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ABSTRACT

Retrieval-augmented generation (RAG) improves large language models (LMs) by
incorporating non-parametric knowledge through evidence retrieved from external
sources. However, it often struggles to cope with inconsistent and irrelevant infor-
mation that can distract the LM from its tasks, especially when multiple evidence
pieces are required. While compressing the retrieved evidence with a compression
model aims to address this issue, the compressed evidence may still be unfamil-
iar to the target model used for downstream tasks, potentially failing to utilize
the evidence effectively. We propose FAVICOMP (FAmiliarity-aware EVIdence
COMPression), a novel training-free evidence compression technique that makes
retrieved evidence more familiar to the target model, while seamlessly integrat-
ing parametric knowledge from the model. Specifically, FAVICOMP proactively
composes the compressed evidence in a way to lower the perplexity of the tar-
get model by combining decoding probabilities from both the compression model
and the target model to generate context that is more familiar to the target model.
This approach balances the integration of parametric and non-parametric knowl-
edge, which is especially helpful in complex tasks where the retrieved evidence
set may not contain all the necessary information. Experimental results show that
FAVICOMP consistently outperforms most recent evidence compression baselines
across multiple open-domain QA datasets, improving accuracy by up to 23.91%
while achieving high compression rates. Additionally, we demonstrate the effec-
tive integration of both parametric and non-parametric knowledge during evidence
compression.

1 INTRODUCTION

Retrieval-augmented generation (RAG) has become a common paradigm for large language models
(LMs) to leverage external knowledge beyond their inherent knowledge boundaries to perform better
in knowledge-intensive tasks such as open-domain question answering (QA) (Lewis et al., 2020;
Izacard & Grave, 2021; Guu et al., 2020) and fact-checking (Pan et al., 2023; Li et al., 2024c). In
particular, incorporating multiple evidence pieces is crucial in solving complicated tasks such as
multi-hop and complex reasoning (Trivedi et al., 2023; Jiang et al., 2023b; Li et al., 2024b; Lu et al.,
2023), which require various sources of information to solve the questions.

Nevertheless, RAG often struggles to cope with inconsistent and irrelevant information from the
multiple evidence set, which can interfere with downstream tasks (Shi et al., 2023). This highlights
the need for compression-based RAG (Jiang et al., 2023a; Xu et al., 2024; Yoon et al., 2024) to
identify and retain only the essential information for the LMs to utilize effectively. Traditionally,
compression-based RAG has focused on reranking documents or sentences by relevance and then
incorporating a top-ranked subset (Nogueira et al., 2020; Zhuang et al., 2023; Wang et al., 2023c)
or compressing the documents into an abstractive summary that retains only essential context (Jiang
et al., 2023a; Xu et al., 2024; Yoon et al., 2024). However, the compressed evidence might be un-
familiar to the LM employed for the downstream task (referred to as the target model), particularly
due to discrepancies in the pretrained internal knowledge and prompt preferences between the com-
pression model and the target model (Gonen et al., 2023; Lee et al., 2024; Li et al., 2024a; Mallen
et al., 2023). When LMs encounter unfamiliar contextual information, they often fail in balancing
parametric and non-parametric knowledge, either by overly relying on their parametric knowledge
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Figure 1: An overview of FAVICOMP. Instead of relying solely on compressed evidence from the
compression model (upper), FAVICOMP familiarizes the compressed evidence to the target model
while integrating parametric knowledge through ensemble decoding, resulting in improved down-
stream performance (lower).

(Longpre et al., 2021; Wang et al., 2023a; Zhou et al., 2023) or by utilizing retrieved evidence with-
out considering its relevance to the input (Wu et al., 2024).

To address these challenges, we propose FAVICOMP (FAmiliarity-aware EVIdence COMPression),
a training-free evidence compression method that makes retrieved multi-evidence more familiar to
the target model, while seamlessly integrating parametric knowledge from the model. Inspired by
the prior findings that an LM’s familiarity with a prompt is generally reflected by low perplexity
(Liu et al., 2024; Gonen et al., 2023; Wang et al., 2023b), FAVICOMP proactively composes the
compressed evidence in a way to lower the perplexity of the target model. Specifically, FAVICOMP
leverages the decoding probabilities of two LMs, a compression model and the target model. The
compression model is instructed to summarize the raw evidential documents into a relevant context
to the input, while the target model is instructed to generate relevant context without referencing the
documents. Instead of directly selecting the highest probability token from the compression model at
each decoding step, we ensemble the token logits from both the compression and target models and
then select the token with the highest probability from this combined set. This ensemble decoding
therefore constrains the token search space of the compression model to those with lower perplexity
for the target model, making the context more familiar to the target model (Liu et al., 2024).

Furthermore, FAVICOMP potentially synergizes the retrieved knowledge with the target model’s
parametric knowledge introduced during ensemble decoding. FAVICOMP can effectively discern
when to leverage internal or external knowledge, which is particularly beneficial in the presence of
noisy contextual evidence in complex tasks such as multi-document or multi-hop QA (Wang et al.,
2024).

FAVICOMP brings along key advantages of RAG for complex tasks from two perspectives. On the
one hand, it is capable of compressing multiple augmented documents to a more favorable form to
the target model. This mechanism not only helps the model better comprehend the essential evidence
in the retrieval augmentation but also better balances knowledge utility in both the evidential context
and the model’s parametric memory. On the other hand, it is a training-free and model-agnostic
approach that can be easily plugged into any RAG processes

Our experiments show that FAVICOMP outperforms most recent evidence compression baselines
in five open-domain QA datasets, improving accuracy by up to 23.91% while maintaining high
compression rates. Additionally, we conduct ablation studies by varying the degree of decoding
ensemble and analyzing its impact on performance and context perplexity. Moreover, we investigate
how FAVICOMP effectively integrates parametric and non-parametric knowledge during evidence
compression.

