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ABSTRACT

The advancement of autonomous driving technology hinges on large-scale data
collection to train camera-based deep neural network 3D object detectors. How-
ever, these valuable datasets are at risk of unauthorized access and misuse by
malicious actors, jeopardizing intellectual property, remote deployment, and the
privacy of sensitive information captured during data collection. We propose a
novel reversible adversarial learning framework, referred to as SceneLock, aimed
at protecting autonomous driving data from unauthorized use. Our method con-
ducts adversarial perturbations through a carefully designed Noise Serialization
Encoding module (NSE), which significantly degrades image quality and renders
the data ineffective for unauthorized artificial intelligence models and manual an-
notation. To ensure legitimate access remains unaffected, we integrate advanced
image steganography to embed perturbation values within the images. Further-
more, authorized users can extract these values using appropriate decryption tools
through the Noise Serialization Decoding module (NSD) to restore the original
high-quality images. Experimental results demonstrate that our approach effec-
tively safeguards data integrity against unauthorized use while maintaining avail-
ability for legitimate purposes. This dual-layer protection highlights the potential
of our method to enhance data security in the autonomous driving domain.
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“Caption: There is a view of a
street with cars driving down it.
This is an SUV, positioned to his
right and front. Adjacent to the
vehicle is a street labeled XXX,
currently located at position YYY,
with cars traveling in a southeast
direction.”

(a) Scene Level: Clean scene data may lead to privacy security breaches. (b) Object Level: Loss of perception regarding vehicles on the road.
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with cars traveling in a southeast
direction.”

(a) Scene Level: Clean scene data may lead to privacy security breaches. (b) Object Level: Loss of perception regarding vehicles on the road.

Figure 1: Camera-captured scene data poses security risks during the transition from deployment to
service: Scene-level privacy breaches and Object-level perception loss.

1 INTRODUCTION

Camera-based deep neural network 3D object detectors have demonstrated exceptional performance
on multiple large-scale autonomous driving datasets, including benchmark datasets such as KITTI
Geiger et al. (2012), nuScenes Caesar et al. (2020), and Waymo Sun et al. (2020). The success of
these detectors largely hinges on the collection and utilization of extensive amounts of high-quality
data to train and fine-tune complex models. However, the accumulation of large-scale datasets
driven by data consensus introduces significant risks of unauthorized access and misuse. Such access
may lead to the exposure of Scene-level sensitive information, including images of confidential
infrastructure or objects encountered during data collection. Furthermore, it could result in the
failure of Object-level perception by models at the deployment stage, as shown in Figure 1.

Traditional data protection methods, such as encryption Lagendijk et al. (2012) and access control
Qiu et al. (2020), may not be sufficient to thwart sophisticated adversaries who can bypass security
measures or exploit vulnerabilities in AI models. Therefore, there is an urgent need for robust mech-
anisms that can protect datasets from unauthorized use while preserving their utility for legitimate
applications.
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Clear Camera-Based Scenes
Q: Man, what can I see?
A: Nothing at all.

Generation of Adversarial Protective Scenes.

NSE Encoding

Authorized Access

CAM_FRONTCAM_FRONT_LEFT CAM_FRONT_RIGHT

CAM_BACK_LEFT CAM_BACK CAM_BACK_RIGHT

CAM_FRONTCAM_FRONT_LEFT CAM_FRONT_RIGHT

CAM_BACK_LEFT CAM_BACK CAM_BACK_RIGHT

NSD Decoding

Figure 2: Clean scene data is encoded using Noise Serialization Encoding to generate adversarial
samples with perturbation noise, which can be decoded back to the original image using Noise
Serialization Decoding.

In this paper, we propose a novel reversible adversarial learning framework for the protection of
camera-based autonomous driving scenes, as shown in Figure 2. Due to its unique access control
mechanism for enabling or disabling, it is termed SceneLock. Our approach is grounded in the
following key innovations:

• Adversarial Perturbations for Data Protection: Extending adversarial perturbation tasks into
data protection, we introduce meticulously designed adversarial perturbations into the collected im-
ages, injecting high levels of noise that significantly degrade image quality. These perturbations are
intended to impair the performance of unauthorized AI models, preventing the extraction of useful
features from the data. Furthermore, the degraded image quality obstructs manual annotation efforts
by unauthorized parties.

• Integration of Image Steganography: Combining perturbation noise with reversible encoding.
To ensure that authorized users can access the original data without degradation, we embed the per-
turbation values within the images using advanced steganography techniques. Authorized personnel
with the appropriate decryption tools can extract these values and restore the images to their pristine
state, maintaining the data’s integrity for legitimate use.

SceneLock provides robust protection against unauthorized data exploitation while ensuring no loss
in data quality or accessibility for legitimate users. Our contributions can be summarized as follows:

• We propose a reversible adversarial learning framework for the protection of camera-based au-
tonomous driving scenes. To our knowledge, this method represents the first application of reversible
adversarial perturbations in autonomous driving, laying the foundation for more robust and reliable
systems.

• We propose a Noise Serialization Encoding module (NSE) and a Noise Serialization Decoding
module (NSD) for the reversible embedding and extraction of perturbation noise. These two modules
ensure excellent adversarial performance and high fidelity during data recovery.

• We conduct extensive experiments to validate the effectiveness of our approach in protecting data
integrity while maintaining availability for authorized applications.

2 RELATED WORK

In this section, we provide an overview of current camera-based 3D perception methods and adver-
sarial perturbation attacks.

