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ABSTRACT

LLM routing has achieved promising results in integrating the strengths of di-
verse models while balancing efficiency and performance. However, to support
more realistic and challenging applications, routing must extend into agentic LLM
settings—where task planning, multi-round cooperation among heterogeneous
agents, and memory utilization are indispensable. To address this gap, we pro-
pose GraphPlanner, a heterogeneous graph-based agentic router that generates
routing workflows for each query and supports both inductive and transductive
inference. GraphPlanner formulates workflow generation as a Markov Deci-
sion Process (MDP), where at each step it selects both the LLM backbone and
the agent role (Planner, Executor, Summarizer). By leveraging a heterogeneous
graph, denoted as GARNet, to capture interactions among queries, agents, and
responses, GraphPlanner integrates historical and contextual information into
richer state representations. The entire pipeline is optimized with reinforcement
learning, jointly improving task-specific performance and computational efficiency.
We evaluate GraphPlanner across 14 diverse LLM tasks and demonstrate that:
(1) GraphPlanner outperforms strong single- and multi-round routers, improv-
ing accuracy by up to 9.3% while reducing GPU cost from 186.26 GiB to 1.04 GiB;
(2) GraphPlanner generalizes robustly to unseen tasks and LLMs, exhibiting
strong zero-shot capabilities; and (3) GraphPlanner effectively leverages his-
torical interactions, supporting both inductive and transductive inference for more
adaptive routing.

1 INTRODUCTION

Routing among multiple large language models (LLMs) has become a key approach for integrating
the strengths of diverse models while balancing efficiency and performance (Shnitzer et al., 2023;
Hu et al., 2024; Chen et al., 2024a; Feng et al., 2024; 2025). Despite this importance, most existing
routing methods remain confined to simplified or static settings, which limits their applicability in
solving complex real-world tasks (Feng et al., 2025). In contrast, the recent rise of agentic LLMs
has shown how multi-agent collaboration can enhance planning, strengthen reasoning, and boost
overall performance on complex tasks (Wang et al., 2024a; Qian et al., 2024; Guo et al., 2024; Wu
et al., 2024; Barachini & Stary, 2022; Tran et al., 2025). These agentic capabilities highlight the need
to revisit routing in more realistic and challenging scenarios, where heterogeneous LLMs differ in
capability, cost, and reliability. In such contexts, effective routing is not only beneficial but necessary
to fully unlock the potential of agentic LLM systems. Therefore, our paper aims to raise attention to
this pressing research question: How can we extend routers to agentic LLM settings?

Existing routing approaches fall into single-round and multi-round routers as shown in Table 1.
Single-round routers (Shnitzer et al., 2023; Hu et al., 2024; Chen et al., 2024a; Feng et al., 2024)
make one-shot assignments based on query embeddings or classifiers. While simple and efficient,
this paradigm lacks the ability to reason over multiple steps, decompose tasks, or coordinate across
different LLMs, which limits its effectiveness on complex queries. Multi-round routers (Zhang et al.,
2025; Shao et al., 2025) extend flexibility by interleaving reasoning and routing over multiple calls.
However, they do not explicitly model collaboration between LLMs, treating each call as independent
rather than part of a cooperative workflow, which leads to redundant calls, context conflicts, and
limited use of complementary strengths. Additional related works can be found in Appendix A.
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Table 1: Comparison of GraphPlanner with existing LLM routers across four dimensions:
workflow type, historical interaction usage, graph utilization, and model size. Unlike existing
routers, GraphPlanner is a lightweight LLM router based on an agentic workflow, which leverages
heterogeneous graphs to handle historical interactions and thereby facilitate better routing.

LLM Router Workflow type Historical interaction usage Graph utilization Model size
RouterDC (Chen et al., 2024a) Single-round ✗ ✗ Medium
GraphRouter (Feng et al., 2024) Single-round ✓ ✓ Small
R2-Reasoner (Shao et al., 2025) Multi-round ✗ ✗ Medium
Router-R1 (Zhang et al., 2025) Multi-round ✗ ✗ Large

GraphPlanner Agentic ✓ ✓ Small

To address these limitations, we generalize routing as an agentic coordination problem, where the
router must decide not only which LLM backbone to invoke but also which agent role to activate at
each step. This shift is crucial because agentic LLM routers can explicitly model specialization and
cooperation across multiple agents, turning independent calls into structured workflows. Yet, building
an effective agentic LLM router is far from trivial and comes with several challenges. First, the
relations among queries, responses, and LLM candidates are highly diverse and complex in agentic
settings. Unlike single-step assignments, agentic workflows require reasoning over evolving contexts
where queries may branch, responses interact, and different models contribute complementary
but sometimes conflicting information. Designing a router that can capture and leverage these
heterogeneous dependencies is a non-trivial task. Second, agentic routing involves deferred rewards.
Early routing decisions often have long-term effects on the overall outcome, meaning that immediate
feedback is insufficient. For example, an early misallocation may cascade into redundant calls or
degraded reasoning quality downstream. This creates a challenging credit assignment problem,
requiring the router to balance short-term efficiency with long-term performance. Third, it remains an
open question how to fully exploit abundant historical interactions from agentic LLM systems. Rich
traces of past multi-agent workflows contain valuable insights into successful collaboration patterns,
error modes, and efficient division of labor. Yet, existing routers rarely make systematic use of this
information, leaving a gap in leveraging historical data for improving future coordination.

To tackle the above challenges, we propose GraphPlanner, a heterogeneous graph-based agentic
router that generates agentic routing workflows for each query and supports both inductive and trans-
ductive inference. Specifically, GraphPlanner casts the generation of agentic routing workflows
as graph generation within a Markov Decision Process (MDP) (Garcia & Rachelson, 2013). At
each step of graph generation, GraphPlanner must decide not only which LLM backbone to
invoke but also which agent role to activate based on the current state. Without loss of generality,
we define the agent profiles as Planner, Executor, and Summarizer, which capture the essential
roles in agentic workflows (Barachini & Stary, 2022; Tran et al., 2025). Further, GraphPlanner
utilizes a heterogeneous graph, denoted as GARNet, to model the interactions among LLM agents,
queries, and responses. By capturing such heterogeneous information, it can fully exploit abundant
historical interactions as well as the current workflow context, thereby constructing richer and more
informative state representations. Finally, we introduce a deep reinforcement learning algorithm
named Proximal Policy Optimization (PPO) (Schulman et al., 2017) into the entire pipeline to jointly
optimize task-specific performance of the final answers as well as the associated computational cost.

We evaluate GraphPlanner in two phases across 14 tasks spanning 6 domains. In Phase 1, agentic
routing is optimized within existing workflows, while Phase 2 focuses on generating workflows
for complex agentic tasks. Across both phases, GraphPlanner consistently outperforms single-
round and multi-round routers, improving average accuracy by +3.8% in Phase 1 and +9.3% in
Phase 2, while reducing GPU cost from 186.26 GiB to 1.04 GiB and remaining on the Pareto
frontier. Furthermore, GraphPlanner demonstrates strong generalization, achieving 78% average
accuracy on unseen tasks (20–40% higher than previous routers) and robustly handling unseen LLMs
without additional fine-tuning. Finally, by modeling historical interactions alongside current workflow
states through GARNet, GraphPlanner significantly enhances routing decisions and supports
both inductive and transductive inference: the inductive mode offers greater efficiency, while the
transductive mode yields stronger performance at higher cost.

2 PRELIMINARIES

Routing among multiple large language models (LLMs) has emerged as a crucial paradigm for
balancing performance and efficiency. Existing approaches can be broadly categorized into single-
round routers and multi-round routers. Before presenting our formulation of agentic routing, we first
review these two settings and highlight their inherent limitations.
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Figure 1: Comparison between the agentic router, the single-round router, and the multi-round
router. Specifically, the single-round router selects a model based only on the query, the multi-round
router makes sequential selections using accumulated context, and the agentic router leverages a
workflow graph to jointly choose agent roles and models for collaborative reasoning. The agentic
router enables explicit collaboration and task decomposition by leveraging a workflow graph, allowing
multiple LLMs with different roles to coordinate more effectively than single/multi-round routers.