2 METHOD

We present FAVICOMP, a decoding-time evidence compression method that familiarizes retrieved
evidence with the target model while synergizing them with the model’s parametric knowledge. We
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first illustrate the motivation for FAVICOMP in §2.1 and provide the preliminaries of compression-
based RAG in §2.2, followed by a detailed definition of our proposed framework in §2.3.

2.1 MOTIVATION AND METHOD OVERVIEW

Standard RAG faces the challenge of LMs struggling to address inconsistent and irrelevant in-
formation from multiple evidence pieces, which can interfere with downstream tasks (Shi et al.,
2023). Previous research has primarily concentrated on question-focused compression (Jiang et al.,
2023a; Xu et al., 2024; Yoon et al., 2024); however, this approach may lead to suboptimal perfor-
mance in downstream tasks due to the compressed evidence’s potential unfamiliarity with the target
model employed. This unfamiliarity arises from discrepancies in pretrained internal knowledge and
prompt preferences between the compression model and the target model (Gonen et al., 2023; Lee
et al., 2024; Mallen et al., 2023). Furthermore, the unfamiliarity often leads to failure in balancing
parametric and non-parametric knowledge, either by overly relying on their parametric knowledge
(Longpre et al., 2021; Wang et al., 2023a; Zhou et al., 2023) or by using retrieved evidence without
considering its relevance to the input (Wu et al., 2024). To address this issue, FAVICOMP introduces
a novel approach that compresses evidence that better aligns with the target model’s preferences
while seamlessly integrating parametric knowledge into the compressed evidence using a novel en-
semble decoding technique, thereby improving its performance on downstream tasks.

Fig. 1 illustrates the overview of FAVICOMP. In this example, FAVICOMP makes the compressed
evidence more favorable to the target model and leverages its parametric knowledge to supplement
the missing evidence (“Lionel Messi made his league debut in Barcelona”), effectively combining
evidential and parametric knowledge.

2.2 COMPRESSION-BASED RETRIEVAL AUGMENTED GENERATION

Given a set of k retrieved evidence snippets D = {d1, d2, . . . , dk} and a textual input sequence x,
standard RAG aims to generate an output sequence y, conditioned on both D and x. However, stan-
dard RAG directly utilizes D which often contains irrelevant information to x, potentially confusing
the target model in downstream tasks (Shi et al., 2023). Thus, the compression-based RAG uses an
additional compression model to condense D into a concise and input-relevant context c, which is
then used in place of D during the downstream generation process. Thus, the compression-based
RAG is formalized as:

y∗ = argmax
y

Pt(y | x, ĉ),

ĉ = Pc(c | x, [d1, d2, . . . , dk]),
where y∗ is the final output sequence, [·, ·] denotes concatenation, and Pt and Pc represent the prob-
ability distributions of the target and compression models, respectively. In this work, we consider
any natural language prompting tasks, such as open-domain QA tasks, where x represents the input
prompt (also known as the query in QA tasks) and y∗ denotes the output sequence.

The compression model’s objective is to produce a concise yet informative summary c of the evi-
dential documents D that captures the essential information relevant to the input query x. We use
an unsupervised approach, where the model is instructed to generate a query-relevant summary of
D in a zero-shot manner using an evidence compression instruction prompt, denoted as Icomp, such
as the one below:

Evidence Compression Instruction

Given a question and multiple document snippets, generate one summa-
rized context that is helpful to answer the question.

Specifically, the evidence compression is done in an auto-regressive way formalized as,

Pc(c | Icomp, x,D) =

|c|∏
i=1

Pc(ci|Icomp, x,D, c<i),

where |c| is the length of the summary c.
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2.3 ENSEMBLE DECODING FOR FAVICOMP

Simple compression techniques might lead to subpar performance in downstream tasks because the
compressed evidence may not be familiar to the target model. To better align the context to the target
model, FAVICOMP proactively composes it to lower the target model’s perplexity by introducing a
constraint in decoding space from the target model during the evidence compression. FAVICOMP
achieves this goal through ensemble decoding, which involves a multiplicative ensemble of two
LMs—compression model and target model—at each decoding step.

Specifically, the target model is directed to generate a context c that would be helpful in answering
the question x without referencing the evidence set. This is also done in zero-shot using a context
generation instruction prompt Igen such as:

Context Generation Instruction

Given a question, generate a context that is helpful to answer the question.

The context generation is also performed in an auto-regressive fashion, represented as:

Pt(c | Igen, x) =
|c|∏
i=1

Pt(ci|Igen, x, c<i),

where |c| denotes the length of the generated context c.

Once the compression model and the target model generate their respective probability distributions
for the next token, the subsequent token is chosen by maximizing the weighted sum of the log
probabilities from both models. The selected token is the continuation of the previously generated
text aligned with their objectives. This process is formalized as follows:

ci = argmax
ci∈V

((1− α) · logPc(ci|Icomp, x,D, c<i) + α · logPt(ci|Igen, x, c<i)),

where ci is the subsequent token, and α is the ensemble coefficient that weighs between the two
probability distributions. We demonstrate how the coefficient α impacts both the perplexity and the
downstream performance in §4.2.

Ensemble decoding proactively shifts the token search space in evidence compression by upweight-
ing those tokens with lower perplexity from the target model’s perspective (Liu et al., 2024), re-
sulting in a compressed evidence that is more familiar to the target model. Note that since both
objectives ultimately share the goal of generating context relevant to the question, combining the
logits ensures alignment with this ultimate goal.