Camera-based 3D Perception. With the success of deep learning in the visual domain, pure vision-
based approaches have emerged as an important branch of autonomous driving perception. FCOS3D
Wang et al. (2021a) and PGD-DET Wang et al. (2021b) are monocular 3D detectors that typically
rely solely on 2D images from a principal viewpoint for 3D estimation. Despite significant advance-
ments, their performance remains constrained by depth uncertainty and a lack of diverse perspec-
tives in 3D space. In contrast, BEV-based methods effectively address these issues and demonstrate
superior performance. BEVDet Huang et al. (2021) introduced the first high-performance BEV de-
tector, employing the Lift-Splat-Shoot (LSS) Philion & Fidler (2020) method to convert panoramic
multi-view data into a bird’s-eye view. BEVDepth Li et al. (2023b) supervises depth estimation
by projecting 3D point clouds onto the image. Notably, BEVDet later incorporated temporal fea-
ture fusion, termed BEVDet-4D Huang & Huang (2022). Additionally, query-based Transformer
architectures have gained considerable attention in 3D detectors. DETR3D, inspired by DETR, is
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Figure 3: The overall framework of the SceneLock.

based on a Transformer backbone and associates 2D features with 3D bounding box predictions
through geometric projection. PETR Liu et al. (2022) enhances 2D feature representation by en-
coding position-aware 3D representations. BEVFormer Li et al. (2022) refines BEV queries using
spatial and temporal attention mechanisms. These approaches further unlock the potential of 3D
detectors within the Transformer framework while reducing reliance on depth estimation. Further-
more, camera-based 3D occupancy prediction tasks, such as DHD Wu et al. (2024) and FlashOcc
Yu et al. (2023), are gradually becoming mainstream in 3D perception.

Adversarial Perturbation Attack. In the realm of 2D images, deep neural networks (DNNs) have
been recognized as vulnerable to adversarial attacks, which demonstrate significant potential threats
and value Modas et al. (2019); Fan et al. (2020); Goodfellow et al. (2014). Carlini & Wagner
(C&W) Carlini & Wagner (2017) first proposed generating adversarial examples by adding imper-
ceptible perturbations to the original images, thereby assessing model robustness and leading to
highly confident incorrect predictions. This characteristic has also been validated in object detection
tasks Liang et al. (2022); Liu et al. (2019); Wu et al. (2020). Conducting adversarial attacks solely at
the 2D level is not directly applicable to robustness studies in the 3D physical world. Consequently,
recent research has shifted its focus toward 3D perception issues to elucidate potential safety threats
in real-world environments Xiang et al. (2019); Wicker & Kwiatkowska (2019); Hamdi et al. (2020).
For instance, Adv3D Li et al. (2023a) utilizes NeRF differentiable rendering techniques to synthe-
size target vehicles within realistic camera scenes, while BEV-Attack Xie et al. (2024) propose using
a 3D Surrogate model to learn noise patches that can interfere with the performance of 3D detectors.

In this work, we aim to generate adversarial samples for protecting driving scenarios and achieve
recoverability of these samples through decoding. The comparisons in Table 1 indicate that our
method exhibits stronger transferability, lower requirements, and greater practical applicability.

3 METHOD

3.1 OVERVIEW

In this paper, we will present a detailed account of the SceneLock framework for camera-based au-
tonomous driving protection, which employs reversible adversarial learning. The overall structure of
SceneLock is depicted in Figure 3. It consists of two main components: Noise Serialization Encod-
ing (NSE) and Noise Serialization Decoding (NSD). In Section 3.2, we will elaborate on the noise
serialization encoding process, covering gradient encoding, serialization encoding, and the optional
Reversible Data Embedding (RDE) module. In Section 3.3, we will explain how the noise serial-
ization decoding module utilizes specific tools to extract binary codes from embedded images and
decode particular image perturbation noise, ultimately recovering the original image by subtracting
these noises. Additionally, in Appendix A section, we provide supplementary information on the
principles of steganography in image applications to enhance readers’ understanding of the related
content.

3.2 NOISE SERIALIZATION ENCODING

Prior to delving into implicit noise encoding attacks, it is essential to first discuss the limitations of
Reversible Data Encoding (RDE) regarding the length of encodable bytes, as detailed in Appendix
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A. Our work designs a Serialization Encoding (SE) method, an efficient perturbation compression
technique that utilizes superpixels in place of individual pixels. This approach reduces storage re-
quirements by applying gradient smoothing to superpixels while maintaining adversarial efficacy.
Consequently, even with reduced data space, the perturbations remain effective in challenging the
model.

Gradient Contribution Map Calculation. We denote the input clean scene image as x ∈
RC×H×W , the ground truth label as ytrue (Bounding Box B and Classification Category Cls),
and the output result of the surrogate model as y = fθ(x). Super-pixel size as h × w, η represents
the perturbation generated by surrogate model. The adversarial examples x

′

adv can be expressed as:

x
′

adv = max(0,min(x+ T (η), 1)) (1)
where T is a function designed for dimension expansion and padding. Due to the adoption of super-
pixels, η effectively functions as a simplified perturbation block with a two-dimensional shape of
(⌊H/h⌋, ⌊W/w⌋). Specifically, ηij denotes the perturbation of the super-pixel at position (i, j),
while the function T extends this perturbation to cover the area (c, i : i + h, j : j + w), where (
0 ≤ i ≤ ⌊H/h⌋ ) and (0 ≤ j ≤ ⌊W/w⌋ ). We utilize ϵ as the unit of perturbation and employ a
three-bit code to represent the magnitude of perturbation at ηij , which indicates the count of unit
perturbations.

