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ABSTRACT

Artificial neural networks (ANNs) are powerful tools for studying neural repre-
sentations in the ventral visual stream of the brain, which, in turn, have inspired
new designs of ANN models to improve task performance. However, a unified
framework for merging these two directions has been lacking so far. In this study,
we propose an integrated framework called Deep Autoencoder with Neural Re-
sponse (DAE-NR), which incorporates information from the visual cortex into
ANN models to achieve better image reconstruction performance and higher neural
representation similarity between biological and artificial neurons. The same visual
stimuli (i.e., natural images) are input to both the mice brain and DAE-NR. The
encoder of DAE-NR jointly learns the dependencies from neural spike encoding
and image reconstruction. For the neural spike encoding task, the features derived
from a specific hidden layer of the encoder are transformed by a mapping function
to predict the ground-truth neural response under the constraint of image reconstruc-
tion. Simultaneously, for the image reconstruction task, the latent representation
obtained by the encoder is assigned to a decoder to restore the original image under
the guidance of neural information. In DAE-NR, the learning process of encoder,
mapping function and decoder are all implicitly constrained by these two tasks. Our
experiments demonstrate that if and only if with the joint learning, DAE-NRs can
improve the performance of visual image reconstruction and increase the represen-
tation similarity between biological neurons and artificial neurons. The DAE-NR
offers a new perspective on the integration of computer vision and neuroscience.

1 INTRODUCTION

Computer vision has achieved almost comparable performance to the human visual system on some
tasks, mainly thanks to recent advances in deep learning. Image reconstruction is one of the essential
tasks in computer vision Hinton & Salakhutdinov (2006); Kingma & Welling (2014); Ravishankar
et al. (2020). As a solution, the auto-encoder (AE) framework embeds the high-dimensional input to
a low-dimensional latent space by the encoder and then reconstructs the image by the decoder Hinton
& Salakhutdinov (2006); Goodfellow et al. (2016). Despite the popularity and the practical successes
of AE models, the setting of prior would largely influence the image reconstruction performance on
DAEs Tomczak & Welling (2018). Moreover, there usually needs to be more biological interpretability
in the model architecture.

Inspired by neuroscience, computer vision researchers have been interested in how to use information
from biological neurons to achieve brain-like performance (such as robustness and ability to learn
from small samples). The biology-inspired AE models may help improve performance in image
reconstruction tasks and bring biological interpretability Federer et al. (2020); Schrimpf et al. (2018);
Safarani et al. (2021). To this end, the key question is how to integrate biological information into
AEs.

On the other hand, computational neuroscience is interested in building models that map stimuli to
neural responses. Traditional models have difficulty expressing nonlinear characteristics between
stimulus and neural response. Deep learning empowers computational neuroscience models and
reveals the relationship between stimuli and neural spikes Klindt et al. (2017) Although biological and
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Figure 1: Scheme of the models: (a) the standard deep autoencoder (DAE) for image reconstruc-
tion, (b) the convolutional neural network with factorized readout (CNN-FR) for predicting neural
responses, (c) the DAE with neuron response (DAE-NR) for both image reconstruction and neural
response prediction. s denotes the biological neural response; ŝ denotes the prediction of biological
neural response; hi (i 2 {1, 2, 3, 4}) is the feature map of the ith convolutional layer.

artificial neural networks may have fundamental differences in computation and learning Macpherson
et al. (2021), both are realized by interconnected neurons: the former by biological neurons; the
latter by artificial neurons. Some previous work has focused on investigating the similarities between
the information representation of biological neurons and artificial neurons using end-to-end ANNs,
suggesting that artificial neurons in different layers of ANNs share similar representations with
biological neurons in brain regions along the ventral visual pathway DiCarlo et al. (2012); Yamins &
DiCarlo (2016); Walker et al. (2019); Bashivan et al. (2019). How to build artificial neural networks
most similar to biological neural representations remain an open question.

Some studies have leveraged real neural responses to speed up the training process and improve
network performance in object detection tasks Federer et al. (2020); Schrimpf et al. (2018); Safarani
et al. (2021). However, no model has yet utilized neural responses as constraints to improve image
reconstruction performance. More importantly, to our knowledge, there is no unified framework that
can leverage both neural responses to improve model performance and image reconstruction tasks to
improve representational similarity between biological and artificial neurons.