In addition, ensemble decoding enables FAVICOMP to seamlessly integrate both retrieval knowl-
edge from the external evidence set and the target model’s parametric knowledge. Specifically,
FAVICOMP selects the argmax token from the target model only when the token’s probability is
higher than that of the compression model, demonstrating that FAVICOMP draws on parametric
knowledge only when necessary—potentially when the compression model is uncertain about the
next token. This is particularly beneficial for complex tasks like multi-document QA, where the
evidence set may not include all the necessary information (Mallen et al., 2023). In such cases, the
missing information in compressed evidence can be supplemented by tokens generated from context
generation by the target model, which is entirely based on parametric knowledge. We demonstrate
in §4.3 and §5 that FAVICOMP can incorporate knowledge from both sources effectively, leading to
a performance boost compared to compression methods that solely focus on distilling knowledge
from the evidence set.

3 EXPERIMENTAL SETTINGS

We assess the effectiveness of FAVICOMP on knowledge-intensive QA tasks. In this section, we
delve into the details of the experimental settings.
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3.1 DATASETS

We evaluate FAVICOMP on five open-domain QA datasets, including two single-document QA
datasets, Natural Questions (NQ) (Kwiatkowski et al., 2019) and TriviaQA (TQA; Joshi et al.
2017), and three multi-document QA datasets, HotpotQA (Yang et al., 2018), 2WikiMultiHopQA
(2WikiMQA; Ho et al. 2020), and MuSiQue (Trivedi et al., 2022). Following prior studies (Asai
et al., 2023; Xu et al., 2024), we evaluate the performance on the development set of each dataset
and use three evaluation metrics, i.e. Accuracy (Acc), token-level F1 and compression rate (Comp)
which is calculated as # of tokens in retrieved documents

# of tokens in compressed documents .

3.2 IMPLEMENTATION DETAILS

For all the comparison methods, we utilize three LMs as the target model to tackle down-
stream QA tasks with RAG, i.e. Llama3-8B-Instruct1, Mistral-7B-Instruct2 and
Mixtral-8x7B-Instruct3. For each question, we retrieve five documents from 2018
Wikipedia corpus (Karpukhin et al., 2020) using Contriever-MSMARCO4 (Izacard et al., 2021),
so as to be consistent with previous studies (Xu et al., 2024; Yoon et al., 2024).

For FAVICOMP, we employ three compression and target model pairs: (1)
Llama3.2-3B-Instruct and Llama3-8B-Instruct as the compression models
and Llama3-8B-Instruct as the target model, (2) Mistral-7B-Instruct as the
compression model and Mixtral-8x7B-Instruct as the target model, and (3) same
Mistral-7B-Instruct as the compression model and the target model (Appx. §B.1). Also,
we set α to 0.5 by default, for which more analyses are given in §4.2. The prompts used in the
experiment are presented in Appx. §C.

3.3 BASELINES

We consider the following categories of baselines. (1) No Context: RAG without any context. (2)
Gold Compression: RAG using directly relevant evidence from the retrieved documents if they
exist. (3) Raw Document: RAG with raw documents that have not undergone any compression. (4)
Generated Context (Yu et al., 2023): RAG with context generated by the same LM as the target
model. This is equivalent to FAVICOMP with α = 1, as we rely solely on the target model to generate
context when α = 1. (5) Reranking-based Methods: We rerank sentences in the evidence set and
choose top-ranked sentences as the context. We utilize two rerankers—Sentence-BERT (Reimers &
Gurevych, 2020) and RECOMP-extractive (Xu et al., 2024). (6) Compression-based Methods: We
employ four compressors—LongLLMLingua (Jiang et al., 2023a), RECOMP-abstractive (Xu et al.,
2024), CompAct (Yoon et al., 2024), and Zero-shot Summarization. Zero-shot Summarization is
instructed to summarize the evidence set into a concise summary based on the question, using the
same LM as the target model. This is equivalent to FAVICOMP with α = 0, as we depend entirely
on the compression model without any intervention from the target model. A detailed explanation
of the implementation of the baselines is provided in Appx. §A.

4 EXPERIMENTAL RESULTS

In this section, we compare the overall performance of FAVICOMP with other baselines across the
five datasets (§4.1), explore the impact of ensemble coefficient α on performance and perplexity
(§4.2), investigate how effectively FAVICOMP incorporate parametric and non-parametric knowl-
edge (§4.3), and compare the compression rates with other baselines (§4.4).

4.1 MAIN RESULTS

The overall performance of FAVICOMP and the baselines across the five datasets are presented
in Tab. 1 and Tab. 3. To start with, the compression-based methods consistently outperform the

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
3https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
4https://huggingface.co/facebook/contriever-msmarco
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Methods Size NQ TQA HotpotQA 2WikiMQA MuSiQue
Acc F1 Comp Acc F1 Comp Acc F1 Comp Acc F1 Comp Acc F1 Comp

Llama3-8B-Instruct

Gold Compression - - - - - - - 42.3 51.3 - 35.7 40.0 - 10.2 17.7 -

No Context - 26.9 31.9 - 57.2 61.2 - 19.1 25.5 - 20.5 25.0 - 5.4 13.0 -
Raw Document - 42.6 47.1 - 67.6 70.8 - 30.3 38.7 - 22.0 26.8 - 8.2 15.0 -
Generated Context - 32.3 36.6 - 59.7 62.4 - 22.7 29.7 - 24.8 28.7 - 7.6 14.8 -

Sentence-BERT 110M 30.3 35.4 21.13 59.2 62.9 20.61 22.4 29.6 10.30 18.1 22.9 9.96 7.7 14.8 10.18
RECOMP-extractive 110M† 33.7 38.1 19.45 59.4 62.8 18.86 22.5 29.8 9.47 18.0 22.4 9.17 8.1 15.5 9.24

LongLLMLingua 7B† 35.4 40.9 1.87 64.8 67.6 1.84 25.9 34.7 1.83 19.2 24.2 1.83 7.7 14.4 1.83
RECOMP-abstractive 775M† 39.3 43.3 17.96 62.9 66.1 17.79 27.0 34.8 19.72 20.5 25.0 32.06 7.3 14.8 32.05
CompAct 7B† 42.3 46.1 8.85 67.0 69.7 8.92 29.8 37.5 9.45 21.4 26.6 10.71 9.2 16.9 8.96