Then, we analyze how to construct perturbations based on the deviations of the gradients. Initially,
the perturbation gradient is obtained through the 2D surrogate model detector fθ.

fθ(x
′

adv) = y ̸= ytrue, s.t.||T (η)||∞ ≤ ϵ ·m (2)

where m represents the maximum multiplicative factor stored in three bits. To generate x
′

adv , we
compute pixel-wise gradients from the loss function and add perturbations to increase the loss in
non-targeted attacks. Given the variability of gradient values across different positions, applying
uniform perturbations would result in varied impacts on the loss function. Therefore, we prioritize
larger perturbations at points that exert a greater influence on the loss function, as these regions are
more sensitive to input changes that can significantly affect the final classification decision, thereby
enhancing the effectiveness of the attack. Consequently by smoothing the gradients for each super-
pixels:

▽ηJ (x, ytrue)ij =

∑C
0

∑H
0

∑W
0 ▽xJ(x, y

true)ij
C ×H ×W

(3)

A = | ▽η J (x, ytrue)| (4)
Note that by calculating ▽ηJ (x, ytrue), an absolute value matrix A can be obtained. Consequently,
based on A, we can construct a gradient score map E to determine the sensitivity of different block
super-pixels:

E =
exp(Aij)∑i×j
p=0 exp(Ap)

, s.t.i ∈ [0, ⌊H/h⌋], j ∈ [0, ⌊W/w⌋] (5)

where E denotes the impact of perturbations at different positions on the loss function, termed as
the contribution score of gradients to the deviation in the loss function. Considering the variations
in contributions from different blocks, the generated perturbation values are quantized into multiple
levels. The complete algorithmic process is presented as outlined in Algorithm 1.

It is important to note that the NSE is an encoding module specifically designed for scene detection
and scene perception tasks. Therefore, it differs from single-class weakly supervised classification
attack tasks, which primarily aim to achieve semantic interference and detection failure. To disrupt
the confidence of targets in a scene, we can define the following loss function:

J (x, ytrue) = (−1)ytrue
cls

· log(
exp(fθ(x, y

true
clsi

))∑N
i=1 exp(fθ(x, i))

) +

N∑
i=1

||fθ(x)b − ytrueBi
||1 (6)

where (−1)ytrue
cls

is the one-hot encoding of ytruecls , ytrueB represents the total number of object boxes
and ytruecls is the correct category of the image. The detailed NSE attack procedure is outlined in
Algorithm 2, providing a step-by-step guide for implementing this attack strategy.
Complete Perturbation of Noise. We use the perturbation η generated by Algorithm 2 and the clean
image x as inputs. A direction q is randomly selected based on the chosen perturbation ηij . Adding

4
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Algorithm 1 Gradient Score Map Contribution Calculation

1: Input: Gradient of the super-pixels ▽xJ(x, y
true)ij

2: Input: Percentage PCT ; unit perturbation ϵ
3: Output: Perturbation ξ
4: Initialize the absolution value matrix A, the sign function S and the contribution score matrix E
5: A = | ▽η J (x, ytrue)|
6: S = sign(▽ηJ (x, ytrue))
7: Compute the contribution score matrix E
8: for 0≤ i ≤ ⌊H/h⌋ do
9: for 0≤ j ≤ ⌊W/w⌋ do

10: E = eAij/
∑i×j

p=0 e
Ap

11: end for
12: end for
13: Obtain the coordinates of the top PCT values in the E
14: Set the values at these positions in A to 2, and the rest to 1
15: Return ξ

perturbations in the q direction alters the model’s confidence p. If the direction q fails to decrease
p(ytrue|x + T (η + q · ϵ)), the direction q is reversed. For each perturbed point, we record its con-
tribution to the reduction in confidence. After a predefined number of perturbation iterations m, we
identify and select the three points that yield the most significant decrease in model confidence from
these records. As the perturbations of superpixel blocks may have reached their maximum thresh-
old, further increasing these perturbations may have limited direct impact on confidence. Therefore,
we exclude these points and enhance only those where additional perturbations can be applied.

Algorithm 2 Noise Serialization Encoding

1: Input: Clean image x; and the true boxes label ytrue
2: Input: Percentage PCT ; unit perturbation ϵ; iteration I; and the maximum multiplicative factor

m
3: Output: Adversarial examples x

′

adv ; Perturbation η

4: Initialize g0 = 0, x
′0
adv = x, η0 = zero matrix

5: for i = 0 to I − 1 do
6: Input x

′

adv and Output fθ(x
′

adv)

7: Get Mean Absolute Error Loss J (x
′

adv, y
true) based on fθ(x

′

adv) and Eq.(6)
8: Smooth the gradient of super-pixels patch based on Eq.(3) to obtain the gradient:

▽ηi
J (x

′i
adv, y

true)

9: Input ▽ηi
J (x

′i
adv, y

true), PCT , ϵ in Algorithm 1 and obtain the output ξ
10: Clip ηi+1 to ensure ||T (ηi+1)||∞ ≤ ϵ ·m
11: x

′i+1
adv = max(0,min(x+ T (ηi+1), 1))

12: end for
13: Return Adversarial Samples x

′

adv and Perturbation ξ

In the final stage of encoding, we employed Reversible Data Encoding (RDE) technology to embed
critical perturbation information into superpixel blocks. Tian et al. Tian (2003) pioneered the RDE
technique through difference expansion, a classical method for secret data embedding that ampli-
fies the differences between adjacent pixels. However, conventional RDE methods often introduce
distortions in the grayscale representations of images, which are crucial for feature analysis. There-
fore, we adopted the Grayscale Invariance RDE (RDE-GI) method proposed by Hou et al. Hou
et al. (2018), which utilizes the R and B channels of color images for information embedding while
adjusting the pixel values in the G channel to ensure grayscale invariance.