In this paper, we aim to tackle these two questions in one piece. Specifically, we propose a united
biologically inspired framework, which jointly learns i) to project features of visual input in a specific
layer of the encoder to biological neural responses by a mapping function and ii) to reconstruct
the visual input via the decoder. As a result, its encoder has a higher representational similarity to
the real neural responses, and its decoder achieves better image reconstruction performance. Our
contributions can be summarized as follows.

• We present a biologically inspired framework called Deep Autoencoder with Neural Re-
sponse (DAE-NR). The framework can simultaneously learn to predict neural responses and
to reconstruct the visual stimuli (Sec.3).

• The deep autoencoders embedded in DAE-NR can improve the image reconstruction quality
with the help of a Poisson loss on the predicted neural activity, compared to the baseline
auto-encoder models (Sec.4.2 & 4.4).

• The computational neuroscience model (CNM) via DAE-NR offers higher resemblance
between artificial neurons and biological neurons compared to the competing end-to-end
CNM models (Sec.4.3 & 4.4).
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Figure 2: Reconstructed images of neural activity in mouse Region 3. From top to bottom, each row
displays 10 examples of the original stimuli images (a), the reconstructed images by CAE (b), and by
CAE-FRi (c-f) for i 2 {1, 2, 3, 4}, respectively.

2 RELATED WORK

Image reconstruction via auto-encoders: A big breakthrough in image reconstruction is in Hinton
& Salakhutdinov (2006), which equips an autoencoder with a stack of restricted Boltzmann ma-
chines. The denoising autoencoder Vincent et al. (2008) and convolutional autoencoder (CAE) Masci
et al. (2011) further improve the stability of autoencoders by adding noise and taking advantage of
convolutional layers in feature extraction, respectively. Variational Autoencoder (VAE) enhances
model robustness of generating insightful representations through a latent distribution learning mecha-
nism Kingma & Welling (2014). Vector quantisation VAE (VQ-VAE) employs the vector quantisation
to obtain a discrete latent representation that can improve the quality of image reconstruction and gen-
eration van den Oord et al. (2017). Recent advances follow a similar trend of latent space exploration
and generalize variants of DAE to many domains Larsen et al. (2016); Khattar et al. (2019); Park
et al. (2020); Wang et al. (2021); Cai et al. (2021); Ran et al. (2021). However, DAE and its variants
in image reconstruction suffer from the same problem; the parameters have a high degree of freedom.
In other words, parameters can only be learned through error backpropagation guided by gradients.
Therefore, some meaningful constraints on the parameter space will be beneficial for learning.

Neural similarity in computational neuroscience: Many models in computational neuroscience
have been proposed to build a relationship between stimuli and the corresponding neural spike
responses, which are known as neural spike encoding. The goal of these models is to increase
the similarity between predicted and true neural responses. Historically, much effort has been
devoted to finding tuning curves for specific features of visual stimuli, such as the orientation of
bars, to predict neural responses (Carandini et al., 2005; Dräger, 1975; Hubel & Wiesel, 1962;
1968; Niell et al., 2008). This is feasible for some neurons in the primary visual cortex, but not for
all neurons. Nonlinear methods provide a more general approach to predicting neural responses,
including energy models Hubel & Wiesel (1962), the linear-nonlinear (LN) model and the LN-LN
model Meyer et al. (2017). Traditional machine learning methods, such as generalized linear models
(GLMs) (Willmore et al., 2008), the multi-layer perceptron (MLP) and the support vector regression
(SVR) Das et al. (2019), have been widely applied in computational neuroscience to predict the
neural responses to stimuli. More recently, hierarchical structures have been found in both ventral
visual pathway (DiCarlo et al., 2012; Vintch et al., 2015; Rowekamp & Sharpee, 2017) and in
deep convolutional neural networks (Fukushima et al., 1983; LeCun et al., 1989; Krizhevsky et al.,
2012). Underlying the similar hierarchy, the brain and CNN are believed to share similar neural
representations for extracting features from stimuli layer by layer, from simple to complex. To
test this hypothesis, Yamins el al.Yamins & DiCarlo (2016) proposed to use hierarchical CNNs as
computational neuroscience models to investigate neural similarity. They report neural representation
similarities between biological neurons along the ventral visual stream and artificial neurons in
different convolutional layers Yamins & DiCarlo (2016). Furthermore, CNN with a fully-connected
readout layer (CNN-FC) can directly map the convolutional features to neural responses McIntosh
et al. (2016). However, such a fully-connected readout layer typically contains a large number of
parameters. To reduce the number of parameters in the readout layer, CNN with a factorized readout
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layer (CNN-FR) and CNN with a fixed mask (CNN-FM) are proposed which factorize convolutional
features into a spatial mask Klindt et al. (2017). So far, CNN models with readout layers have become
an important tool for studying neural similarity between the brain and CNN.