Single-round routers. In the standard setting, a router takes a text query q ∈ Q and directly assigns it
to one model from a backbone pool M = {M1, . . . ,MK}. Formally, a single-round router (Shnitzer
et al., 2023; Hu et al., 2024; Chen et al., 2024a; Feng et al., 2024) Rsingle as shown in the top-left part
of Figure 1 is defined as:

m = Rsingle(q), o = Mm(q), (1)
where m denotes the selected model and o is the output generated by Mm. This paradigm is simple
and efficient, but it lacks the ability to reason, decompose tasks, or coordinate multiple LLMs. As a
result, it struggles when facing complex queries that require collaboration across specialized models.

Multi-round routers. To improve flexibility, multi-round router (Zhang et al., 2025; Shao et al.,
2025) as shown in the top-right part of Figure 1 considers routing decisions that take into account
historical context information. Given a query qt, the router adaptively chooses a backbone model
based on both the current query and the context ct, where ct contains all previous queries, model
selections, and outputs from the interaction history:

mt = Rmulti(ct, qt), ot = Mmt
(qt). (2)

This contextual design enables the router to make more informed decisions by learning from past
interactions and model performances. However, this sequential design may still incur redundant
calls, risk semantic conflicts in accumulated context, and lack explicit mechanisms for coordinating
complementary strengths of different models.

Agentic routers. To overcome these limitations, we generalize routing as an agentic coordination
problem. Instead of only selecting a backbone model, the router must also decide which agent role
(e.g., Planner, Executor, Summarizer) to activate. Given the query qt and the evolving workflow
graph Gworkflow, the agentic router Ragentic as shown in the bottom part of Figure 1 selects:

(at,mt) = Ragentic(qt,Gworkflow), (3)
where at indexes the chosen agent role Aat

and mt indexes the backbone Mmt
. The pair (Aat

,Mmt
)

executes on the sub-query, producing intermediate output ot. These outputs are integrated through
the workflow and summarized at the final stage to produce the answer. By explicitly modeling agent
roles and workflows, agentic routers enable structured collaboration between LLMs, supporting
decomposition, multi-role cooperation, and more adaptive decision-making.

3 GRAPHPLANNER : GRAPH-BASED AGENTIC LLM ROUTING

As shown in Figure 2, GraphPlanner formulates LLM routing as a sequential decision-making
process over agentic workflows. At each step, the router selects both an agent role (planner, executor,
or summarizer) and an LLM backbone, guided by GARNet which integrates the current workflow
graph Gworkflow and the historical graph Ghistory. This graph-based formulation enables context-
aware routing and supports end-to-end optimization through RL.

3.1 AGENTIC ROUTING WORKFLOW GENERATION AS MARKOV DECISION PROCESS

We cast the agentic routing workflow generation as a Markov Decision Process (MDP), (S,A, T , r, γ),
where S is the state space, A the action space, T the transition dynamics, r the reward, and γ the
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Figure 2: Overview of GraphPlanner. In GraphPlanner, each decision step is guided by
GARNet, which integrates Gworkflow and Ghistory to produce an action that specifies both the LLM
and the agent role. The resulting trajectories are incrementally incorporated into Gworkflow at each
step, while the complete episode trajectory is consolidated into Ghistory at the end of the episode.
Note that boxes and circles sharing the same color denote a direct mapping relationship.

discount factor. (1) State. At step t, the state is defined as the current query under resolution,
denoted by st = qt. This formulation emphasizes that the environment is always centered on
the query being processed at step t, while contextual signals are implicitly captured through the
evolving workflow structure. (2) Action. Without loss of generality, we define the agent role set as
{planner, executor, summarizer}, following prior multi-agent designs (Wu et al., 2024; Chen et al.,
2023; Barachini & Stary, 2022; Tran et al., 2025). Each action is a pair at = (αt,mt), where αt

specifies the role and mt indexes one of the K candidate LLM backbones, yielding |A| = 3K possible
actions. In brief, the planner decomposes a complex query into atomic sub-queries; the executor
generates responses with or without contextual grounding; and the summarizer condenses multiple
outputs into a coherent and concise answer. To ensure semantic validity, we impose a dynamic
mask Mt ⊆ A restricting available actions: (i) at the first step, M0 = {(planner,m), (executor,m) |
m = 1, . . . ,K}, prohibiting summarizer choices; (ii) at the final step, MT = {(executor,m) | m =
1, . . . ,K}, enforcing that workflow termination occurs only by execution; (iii) during the episode,
planner actions are further constrained by a hyperparameter Pmax ∈ N such that if

∑t
i=0 1(αi =

planner) ≥ Pmax, then all planner actions are removed from Mt+1. Thus the effective policy is
π : S → Mt, always selecting only semantically valid actions. (3) Transition. The transition
dynamics update the workflow by determining both the next query to resolve and the observable
response at step t. Formally, the environment outputs (st+1, ot) = T (st, at), where ot denotes the
response generated by action at on the current query st. Concretely: (1) if αt = planner, the current
query is decomposed into sub-queries, ot is the set of newly created sub-queries, and st+1 is set to
the first child query; (2) if αt = executor, the current query is resolved, ot is the generated answer,
and st+1 moves to the next pending query (or terminates if t = T ); (3) if αt = summarizer, the
system aggregates completed responses, ot is the generated summary, and st+1 is set to the summary
query. Thus, the state always denotes the query under resolution, while the sequence of responses
{ot} provides the observable outputs that accumulate along the trajectory to form the final answer.
(4) Reward. The reward balances task utility and routing cost:

rt = U(ŷ, y∗)− αC(at), if t = T (terminal), rt = −αC(at), if t < T (intermediate), (4)
where ŷ is the predicted output, y∗ the ground-truth label, U(ŷ, y∗) a task-specific utility (e.g.,
accuracy, BLEU, or MRR), C(at) the computational cost of action at, and α > 0 a cost–utility
trade-off coefficient. (5) Episode and Objective. An episode terminates once the root query is
resolved, i.e., sT ∈ Sterminal for some finite T . The router seeks a policy maximizing the expected
discounted return:

max
π

Eq∼Q

[
T∑

t=0

γtr(st, at)

]
, at ∼ π(st), (5)

where Q is the query distribution and γ ∈ (0, 1] the discount factor.

3.2 HETEROGENEOUS GRAPH-BASED POLICY NETWORK

We parameterize the policy π(at | st) using a heterogeneous graph neural network, denoted as
GARNet. At each step t, the environment is represented as the union of a workflow graph and a
historical graph: Gt = Gworkflow ∪ Ghistory,Gt = (Vt, Et).
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Table 2: Phase 1 Evaluation: Model performance comparison with router baselines across five
scenarios. Phase 1 focuses on optimizing agentic routing within existing LLM workflows. We report
results under two settings: Depth = 1, Width = 3 (left) and Depth = 2, Width = 2 (right). Bold and
underline indicate the best and second-best results. Note that (*) indicates each single-round router is
applied to select the LLM backbone for every agent in the Phase-1 workflow.