Zero-shot Summarization 3B 39.4 43.2 14.12 64.2 67.1 17.12 30.1 38.5 18.75 25.7 31.1 21.39 7.7 15.3 16.19
8B 41.3 45.1 13.87 66.3 69.5 16.58 30.2 38.6 17.38 22.3 28.1 18.98 8.3 16.3 15.50

FAVICOMP
3B 42.8 46.8 16.43 68.0 70.9 22.40 33.0 41.6 22.55 29.6 35.2 23.10 10.8 19.9 18.95
8B 42.3 46.6 15.79 68.4 71.5 20.99 32.3 41.0 21.49 27.6 33.6 22.41 11.4 20.1 19.06

Mixtral-8x7B-Instruct

Gold Compression - - - - - - - 48.2 55.1 - 49.9 51.9 - 12.9 18.6 -

No Context - 36.7 38.4 - 68.9 72.0 - 25.1 31.6 - 32.5 35.9 - 6.4 11.8 -
Raw Document - 46.3 42.1 - 72.1 71.1 - 34.0 39.0 - 32.9 36.3 - 10.1 15.6 -
Generated Context - 33.6 33.9 - 61.4 62.9 - 26.5 32.9 - 30.2 34.3 - 7.2 13.4 -

Sentence-BERT 110M 36.8 36.8 21.13 67.0 68.7 20.61 28.3 34.5 10.13 32.5 36.2 9.76 9.9 15.2 10.07
RECOMP-extractive 110M† 38.0 37.9 19.42 66.7 68.0 18.81 28.7 34.3 9.30 31.8 34.9 9.01 9.4 15.6 9.11

LongLLMLingua 7B† 40.1 39.4 1.96 70.5 71.0 1.96 32.0 38.3 1.95 31.9 36.1 1.93 9.7 15.9 1.96
RECOMP-abstractive 770M† 42.1 41.3 17.55 68.4 69.4 17.47 32.3 38.5 19.39 32.2 36.2 31.20 7.9 13.6 31.18
CompAct 7B† 44.1 43.4 8.83 70.3 71.4 8.92 35.2 41.6 9.45 35.9 39.5 10.67 11.2 16.9 8.94
Zero-shot Summarization 7B 42.1 40.6 8.65 65.9 67.0 10.43 31.4 38.1 11.71 28.5 32.8 14.35 8.4 13.8 10.26
FAVICOMP 7B 43.6 44.5 7.30 72.6 73.9 8.21 36.3 44.4 8.89 40.5 45.2 10.26 13.4 19.9 8.42

Table 1: Experimental results on five open-domain QA datasets. Size column repre-
sents the size of the compression model used for each method. † indicates a fully-
supervised compression model, where the reranker or the compressor is trained. For
the experiment with Llama3-8B-Instruct, Zero-shot Summarization and FAVICOMP use
Llama3.2-3B-Instruct and Llama3-8B-Instruct as the compression model, shown as
3B and 8B in the Size column. The best Accuracy and token-level F1 scores for each dataset are in
bold.

reranking-based methods, due to the fact the reranking-based methods are prone to losing more
question-relevant information by discarding lower-ranked sentences. Next, FAVICOMP outperforms
all other baselines across all the datasets, except for the Gold Compression which is regarded as the
upper bound of the performance. It is noteworthy that FAVICOMP, as a training-free, decoding-time
strategy, outperforms supervised baselines even with the 3B parameters compression model. For the
MuSiQue dataset, FAVICOMP even outperforms Gold Compression baseline which can be viewed
as a perfect compressor. This demonstrates that explicitly incorporating parametric knowledge from
the target model can significantly enhance performance in multi-document QA, even when the con-
text is imperfect.

Moreover, it is surprising that most of the supervised compression-based methods are excelled by
the Raw Document baseline. This indicates that existing methods are likely to fall short of re-
taining essential supportive information while compressing the evidence documents. Additionally,
LongLLMLingua and RECOMP-abstractive perform worse than Zero-shot Summarization with
similar or smaller size compression model. This may be possibly due to the use of smaller base
model for compression (T5-large for RECOMP-abstractive), but it also suggests that knowledge
distillation from larger teacher LM to the smaller compression model may not generalize well, as
the context preferences and prior knowledge of the target model and the teacher model are likely
to differ. We conduct a head-to-head experiment on RECOMP-abstractive by using the same base
compression model as FAVICOMP for a more fair comparison in Appx. §B.2.

Furthermore, despite using the same base model for the compression model
(Mistral-7B-Instruct), the training-free FAVICOMP outperforms CompAct, which
trains the compression model using knowledge distillation to generate and evaluate summaries of
retrieved documents. This also indicates that knowledge distilled from a teacher model may not
always be effectively transferable to the target model due to discrepancies in context preference and
prior knowledge. In contrast, the superior performance of FAVICOMP is attributed to its ability to

6
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Figure 2: Impact of coefficient α on performance and perplexity.

familiarize evidence with the target model and its effective incorporation of parametric knowledge
from ensemble decoding.

Finally, given that Zero-shot Summarization corresponds to FAVICOMP with α = 0 and Generated
Context corresponds to FAVICOMP with α = 1, the fact that FAVICOMP outperforms both baselines
highlights its ability to effectively incorporate tokens from both sources—evidence summary and
generated context. This results in superior performance compared to relying on just one source
alone.