3.3 NOISE SERIALIZATION DECODING

In the NSE module, perturbations of varying sensitivity are constructed through superpixel blocks
and cleverly embedded into adversarial images using Reversible Data Encoding (RDE) technology.

5
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Thus, in the NSD module, we can utilize the Grayscale Invariance Reversible Data Hiding (RDE-
GI) technique to extract hidden information from encrypted private datasets. During the generation
of adversarial samples, the perturbation matrix is encoded as a binary information stream, which is
then carefully embedded into the adversarial image along with relevant auxiliary data, ensuring the
integrity of the embedded information while preserving the adversarial characteristics of the image.
When the original image needs to be recovered, the RDE-GI technique can be employed to extract
hidden information from the NSE-encoded adversarial image. Given known parameters (such as
superpixel size and encoding length), the perturbation matrix can be accurately reconstructed after
removal, enabling the recovery of the original image with minimal loss. This innovative approach
allows SceneLock to maintain the effectiveness of adversarial perturbations while ensuring process
reversibility, thereby achieving robust protection of privacy and sensitive data.

3.4 DISCUSSION: ENCODING AND DECODING TIME

Due to the remote deployment requirements of autonomous driving tasks, configuration capabilities,
fundamental device requirements, and runtime are crucial factors to consider in the actual data pro-
tection process. Therefore, we will primarily discuss the time consumption during the encoding and
decoding phases.

Encoding Time. In NSE process, we primarily utilize a surrogate model to detect potential target
representations in images, which accounts for the main memory overhead. In contrast, superpixel
block gradient sensitivity encoding employs binary computation, resulting in minimal time impact.
We use 2D detection networks as the surrogate network, operating in validation mode without train-
ing, and complete the encoding process in just 10 iterations. Therefore, while the overall encoding
process incurs some computational cost, it remains acceptable for current, mature mobile deploy-
ments.

Decoding Time. The decoding module incurs no GPU overhead and effectively meets the time
requirements for extracting specific encrypted data in practical scenarios by combining RDE-GI
technology with binary computation. In the subsequent experimental section 6, we further analyze
the impact of varying noise levels and resolutions on decoding time.

4 EXPERIMENTS

4.1 DATASET AND EXPERIMENT SETUP

nuScenes. nuScenes Caesar et al. (2020) is a popular dataset for autonomous driving research. It
includes 10 object classes, making it an ideal testbed for evaluating semantic learning with massive
coarse labels. Given the substantial computational resources required for evaluating the full dataset,
we selected the nuScenes-mini dataset to assess adversarial robustness.”

Victim Model. In SceneLock, the noise encoding flow follows a black-box attack model, which
aligns with the application of data to mitigate potential threats from unknown models. In this black-
box environment, we selected seven different architectures of pure visual detectors and input images
processed with implicitly encoded noise for testing in various 3D detectors, as outlined in Table 2.

Surrogate Model. In the noise serialization encoding module, we use lightweight 2D detectors
(Fast-RCNN Girshick (2015)) as surrogate models for 3D scene Perception.

Evaluation. In our experiments and discussions, we focus on four key dimensions: 3D detec-
tion/occupancy attack results, object recognition attack results, image restoration quality, and visual
integrity. For 3D detection, we primarily utilize two metrics: Mean Average Precision (mAP) and
nuScenes Detection Score (NDS). We evaluate the performance of perturbation noise in NSE and
NSD using the Attack Success Rate (ASR), which measures the proportion of targets successfully
detected before and after perturbation. Additionally, we employ established benchmarks for image
quality assessment to evaluate NSE and NSD, specifically Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM).

4.2 IMPLENMENTATION DETAILS

The parameter settings for SceneLock are as follows: the superpixel unit size is 4x4, the unit pertur-
bation coefficient ϵ is 4/255, the number of iterations for the surrogate model is 10, and the PCT is
set to 70%. During the attack process, the image resolution is set to 448x448x3. In the NSE module,

6
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Table 1: Differences from Attack Methods

Method Surr Model
Attack Type

Reversibility
2D Reg 3D Det. 3D Occ

BEV-Attack 3D ✓ ✓

Ours 2D ✓ ✓ ✓ ✓

Table 2: 3D Detector Overview
3D Detector Views Architecture Extra signal
PGD-DET Monocular CNN -
FCOS3D Monocular CNN -
BEVDET Single CNN Depth
BEVDepth Multi CNN Depth

PETR Multi Transformer -
DETR3D Multi Transformer -

BEVFormer Multi Transformer Temporal
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Figure 4: Impact of Scene Level on 3D Detector Performance and Influence of Car Object Level on
Certain 3D Detectors.

the image resolution is set to 448x448x3 during scene perturbation. In addition to the experiments
in Sections 4.3 and 6, we conducted transfer experiments in Appendix B to evaluate the robustness
of SceneLock in object recognition tasks. Furthermore, detailed visual analyses are provided in Ap-
pendices D and C to further demonstrate the effectiveness of SceneLock in protecting scenes and
objects. All experiments were conducted on an NVIDIA GeForce RTX 3090.
4.3 3D SCENES RESULTS

In this section, we primarily evaluate the impact of adversarial images encoded by the NSE on the
performance of scene perception models.

