft − y)∥2 ≤

1

6
∥ft − y∥2, (13)

since gt is an ϵ0(ϵ0 ≤ 1
6) approximate solution to regression problem (4).

For the second quantity in Eq. (4), we have

∥(Jt − Jt,t+1)J
⊤
t g⋆∥2 ≤ ∥(Jt − Jt,t+1)∥ · ∥J⊤

t g⋆∥2
= ∥(Jt − Jt,t+1)∥ · ∥J⊤

t (JtJ
⊤
t)−1(ft − y)∥2

≤ ∥(Jt − Jt,t+1)∥ · ∥J⊤
t (JtJ

⊤
t)−1∥ · ∥(ft − y)∥2 (14)

where the 1st step is due to matrix spectral norm, the 2nd step is because the definition of g∗, and the
3rd step relies on matrix spectral norm.

We bound these term separately. First,

∥Jt − Jt,t+1∥ ≤
∫ 1

0

∥J((1− s)Wt + sWt+1)− J(Wt)∥ds

≤
∫ 1

0

(∥J((1− s)Wt + sWt+1)− J(W0)∥+ ∥J(W0)− J(Wt)∥) ds

≤ Õ(R
1/2
0 n1/2/m1/4), (15)

where the 1st step comes from simple calculus, the 2nd step comes from triangle inequality, and the
3rd step comes from the second claim in Lemma 5.4 and the fact that

∥(1− s)wr(t) + swr(t+ 1)− w0∥2 ≤ (1− s)∥wr(t)− wr(0)∥2 + s∥wr(t+ 1)− wr(0)∥2
≤ R0/

√
m.

Then, we have

∥J⊤
t (JtJ

⊤
t)−1∥ = 1

σmin(J⊤
t)
≤

√
2/λ (16)

where the 2nd step comes from σmin(Jt) =
√
λmin(J⊤

t Jt) ≥
√

λ/2 (see Lemma 5.3).

Combining Eq. (14), (15) and (16), we have

∥(Jt − Jt,t+1)J
⊤
t g⋆∥2 ≤ Õ(R

1/2
0 λ−1/2n1/2/m1/4)∥ft − y∥2

= Õ(λ−1nm−1/4)∥ft − y∥2
≤ ∥ft − y∥/6, (17)

since m = Ω̃(λ−4n4).

Let us consider the third term in Eq. (12),

∥(Jt − Jt,t+1)J
⊤
t (gt − g⋆)∥2 ≤ ∥Jt − Jt,t+1∥ · ∥J⊤

t ∥ · ∥gt − g⋆∥2 (18)

by matrix norm. Moreover, one has

λ

2
∥gt − g⋆∥2 ≤ λmin(JtJ

⊤
t)∥gt − g⋆∥2

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

≤ ∥JtJ⊤
t gt − JtJ

⊤
t g⋆∥2

= ∥JtJ⊤
t gt − (ft − y)∥2

≤
√
λ/n · ∥ft − y∥2, (19)

where 1st step comes from λmin(JtJ
⊤
t) = λmin(Gt) ≥ λ/2 (see Lemma 5.3), the 2nd step is because

simple linear algebra, the 3rd step is because the definition of g∗, and the last step is because gt is an
ϵ0-approximate solution to mingt ∥JtJ⊤

t gt − (ft − y)∥ and ϵ0 ≤
√
λ/n.

Consequently, we have

∥(Jt − Jt,t+1)J
⊤
t (gt − g⋆)∥2 ≤ ∥Jt − Jt,t+1∥ · ∥J⊤

t ∥ · ∥gt − g⋆∥2

≤ Õ(R
1/2
0 n1/2m−1/4) ·

√
n · 2√

nλ
· ∥ft − y∥2

= Õ(nλ−1m−1/4) · ∥ft − y∥2

≤ 1

6
∥ft − y∥2, (20)

where the 1st step is because of matrix spectral norm, the 2nd step comes from Eq. (15), (19) and
the fact that ∥Jt∥ ≤ O(

√
n) (see Lemma 5.4), and the last step comes from the m = Ω(n4λ−4).

Combining Eq. (12), (13), (17), and (20), we have proved the first claim, i.e.,

∥ft+1 − y∥2 ≤
1

2
∥ft − y∥2. (21)

Thus, we complete the proof.

E.2 PROOF OF LEMMA E.1: THE SECOND LEMMA

We now move to the second part for Lemma E.1. We show it in Lemma E.3.
Lemma E.3 (Part 2 of Lemma E.1). Suppose initial weights W0 satisfies the restriction of Lemma
5.2, 5.3 and 5.4, then for any fixed t, if

• ∥ft − y∥2 ≤ 1
2∥ft−1 − y∥2 holds

• maxr∈[m] ∥wr(t)− wr(0)∥2 ≤ R0/
√
m holds

Then we have

• maxr∈[m] ∥wr(t+ 1)− wr(0)∥2 ≤ R0/
√
m holds

This proof is similar to Brand et al. (2021), for the completeness, we still provide the details here.