4.2 IMPACT OF ENSEMBLE COEFFICIENT ON PERFORMANCE AND PERPLEXITY

Fig. 2 illustrates how performance and perplexity change as the ensemble coefficient α is varied
across the values {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0} on NQ, HotpotQA and MuSiQue datasets. We
calculate the perplexity of the compressed evidence conditioned on the preceding inputs, i.e. in-
struction, demonstrations, and the question. For all the datasets, performance is the highest when
α = 0.5, indicating that proactively lowering perplexity by equally weighting both input sources
yields the best results. When α is below 0.5, performance improves as the perplexity of compressed
evidence decreases, which aligns with the previous works (Liu et al., 2024; Gonen et al., 2023).
However, when α exceeds 0.5, performance declines as perplexity decreases due to the lack of ev-
idential knowledge during evidence compression. Additionally, when α reaches 0.9 or 1.0, there is
a slight rise in the perplexity due to LM’s increased uncertainty with limited evidential knowledge.
Results for other datasets are included in Fig. 4.

4.3 INTEGRATION OF PARAMETRIC AND NON-PARAMETRIC KNOWLEDGE

The effective integration of parametric and non-parametric knowledge is crucial for complex tasks
such as multi-document QA, where the evidence set may not contain all the necessary information.
To this end, we evaluate how effectively FAVICOMP incorporates parametric knowledge from the
target model and non-parametric knowledge from the compression model on the multi-document
QA datasets. We begin by dividing the test samples of each dataset into evidence-relevant and
evidence-irrelevant subsets, using the Hits metric. The Hits metric is set to 1 (evidence-relevant)
if the retrieved evidence set contains the correct answer, and 0 (evidence-irrelevant) if it does not. We
then assess the downstream performance of each subset. The underlying intuition is that if a method
performs better on the evidence-relevant subset, it suggests that the method is more effectively uti-
lizing the provided evidential knowledge. Conversely, if a method excels on the evidence-irrelevant
subset, it indicates that the method is more effectively leveraging parametric knowledge without
relying on potentially irrelevant evidence.

The left figure of Fig. 3 compares the accuracy in Hits = 0 and Hits = 1 subsets across the
datasets. We compare FAVICOMP with the top-performing unsupervised compression method, Zero-
shot Summarization, and the most competitive supervised compression method, CompAct. Com-
pared to the other two baselines, FAVICOMP performs better in the Hits = 0 subset while perform-
ing comparably in the Hits = 1 subset. This proves that FAVICOMP effectively relies on parametric
knowledge rather than evidential knowledge when faced with irrelevant evidence, while maintaining
similar effectiveness in utilizing evidential knowledge when relevant evidence is present.
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Figure 3: Accuracy of baselines (left) and FAVICOMP with various α values (right) on Hits = 0
and Hits = 1 subset of multi-document QA datasets.

Interestingly, even though CompAct generally performs better on the Hits = 1 subset compared to
Zero-shot Summarization, it underperforms relative to Zero-shot Summarization on the Hits = 0
subset. This suggests that the training may have been biased towards utilizing solely evidential
knowledge, rather than effectively leveraging both sources in synergy.

We also evaluate the performance of FAVICOMP with various α values under this setting. The right
figure of Fig. 3 shows that α = 0.5 or α = 0.7 performs the best on the Hits = 0 subset, while
performance declines as α deviates further from the value. This pattern in the Hits = 0 subset
mirrors the overall performance trend, suggesting that appropriately utilizing parametric knowledge
when the evidence is irrelevant is crucial to the overall performance. In the Hits = 1 subset,
performance remains consistent for α values up to 0.5 but decreases significantly when α exceeds
0.5 due to the diminished utilization of the relevant evidential context.

4.4 COMPRESSION RATE COMPARISONS

Since one of the functionalities of compression-based RAG is to reduce the number of tokens from
the evidence while keeping its essential information, we report the compression rate in Tab. 1. Over-
all, reranking-based methods, RECOMP-abstractive and FAVICOMP consistently score the highest
compression rates. Reranking-based methods achieves high compression since they only select one
or two sentences that may contain the answer to the question, but the information loss is more signif-
icant compared to other methods. RECOMP-abstractive exhibits high compression rates because the
compression model is trained to output an empty string when no relevant evidence is found, which
is often the case in multi-document QA datasets. FAVICOMP compresses the evidence to make it
familiar to the target model by lowering its perplexity at each decoding step, typically resulting in
a shorter context. Notably, when compared to Zero-shot Summarization, which is equivalent to
FAVICOMP with α = 0, FAVICOMP consistently achieves higher compression rates. This demon-
strates that the ensemble decoding strategy, combining token logits from both evidence compression
and context generation, leads to greater compression efficiency.

5 CASE STUDY

Tab. 2 presents two examples from HotpotQA to illustrate how FAVICOMP effectively familiar-
izes evidence while seamlessly integrating both parametric and non-parametric knowledge during
evidence compression. We compare its output with Raw Document, which does not apply any com-
pression, and Zero-shot Summarization, which is equivalent to FAVICOMP with α = 0.

In both examples, Raw Document fails to produce the correct answer, even though the evidence
contains the necessary information, highlighting the need for effective evidence compression. In the
first example, while the difference between the compressed evidence from Zero-shot Summariza-
tion and FAVICOMP appears subtle, FAVICOMP delivers the correct answer with a lower perplexity
in compression, underscoring the significance of evidence familiarization. The second example
highlights the importance of parametric knowledge when the retrieved evidence set lacks complete
information. Since the evidence set does not mention “Skeptic,” Zero-shot Summarization intro-
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Question: This film is an adaption of a Jacques Offenbach’s opera that was written by a Hungarian British screenwriter?

Methods (Compressed) Evidence Prediction Perplexity

Raw Document

...(skip)... The Tales of Hoffmann is a 1951 British Tech-
nicolor film adaptation of Jacques Offenbach’s opera “The
Tales of Hoffmann”, written, produced and directed by the
team of Michael Powell and Emeric Pressburger working un-
der the umbrella of their production company, The Archers.