Scene-level Results. In Table 3, we observe that BEVFormer-T8 achieves mAP and NDS scores
of 43.15% and 47.98% on the original data, respectively. However, these scores drop to 6.11% and
16.53% on adversarial samples. The trend in Figure 4 (a) reveals that Transformer-based methods
(such as BEVFormer, DETR3D, and PETR) perform well on original data but significantly lag
behind BEV-based CNN methods when faced with perturbations. This phenomenon suggests that
Transformer architectures exhibit less stability than CNNs in learning visual representations.

Furthermore, we tested the 3D occupancy task, as shown in Table 4, which is a pixel-level task
more resistant to noise than instance-level detection tasks. However, we observed that the latest
Occ method, DHD Wu et al. (2024), achieved only 10.41% mIoU on adversarial samples, with the
bicycle class nearly completely disappearing from the scene. Meanwhile, BEVDet and FlashOcc
Yu et al. (2023) saw their results drop from 24.23% and 23.98% to 7.51% and 6.47%, respectively.
These experimental results demonstrate that our method can effectively disrupt 3D scenes using only
a 2D surrogate model, thereby helping to conceal and protect the scene.

Object-level Results. Given that cars are the most common and numerous category in road scenes,
we conducted noise perturbation experiments specifically on this class, applying noise only to cars in
the NSE module. Figure 4 (b) shows the impact on mAP and NDS for various 3D detection methods,
with performance degradation varying across models. The box plot indicates that while BEVFormer-
T8 performs well on clean data, its effectiveness is significantly reduced on adversarial samples
generated by NSE. Table 5 provides more detailed results; although the NDS for cars remains largely
unchanged, the 3D bounding box shapes, vehicle trajectories, and speed predictions are significantly
disrupted, demonstrating that SceneLock’s NSE offers effective protection at the object level.

4.4 NOISE SERIALIZATION DECODING RESULTS

Decoding Time. In Table 6, we evaluated the impact of different noise levels and resolutions on
decoding time. The results indicate that, at the same resolution, varying perturbation noise has a
minimal effect on decoding time. In contrast, for the same perturbation level, higher resolutions
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Table 3: Performance Comparison of Various 3D Detectors on Clean and Adversarial Scenes-level
Data.

Method Image Size CBGS BEV Depth Temporal Clean NDS Adv NDS Clean mAP Adv mAP

PGD-Det 1600 × 900 0.3402 0.1485 0.3173 0.0591
PGD-Det-Finetune 1600 × 900 0.3387 0.1386 0.3215 0.0544
FCOS3D 1600 × 900 0.3220 0.1269 0.2948 0.0632
FCOS3D-Finetune 1600 × 900 0.3309 0.1313 0.3083 0.0488

BEVDepth-R50 704 × 256 ✓ ✓ 0.3755 0.1592 0.3066 0.0744
BEVDepth-R50-DA 704 × 256 ✓ ✓ 0.4107 0.1854 0.3331 0.0929
BEVDepth-R50-DA-EMA 704 × 256 ✓ ✓ 0.4221 0.1869 0.3541 0.0951
BEVDet-R50 704 × 256 ✓ 0.2980 0.1140 0.2884 0.0540
BEVDet-R50-CBGS 704 × 256 ✓ ✓ 0.3509 0.1148 0.2915 0.0474
BEVDet-R50-4D 704 × 256 ✓ ✓ ✓ 0.3793 0.1910 0.2967 0.0609
BEVDet-R50-4D-Depth 704 × 256 ✓ ✓ ✓ 0.4233 0.2007 0.3590 0.1113

PETR-VovNet 1600 × 640 ✓ 0.3575 0.1555 0.3571 0.0932
DETR3D 1600 × 900 ✓ 0.3954 0.1007 0.3313 0.0400
DETR3D-CBGS 1600 × 900 ✓ ✓ 0.3872 0.0951 0.3187 0.0198
BEVFormer-Small 1600 × 900 ✓ 0.3991 0.1913 0.3545 0.0702
BEVFormer-Base 1600 × 900 ✓ 0.4214 0.1601 0.3691 0.0681
BEVFormer-Base-T1 1600 × 640 ✓ ✓ 0.3900 0.1184 0.3430 0.0413
BEVFormer-T1 1600 × 640 ✓ ✓ 0.4132 0.1085 0.3624 0.0337
BEVFormer-T8 1600 × 640 ✓ ✓ 0.4798 0.1653 0.4315 0.0611

Table 4: Performance Comparison of Various 3D Occupancy Methods in Clean and Adversarial
Scenes. Gray indicates results in perturbed adversarial scenes.

Model mIoU others bicycle bus car motorcycle pedestrian traffic cone truck sidewalk terrain manmade vegetation
BEVDet 24.23 27.95 2.53 29.04 38.32 8.6 11.85 4.98 22.00 41.90 31.65 42.21 29.31
BEVDet 7.51 6.36 0 6.44 17.29 0.09 1.22 0.47 5.55 13.11 4.53 13.66 12.33
FlashOcc 23.98 25.27 1.20 25.86 38.33 12.74 11.97 5.41 18.5 42.05 36.47 41.79 26.96
FlashOcc 6.47 0.05 0.35 6.83 6.9 0.62 1.11 0 4.95 11.13 9.28 12.28 15.2
DHD 29.12 32.87 14.22 29.23 40.66 16.57 15.77 15.94 21.8 37.7 35.03 43.20 31.86
DHD 10.41 12.95 0 8.05 15.5 1.19 2.8 6.90 7.95 22.41 7.22 16.43 12.23

significantly increase decoding time, primarily due to the increased number of pixels. However,
without the use of a GPU, we achieved decoding of noise within one second at a resolution of
448x448, which is acceptable for edge devices.