Proof. First, we have

∥gt∥2 ≤ ∥g⋆∥2 + ∥gt − g⋆∥2
≤ ∥(JtJ⊤

t)−1(ft − y)∥2 + ∥gt − g⋆∥2
≤ ∥(JtJ⊤

t)−1∥ · ∥(ft − y)∥2 + ∥gt − g⋆∥2

≤ 2

λ
· ∥ft − y∥2 +

2√
nλ
· ∥ft − y∥2

≲
1

λ
· ∥ft − y∥2, (22)

where the 1st step relies on triangle inequality, the 2nd step replies on the definition of g∗, the 3rd
step uses matrix norm, the 4th step comes from Eq. (19) and the last step uses the obvious fact that
1/
√
nλ ≤ 1/λ.

Hence, for any 0 ≤ k ≤ t and r ∈ [m], if we use gk,i to denote the ith indice of gk, then we have

∥wr(k + 1)− wr(k)∥2 = ∥(J⊤
k gk)r∥2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

=

∥∥∥∥∥
n∑

i=1

1√
m
arx

⊤
i 1⟨wr(t),xi⟩≥bgk,i

∥∥∥∥∥
2

≤ 1√
m

n∑
i=1

|gk,i|

≤
√
n√
m
∥gk∥2

≲

√
n√
m
· 1

2kλ
∥f0 − y∥2

≲
n√
mλ
· 1
2k

, (23)

where the 1st step is because of the updating rule, the 2nd step is because of the definition of Jk, the
3rd step is because of triangle inequalities and the fact that ar = ±1, ∥xr∥2 = 1, the 4th step comes
is because of Cauchy-Schwartz inequality, the 5th step is because of Eq. (21) and Eq. (22), and the
last step is because of the fact that ∥f0 − y∥2 ≤ O(

√
n) (see Lemma 5.2, f0(xi) = O(1) for any

i ∈ [n], thus ∥f0 − y∥2 =
√∑n

i=1(f(xi)− yi)2 = O(
√
n). Consequently, we have

∥wr(t+ 1)− wr(0)∥2 ≤
t∑

k=0

∥wr(k + 1)− wr(k)∥2 ≲
t∑

k=0

n√
mλ
· 1
2k

≲
R0√
m
,

where the 1st step is because of triangle inequality, the 2nd step is because of Eq. (23), and the last
step is because of simple summation.

Thus we also finish the proof of the second claim.

E.3 PROOF OF LEMMA E.1: COMBINATION

We use Lemma E.2 and Lemma E.3 to prove Lemma E.1.

Proof. Since the probability of initial weight W0 satisfies the restriction of Lemma 5.2, Lemma 5.3
and Lemma 5.4 is 1− ρ/2, 1− ρ− n2 · exp

(
−m ·min{c′e−b2/2, R0

10
√
m
}
)
, 1− ρ respectively, by

union bound, the probability of they all happen is at least

1− 5

2
ρ− n2 · exp

(
−m ·min{c′e−b2/2,

R0

10
√
m
}
)

In this case, for any fixed t, combining Lemma E.2 and Lemma E.3, if

• ∥ft − y∥2 ≤ 1
2∥ft−1 − y∥2 holds,

• maxr∈[m] ∥wr(t)− wr(0)∥2 ≤ R0/
√
m holds

then we have

• ∥ft+1 − y∥2 ≤ 1
2∥ft − y∥2 holds.

• maxr∈[m] ∥wr(t+ 1)− wr(0)∥2 ≤ R0/
√
m holds

Thus by induction, with prob. ≥ 1− 5
2ρ− n2 · exp

(
−m ·min{c′e−b2/2, R0

10
√
m
}
)
,

∥ft − y∥2 ≤
1

2
∥ft−1 − y∥2

holds for all t, hence finished the proof of Lemma E.1.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E.4 NUMBER OF ITERATIONS FOR ITERATIVE REGRESSION

Lemma E.4. The iterative regression in our fast training algorithm requires O(log(n/λ)) iterations.

Proof. By Lemma D.1, ∥JtJ⊤
t ∥ = ∥Gt∥ = O(n) and λmin(JtJ

⊤
t) = λmin(Gt) ≥ O(λ). Let ϵreg

be chosen as Algorithm 5.

Thus by Corollary A.19, the number of iterations needed by the iterative regression is

O(log(κ(J⊤
t)/ϵreg)) = O(log(

√
n/λ/

√
λ/n))

= O(log(n/λ)).