Emeric Pressburger ✗ 12.429

Zero-shot
Summarization

The 1951 film “The Tales of Hoffmann” is an adaptation of
Jacques Offenbach’s opera, written, produced, and directed
by Michael Powell and Emeric Pressburger.

Emeric Pressburger ✗ 2.298

FAVICOMP

The 1951 film “The Tales of Hoffmann” is an adapta-
tion of Jacques Offenbach’s opera, written by Emeric Press-
burger, a Hungarian-British screenwriter, and directed by
Michael Powell and Emeric Pressburger.

The Tales of
Hoffmann ✓

1.959

Question: Which magazine was first published earlier, The Chronicle of Philanthropy or Skeptic?

Methods (Compressed) Evidence Prediction Perplexity

Raw Document

The Chronicle of Philanthropy is a magazine that covers
the nonprofit world. ...(skip)... It was founded in 1988 by
editor Phil Semas and then managing editor Stacy Palmer.
...(skip)... Philanthropy (magazine) Philanthropy is a quar-
terly magazine published by the Philanthropy Roundtable.
First published as a newsletter in 1987, ”Philanthropy” be-
came a glossy magazine in 1996.

Philanthropy ✗ 4.856

Zero-shot
Summarization

The Chronicle of Philanthropy was founded in 1988, while
Philanthropy magazine was first published as a newsletter in
1987 and became a glossy magazine in 1996.

Philanthropy
magazine ✗

3.196

FAVICOMP
The Chronicle of Philanthropy was first published in 1988,
while Skeptic was first published in 1992.

The Chronicle of
Philanthropy ✓

1.345

Table 2: Case study of evidence compression: FAVICOMP vs. Raw Document and Zero-shot Sum-
marization. For FAVICOMP, the colors red and blue highlight tokens that are the argmax of the
compression model and the target model, respectively. Purple indicates a token that is the argmax
of neither model. Tokens with no coloring represent those that are the argmax of both models.

duces irrelevant information (“Philanthropy magazine”), ultimately leading to an incorrect answer.
In contrast, FAVICOMP integrates parametric knowledge about “Skeptic” and incorporates it into
the evidence compression. Notably, FAVICOMP selects the argmax token from the target model
only when the token’s probability is higher than that of the compression model, demonstrating that
FAVICOMP draws on parametric knowledge only when necessary—potentially when the compres-
sion model is uncertain about the next token.

6 RELATED WORKS

Evidence Compression for RAG. Standard RAG retrieves textual evidence related to the prompt
from the external corpora or knowledge bases and incorporates it as a part of the input to the LM
(Lewis et al., 2020; Izacard & Grave, 2021; Guu et al., 2020). However, retrieved evidence pieces
may contain inconsistent or irrelevant information to the question, potentially confusing the target
model in downstream tasks (Shi et al., 2023). To tackle this problem, traditional approaches aim to
rerank the textual evidence based on its relevance to the question and then select a top-ranked subset
to include as part of the input to the LM (Nogueira et al., 2020; Zhuang et al., 2023). However, this
approach loses more question-relevant information by discarding lower-ranked sentences.

Recent efforts on evidence compression seek to compress retrieved evidence pieces to filter out un-
necessary information and retain only the essential context (Wang et al., 2023c; Li et al., 2024d; Ke
et al., 2024; Jiang et al., 2023a; Xu et al., 2024; Cao et al., 2024; Yoon et al., 2024). Wang et al.
(2023c) filter query-relevant context using relevance metrics and Li et al. (2024d) extract query-
relevant information and restructure them to form a consistent context. Ke et al. (2024) trains a
seq2seq bridge model using supervised and reinforcement learning to optimize the connection be-
tween the retriever and the LLM. Jiang et al. (2023a) and Cao et al. (2024) conduct token-level
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or embedding-based compression to preserve only the query-relevant information using a trained
compressor. Xu et al. (2024) and Yoon et al. (2024) train a compression model to generate an ab-
stractive summary of the documents by distilling knowledge from larger language models. While
these methods are successful to some extent, they often achieve suboptimal performance because
the compressed context may be unfamiliar to the LM used in the downstream task due to differ-
ences in pretrained internal knowledge and prompt preferences between the compression and the
target model. In contrast, FAVICOMP proactively compresses the evidence pieces in a way to lower
the target model’s perplexity using an ensemble decoding technique without any training, thereby
improving the downstream performance.

Parametric and Non-parametric Knowledge in RAG. While there have been studies on the phe-
nomena of LM’s utilization of both parametric and non-parametric knowledge sources (Longpre
et al., 2021; Wadhwa et al., 2024; Wu et al., 2024; Zhang et al., 2024; Zhou et al., 2023; Wang et al.,
2023a; Fang et al., 2024), there is a lack of research focused on effectively synergizing both sources.
A few of these efforts introduce counterfactual augmentation (Longpre et al., 2021; Fang et al., 2024;
Zhang et al., 2024) and causal intervention (Zhou et al., 2023; Wang et al., 2023a) to mitigate knowl-
edge conflict, which, however, requires explicitly knowing the features of the input that causes such
conflict. Zhang et al. (2023) seek to address this issue by incorporating LM-generated context into
the LM’s input along with the retrieved documents, thereby integrating both sources of knowledge.
However, merely concatenating both contexts is a suboptimal solution, as LMs may still show bias
toward one source over the other when generating responses (Longpre et al., 2021; Wu et al., 2024).
To address this, FAVICOMP employs ensemble decoding during the evidence compression, ensuring
that both types of knowledge are seamlessly fused together to create a consistent context.