3 METHOD

Here we first introduce the notation of data spaces and variables. We then present the framework of
deep autoencoders with neural response (DAE-NR) in Sec. 3.1. Finally, we describe realizations of
the DAE-NR framework using CAE and CNN-FR in Sec. 3.2.

The data space of visual stimuli, the neural responses, and the features of stimuli in the i-th convo-
lutional layer are denoted by X , S, and Hi. The visual stimuli (i.e., natural images) and the corre-
sponding neural responses (i.e., neural spikes in the V1 region) are represented as x 2 RN⇥P⇥P⇥C

and s 2 RN⇥M , respectively. The features of stimuli in the i-th convolutional layer are denoted as
hi 2 RN⇥K⇥K⇥F , with the sample size (N ), the image resolution (P ), the image channel (C), the
kernel size of a feature of stimuli (K), the number of kernels (F ), and the number of V1 neurons
(M ), respectively.

3.1 THE DAE-NR FRAMEWORK

The DAE-NR combines the function of DAE for image reconstruction and the role of CNM for
predicting neural responses. The DAE-NR framework consists of three parts, including an encoder
f1: X ! Hi, a decoder f2: Hi ! X̂ , and a mapping function f3 : Hi ! Ŝ .

DAE: The standard DAEs and their variants (e.g., CAE Masci et al. (2011), VAE (Kingma & Welling,
2014) and VQ-VAE (van den Oord et al., 2017)) consist of an encoder, the latent space, and a decoder,
which have become mainstream models for image reconstruction. In our work, instead of separating
the encoder and decoder by the latent layer, we split the encoder and decoder at the i-th layer of DAE.
In this way, the architecture of our DAE turns out to be: (i) an encoder f1 : X ! Hi, to embed the
input to neural representation in i-th layer; (ii) a decoder f2 : Hi ! X̂ , to reconstruct the input based
on neural representations in i-th layer. We formally describe them as follows:

the encoder: hi = f1(�1,x),

the decoder: x̂ = f2(�2,hi),
(1)

where the x̂ is reconstructed from the original image x. Both the encoder and decoder are realized
by neural networks with parameters �1 and �2, respectively. The goal of DAE is to reconstruct the
image by optimizing the the loss function L(�1,�2).

CNM: The computational neuroscience models (e.g., CNN-FR (Klindt et al., 2017; Bashivan et al.,
2019), CNN-FC (McIntosh et al., 2016), and CNN-FM (Klindt et al., 2017)) usually consist of the
encoder and the readout layer. The encoder can be used to extract the image’s features. The readout
layer is used to map the feature space Hi to the neural responses in the space S. The mapping
function f3 : Hi ! Ŝ is

ŝ = f3(hi, ✓). (2)

We employ the L(✓) loss to optimize the representation similarity between artificial neurons (i.e., ŝ)
and biological neurons neurons (i.e., s) in the mapping function.

DAE-NR: The loss function of DAE-NR explicitly considers both the image reconstruction task
in computer vision and the neural representation similarity task in computational neuroscience, as
defined in Eq. equation 3.

L(�1,�2, ✓) = ↵ ⇤ L(�1,�2) + � ⇤ L(✓), (3)
where ↵ and � are the hyperparameters to trade off the image reconstruction task and the neural
representation similarity task.

3.2 REALIZATIONS OF DAE-NR

Here, we first realize DAE-NR by a toy model (i.e., CAE-FR) combining a convolutional autoencoder
(CAE) and a CNN with factorized readout (CNN-FR). It is important to note that the DAE-NR
framework is compatible with different instantiations. We have full implementation in Table 1.
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Table 1: The variants of DAE-NR. The implementation details of CAE-FR are presented in Sec
3.2. The implementation of other variants is the same as CAE-FR. CAE, VAE, and VQ-VAE are
the short name for convolutional autoencoder, variational autoencoder, and vector quantisation
VAE, respectively. i 2 {1, 2, 3, 4} representing the DAE-NRi extracted features from the different
convolutional layers hi.