(a) Depth=1, Width=3
Router Math Code CS WK Popular Average

Acc Acc Acc Acc Acc Acc Cost ∆Acc (%)

Router-KNN∗ 48.11% 70.00% 84.67% 29.41% 27.00% 54.80% 1508.88 +8.20
Router-MLP∗ 39.62% 58.00% 80.67% 18.00% 24.00% 47.40% 463.82 +0.80
Router-SVM∗ 29.25% 57.00% 80.67% 27.91% 22.00% 46.60% 577.65 0.00
RouterDC∗ 41.51% 52.00% 85.33% 25.00% 30.00% 50.30% 1689.25 +3.70
GraphRouter∗ 41.51% 48.00% 59.33% 29.53% 44.14% 45.80% 797.35 -0.80

GraphPlanner 55.00% 72.00% 76.62% 33.00% 47.00% 58.60% 900.36 +12.00

(b) Depth=2, Width=2
Router Math Code CS WK Popular Average

Acc Acc Acc Acc Acc Acc Cost ∆Acc (%)

Router-KNN∗ 66.04% 63.00% 75.33% 32.91% 33.56% 56.20% 2719.96 +7.49
Router-MLP∗ 42.45% 53.00% 80.67% 24.94% 27.00% 48.73% 813.80 +0.02
Router-SVM∗ 52.34% 49.74% 66.00% 32.24% 34.34% 48.71% 844.90 0.00
RouterDC∗ 36.79% 50.00% 84.00% 23.00% 33.00% 48.74% 2987.11 +0.03
GraphRouter∗ 37.74% 57.33% 79.63% 37.05% 34.46% 49.20% 1215.32 +0.49

GraphPlanner 66.50% 70.00% 77.00% 37.50% 45.00% 60.40% 1500.27 +11.69

Node initialization. We distinguish two types of graphs. For the workflow graph Gworkflow, the
nodes are: xq ∈ Rdq , xr ∈ Rdr , xm = [erole;U ;C] ∈ Rdm , where xq is the Longformer embedding
of the current query, xr is the embedding of the response, and xm is the role hub node, constructed
by concatenating the LLM-role textual embedding with task utility U and cost C.

For the historical graph Ghistory , the nodes are: xhq ∈ Rdq , xhr ∈ Rdr , xm ∈ Rdm , where xhq and
xhr are embeddings of past queries and responses, and xm is the same role hub node shared across
workflow and history, providing a bridge for information exchange between the two graphs.

Graph construction. In Gworkflow, queries are connected to roles through edges eq–m, enriched
with task performance and cost information. Responses are linked to the roles that generate them, and
query–response edges preserve semantic alignment. In Ghistory , historical queries xhq and responses
xhr are connected to role hub nodes xm through edges ehq–m and ehr–m. These encode accumulated
experience about how roles performed in past interactions, which can influence the current workflow.
The shared role hub nodes xm act as the anchor between Gworkflow and Ghistory, ensuring that
decision-making at the current step benefits from both local context and historical memory.

Message passing. Each node embedding is projected into a hidden space: h(0)
v = Wτ(v)xv, v ∈ Vt,

where τ(v) denotes the node type. Messages are aggregated from neighbors: mv = AGG{h(0)
u :

u ∈ N(v)}, and node states are updated via a residual connection: hv = h
(0)
v + β ·mv .

Nested dual-graph encoding. We employ a dual-graph encoding scheme. First, the historical
graph is encoded: H(his) = GARNetθhis(Ghistory), producing updated embeddings of the role hub
nodes summarizing past query–response interactions. These are then injected into the workflow graph
encoder: H(loc) = GARNetθloc(Gworkflow;H

(his)), yielding local-contextualized representations of
queries, roles, and responses.

State fusion and action scoring. The global state representation is obtained by fusing the current
query representation st, zt = ftrans(st) ∈ Rd. Each candidate action corresponds to a role hub node
embedding hm,j ∈ H(loc). Compatibility scores are computed as scorej = z⊤t hm,j , masked by Mt,
and normalized into a probability distribution: π(at = j | st) = exp(scorej)·1{aj∈Mt}∑

k exp(scorek)·1{ak∈Mt} .

GraphPlanner Training. We optimize the heterogeneous graph-based policy network using
Proximal Policy Optimization (PPO) (Schulman et al., 2017), a widely used actor–critic reinforcement
learning algorithm. More details can be found in Appendix B.

4 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of GraphPlanner across a wide range of
tasks spanning multiple domains, comparing its performance against both single-round and multi-
round routers. We begin by briefly outlining the experimental settings. More implementation details
can be found in Appendix C.

Dataset. We evaluate router models on 14 tasks across 6 domains (including in-domain and out-of-
domain evaluation), selected from recent influential reports on LLM evaluation (Anthropic, 2024;
Yang et al., 2025; Gunter et al., 2024). Following prior work (Chen et al., 2023; Feng et al., 2025),
we curated training and test splits for each task (details in Appendix D). The in-domain evaluation
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Table 3: Phase 2 Evaluation: Model performance comparison with router baselines across five
scenarios. Phase 2 focuses on generating optimal workflows by jointly determining agent selection
and LLM backbones. Bold and underline indicate the best and second-best results.

Setting Math Code CS WK Popular Average

Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Avg. LLM Calls ∆Acc (%)

Single-round Router

Router-KNN 40.4% 183.5 66.0% 236.8 82.0% 105.8 27.0% 119.5 17.0% 232.3 49.7% 169.2 1 +9.3
Router-MLP 43.3% 183.4 67.0% 240.6 82.0% 103.9 25.0% 120.7 7.0% 225.5 48.2% 168.4 1 +7.8
Router-SVM 38.6% 185.0 58.0% 254.0 78.0% 104.0 23.0% 136.0 13.0% 220.0 45.4% 179.8 1 +5.0
RouterDC 57.6% 186.7 51.0% 99.2 79.3% 39.4 32.0% 142.1 39.0% 272.7 54.3% 138.7 1 +13.9
GraphRouter 53.2% 203.0 59.0% 280.0 82.7% 97.0 28.0% 60.0 21.0% 252.0 51.9% 178.4 1 +11.5

Multi-round Router

Prompt LLM 37.7% 1154.8 56.0% 954.3 76.2% 1215.6 24.0% 798.1 10.0% 1238.4 40.8% 1070.4 12.5 +0.4
Router-KNN-MR 39.6% 407.2 53.0% 432.6 73.5% 266.4 24.0% 327.9 12.0% 303.7 40.4% 347.6 7.2 0.0
R2-Reasoner 52.7% 760.0 49.6% 1200.0 72.8% 380.0 27.1% 270.0 37.4% 740.0 50.1% 643.6 5.4 +9.8
Router-R1 45.3% 46.4 52.0% 74.5 81.2% 27.9 28.6% 57.7 37.2% 199.0 51.8% 76.3 1.8 +11.4

GraphPlanner 67.0% 682.2 76.0% 1130.9 78.0% 361.7 38.0% 252.8 52.0% 719.3 63.6% 605.0 8.1 +23.2

datasets include: (1) Math: GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b).
(2) Code: MBPP (Austin et al., 2021) and HumanEval (Chen et al., 2021). (3) Commonsense
Reasoning: CommonsenseQA (Talmor et al., 2019), ARC (Clark et al., 2018), and OpenBookQA
(Mihaylov et al., 2018). (4) World Knowledge: NaturalQuestions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017). (5) Popular: MMLU (Hendrycks et al., 2021a) and GPQA (Rein
et al., 2023). We further include (6) Out-of-domain evaluation, including LogicGrid (Mitra &
Baral, 2015), MGSM (Shi et al., 2022), and CommonGen (Lin et al., 2019), which target reasoning,
multilingual generalization, and commonsense generation, and are used only for evaluation, ensuring
the router is tested on genuinely unseen domains to rigorously assess generalization.

LLM backbone. Following previous work (Feng et al., 2025), we employed 12 representative LLMs
grouped into three scales: small, medium, and large, including (1) Small scale LLMs: Qwen2.5
(7b) (Qwen et al., 2025), CodeGemma (7b) (Team et al., 2024a), Mistral (7b) (Jiang et al., 2023),
LLaMA-3.1 (8b) (Grattafiori et al., 2024), LLaMA-3 ChatQA (8b) (Liu et al., 2024), and Gemma-2
(9b) (Team et al., 2024b); (2) Medium scale LLMs: LLaMA-3.3 Nemotron Super (49b) (Wang
et al., 2024b), LLaMA-3.1 Nemotron (51b) (Wang et al., 2024b), and LLaMA-3 ChatQA (70b) (Liu
et al., 2024); (3) Large scale LLMs: Mixtral (8×22b) (Jiang et al., 2024). We further summarize
the corresponding scales, input price, and output price of each LLM in Table 10 in the Appendix.
Notably, besides the above LLMs that are involved in training, three models—Mistral-Nemo (12b)
(Mistral AI, 2024), Mixtral (8×7b) (Jiang et al., 2024), and Mixtral (8×22b) (Jiang et al., 2024)—are
deliberately withheld. These underlined models are reserved exclusively for evaluation, ensuring
that the assessment rigorously reflects the router’s generalization ability to previously unseen LLMs
across different scales. More details can be found in Table 7 in the Appendix.