Decoding Quality. In Table 7, we measured the quality of adversarial samples generated by NSE
and the quality of the recovered images. The results show that under different noise conditions, the
SSIM and PSNR of the recovered images significantly improved. Additionally, higher noise levels
made the recovery of the original images increasingly difficult, consistent with the bit capacity
limitations discussed in Section 3.2. Excessive perturbation noise led to the loss of high-bit content,
further complicating recovery. The reduction of ASR to zero indicates that the object initially missed
by BEVFormer in NSE were rediscovered after NSD processing.
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Figure 5: Ablation Analysis of Super-pixel Size, Bit Capacity, and Hyper-parameters PCT and
Iteration.

4.5 ABLATION STUDY

This section presents ablation studies on SceneLock to evaluate the effects of various parameters
and strategies on its performance, as shown in Figure 5 and Table 8.

Super-pixel Size. Increasing the superpixel size reduces the number of image pixels, thereby short-
ening the encoding length and speeding up perturbation. However, excessive pixel loss degrades
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Table 5: Comparison of 3D Detection Performance of Car Object-level under Adversarial Perturba-
tions and Clean Scenes. Gray Represents Results for Perturbed Target Testing.

Model NDS ATE ↓ ASE ↓ AOE ↓ AVE ↓ AAE ↓
BEVDET-CBGS 0.3793 0.494 0.168 0.136 0.118 0.061
BEVDET-CBGS 0.2462 1.105 0.196 0.347 0.166 0.074
BEVDET-Depth 0.4233 0.422 0.165 0.123 0.117 0.067
BEVDET-Depth 0.3089 0.768 0.198 0.339 0.170 0.104
BEVDepth 0.4233 0.422 0.165 0.123 0.117 0.067
BEVDepth 0.2637 0.807 0.196 0.659 0.277 0.123
BEVDepth-DA 0.4107 0.476 0.168 0.149 0.159 0.086
BEVDepth-DA 0.2965 0.822 0.208 0.440 0.258 0.115
BEVFormer-small 0.3991 0.534 0.160 0.107 0.138 0.085
BEVFormer-small 0.2725 1.026 0.231 0.261 0.241 0.129
BEVFormer-T8 0.4798 0.356 0.171 0.080 0.108 0.071
BEVFormer-T8 0.2914 0.759 0.201 0.239 0.211 0.099

Table 6: Comparison of Single Image Recov-
ery Time. Each Result is the Average of Five
Repeats.

Unit Size ϵ
Recovery Time (s)

112×112 224×224 448×448 640×640

3/255 0.0082 0.0289 0.1513 0.3741
4/255 0.0089 0.0655 0.1705 0.3852
5/255 0.0093 0.0667 0.3440 0.3911

Table 7: Comparison of Adversarial Im-
age and Reconstructed Image Quality, with
Statistics on Attack Success Rate.

Unit Size ϵ
Adversarial Recover

SSIM ↑ PSNR ↑ ASR SSIM ↑ PSNR ↑ ASR
3/255 0.7350 74.63 65.79 0.9858 79.64 0
4/255 0.6519 72.94 74.12 0.9475 77.86 0
5/255 0.5722 71.50 85.84 0.8692 74.81 0

Table 8: Performance of mAP under Different Settings of the NSE Module in Ablation Analysis.

3D Model Super-pixel Size Iterations I Percentage PCT
2 ×2 3×3 4×4 5×5 I = 5 I = 10 I = 20 PCT = 0.3 PCT = 0.5 PCT = 0.7

BEVDet-R50 0.0317 0.0429 0.0540 0.0881 0.1244 0.0540 0.0498 0.1533 0.0946 0.0540
BEVDepth-R50 0.0389 0.0455 0.0740 0.1006 0.1301 0.0740 0.0685 0.1442 0.1105 0.0740
BEVFormer-Small 0.0320 0.0431 0.0702 0.1252 0.1123 0.0702 0.0626 0.1772 0.1013 0.0702

perturbation performance. Conversely, with a 1x1 superpixel size, while performance is optimal,
the bit capacity significantly increases, adversely affecting query speed. Considering both speed and
performance, a 4x4 superpixel size is the optimal choice.

Iteration and Percentage. Significant performance differences are observed during the first 20
perturbation iterations; beyond this point, performance improvements become marginal, while per-
turbation time increases significantly. Additionally, a higher PCT percentage of top-ranked entries
in the gradient score matrix enhances the model’s attack efficiency. However, as this percentage ap-
proaches 0.9, there is a risk of encountering a gradient trap, resulting in misguidance from ineffective
gradient flows.

5 CONCLUSION

This paper presents a novel reversible adversarial learning framework, SceneLock, to protect
camera-based autonomous driving data from unauthorized use. By embedding adversarial pertur-
bations through Noise Serialization Encoding (NSE), we degrade the data quality for unauthorized
models while allowing legitimate users to restore the original data via a Noise Serialization Decod-
ing (NSD) module. Experimental results demonstrate that this method significantly impairs the per-
formance of unauthorized scene perception and recognition tasks while maintaining data integrity
for authorized applications. The reversible design ensures minimal data loss during the recovery
process, achieving a balance between data protection and accessibility. Future work will extend
this method to multimodal data protection and enhance computational efficiency for real-time de-
ployment. This study underscores the potential of reversible adversarial techniques to bolster data
security in AI systems, particularly in the autonomous driving domain.
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A BACKGROUND

As discussed in Section 3.1, we will supplement the fundamental background principles of
Steganography to enhance the reader’s understanding of the paper. Initially, steganography was
primarily used in cryptography and information security, but it has since been introduced into image
encryption Cheddad et al. (2010). Therefore, we will briefly introduce the fundamental principles
of steganography in images and its theoretical basis.