CNMs
DAEs CAE VAE VQ-VAE

CNN with factorized readout (CNN-FR) CAE-FRi VAE-FRi VQ-VAE-FRi

CNN with fully-connected readout (CNN-FC) CAE-FCi VAE-FCi VQ-VAE-FCi

CNN with fixed mask (CNN-FM) CAE-FMi VAE-FMi VQ-VAE-FMi

CAE: Both the encoder and the decoder are realized by convolutional neural networks with parameters
�1 and �2, respectively. The loss function of CAE is formulated as a L2 norm:

L(�1,�2) = kx� x̂k22 = kx� f2(�2, f1(�1,x))k
2
2 , (4)

where the x̂ is reconstructed from the original image x.

CNN-FR: The CNN-FR consists of two parts, the convolutional layers as the encoder and the
factorized readout layer (Klindt et al., 2017; Bashivan et al., 2019; Cadena et al., 2019; Zhuang
et al., 2021). The convolutional layers convolve the image with a number of kernels followed by
batch normalization, resulting in multiple feature maps. The readout layer pools the output of the
convolutional layer (i.e., hi) by applying a sparse mask on each neuron. Applying a sparse mask, the
readout layer pools the output of the convolutional layer (i.e., hi) on each neuron. Let us denote that
hi lies in the feature space Hi and the neural responses in the space S . The mapping function is

ŝ = f3(hi, ✓s, ✓d) =
hX

(✓s · hi)
i
⇤ ✓d + b, (5)

where ✓s is the spatial mask, ✓d is the weights sum of all features hi, and b is the bias. We use the
Poisson loss to optimize the representation similarity between artificial neurons (i.e. ŝ) and biological
neurons neurons (i.e. s) in the mapping function as Eq.(6),

L(✓s, ✓d) =
X

(ŝ� s log ŝ) . (6)

Previous studies have shown that the responses of V1 neurons to natural stimuli are sparse, and the
activity of neural populations with higher sparseness exhibits greater discrimination against natural
stimuli. (Vinje & Gallant, 2000; Weliky et al., 2003; Froudarakis et al., 2014; Yoshida & Ohki, 2020).
Likewise, (Zhuang et al., 2017) has reported that the resemblance between the representation of
biological neurons and artificial neurons in higher convolutional layers exists only under the sparsity
constraint on the CNN, regardless of any other factors (e.g., , model structure, training algorithm,
receptive field size, and property of training stimuli). In our study, the representational similarity of
V1 neurons is brought to a specific layer of the CAE encoder (hi, i 2 [1, 2, 3, 4]) with the sparsity
constraint for artificial neurons in this layer.

CAE-FR: The CAE-FR combines the function of CAE and CNN-FR. The loss of CAE-FR explicitly
considers both the image reconstruction task and the neural representation similarity task, as defined
in Eq. equation 7,

L(�1,�2, ✓s, ✓d) = ↵ ⇤ kx� f2(�2, f1(�1,x))k
2
2 + � ⇤

X
(f3(hi, ✓s, ✓d)� s log f3(hi, ✓s, ✓d)).

(7)
Intuitively, the larger ↵ favors the reconstruction task, while the larger � biases toward the neural
representation similarity task.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

Datasets: We conduct experiments on a publicly available dataset with the gray-color images as
visual stimuli and the corresponding neural responses. The neural response dataset is obtained

5



Under review as a conference paper at ICLR 2023

from Antolík et al. (2016). The neural responses in the dataset are recorded in three regions in the
primary visual cortex (V1) of sedated mice visually stimulated with the natural images (See Appendix
Fig. 5). The number of neurons over the three brain regions is shown in the Appendix Table 7.