Task description. We designed a two-phase evaluation. Phase 1 Evaluation focuses on optimizing
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Figure 3: Compared to baseline
routers, GraphPlanner consistently
forms the Pareto frontier, offering
more efficient trade-offs between
Acc and Cost. GraphPlanner (with
α ∈ {0.0, 0.1, 0.3, 0.5, 0.9}) is compared
against two single-round routers and two
multiple-round routers.

agentic routing within existing LLM workflows. In
this phase, we specify different widths and depths
for agentic workflows. The task is: given a query,
different routers are expected to optimize the choice
of LLM backbones for different agents. In particular,
we conduct experiments mainly under two settings:
Depth = 1, Width = 3 and Depth = 2, Width = 2. Here,
depth refers to the number of planners, and width de-
notes the maximum number of sub-queries that each
planner is allowed to decompose. Phase 2 Evalua-
tion focuses on generating optimal workflows. Here,
given a query, different routers are expected to si-
multaneously optimize both the agent selections and
the corresponding LLM backbones. Baselines and
metrics. We evaluate a variety of baseline methods
across 6 scenarios. The baselines are categorized into
two groups: (a) Single-round routers that route a
query by calling an LLM once, and (b) Multi-round
routers that solve a query by calling multiple LLMs.
For all routers, following previous work (Feng et al.,
2025), we use Acc and Cost to evaluate routing perfor-
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Table 4: Comparison of tokens used, GPU com-
pute, and average LLM calls in Phase-2 train-
ing. We observe that, compared with other routers,
GraphPlanner not only reduces token con-
sumption during training but also lowers GPU
compute requirements.

Router Used Tokens GPU Compute Avg. LLM Train Calls

GraphRouter 64.87M 1.54GiB 1
RouterDC 64.87M 10.56GiB 1
Router-R1 150.36k 186.26GiB 1.18
GraphPlanner 182.45k 1.04GiB 4.25

Table 5: Performance on unseen datasets
LogicGrid, MGSM, and CommonGen in
Phase-2. We report both the individual results
on each dataset and the averaged performance
across them to evaluate the router’s zero-shot
generalization ability on unseen datasets.

Router LogicGrid MGSM CommonGen Avg. Acc

GraphRouter 12% 68% 57% 46%
RouterDC 32% 82% 60% 58%
Router-R1 24% 40% 48% 38%
GraphPlanner 60% 92% 82% 78%

mance. Here, Acc refers to the task-specific evaluation metric introduced in Table 9 of the Appendix.
Cost is calculated with the number of input tokens and output tokens and the cost of different LLMs in
Table 10 of the Appendix. Here we utilize GPT-2 as in (Feng et al., 2024) to calculate the number of
tokens. Specifically, we have: (a) Single-round routers. We consider five representative single-round
routers: 1) RouterKNN (Shnitzer et al., 2023), a non-parametric baseline that assigns a query to the
nearest neighbors in embedding space and predicts the majority LLM label; 2) RouterMLP (Shnitzer
et al., 2023), a multi-layer perceptron that leverages query embeddings and task context for routing;
3) RouterSVM (Hu et al., 2024), a support vector machine trained on query features and task labels;
4) RouterDC (Chen et al., 2024a), a query-based router trained with dual contrastive learning over
encoder and LLM embeddings, designed to distinguish among multiple LLMs even when several
perform well; 5) GraphRouter (Feng et al., 2024), a graph-based model that formulates routing
as node classification over a heterogeneous graph of queries, tasks, and LLMs with learned edge
interactions. (b) Multi-round routers. We consider four representative multi-round routers: 1)
Prompt LLM (Zhang et al., 2025), a baseline that directly prompts an LLM to select LLMs without
explicit routing modules, serving as a simple multi-round strategy; 2) Router-KNN-MR (Zhang et al.,
2025), an iterative extension of Router-KNN that repeatedly queries nearest neighbors in embedding
space to refine routing decisions; 3) R2-Reasoner (Shao et al., 2025), a reasoning-oriented router
that conducts multi-step internal deliberation before invoking experts, improving decision quality
through structured reasoning; 4) Router-R1 (Zhang et al., 2025), the proposed reinforcement learning
framework that interleaves think and route actions, aggregates expert outputs across rounds, and
optimizes routing with a reward function balancing accuracy and cost.

4.1 GRAPHPLANNER OUTPERFORMS SINGLE-ROUND AND MULTI-ROUND ROUTERS

For each setting in Phase 1 and Phase 2, we train and test a unified GraphPlanner across all
scenarios. We compare GraphPlanner with five single-round routers and four multi-round routers,
and report the results of Phase 1 and Phase 2 in Table 2 and Table 3, respectively. We have the
following observations.

Specifically, for Phase-1, since there are no existing baselines, we extend the aforementioned single-
round routers to the Phase-1 setting for comparison. Specifically, we first train these single-round
routers on the dataset reported in Table 6. During inference, each router is applied to select the LLM
backbone for every agent within the Phase-1 workflow. To distinguish them from their original usage,
we append an asterisk (*) to the single-round routers when they are adapted to the Phase-1 setting.

GraphPlanner attains SOTA results across diverse scenarios. Across both phases,
GraphPlanner demonstrates clear superiority over competitive baselines. In Phase 1, it achieves
SOTA results in four out of five tasks while maintaining the highest overall average accuracy, yielding
a minimum improvement of +3.8% compared to the strongest baseline. In Phase 2, GraphPlanner
again secures SOTA in four out of five tasks and remains highly competitive in the remaining
one, with an overall accuracy gain of +9.3% over the best baseline. These findings underscore
GraphPlanner ’s robustness and effectiveness across diverse routing scenarios. We ca also ob-
serve that Phase 2 further amplifies GraphPlanner ’s advantage: its average accuracy surpasses
the best Phase-1 results by about 5%, showing that the ability to construct query-specific optimal
agentic workflows yields stronger performance than optimizing within fixed workflows. The improve-
ments are especially pronounced in reasoning-oriented tasks such as Math and Code, with gains of
5.0% and 4.0%, because these domains demand multi-step planning and benefit substantially from
adaptive agent structures. By contrast, recognition-focused tasks show only modest increases of
around 1.0%, since they rely more on straightforward pattern matching, where flexible workflow
exploration provides limited additional benefit.
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Figure 4: Comparison of GraphPlanner against baselines across different experimental
settings in five scenarios under Phase-2. (a) Unseen LLMs generalization: We add the unseen
LLMs—not introduced in the training in Table 7—into the LLM pool, and then evaluate the zero-
shot generalization ability of GraphPlanner, compared with GraphRouter and Router-R1. (b)
History interactions utilization ablations: We ablate history interactions utilization, contrasting
GraphPlanner with variants w/o History, Homo-Graph, and Hetero-Graph encodings. (c) Trans-
ductive vs. Inductive routing inference: We analyze GraphPlanner under transductive vs. induc-
tive settings, where GraphPlanner consistently outperforms best multi-round router Router-R1.