Source Image

Target Image

Source Image Pixel

RGB( 232 ,66,24)

1248163264128

8 bit binary

00010111

Target Image Pixel

(138,165,74) RGB

1248163264128
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Low Bit Pixel Loss

Low Bit Pixel Loss
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Low Bits

Figure 6: The Overall Framework of Steganography in Image Processing.

A fundamental consensus in computer vision is that the way computers store images differs signif-
icantly from human visual perception. Computers store images by converting the RGB values of
each pixel into 8-bit binary codes. Additionally, the storage system typically employs a little-endian
format, where lower-order data resides at lower memory addresses. It is particularly noteworthy that
human eye is not sensitive to the content of the lower bit positions in pixels, as the values in higher
bit positions dominate the image. Based on this theoretical foundation, we can embed information
from a target image into the low bit positions of a source image for the purpose of hiding, as illus-
trated in Figure 6. Convert each pixel of the source and target images into 8-bit binary format. Then,
write the high-order bits of the target image into the source image, replacing its low-order bits. This
method allows for the fusion of each pixel, resulting in a new image that visually resembles the
source image. The method for extracting hidden target images involves retrieving all low-order bit
data from the newly synthesized image and rewriting it into the high-order bits to recover the target
image. However, it is important to note that the recovery in steganography does not imply the pos-
sibility of achieving a completely lossless image reconstruction. In reality, this process is conducted
at the expense of low-order bit information. Nonetheless, relative to high-order bits (such as 16, 32,
64, 128), the information loss associated with low-order bits (e.g., 1, 2, 4, 8) is typically negligible.

Novelty of SceneLock. We are the first to combine steganography with adversarial attacks in deep
learning for the protection of autonomous driving scenarios. We innovatively embed perturbation
noise into the source image, successfully concealing the noise while preserving the semantic infor-
mation of the adversarially perturbed image.

Limitations of Steganography. In practical applications of steganography, a critical issue that re-
quires special attention is bit overflow, which may lead to irretrievable images. When the majority
of bits in an 8-bit binary data are filled with 1s, the added perturbation noise can potentially trigger
an 8-bit overflow. Consequently, our research addresses this problem and implements appropriate
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overflow checks to prevent content degradation. However, such measures may restrict the ability to
perturb some key content, thus acknowledging that the current bit capacity imposes certain limita-
tions on the effectiveness of perturbations.

B MORE ROBUSTNESS EXPERIMENTS

Dataset. We selected ILSVRC2012 Russakovsky et al. (2015) as the dataset for our recognition
experiments. This dataset is widely utilized in the field of deep learning, characterized by its sub-
stantial scale and significant impact. It encompasses 1,000 distinct categories, with each image
accurately labeled. We primarily employ mean Average Precision (mAP) and Attack Success Rate
(ASR) as evaluation metrics.

Victim Model. For object recognit ion, we employed performance evaluation methods based on
multiple architectures, including CNN (ResNet He et al. (2016), VGG Simonyan & Zisserman
(2014), Inc-V3 Szegedy et al. (2016) and Dense Huang et al. (2017)), Transformer (Swin Trans-
former Liu et al. (2021) and ViT Dosovitskiy (2020)), and CLIP Radford et al. (2021).

Surrogate Model. For object recognition, we employ the used ResNet He et al. (2016) and ViT
Dosovitskiy (2020) as a surrogate model.

Table 9: Performance of NSE-generated ad-
versarial results across different methods. †
denotes ResNet50 as the surrogate model,
while ‡ denotes ViT as the surrogate model.

Model Clean Adv † Adv ‡
Inc-V3 0.669 0.033 0.170
VGG19 0.709 0.045 0.167

Dense121 0.729 0.110 0.173
ResNet34 0.710 0.125 0.011

ResNet152 0.773 0.056 0.243
ViT-b-16 0.791 0.567 0.263
Swin-s 0.820 0.643 0.485

CLIP-vit-b/32 0.570 0.327 0.318

Table 10: Image quality results under differ-
ent noise perturbations, all based on ResNet
as the surrogate model.

Noise Size Adversarial Recover
SSIM ↑ PSNR ↑ ASR SSIM ↑ PSNR ↑ ASR

3/255 0.8526 75.84 79.3 0.9947 79.78 0
4/255 0.7987 74.50 83.5 0.9821 78.33 0
5/255 0.7513 73.35 92.9 0.9585 75.59 0

Object Recognition Results. In this study, we applied our proposed data protection method Scene-
Lock (NSE and NSD) to various categories of data and utilized models of different structures and
scales for recognition testing. Table 9 demonstrates that when perturbations are applied using CNN-
based surrogate models, the performance of CNN methods significantly decreases, whereas the per-
formance loss in Transformer-based methods is less pronounced. Conversely, perturbations with
Transformer-based surrogate models lead to a significant decline in recognition rates for most mod-
els. This indicates that the Transformer structure is more stable than CNN for single image recogni-
tion. Furthermore, these results suggest that our proposed SceneLock method can flexibly employ
different surrogate models to enhance the success rate of perturbations.