Models: We realized DAE-NRs with nine different combinations of DAE and CNM (See Table 1).
DAE-NRs are compared with DAE baselines for the image reconstructions task and compared with
CNM baselines for the neural representation similarity task. We choose CAE, VAE and VQ-VAE
as the DAE baselines and CNN-FR, CNN-FC and CNN-FM as the CNM baselines, respectively.
Especially, we have the CNM with hi (CNMi, i 2 {1, 2, 3, 4}). The CNM in DAE-NR can be readout
from four different convolutional layers (i.e., hi of the DAE encoder), resulting in four variants of
DAE-NRs (i.e., DAE-NRi, i 2 {1, 2, 3, 4}) which represent the CNM extracted from the different
convolutional layers hi.

Network architectures: The architecture of the DAE in DAE-NR is in the Appendix Table 14.
The dimension of latent variable in CAE and VAE is set as 100; the prior of VAE and VQ-VAE
is the Gaussian distribution N(0, 1) and uniform distribution, respectively. The dimension of
latent embedding space in VQ-VAE is 32 ⇥ 256. Each convolutional layer is followed by a batch
normalization with an ELU activation function, while the activation function in the final layer for
image reconstruction is tanh. The CNM in DAE-NR shares the four different convolutional layers
(h1, h2, h3, and h4). The CNM in DAE-NR can be readout from four different convolutional layers
(i.e. hi of the encoder of DAE), so there are four variants of DAE-NR, i.e. DAE-NRi, i 2 {1, 2, 3, 4}
representing the CNM extracted from the different convolutional layers hi.

Training procedures: We preprocess the images (i.e., reshape the size of the natural image to
32⇥ 32⇥ 1 and normalize the intensity of the image to [-1,1]) and then input them to the model. The
model is trained with an initial learning rate of 0.001, and the early stopping strategy is applied based
on a separated validation set. If the error in the validation set does not improve by 1000 steps, we
return the best parameter set, reduce the learning rate by two, and train in the second time.The VAE
is optimized by the evidence lower bound (ELBO), while the VQ-VAE is optimized following the
settings in (van den Oord et al., 2017). The settings of hyperparameters for tasks in Sec 4.2 and Sec 4.3
are detailed in Appendix Table 8 and 9 , respectively. The Appendix Table 10 and Table 11&12&13
are the settings the hyperparameters of different DAE-NR variants for image reconstruction on Region
3 and neural similarity experiments on Region 1,2 and 3 in Sec 4.4, respectively.

Table 2: The quantitative results of image reconstruction with all neurons in the region 1, 2, and 3,
respectively. The best result in each region under different metrics is highlighted with boldface.

Region Region 1 Region 2 Region 3

Model
Metric MSE# PSNR" SSIM" MSE# PSNR" SSIM" MSE# PSNR" SSIM"

CAE 0.022 23.709 0.771 0.024 23.338 0.754 0.081 17.039 0.561
CAE-FR1 0.021 23.829 0.776 0.023 23.392 0.753 0.044 19.751 0.763
CAE-FR2 0.021 23.779 0.775 0.023 23.440 0.759 0.043 19.819 0.764

CAE-FR3 0.021 23.778 0.775 0.024 23.330 0.755 0.043 19.789 0.761
CAE-FR4 0.022 23.721 0.773 0.023 23.491 0.760 0.059 18.462 0.668

Tasks: There are two tasks in the experiment: 1) the image reconstruction (IR) task and 2) the
neural representation similarity (NRS) task. We apply CAE-FR to analyse the effects of neural
responses on IR and the effects of image reconstruction on NRS tasks in DAE-NR. We compare
the other DAE-NR variants with DAE and CNM for IR and NRS tasks to explore the generalisation
capability of DAE-NR. In the IR task, we use the mean squared error (MSE#), structural similarity
(SSIM") Wang et al. (2004), and peak signal-to-noise ratio (PSNR") Wang et al. (2004) as metrics to
quantify the image reconstruction performance1. We compare the DAE-NR1, DAE-NR2, DAE-NR3

and DAE-NR4 with the standard DAE. In the NRS task, we use Pearson correlation coefficient
(PCC") as a metric to quantitatively evaluate models. We implement the traditional end-to-end CNMi

(i 2 {1, 2, 3, 4}) as baseline models.