GraphPlanner achieves superior routing performance with reduced training compute and
lower token cost. We further analyzed the training overhead of GraphPlanner compared with
other routers. In the Phase-2 training, we compared GraphPlanner with several representative
routers in terms of tokens used, GPU compute, and average LLM calls, as shown in Table 4. We
observe that GraphPlanner achieves the smallest GPU compute among all routers, demonstrating
the efficiency of its lightweight design. Moreover, although GraphPlanner consumes slightly
more tokens than Router-R1, the results on average LLM training calls indicate that this is due
to GraphPlanner performing more extensive multi-step planning for different queries during
training, which in turn leads to better routing performance.

GraphPlanner effectively balances trade-off between performance and cost. As shown in
Figure 3, GraphPlanner consistently forms the Pareto frontier, surpassing both single-round and
multi-round routers. By adjusting α, it flexibly shifts between high-Acc, high-Cost, and low-Cost,
lightweight settings. Compared with baselines, GraphPlanner achieves either higher Acc under
the same Cost or lower Cost at the same Acc, demonstrating more efficient and controllable trade-offs.

4.2 GRAPHPLANNER NICELY GENERALIZES ACROSS UNSEEN TASKS AND LLMS

A key challenge for router design is whether the learned strategy can generalize beyond the training
distribution, adapting to entirely new tasks or unseen LLM backbones. To this end, we evalu-
ate GraphPlanner in a zero-shot setting on both novel tasks and unseen LLMs, analyzing its
robustness and adaptability under Phase-2.

GraphPlanner generalizes robustly to unseen tasks. As shown in Table 5, GraphPlanner
demonstrates strong zero-shot generalization, achieving an average Acc of 78% across LogicGrid,
MGSM, and CommonGen. This significantly outperforms both single-round routers (GraphRouter
46%, RouterDC 58%) and the multi-round router Router-R1 (38%). Notably, GraphPlanner
achieves the highest performance on each dataset (60% on LogicGrid, 92% on MGSM, and 82%
on CommonGen), underscoring its robustness in handling diverse unseen tasks without additional
tuning.

GraphPlanner effectively adapts to unseen LLMs in a zero-shot setting. As illustrated in
Figure 4(a), GraphPlanner demonstrates strong adaptability when evaluated with unseen LLMs
not introduced during training. Compared with GraphRouter and Router-R1, GraphPlanner
consistently achieves superior performance across all task domains, indicating that its routing strategy
generalizes effectively to new backbone models without additional fine-tuning. This highlights the
robustness of GraphPlanner in handling zero-shot scenarios where the underlying LLMs differ
from those seen in training.

4.3 ABLATION STUDIES VALIDATE GRAPHPLANNER’S KEY COMPONENTS

To better understand the contributions of individual design choices within GraphPlanner, we
conduct ablation studies by systematically removing or modifying key components. These experi-
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ments allow us to isolate the impact of historical interaction modeling and different routing inference
strategies, thereby validating the necessity and effectiveness of each module.

GARNet leverages historical agentic LLM interactions and current agent workflow states
to enhance GraphPlanner’s decision-making. To assess the role of history utilization in
GraphPlanner, we design three ablation variants:

• w/o History: Removes all historical states, forcing GraphPlanner to rely solely on the current
input without accumulated interaction context.

• Homo-Graph: Replaces GARNet with a homogeneous graph neural network that treats all nodes
and edges are treated as the same type, capturing structural relations but discarding role-specific
heterogeneity.

• Hetero-Graph: Replaces GARNet with a heterogeneous graph neural network where nodes and
edges are assigned different types, which distinguishes among roles but does not incorporate
workflow dynamics.

As shown in Figure 4(b), removing history information (w/o History) leads to a substantial perfor-
mance drop, demonstrating that accumulated interactions provide indispensable contextual signals
beyond single-step reasoning. Introducing graph structures partially mitigates this degradation: the
Homo-Graph variant captures basic relational structure but lacks role differentiation, yielding only
limited gains. The Hetero-Graph variant consistently outperforms Homo-Graph by distinguishing
among agent roles, confirming that heterogeneity carries richer relational cues. Nevertheless, both
graph-based variants remain clearly inferior to the full GARNet design. Beyond heterogeneous
modeling, GARNet provides an efficient and lightweight mechanism to capture workflow dynamics,
enabling it to model not only who interacts but also how these interactions evolve over time. This
dynamic perspective equips GraphPlanner with stronger contextual awareness and adaptability,
allowing it to leverage historical interactions far more effectively than generic GNN-based encoders.

GraphPlanner generates routing decisions under both inductive and transductive ways. To
evaluate the effect of different routing inference strategies, we compare two settings:

• Inductive: During inference, GraphPlanner directly generates routing decisions without
holding out or reusing any historical interactions from the training phase. This design is lightweight
and avoids additional storage or retrieval overhead.

• Transductive: During inference, GraphPlanner leverages preserved historical interactions
collected during training, enabling richer context utilization at the cost of higher computational
and memory overhead.

As shown in Figure 4(c), the transductive strategy achieves slightly better overall performance,
demonstrating that leveraging stored historical interactions provides additional contextual cues that
enhance routing quality. However, this improvement comes with increased inference cost, as the
model must maintain and query interaction histories. The inductive strategy, while more lightweight,
still maintains strong performance and consistently outperforms the best multi-round router baseline,
Router-R1. In summary, both inference strategies are valuable: the transductive setting delivers
the highest accuracy when efficiency is less critical, whereas the inductive setting provides a more
resource-efficient solution with competitive performance. This flexibility allows GraphPlanner
to adapt to different user priorities, offering either maximum effectiveness or efficient deployment
without significant performance sacrifice.

5 CONCLUSION

We introduced GraphPlanner, a heterogeneous graph-based agentic router that casts routing
as workflow generation within an MDP, leveraging the heterogeneous graph GARNet to integrate
historical and contextual interactions and training the policy via reinforcement learning. Extensive
experiments across 14 tasks and 6 domains show that GraphPlanner delivers state-of-the-art
performance, robust generalization to unseen tasks and LLMs, and favorable trade-offs between
accuracy and computational cost. These results underscore the potential of extending LLM routing
into agentic settings and open new directions for scalable, cooperative multi-agent LLM systems. In
future work, we plan to incorporate richer agent profiles beyond Planner, Executor, and Summarizer
to further enhance agentic routing.
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A ADDITIONAL RELATED WORK

LLM-Agents and Agentic Systems. Recent studies have shown that organizing LLM-based agents
into multi-agent systems (MAS) can substantially enhance reasoning, adaptability, and overall
performance beyond single-agent settings (Wang et al., 2024a; Qian et al., 2024; Guo et al., 2024).
Early frameworks such as AutoGen (Wu et al., 2024), LLM-Debate (Du et al., 2023), and AgentVerse
(Chen et al., 2023) demonstrated gains in factuality, robustness, and efficiency, but relied on manually
designed protocols that limited adaptability (Zhuge et al., 2024; De Zarzà et al., 2023). Moreover,
most MAS assume agents share the same backbone, constraining heterogeneity where diverse
models could provide complementary strengths. Inspired by human teamwork, later work explored
autonomous cooperation, showing that agents can self-organize, exhibit emergent behaviors, and
dynamically divide labor (Barachini & Stary, 2022; Tran et al., 2025). Studies further reported
improved reasoning through social behaviors, negotiation, and role specialization (Zhang et al., 2023;
Chen et al., 2024b; Chang, 2025). These advances highlight a shift toward automated agentic systems,
yet current MAS research predominantly relies on identical LLM backbones across all agents, which
fundamentally constrains the exploration of agent capability diversity and limits the potential for
truly complementary collaboration.