Constrained Decoding. Constrained decoding has been previously proposed in text generation
tasks for various purposes, including optimizing prompts (Liu et al., 2024), enhancing plausibility
(Li et al., 2023) or controllability (Meng et al., 2022; Huang et al., 2023), and reducing hallucination
(Shi et al., 2024). Contrastive Decoding (Li et al., 2023) enforces a plausibility constraint during
generation by inducing the difference in token log-probabilities between expert and amateur LMs.
Context-aware Decoding (Shi et al., 2024) uses contrastive decoding to amplify the probability dif-
ferences between outputs with and without evidence, encouraging the LM to prioritize the evidential
knowledge. Our work is closely connected with the method by Liu et al. (2024) which employs en-
semble decoding to paraphrase prompts to enhance zero-shot LM prompting and generalization.
Their approach focuses on the robustness and generalizability of instruction prompts for tasks with-
out retrieval augmentation. In contrast, our approach compresses externally retrieved evidence while
integrating parametric knowledge during compression, specifically targeting knowledge-intensive
tasks that require balancing both evidential and parametric knowledge.

7 CONCLUSION

In this study, we introduce FAVICOMP, a training-free evidence compression method designed to
enhance RAG by making retrieved evidence set more familiar to the target model, while seamlessly
integrating parametric knowledge. By leveraging ensemble decoding, FAVICOMP compresses the
retrieved evidence to make it more favorable to the target model. Moreover, FAVICOMP effec-
tively balances the target model’s parametric knowledge and the retrieved knowledge, improving
performance on complex tasks where the retrieved evidence set may not contain all the necessary
information. Our extensive experiments validate the effectiveness of FAVICOMP on open-domain
QA tasks, showing significant improvements over recent evidence compression baselines in multiple
datasets. Additionally, FAVICOMP’s model-agnostic nature allows it to be effortlessly incorporated
into various RAG workflows without additional training, making it a versatile tool for enhancing
LMs in complex tasks.
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A IMPLEMENTATION DETAILS

(1) Gold Compression: We implement the Gold Compression baseline following the approach
outlined by Yoon et al. (2024). We evaluate only on HotpotQA, 2WikiMQA, and MuSiQue, as
these datasets contain gold documents. We first identify the presence of any gold documents in
the retrieved documents. If found, we use the documents as the context. If none of the retrieved
documents are identified as gold, we utilize the entire set of retrieved documents as the context for
the evaluation. To identify the gold documents within the retrieved documents, we compare each
gold document with the retrieved ones. If 50% or more of the content matches, we classify it as a
gold document. This approach is necessary because the documents are chunked, and the retrieved
documents may not exactly match the gold documents.

(2) Generated Context: We use the context generation prompt in Tab. 6 to generate the context.

(3) Zero-shot Summarization: We use the evidence compression prompt in Tab. 6 to compress the
retrieved documents.

(4) RECOMP-extractive: We utilize the same Contriever models trained by the authors for each
dataset, to encode both the question and the sentences in the evidence set. For 2WikiMQA and
MuSiQue, since there are no fine-tuned models available, we use the Contriever fine-tuned on
HotpotQA. Following the original paper, we select one sentence as the context for NQ and TQA,
whereas for the other datasets, we utilize two sentences.

(5) RECOMP-abstractive: Similar to RECOMP-extractive, we use the same T5-large models
trained by the authors for each dataset to compress the retrieved evidence. For the 2WikiMQA
and MuSiQue, we employ the T5-large model fine-tuned on HotpotQA.

(6) LongLLMLingua: We use Llama2-7B5 trained by the authors as the prompt compressor
model. We use the default hyperparameters in the original paper, where the dynamic context com-
pression rate is set to 0.3, and the maximum compression rate is set to 0.5.

(7) CompAct: We use the same Mistral-7B-Instruct6 model instruction-tuned by the au-
thors for evidence compression. The number of documents per segment is set to 5 with 1 iteration.

B ADDITIONAL EXPERIMENT RESULTS

B.1 MISTRAL-7B-INSTRUCT AS COMPRESSION AND TARGET MODEL

We conduct an experiment where we use Mistral-7B-Instruct as the compression and target
model. The result in Tab. 3 demonstrates that FAVICOMP outperforms all other baselines, supple-
menting the effectiveness shown in §4.1

B.2 HEAD-TO-HEAD COMPARISON WITH RECOMP-ABSTRACTIVE

We conduct a head-to-head experiment on RECOMP-abstractive by using the same base compres-
sion model as FAVICOMP for a more fair comparison. We construct training data on NQ, TQA,
and HotpptQA according to Xu et al. (2024) and finetune Mistral-7B-Instruct on each of
the training data. We train for 7 epochs using LoRA with Adam optimizer with a learning rate of

5https://huggingface.co/NousResearch/Llama-2-7b-hf
6https://huggingface.co/cwyoon99/CompAct-7b
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Methods Size NQ TQA HotpotQA 2WikiMQA MuSiQue
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Mistral-7B-Instruct

Gold Document - - - - 41.0 50.5 38.1 40.3 9.6 15.2

No Context 28.1 27.5 58.8 60.9 19.7 24.8 21.9 22.8 5.2 9.7
Raw Document 40.2 39.3 66.2 68.6 30.3 37.2 26.6 28.5 7.5 13.1
Generated Context 30.1 31.7 57.3 60.7 23.7 30.6 25.1 29.5 7.1 12.8

Sentence-BERT 110M 29.8 30.1 57.8 60.7 23.8 30.3 22.9 24.7 7.5 12.3
RECOMP-extractive 110M† 31.7 32.2 57.2 60.0 24.1 30.2 23.2 24.4 7.4 12.5

LongLLMLingua 7B† 34.3 36.4 63.8 66.9 27.0 34.7 25.5 28.0 7.1 13.0
RECOMP-abstractive 775M† 38.0 37.8 62.1 65.0 27.4 34.3 25.1 27.4 6.4 12.0
CompAct 7B† 38.8 38.9 65.1 67.1 30.2 37.1 24.9 27.6 8.2 13.6
Zero-shot Summarization 7B 38.4 38.2 62.3 64.8 28.2 35.2 23.2 27.1 6.8 11.8
FAVICOMP 7B 40.3 40.4 65.9 68.9 32.0 40.5 29.7 35.1 9.2 15.2

Table 3: Experimental results when FAVICOMP has different compression and target models. We test
using Mixtral-8x7B-Instruct as the target model on five open-domain QA datasets across
all the methods. Mistral-7B-Instruct is used as the compression model of FAVICOMP. The
best Accuracy and token-level F1 scores for each dataset are in bold.