1The up arrow " indicates that the higher the value, the better, and the down arrow # indicates that the lower,
the better.
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Region 1(1)

CNN-FR 1

CAE-FR 1
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CNN-FR 3

CAE-FR 3
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CAE-FR 4

Region 3(3)

Figure 3: The number of significant neurons (deep blue and deep red) and insignificant neurons (light
blue and light red) in region 1, 2, 3 in the image reconstruction task. The threshold for significance is
p  0.05. The results show that our models (CAE-FRs) provide more significant neurons (red) than
the baseline models (blue).

Table 3: The quantitative results of image reconstruction with constraints of significant neurons and
insignificant neurons in the region 3. The best result under different metrics is highlighted with
boldface.

Metric MSE# SSIM" PSNR"

Model
Significant? X ⇥ X ⇥ X ⇥

CAE-FR1 0.043 0.125 0.761 0.332 19.784 15.168
CAE-FR2 0.047 0.082 0.743 0.547 19.467 16.970
CAE-FR3 0.049 0.116 0.724 0.362 19.245 15.463
CAE-FR4 0.047 0.045 0.740 0.752 19.497 19.628

4.2 BIOLOGICAL NEURAL RESPONSES IN CAE-FR IMPROVES IMAGE RECONSTRUCTION

Ten examples of reconstructed images by CAE-FR with neural responses in brain region 3 are
presented in Fig. 2. It is obvious that CAE-FR models, no matter which layer the neural response
is mapped to, can better reconstruct the original images compared with the standard CAE. The
results of the brain region 1 and 2 are illustrated in Appendix Fig. 6 and Fig. 7. The quantitative
comparisons of image reconstruction performance are listed in Table 2. It shows that CAE-FR1,
CAE-FR4, and CAE-FR2 achieve the best performance when the network gets information from
the neurons in the regions 1, 2, and 3, respectively. Although our model works in region 3 with a
significant improvement, there is a slight improvement in regions 1 & 2. We deem that the neurons
carrying more information about essential features of the visual stimulus can reconstruct better. The
results in Fig4 and Appendix Fig. 8 show that region 3 has more significant neurons compared to
Regions 1 and 2. These results indicate that neurons in regional 3 carry more information than those
in regions 1 and 2 about essential features of the visual stimulus.

CAE CAE-F
R1
CAE-F
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CAE-F

R4
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Figure 4: The number of significant
neurons and insignificant neurons
of the Region 3 in the image recon-
struction task. The threshold for sig-
nificance is p  0.05.

Fig. 2 and Table 2 suggests that the information from biological
neurons could help CAE-FR for image reconstruction. Further
questions are under what circumstances and to what extent
CAE-FR is beneficial from the neural response. Our hypothesis
is that only the biological neurons with high representation
similarity to artificial neurons can provide information and
contribute to CAE-FR.

To test our hypothesis, we identify the biological neurons
that significantly correlate with the artificial neurons in the
CAE-FR model on the region 3, as well as the insignificant
neurons in each brain region. Fig. 4 shows the number of
significant neurons and insignificant neurons in region 3 in the
IR task. Then, we train the CAE-FRs with the information
from these two groups of neurons in region 3 for the IR task
separately. The quantitative results of the three metrics are
shown in Table 3, confirming that insignificant neurons carry
very little information about the images, and they can not
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Table 4: Pearson correlation between the representations of artificial and biological neurons in
region 1, 2, and 3, respectively. The best result in each region under different layers of the model is
highlighted with boldface.

Region
Model CNN-FR1 CAE-FR1 CNN-FR2 CAE-FR2 CNN-FR3 CAE-FR3 CNN-FR4 CAE-FR4

Region 1 0.341 0.346 0.467 0.476 0.454 0.455 0.441 0.463

Region 2 0.257 0.281 0.384 0.400 0.333 0.338 0.301 0.345

Region 3 0.246 0.260 0.361 0.388 0.372 0.404 0.385 0.393

contribute to improving image reconstruction performance. These experiments verify our hypothesis,
indicating that information from significant neurons can better guide CAE-FR to reconstruct images.