LLM routers. Routing among multiple LLMs is a key paradigm for balancing efficiency and
accuracy. Existing approaches fall into single-round and multi-round routers. Single-round routers
make one-shot assignments using query embeddings or classifiers, such as RouterKNN (Shnitzer
et al., 2023) and RouterMLP (Shnitzer et al., 2023), RouterSVM (Hu et al., 2024), RouterDC (Chen
et al., 2024a), and GraphRouter (Feng et al., 2024). These methods are efficient but lack sequential
reasoning. Multi-round routers enable iterative decisions, as in Prompt LLM (Zhang et al., 2025),
Router-KNN-MR (Zhang et al., 2025), R2-Reasoner (Shao et al., 2025), and Router-R1 (Zhang et al.,
2025), which combine deliberation and routing with reinforcement learning. While more flexible,
they remain restricted to backbone selection without modeling agent roles or heterogeneity. Current
paradigms thus face two limitations: focusing only on backbone choice and assuming homogeneous
models. Agentic routing researched by our paper addresses these by jointly deciding which agent and
which backbone to invoke, combining routing efficiency with the adaptability, specialization, and
heterogeneity of multi-agent systems.

B GRAPHPLANNER TRAINING DETAILS

We optimize the heterogeneous graph-based policy network using Proximal Policy Optimization
(PPO) (Schulman et al., 2017), a widely used actor–critic reinforcement learning algorithm. PPO
trains the policy by maximizing:

LPPO(θ) = Êt

[
min

(
ρt(θ)Ât, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (6)

where πθ and πθold denote the current and previous policies, respectively, and

ρt(θ) =
πθ(at | st,Gworkflow,Ghistory)

πθold(at | st,Gworkflow,Ghistory)
. (7)

Here, Ât is the estimated advantage at step t, ϵ is a clipping threshold, st the current state, at the
chosen action, Gworkflow is the workflow interaction graph, and Ghistory is the historical interaction
graph.

C IMPLEMENTATION DETAILS

We implement GraphPlanner with a PPO backbone, where both policy and value functions are
parameterized by GARNet to integrate local and historical state information. Local state graphs
encode query embeddings, role–LLM embeddings, and memory updates, while historical graphs
aggregate past interaction representations; each graph is projected via a linear–normalization–ReLU
block and fused by meta-key aggregation. GARNet is implemented using the torch scatter
library for efficient graph-based message passing and sparse aggregation. The policy network
computes action probabilities by matching fused state representations (query, task, and state tower
outputs) against role–LLM embeddings with action masking, while the value network processes state,
local, and historical features through multi-layer transformations to output scalar value estimates.
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Training follows PPO with clipped objectives (γ = 0.99, ϵ = 0.2, k = 4 epochs per update). We set
hidden dimension to 32, candidate embedding dimension to 1536, and state embedding dimension to
768. Adam optimizer is used with learning rate 3× 10−4 for policy and doubled for value, combined
with gradient clipping (norm 0.5), BF16 training, and gradient checkpointing. To improve data
collection efficiency, we adopt a multi-threaded rollout design that processes multiple queries in
parallel and generates routing interactions simultaneously. This design increases sample throughput,
reduces wall-clock training time, and stabilizes PPO updates by providing more diverse experience
per iteration. Training is capped at 1000 episodes with early stopping once policy entropy drops
below a threshold, indicating reduced exploration. During evaluation, greedy decoding is applied and
the best model is selected by running reward. All experiments are conducted on a single NVIDIA
A6000 GPU.

D DATASET AND LLM BACKBONE DETAILS

Table 6: The domains and corresponding
tasks of the dataset used in our experiment.
Specifically, it spans 6 representative domains
and 14 tasks. Note that the scenarios and corre-
sponding tasks marked with underline are held
out from the training set and reserved solely
for evaluating the router’s generalization per-
formance on unseen tasks.

Domain Tasks

Math GSM8K, MATH

Code MBPP, HumanEval

Commonsense Reasoning CommonsenseQA, ARC,
OpenBookQA

World Knowledge NaturalQuestions, TriviaQA

Popular MMLU, GPQA

Out-of-domain Testing LogicGrid, MGSM,
CommonGen

Table 7: The scales and corresponding LLMs
used in our experiment. Specifically, the 12
LLMs are categorized into three scales based on
model size. Note that the LLMs marked with
underline are not involved in the training process,
but are only included in experiments that evaluate
the router’s generalization to unseen LLMs.

Scale LLMs

Small

Qwen2.5 (7b), CodeGemma (7b), Mistral (7b)

LLaMA-3.1 (8b), LLaMA-3 ChatQA (8b), Gemma-2 (9b)

Mistral-Nemo (12b)

Medium
LLaMA-3.3 Nemotron Super (49b)

LLaMA-3.1 Nemotron (51b), Mixtral (8x7b)

LLaMA-3 ChatQA (70b)

Large Mixtral (8x22b)

Table 8: Sample counts in the training set and test set across different tasks.

Domain Tasks Train Cases Test Cases

Math GSM8K (Cobbe et al., 2021) 500 50
MATH (Hendrycks et al., 2021b) 500 50

Code MBPP (Austin et al., 2021) 374 50
HumanEval (Chen et al., 2021) 120 44

Commonsense
Reasoning

CommonsenseQA (Talmor et al., 2019) 500 50
ARC (Clark et al., 2018) 500 50
OpenBookQA (Mihaylov et al., 2018) 500 50

World
Knowledge

NaturalQuestions (Kwiatkowski et al., 2019) 500 50
TriviaQA (Joshi et al., 2017) 500 50

Popular MMLU (Hendrycks et al., 2021a) 500 50
GPQA (Rein et al., 2023) 400 44

Out-of-domain Testing
LogicGrid (Mitra & Baral, 2015) 0 50
MGSM (Shi et al., 2022) 0 50
CommonGen (Lin et al., 2019) 0 50
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Table 9: The tasks and corresponding evaluation metrics of the dataset used in our experiment,
organized by domain.

Domain Tasks Metrics

Math
GSM8K (Cobbe et al., 2021) Accuracy
MATH (Hendrycks et al., 2021b) Accuracy

Code
MBPP (Austin et al., 2021) Pass@1
HumanEval (Chen et al., 2021) Pass@1

Commonsense
Reasoning

CommonsenseQA (Talmor et al., 2019) Accuracy
ARC (Clark et al., 2018) Accuracy
OpenBookQA (Mihaylov et al., 2018) Accuracy

World
Knowledge

NaturalQuestions (Kwiatkowski et al.,
2019)

CEM

TriviaQA (Joshi et al., 2017) CEM

Popular
MMLU (Hendrycks et al., 2021a) Accuracy
GPQA (Rein et al., 2023) Accuracy

Out-of-domain Testing
LogicGrid (Mitra & Baral, 2015) Accuracy
MGSM (Shi et al., 2022) Accuracy
CommonGen (Lin et al., 2019) Coverage

Table 10: Language Models and estimated price (in $ per 1M tokens).

Size Type Model Size Input Price Output Price

Small

Qwen2.5 (Qwen et al., 2025) 7B 0.20 0.20
CodeGemma (Team et al., 2024a) 7B 0.20 0.20

Mistral (Jiang et al., 2023) 7B 0.20 0.20
LLaMA-3.1 (Grattafiori et al., 2024) 8B 0.20 0.20
LLaMA-3 ChatQA (Liu et al., 2024) 8B 0.20 0.20

Gemma-2 (Team et al., 2024b) 9B 0.20 0.20
Mistral-Nemo (Mistral AI, 2024) 12B 0.30 0.30

Medium

LLaMA-3.3 Nemotron Super (Wang et al., 2024b) 49B 0.90 0.90
LLaMA-3.1 Nemotron (Wang et al., 2024b) 51B 0.90 0.90

Mixtral (Jiang et al., 2024) 56B (8×7B) 0.60 0.60
LLaMA-3 ChatQA (Liu et al., 2024) 70B 0.90 0.90

Large Mixtral (Jiang et al., 2024) 176B (8×22B) 1.20 1.20

D.1 TASK DESCRIPTIONS

The benchmarks summarized in Tables 8 and 9 span math, code, commonsense reasoning, world
knowledge, popular comprehensive tests, and out-of-domain evaluation. Below we provide brief
descriptions for each task to orient the reader.