2e-6 and a batch size of 64. We present the evaluation results in Tab. 4. Even though using larger
base model for compression enhances the performance of RECOMP-abstractive to some extent, it
still underperforms compared to training-free FAVICOMP. This underscores that the familiarization
during evidence compression and integration of parametric and non-parametric knowledge are more
helpful to the downstream generation than relying on a trained model for evidence compression.

Methods Train Compression Model NQ TQA HotpotQA

Acc F1 Acc F1 Acc F1

RECOMP-abstractive O T5-large 38.0 37.8 62.1 65.0 27.4 34.3
RECOMP-abstractive O Mistral-7B-Instruct-v0.3 38.3 38.2 63.0 65.4 29.5 36.6
FaviComp X Mistral-7B-Instruct-v0.3 40.3 40.4 65.9 68.9 32.0 40.5

Table 4: Head-to-head comparison results with RECOMP

C PROMPT TEMPLATES

C.1 EVALUATION

The evaluation prompt template is shown in Fig. 5. For all the evaluations throughout the experi-
ment, we switch the positions of the Question and Context if doing so results in better performance.
System prompts and demonstrations used in the evaluation are presented in Tab. 5 and Tab. 7, re-
spectively.

C.2 FAVICOMP

The prompt templates for evidence compression and context generation of FAVICOMP are presented
in Tab. 6

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 4: Impact of coefficient α on performance and perplexity for TQA and 2WikiMQA.

Evaluation Prompt Template

{System Prompt}
{Demonstrations}
Question: {Question}
Context: {Context}
Answer:

Figure 5: Evaluation Prompt Template.

Model System Prompt

Llama-3-8B-Instruct You are an expert in Question Answering. Your job is to answer questions in 1 to 5
words based on the given context.

Mistral-7B-Instruct
You are an expert in Question Answering. Your job is to answer questions in 1 to 5
words based on the given context. Just output the answer as concisely as possible,
no other words

Table 5: System prompts used in evaluation
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Instruction Prompt Template

Evidence Compression

You are an expert in summarization. Given a question and multiple document snippets,
generate one summarized context that is helpful to answer the question. Just summa-
rize, no other words.
Question: {Question}
Documents: {Evidence}
Summarized Context:

Context Generation

You are an expert in context generation. Given a question, generate a context that is
helpful to answer the question. Just generate the context, no other words.
Question: {Question}
Context:

Table 6: Prompt Templates for FAVICOMP
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Dataset Demonstrations

NQ

Question: who sings i’ve got to be me
Answer: Sammy Davis, Jr
Question: who wrote i will follow you into the dark
Answer: Ben Gibbard
Question: who won season 2 of total drama island
Answer: Owen (Scott McCord)
Question: what part of the mammary gland produces milk
Answer: cuboidal cells
Question: when did the golden compass book come out
Answer: 1995

TQA

Question: Who sang the theme for the James Bond film ‘Thunderball’?
Answer: Tom Jones
Question: A hendecagon has how many sides?
Answer: Eleven
Question: In the 1968 feature film Chitty Chitty Bang Bang, of what country is Baron Bomburst the
tyrant ruler?
Answer: Vulgaria
Question: Artists Chuck Close, Henri-Edmond Cross, John Roy, Georges-Pierre Seurat, Paul
Signac, Maximilien Luce and Vincent van Gogh painted in what style?
Answer: Pointillism
Question: What is the study of the relation between the motion of a body and the forces acting on
it?
Answer: Dynamics

HotpotQA

Question: Which magazine was started first Arthur’s Magazine or First for Women?
Answer: Arthur’s Magazine
Question: The Oberoi family is part of a hotel company that has a head office in what city?
Answer: Delhi
Question: Musician and satirist Allie Goertz wrote a song about the ”The Simpsons” character
Milhouse, who Matt Groening named after who?
Answer: President Richard Nixon
Question: Are Jane and First for Women both women’s magazines?
Answer: Yes
Question: Were Pavel Urysohn and Leonid Levin known for the same type of work?
Answer: No

2WikiMQA

Question: Where was the place of death of Marie Thérèse Of France (1667–1672)’s father?
Answer: Palace of Versailles
Question: Who is the paternal grandmother of Przemysław Potocki?
Answer: Ludwika Lubomirska
Question: Who lived longer, Herbert Findeisen or Léonie Humbert-Vignot?
Answer: Léonie Humbert-Vignot
Question: Are Alison Skipper and Diane Gilliam Fisher from the same country?
Answer: Yes
Question: Are director of film Move (1970 Film) and director of film Méditerranée (1963 Film)
from the same country?
Answer: No

MuSiQue

Question: Who is the child of the director and star of Awwal Number?
Answer: Suneil Anand
Question: What is the record label of the rapper who performed Jigga My?
Answer: Roc-A-Fella Records
Question: What county shares a border with the county where Black Hawk Township is located?
Answer: Dodge County
Question: Who is the sibling of the person credited with the reinvention and popularization of oil
paints?
Answer: Hubert Van Eyck
Question: Who heads the Catholic Church, in the country that a harp is associated with, as a lion is
associated with the country that Queen Margaret and her son traveled to?
Answer: Eamon Martin

Table 7: Demonstrations used in evaluation for each dataset
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