4.3 IMAGE RECONSTRUCTION IN CAE-FR IMPROVES NEURAL REPRESENTATION SIMILARITY

Here, we test image reconstruction’s effects on neural representation similarity in CAE-FR. The
results of the Pearson correlation coefficient between the neural representation of artificial neurons
and of biological neurons in region 1, region 2 and region 3 are shown in Table 4. Our models
(i.e., CAE-FRi) obtain larger PCC in all three regions compared to the baseline models without
the image reconstruction loss (i.e., CNN-FRi). The results show that image reconstruction in our
model favors neural representation similarity. This phenomenon seems counter-intuitive as there is
a tradeoff between the IR loss and the NSR loss in Eq. equation 3. We hypothesize that the benefit
may stem from feature learning for image reconstruction by CAE: more biological neurons would
share representation similarity with artificial neurons when adding image reconstruction loss. In fact,
our experimental results verify the hypothesis (Fig. 3), suggesting that image reconstruction loss can
help CAE-FR to improve neural representation similarity between artificial neurons and biological
neurons.

4.4 GENERALIZABILITY ACROSS VARIANTS OF CNM AND DAE

To investigate the generalizability of DAE-NR variants, we compare different DAE-NR variants with
baseline CNMs and DAEs on IR and NRS tasks, respectively.

Comparisons in IR task: Table 5 provides the quantitative comparisons among different models.
Specifically, we compare different CNMs variants (i.e., CAE-FRi, CAE-FCi, and CAE-FMi) with
the standard CAE on the IR task. The results show that the best performance is achieved when
the network leverages information from biological neurons in Region 3. Moreover, to examine
generalizability in other DAE variants, we implement some VAE variants (VAE-FRi, VAE-FCi, and
VAE-FMi) and VQ-VAE variants (VQ-VAE-FRi, VQ-VAE-FCi, and VQ-VAE-FMi) and compare
their performance with the standard VAE and VQ-VAE on the IR task, respectively. Our results show
that DAE-NR, VAE variants, and VQ-VAE variants that use information from biological neurons
have better IR performances than baseline models.

Comparisons in NSR task: Pearson correlation coefficient (PCC") between the neural representation
of artificial and biological neurons in region 1, region 2, and region 3 are shown in Table 6. To verify
the effect of different DAEs for CNN-FR, we compare the variants of CAE (CAE-FRi, CAE-FCi,
and CAE-FMi) with CNN-FR on the NSR task. Our models obtain higher PCC in all three regions
compared to the baseline models. Furthermore, to validate the function of other CNM variants
with different constraints of DAEs, we apply the variants of CNN-FC (CAE-FCi, VAE-FCi, and
VQ-VAE-FCi) and the variants of CNN-FM (CAE-FMi, VAE-FMi, and VQ-VAE-FMi) to compare
the performance on the NRS task, respectively. Our results show that the biologically-inspired
variants of both CNN-FC and CNN-FM via our DAE-NR framework have a better performance than
the original models.

Together, we demonstrate that the DAE-NR has a good generalization in variants of CNM and DAE.
Adding neural information to guide DAE can help reconstruct visual stimuli; in turn, integrating
image reconstruction loss into CNM can improve the representation similarity between artificial and
biological neurons.
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Table 5: Quantitative results of image reconstruction with all neurons in the region 3. The best results
under different metrics for each region are highlighted in bold.

hi h1 h2 h3 h4

Model
Metric MSE# PSNR" SSIM" MSE# PSNR" SSIM" MSE# PSNR" SSIM" MSE# PSNR" SSIM"

CAEi 0.074 17.289 0.593 0.074 17.289 0.593 0.074 17.289 0.593 0.074 17.289 0.593
CAE-FRi (Ours) 0.043 19.832 0.764 0.043 19.852 0.767 0.045 19.698 0.758 0.051 19.107 0.718
CAE-FCi (Ours) 0.043 19.876 0.768 0.044 19.811 0.763 0.061 18.290 0.734 0.044 19.802 0.760

CAE-FMi (Ours) 0.045 19.692 0.761 0.043 19.843 0.764 0.044 19.818 0.761 0.044 19.757 0.757
VAEi 0.104 15.983 0.402 0.104 15.983 0.402 0.104 15.983 0.402 0.104 15.983 0.402

VAE-FRi (Ours) 0.101 16.106 0.414 0.101 16.066 0.409 0.101 16.083 0.417 0.102 16.063 0.414
VAE-FCi (Ours) 0.103 16.003 0.412 0.101 16.094 0.412 0.101 16.096 0.416 0.101 16.089 0.418

VAE-FMi (Ours) 0.102 16.046 0.415 0.101 16.073 0.414 0.102 16.025 0.413 0.103 16.017 0.412
VQ-VAEi 0.082 16.959 0.497 0.082 16.959 0.497 0.082 16.959 0.497 0.082 16.959 0.497