GSM8K. GSM8K is a grade-school math word-problem dataset designed to probe multi-step arith-
metic reasoning with natural-language solutions (Cobbe et al., 2021). Problems typically require
decomposing the question into several simple operations and tracking intermediate quantities. It has
become a standard testbed for chain-of-thought prompting and verifier-based solution selection. We
report accuracy following the setup in Table 9.

MATH. The MATH benchmark consists of 12,500 competition-style problems spanning algebra,
geometry, number theory, and more, each with step-by-step solutions (Hendrycks et al., 2021b). It
evaluates symbolic reasoning and solution derivation beyond simple calculation. Because problems
include full worked solutions, the dataset also supports training methods that supervise intermediate
reasoning. We report accuracy as in Table 9.

MBPP. MBPP (Mostly Basic Python Problems) evaluates function-level code synthesis from short
natural-language prompts (Austin et al., 2021). Tasks are designed to be solvable by entry-level
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programmers and include unit tests to automatically check correctness. It emphasizes core Python
fluency, standard library use, and simple algorithmic reasoning. We use pass@1 as the principal
metric (Table 9).

HumanEval. HumanEval measures functional correctness of generated Python code on hand-
written problems with hidden unit tests (Chen et al., 2021). Prompts include function signatures and
docstrings, and success requires passing all tests for a task. The benchmark introduced the widely
used pass@k metric; we report pass@1 in Table 9. It stresses precise adherence to specifications and
robust program synthesis.

CommonsenseQA. CommonsenseQA is a multiple-choice benchmark targeting commonsense
reasoning via questions constructed from ConceptNet relations (Talmor et al., 2019). Distractors
are chosen to be plausible, making surface cues insufficient. Models must draw on background
knowledge and everyday plausibility. We report accuracy as listed in Table 9.

ARC. The AI2 Reasoning Challenge (ARC) comprises grade-school science questions split into
Easy and Challenge subsets (Clark et al., 2018). The Challenge set contains items that defeat simple
retrieval and co-occurrence methods, emphasizing multi-hop reasoning and science knowledge.
Questions are multiple choice and text-only. Accuracy is reported per Table 9.

OpenBookQA. OpenBookQA evaluates the ability to apply a small “open book” of elementary
science facts to novel situations (Mihaylov et al., 2018). Solving a question typically requires
combining a core fact with commonsense or auxiliary knowledge. The format is multiple choice, and
retrieval-augmented methods are commonly explored. We report accuracy as in Table 9.

NaturalQuestions (NQ). NQ contains real, anonymized user queries paired with Wikipedia pages
and annotated short and long answers (Kwiatkowski et al., 2019). It is a challenging, realistic QA
benchmark requiring document-level comprehension and answer span identification. In our setup
we evaluate case-insensitive exact match (CEM) following Table 9. The task stresses open-domain
reading comprehension.

TriviaQA. TriviaQA provides questions written by trivia enthusiasts along with evidence documents,
encouraging multi-sentence reasoning and robust retrieval (Joshi et al., 2017). Compared to earlier
reading-comprehension datasets, it features more compositional and diverse questions. We report
CEM as in Table 9. The dataset probes broad world knowledge under noisy evidence.

MMLU. MMLU (Massive Multitask Language Understanding) is a 57-subject multiple-choice exam
spanning humanities, social sciences, STEM, and professional domains (Hendrycks et al., 2021a).
It evaluates breadth of knowledge and reasoning in a zero- or few-shot setting. The benchmark is
widely used for holistic comparison across models. We report accuracy per Table 9.

GPQA. GPQA (Graduate-Level Google-Proof Q&A) consists of expert-authored multiple-choice
questions in biology, physics, and chemistry designed to resist simple web search (Rein et al., 2023).
It targets deep, specialized scientific understanding and careful reasoning. The dataset is intentionally
difficult for both non-experts and strong LMs. We report accuracy as summarized in Table 9.

LogicGrid. This benchmark comprises classic logic-grid (Zebra-style) puzzles expressed in natural
language, requiring deduction over entities, attributes, and constraints (Mitra & Baral, 2015). Success
demands translating textual clues into structured constraints and performing consistent reasoning. It
stresses symbolic consistency and global constraint satisfaction. We evaluate accuracy as in Table 9.

MGSM. MGSM (Multilingual Grade School Math) is a multilingual extension of GSM8K created
by translating problems into diverse languages (Shi et al., 2022). It measures whether multi-step
arithmetic reasoning ability transfers across scripts and linguistic structures. The benchmark is
commonly used to assess chain-of-thought prompting in multilingual settings. We report accuracy
per Table 9.

CommonGen. CommonGen evaluates generative commonsense reasoning by asking models to
compose a coherent sentence that must include a given set of concepts (Lin et al., 2019). The task
requires relational and compositional generalization beyond simple lexical co-occurrence. It is used
to study controllable generation under semantic constraints. We report coverage per Table 9.
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D.2 MODEL DESCRIPTIONS

The language models in Table 10 cover small, medium, and large configurations, with prices and
sizes reported there. Below are brief descriptions to contextualize each model family.

Qwen2.5 (7B). Qwen2.5 is a recent generation of the Qwen family, offering open-weight models
optimized for general-purpose utility, instruction following, and strong reasoning/coding performance
(Qwen et al., 2025). The 7B variant targets efficient deployment while retaining competitive capability
across standard benchmarks. The family emphasizes multilingual coverage and long-context usability.
We use the size and pricing shown in Table 10.

CodeGemma (7B). CodeGemma is a code-specialized family derived from Gemma that supports
code completion, generation, and conversational coding assistance (Team et al., 2024a). It adds
training signals for software tasks and is commonly used with “fill-in-the-middle” prompting. The
7B model balances latency with solid pass@k performance on Python-centric benchmarks. Pricing
details are given in Table 10.

Mistral (7B). Mistral 7B is an open-weight, decoder-only transformer engineered for efficiency,
featuring grouped-query attention and sliding-window attention for fast inference on long sequences
(Jiang et al., 2023). Despite its compact size, it performs strongly on reasoning, math, and code tasks
relative to larger predecessors. It is frequently used as a base for instruct-tuned and domain-specialized
variants. See Table 10 for cost information.

LLaMA-3.1 (8B). LLaMA-3.1 denotes Meta’s open-weight models emphasizing improved
instruction-following, multilinguality, and extended context capabilities (Grattafiori et al., 2024).
The 8B model provides a lightweight option suitable for on-prem or edge use while retaining strong
general performance. It is widely used as a base for fine-tuning and tool-using assistants. Pricing is
listed in Table 10.

LLaMA-3 ChatQA (8B / 70B). ChatQA refers to instruction-tuned QA/chat variants designed to
excel at question answering and retrieval-augmented workflows (Liu et al., 2024). These models are
adapted for dialogue-oriented reasoning and factuality under supervision and preference data. The
8B and 70B sizes provide options trading latency for accuracy. Refer to Table 10 for sizes and costs.

Gemma-2 (9B). Gemma-2 is Google’s second-generation open family that introduces architectural
refinements for practical-size models while advancing reasoning and multilingual performance
(Team et al., 2024b). The 9B variant is a commonly adopted middle ground between capability and
deployability. It serves as a base for domain-tuned and coding-specialized derivatives. Costs are
summarized in Table 10.

Mistral-Nemo (12B). Mistral-Nemo is a collaboratively developed open-weight model emphasizing
efficient inference and high-quality instruction following (Mistral AI, 2024). With 12B parameters, it
targets general-purpose chat, reasoning, and code assistance while remaining deployment-friendly. It
is often used on NVIDIA accelerators and associated toolchains. See Table 10 for pricing.

LLaMA-3.3 Nemotron Super (49B). Nemotron Super (49B) represents an instruction-tuned assistant
model associated with NVIDIA’s Nemotron lineup and preference-optimization tooling (Wang et al.,
2024b). It emphasizes helpfulness, safety, and strong reasoning via high-quality preference data.
Positioned between lightweight and frontier models, it seeks strong accuracy with manageable cost.
Pricing appears in Table 10.