F MORE RUNNING TIME DETAILS

Section 6 analyzes the running time of our algorithm. It shows that when m is large enough, the
running time of CPI is o(mnd)+Õ(n3), and with FMM, the CPI can be reduced to o(mnd)+Õ(nω).

In this section, we give the specific time complexity hidden by o(mnd), and also give the complete
algorithm representation of our training algorithm. It will show that when m is large enough, the CPI
is Õ(m1−αnd). Similar with Section 6, we first present Theorem F.1, the running time result. We
then provide three lemmas (Lemma F.2, Lemma F.3 and Lemma F.4) to prove our main theorem. Our
main running time result is the following:

Theorem F.1 (Running time part of Theorem 1.1, formal version of Theorem 6.1). The CPI is
Õ(m1−αnd + n3), and the running time for shrinking the training loss to ϵ is Õ((m1−αnd +
n3) log(1/ϵ)).

Using FMM, the CPI is Õ(m1−αnd+ nω), the running time is Õ((m1−αnd+ nω) log(1/ϵ)). Note
that ω is the exponent of matrix multiplication. Currently, ω ≈ 2.373.

Proof. Combining Lemma F.2, Lemma F.3 and Lemma F.4, the computation time of each iteration is

Õ(n2m0.76d) + Õ(nm0.76d+ n3) +O(n2m0.76(d+ logm))

= Õ(n2m0.76d+ n3 + n2m0.76d)

= Õ(n2m0.76d+ n3),

where the first step comes from hiding logm on Õ, the second step comes from simple merging. And
if using FMM, similarly the running time is Õ(n2m0.76d+ nω).

By Theorem 5.1, we have: The time to reduce the training loss to ϵ is Õ((n2m0.76d+ n3) log(1/ϵ)).
Taking advantage of FMM, the time is Õ((n2m0.76d+ nω) log(1/ϵ)).

Further, for example, if m = nc where c is some large constant, then n2m0.76d ≤ nm1−αd

where α ∈ [0.1, 0.24). Hence the time of each iteration is Õ(m1−αnd + n3), and the time to
reduce the training loss to ϵ is Õ((m1−αnd+ n3) log(1/ϵ)). Taking advantage of FMM, the time is
Õ((m1−αnd+ nω) log(1/ϵ)). Thus we complete the proof.

For the rest of this section, we provide detailed analysis for the steps. In Section F.1 we analyse the
sketch computing step. In Section F.2 we analyse the iterative regression step. In Section F.3 we
analyse the implicit weight maintenance step.

F.1 SKETCH COMPUTING

We delicate to prove the lemma that formally analyzes the running time of the sketch computing
process in Algorithm 5 to show its time complexity.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Lemma F.2 (Sketch computing, formal version of Lemma 6.3). The sketch computing process of
Algorithm 5 (from line 10 to line 23) runs in time Õ(m0.76n2d).

Proof. In the sketch computing process, by Corollary A.22, only O(m0.76d) entries of each column
of A is nonzero, thus calculating each column of B takes O(m0.76dt) time, where t is the number of
rows of B. And according to Lemma A.11,

t = n poly(log(n/δsketch))/ϵ
2
sketch

= O(npoly(log(n/δsketch))).

Since

ϵsketch = 0.1 and δsketch =
1

poly(n)
,

the whole for-loop runs in time O(n2m0.76dpoly(log(n))).

F.2 ITERATIVE REGRESSION

We delicate to prove a lemma that formally analyzes the running time of the iterative regression
process in Algorithm 5 to show its time complexity.
Lemma F.3 (Iterative regression, formal version of Lemma 6.4). The iterative regression of Algorithm
5 (from line 26 to line 35) runs in time

Õ(nm0.76d+ n3).

Taking advantage of FMM, the running time is

Õ(nm0.76d+ nω),

where ω is the exponent of matrix multiplication. Currently ω ≈ 2.3713 Alman et al. (2024a).

Proof. The algorithm calculate R using QR decomposition in line 26 (Algorithm 5). This step will
take O(n3) time. Taking advantage of FMM, it will take O(nω) time Alman et al. (2024a).

For the while-loop from line 31 (Algorithm 5), define p as the number of iterations of the while-loop
from line 31 (Algorithm 5), then

p = O(log(n/λ))

= O(log(
n

(exp(−b2/2) · δ
100n2)

))

= O(log(n/δ) + b2)

= O(log(n/δ) + logm)

= O(log(mn/δ)),

where the 1st step comes from Lemma E.4, the 2nd step comes from Theorem A.9, the 3rd step
comes from identical transformation, and the 4th step comes from b = Θ(

√
logm).