VQ-VAE-FRi (Ours) 0.071 17.636 0.569 0.069 17.741 0.568 0.073 17.487 0.557 0.071 17.581 0.560
VQ-VAE-FCi (Ours) 0.076 17.264 0.526 0.075 17.324 0.525 0.072 17.539 0.547 0.067 17.839 0.581

VQ-VAE-FMi (Ours) 0.068 17.782 0.572 0.068 17.791 0.571 0.091 16.496 0.546 0.072 17.508 0.542

Table 6: Results of PCC" between the representations of artificial and biological neurons in three
brain regions. The best results are highlighted in bold.

Region Region 1 Region 2 Region 3

Model
hi

h1 h2 h3 h4 h1 h2 h3 h4 h1 h2 h3 h4

CNN-FRi 0.335 0.455 0.432 0.431 0.254 0.375 0.309 0.305 0.244 0.348 0.350 0.359
CAE-FRi (Ours) 0.338 0.471 0.449 0.452 0.277 0.396 0.319 0.348 0.254 0.377 0.397 0.394
VAE-FRi (Ours) 0.338 0.479 0.455 0.450 0.277 0.386 0.317 0.342 0.269 0.375 0.382 0.404

VQ-VAE-FRi (Ours) 0.349 0.470 0.463 0.444 0.295 0.388 0.337 0.349 0.261 0.394 0.382 0.387
CNN-FCi 0.343 0.349 0.397 0.435 0.247 0.268 0.292 0.328 0.325 0.316 0.344 0.374

CAE-FCi (Ours) 0.349 0.382 0.415 0.438 0.266 0.281 0.319 0.341 0.335 0.341 0.384 0.399
VAE-FCi (Ours) 0.340 0.383 0.418 0.438 0.255 0.290 0.321 0.343 0.337 0.337 0.379 0.398

VQ-VAE-FCi (Ours) 0.347 0.377 0.415 0.434 0.264 0.289 0.313 0.361 0.338 0.341 0.388 0.427

CNN-FMi 0.150 0.222 0.110 0.220 0.123 0.186 0.127 0.162 0.064 0.140 0.102 0.178
CAE-FMi (Ours) 0.154 0.235 0.115 0.227 0.134 0.222 0.144 0.182 0.073 0.171 0.109 0.203

VAE-FMi (Ours) 0.149 0.238 0.125 0.240 0.136 0.224 0.131 0.176 0.074 0.172 0.111 0.201
VQ-VAE-FMi (Ours) 0.153 0.239 0.115 0.221 0.135 0.221 0.136 0.162 0.069 0.162 0.111 0.200

5 CONCLUSION

In this study, we proposed the DAE-NRs, a hybrid framework that integrates the neural response into
deep autoencoder models. Inspired by CNN-based neural activity prediction models in computational
neuroscience Klindt et al. (2017); Bashivan et al. (2019), we leveraged a Poisson loss to bring
neural information to a specific layer of DAE, resulting in better image reconstruction performance.
In turn, the IR task facilitates feature learning in DAE and leads to higher neural representation
similarity between biological and artificial neurons. Our work bridges the gap between DAE for
image reconstruction and CNM for neural representation similarity.

Broader impact Besides the image reconstruction task and neural representation similarity task,
DAE-NR could enable many other potential applications in the future. For instance, DAE-NR
provides a more natural way to synthesize images that maximize or control neural activity, compared
with the method proposed by Bashivan et al. (2019). Also, DAE-NR can serve as a data engine
for evirtual experiments, such as synthesizing neural responses to visual stimuli. Moreover, it is
important to investigate the generalizability of DAE-NR on variants of auto-encoder Larsen et al.
(2016); Khattar et al. (2019); Park et al. (2020); Wang et al. (2021); Cai et al. (2021), on various types
of stimuli (e.g., sound and face) and in other tasks (e.g., classification, generation and detection Ran
et al. (2021)). Although we only tested DAE-NR with mice neural data, the DAE-NR framework can
be easily extended to the neurons in primates (e.g., monkey Zhang et al. (2021) or humans). DAE-NR
opens a new window for combining artificial intelligence and brain intelligence.
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