LLaMA-3.1 Nemotron (51B). The 51B Nemotron variant builds on the LLaMA-3.1 family with
large-scale instruction tuning and preference modeling for chat and tool-use scenarios (Wang et al.,
2024b). It aims to combine robust knowledge with alignment for reliable multi-turn QA. This size
targets improved quality over small/medium models while controlling inference cost. See Table 10.

Mixtral (8×7B). Mixtral 8×7B is a sparse Mixture-of-Experts (MoE) model where a small subset of
experts is activated per token, delivering strong performance at efficient compute (Jiang et al., 2024).
It inherits the Mistral architecture and uses routing to select experts dynamically, improving scaling
characteristics. Widely adopted instruct variants make it a strong all-around choice. Costs are listed
in Table 10.

Mixtral (8×22B). Mixtral 8×22B scales the MoE design to larger experts for higher accuracy
while retaining the sparse-activation efficiency benefits (Jiang et al., 2024). It is frequently used for
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multilingual, reasoning, and coding workloads with long inputs. Instruct-tuned releases are popular
for production chat systems. Pricing is shown in Table 10.

E PROMPT USAGE

Table 11: Planner prompt template for sub-query decomposition.

You are a query decomposition assistant. Your task is to decompose the user’s query into
atomic and independent sub-queries.
Inputs: - Original query: {QUERY} - Parent queries: {PARENT QUERIES} - Previous
sibling responses: {SIBLING RESPONSES}
Instructions: - Determine the optimal number of sub-queries (1–3). - Ensure each
sub-query is self-contained and non-overlapping. - Avoid redundancy by considering
{SIBLING RESPONSES}. - Adjust the number of sub-queries depending on complex-
ity.
Output format: - List 1–3 sub-queries. - One sub-query per line. - No numbering or extra
commentary.

Table 12: Executor prompt template for query answering.

You are a helpful assistant. Answer the given (sub-)query with support from full context.
Inputs: - Current sub-query: {QUERY} - Original query: {ROOT QUERY} - Parent queries:
{PARENT QUERIES} - Previous sibling responses: {SIBLING RESPONSES} - If final
execution: summary of sub-query responses {SUMMARY}
Instructions: - Interpret the sub-query with reference to full context. - Align the answer with
prior responses to ensure consistency. - If this is the final step, synthesize everything into a
complete final answer.
Output format: - Direct, complete answer in the format required by the task. - No extra
commentary.

Table 13: Summarizer prompt template for parent query synthesis.

You are a professional summarizer. Your task is to synthesize multiple child answers into a
coherent response to the parent query.
Inputs: - Parent query: {PARENT QUERY} - Child answers: {CHILD ANSWERS}
Instructions: - Combine all child answers into a complete, coherent response. - Preserve all
important details. - Resolve overlap or conflicts among child answers. - Ensure the response
directly addresses {PARENT QUERY}.
Output format: - A single, well-structured paragraph answering the parent query.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we used an LLM to assist with improving the readability
of the text. The tool was employed exclusively for grammar correction, sentence restructuring, and
minor stylistic refinements. All substantive intellectual contributions, including research design,
analysis, and conclusions, were produced independently by the authors.
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Table 14: Description of Planner agent.

The Planner acts as a decomposition agent. Its primary role is to analyze a complex user query
and break it down into a set of clear, atomic sub-questions that can be addressed independently.
This ensures that each sub-query targets a specific aspect of the original request, reducing
ambiguity and overlap. The Planner helps streamline multi-step reasoning or multi-part queries
by structuring them into manageable components for downstream processing.

Table 15: Description of Executor agent.

The Executor serves as the answering agent. It is responsible for generating responses to
the user’s queries, either directly or by incorporating additional background context when
necessary. When context is provided, the Executor uses it to produce a more informed and
grounded response. It can operate in both raw query execution mode or in a final, context-
aware answering mode, depending on the task’s stage and goal.

Table 16: Description of Summarizer agent.

The Summarizer functions as the condensation agent. Its role is to distill long or complex
content into a concise, coherent, and fluent summary. Instead of listing key points, the
Summarizer rewrites the original input into a well-structured passage that captures the essential
meaning, making the information easier to digest and understand at a glance.

Table 17: Description of Qwen2.5 (7b).

Qwen2.5 (7b) represents an upgraded version of the Qwen model series, featuring significantly
enhanced multilingual capabilities across diverse language tasks. This improved model offers
excellent value at $0.20 per million input tokens and $0.20 per million output tokens.

Table 18: Description of CodeGemma (7b).

CodeGemma (7b) is a specialized variant of the Gemma model family that focuses exclusively
on code generation and completion tasks. This programming-oriented model provides robust
coding assistance capabilities at an affordable rate of $0.20 per million input tokens and $0.20
per million output tokens.

Table 19: Description of Mistral (7b).

Mistral (7b) is a highly efficient open-weight model with 7 billion parameters, optimized for
fast inference and strong performance on general text generation tasks. It offers competitive
pricing at $0.20 per million input tokens and $0.20 per million output tokens.

Table 20: Description of LLaMA-3.1 (8b).

LLaMA-3.1 (8b) is Meta’s 8-billion parameter model from the advanced Llama-3 series,
specifically designed for conversational AI and complex reasoning tasks. This versatile model
combines strong performance with reasonable costs at $0.20 per million input tokens and
$0.20 per million output tokens.

Table 21: Description of LLaMA-3 ChatQA (8b).

LLaMA-3 ChatQA (8b) is an NVIDIA fine-tuned 8-billion parameter model specifically
optimized for question-answering and reasoning applications. This specialized model delivers
enhanced performance in conversational AI scenarios at $0.20 per million input and output
tokens.
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Table 22: Description of Gemma-2 (9b).

Gemma-2 (9b) is a 9-billion parameter instruction-tuned model from Google, designed for
general text processing and conversational applications. This compact yet capable model
offers exceptional value with ultra-low pricing of $0.10 per million input tokens and $0.10 per
million output tokens.

Table 23: Description of Mistral-Nemo (12b).

Mistral-Nemo (12b) is a 12-billion parameter model that combines innovative Mistral architec-
ture with NeMo technology for enhanced performance. This hybrid approach delivers superior
capabilities across various tasks, priced at $0.30 per million input tokens and $0.30 per million
output tokens.

Table 24: Description of LLaMA-3.3 Nemotron Super (49b).

LLaMA-3.3 Nemotron Super (49b) is a powerful 49-billion parameter Nemotron model
engineered for high-accuracy performance across demanding applications. This advanced
model delivers exceptional results for complex tasks, available at $0.90 per million input and
output tokens.

Table 25: Description of LLaMA-3.1 Nemotron (51b).

LLaMA-3.1 Nemotron (51b) is NVIDIA’s 51-billion parameter alignment model that focuses
on producing safe, helpful, and accurate responses. This enterprise-grade model emphasizes
responsible AI deployment and is priced at $0.90 per million input and output tokens.

Table 26: Description of Mixtral (8x7b).

Mixtral (8x7b) is a 56-billion parameter Mixture of Experts (MoE) model composed of eight
7-billion parameter expert models, specifically optimized for creative text generation. This
innovative architecture provides high-quality outputs while maintaining efficiency, available at
$0.60 per million input and output tokens.

Table 27: Description of LLaMA-3 ChatQA (70b).

LLaMA-3 ChatQA (70b) is a 70-billion parameter model specifically optimized for conver-
sational AI and chat applications. This large-scale model provides sophisticated dialogue
capabilities and nuanced understanding, available at $0.90 per million input and output tokens.

Table 28: Description of Mixtral (8x22b).

Mixtral (8x22b) is an advanced 176-billion parameter Mixture of Experts model comprising
eight 22-billion parameter expert components. This large-scale MoE architecture delivers
exceptional performance across diverse tasks while maintaining computational efficiency,
priced at $1.20 per million input and output tokens.
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