And in each iteration, note that R is n× n, A is md× n, S is t×md,

• we have calculating v = R⊤A⊤(D ⊗ Id)ARzt −R⊤yreg takes
O(n2 +m0.76dn+m0.76dn+ n2 + n2) = O(m0.76dn+ n2)

time,

• and calculating (R⊤A⊤(D ⊗ Id)AR)⊤v takes
O(n2 +m0.76dn+m0.76dn+ n2) = O(m0.76dn+ n2)

time.

Thus each iteration in the while-loop from line 31 (Algorithm 5) takes O(m0.76dn+ n2) time, the
total process of the iterative regression takes O((m0.76dn+ n2) log(mn/δ) + n3) time.

Using FMM, the running time is O((m0.76dn+ n2) log(mn/δ) + nω).

In our regime, O(log(n/δ)) = O(logm) since m = poly(n/δ). Thus, we can hide the log factors in
Õ.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

F.3 IMPLICIT WEIGHT MAINTENANCE

We give a lemma that formally analyzes the running time of the implicit weight maintenance process
in Algorithm 5 to show its time complexity.
Lemma F.4 (Implicit weight maintenance, formal version of Lemma 6.5). The implicit weight
maintenance of Algorithm 5 (from line 38 to line 43) runs in time O(n2m0.76(d+ logm)).

Proof. Let us consider every iteration of the for loop starting at line 40 (Algorithm 5), since (Jt)r is
d×n, computing Wt+1 takes O(nd) time. And by Lemma B.3, updating Wt+1 takes O(n(d+logm))
time, thus each iteration takes O(n(d+ logm)) time. By Theorem G.2, |K| = O(nm0.76), thus the
whole implicit weight maintenance takes O(n2m0.76(d+ logm)) time.

G COMBINATION

Theorem 1.1 shows that as long as the 2-layer neural network is broad enough, then there exists a
training algorithm with sublinear running time and large converge probability. Theorem 5.1 gives an
analysis about how large m should be, but its result is based on λ, the minimal eigenvalue of K 2,
which is not straightforward.

In this section, we convert the bound of Theorem 5.1 into a bound only related to batch number n,
data separability δ and tolerable probability of failure ρ.
Definition G.1 (Two sparsity definitions). We define sparsity of the 2-layer neural network to the
number of activated neurons.

We define sparsity of a Jacobi matrix of 2-layer neural network as the maximal number of non-zero
entries of a row in the Jacobi matrix J (J ∈ Rn×md) of weights.

We present the following theorem.
Theorem G.2. For a 2-layer ReLU activated neural network. Suppose m is the number of neurons, d
is the dimension of points, n is represent the number of points, ρ ∈ (0, 1/10) is the failure probability,
and δ is the separability of data points.

For any real number α ∈ (0, 1], let b =
√

0.5(1− α) logm, if

m = Ω((δ−4n12 log4(n/ρ))1/α)

then the training algorithm in Algorithm 5 converges with prob. ≥ 1 − 5
2ρ − n2 · exp(−m ·

min{c′e−b2/2, R
10

√
m
}), and the sparsity of the neural network is

O(m
3+α
4)

with probability 1−n ·exp(−Ω(m ·exp(−b2/2))). Especially, for any given parameter ϵ0 ∈ (0, 1/4],
if we choose α = 0.04, the sparsity is O(m0.76).

Proof. From Theorem A.9, we know

λ ≥ exp(−b2/2) · δ

100n2
.

Since by Theorem 5.1, we need

m = Ω(λ−4n4b2 log2(n/ρ))

to make our algorithm converges, we need to choose

m = Ω((exp(b2/2) · 100n2 · δ−1)4 · n4b2 log2(n/ρ))

= Ω(exp(4 · b2/2) · δ−4 · n12b2 log2(n/ρ))

= Ω(m1−α · δ−4 · n12 · (logm) · log2(n/ρ))
2See Section (3) for the definition of K.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

where the final step is because b =
√
0.5(1− α) logm.

Suppose the constant hidden by Ω is C, then the above equation is equivalent to

mα ≥ C · δ−4 · n12 · (logm) · log2(n/ρ),

and since m = poly(n), logm ≤ log2 n, thus as long as

m ≥ (Cδ−4n12 log4(n/ρ))1/α,

we have m = Ω(λ−4n4b2 log2(n/ρ)), then by Theorem 5.1, our algorithm converges.

Then, according to Lemma A.21, the sparsity of this neural network is equal to

= O(m · exp(−b2/2))
=m ·m−(1−α)/4

=m
3+α
4

where the second step is because b =
√
0.5(1− α) logm, for any α ∈ (0, 1].

36