Image Quality. In Table 10, we evaluate the image quality of adversarial and recovered samples
processed through the NSE and NSD modules. It can be observed that object recognition follows a
similar pattern to scene perception: as the perturbation intensity increases, the probability of high-
bit information loss rises, making image quality restoration more challenging. Furthermore, this
demonstrates that SceneLock can effectively disrupt semantic content with appropriate perturbation
intensity while achieving excellent image recovery.

C VISUALIZATION ANALYSIS OF SCENES

Scene Protection Visualization. In this section, we provide a visual explanation of the NSE and
NSD modules. Figure 9.(a) presents a gradient heatmap normalization visualization of a specific
object within the scene, with the red bounding box indicating the selected object to be concealed.
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In the adversarial sample, it can be observed that the gradient information within the red bounding
box disappears in the GT scene, effectively removing the object from the scene. In Figure 9.(b), we
encoded the entire scene, and the heatmap shows that we successfully concealed objects within the
scene under the perception model. This demonstrates that SceneLock can effectively protect both
individual objects and entire scenes.

（b）Scene-level Protection

（a）Object-level Protection

Ground Truth Adversarial Sample

Adversarial SampleGround Truth

Grad-CAM in Boxes

Grad-CAM in Scenes Grad-CAM in Scenes

Grad-CAM in Boxes

Figure 7: Gradient heatmap visualization. (a) NSE-encoded noise achieves object-level target con-
cealment. (b) NSE-encoded noise achieves scene-level concealment.
Scene Image Quality Visualization. In Figure 8, we visualize the results of different noise inten-
sities. As the noise level increases from 3/255 to 5/255, the watermark mask on the adversarial
images becomes more prominent, indicating stronger scene perturbation and greater protection cov-
erage. However, this leads to a decline in the quality of the recovered images. When the noise is
set to 3/255, the SSIM value is close to that of the original clean image, whereas at 5/255, both
SSIM and PSNR exhibit a significant drop. This demonstrates that SceneLock can achieve effec-
tive scene protection by selecting an appropriate noise intensity while still enabling the recovery of
high-quality images.

Clean Image

Unit Noise
3/255

Unit Noise
4/255

Unit Noise
5/255

PSNR: 79.95 SSIM: 99.91PSNR: 74.29 SSIM: 65.52

PSNR: 77.83 SSIM: 93.20PSNR: 72.41 SSIM: 54.04

PSNR: 74.41 SSIM: 80.91PSNR: 70.77 SSIM: 46.98PSNR: 74.82 SSIM: 84.44PSNR: 71.94 SSIM: 58.81

PSNR: 78.07 SSIM: 95.36PSNR: 73.51 SSIM: 63.09

PSNR: 79.97 SSIM: 99.95PSNR: 75.32 SSIM: 73.12

Adversarial Recover Adversarial Recover

Adversarial Recover Adversarial Recover

Adversarial Recover Adversarial Recover

Figure 8: Visualization of images and their quality under different noise intensities.
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Scene Perception Visualization. SceneLock aims to prevent pervasive perception models from
infringing on privacy within a scene, making visual assessment of current mainstream 3D perception
tasks crucial. As shown in Figures 9 and 10, the adversarial data generated by SceneLock through
the NSE module performs poorly in 3D detection tasks, with most objects remaining undetected. In
dense semantic tasks such as Occ, vehicles and pedestrians in the DHD-NSE scene are also absent,
indicating that SceneLock effectively protects scenes against dense semantic perception models.
Furthermore, after image recovery through NSD, the performance of both the 3D detector and the
Occ prediction model returns to normal, successfully achieving scene perception.

1

Clean Image

Clean Image

Adversarial Image

Adversarial Image

Recover Image

Recover Image

Clean Image Adversarial Image Recover Image

Clean Image Adversarial Image Recover Image

Figure 9: Visualization of 3D detection results in SceneLock encoding and decoding using BEVDet.

1

Ground Truth

DHD-NSD

DHD-NSE

Figure 10: Visualization of 3D occupancy prediction results in SceneLock encoding and decoding
using DHD. Blue voxels represent car.

1

Clean Grad-CAM Adversarial Grad-CAM Recover Grad-CAM

Figure 11: Grad-CAM Visualization of Clean, Adversarial, and Recovered Data.
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1

Ten Iterations Progressive Visualization of Adversarial Perturbations and CAM Heatmaps
0-step 9-step

Figure 12: Grad-CAM Visualization of Images During Perturbation Iteration Process.

1

Ground Truth

Adversarial

Recover

Shih-Tzu

Cocker 93.76%

Shih-Tzu 91.74%

Panda

Barn 48.25%

Panda 93.37%

Sorrel

Arabian Camel 98.67%

Sorrel 99.94%

Basenji

Chihuahua 63.99%

Basenji 97.96%

Spoonbill

Pelican 71.60%

Spoonbill 89.76%

Figure 13: Visualization of Recognition Results Based on ResNet Model.

D VISUALIZATION ANALYSIS OF OBJECT

Object Protection Visualization. We extend the data protection features of SceneLock to non-
scene data, further validating its effectiveness as a general framework. As illustrated in Figure
11, we input clean images, adversarial images, and recovered images into the ResNet network for
heatmap visualization. The results indicate that the model effectively focuses on the correct features
and makes accurate class predictions for clean images. In contrast, Grad-CAM fails to capture
the correct class information in adversarial images, redirecting attention to other semantic areas.
After recovery, both Grad-CAM and the model correctly identify the target again. Additionally,
Figure 12 provides a detailed visualization of the model’s attention changes throughout the iterative
process. This sequence demonstrates that SceneLock can effectively protect classification tasks at
the semantic level, preventing malicious extraction or misuse of images.

Visualization of Object Prediction Results. We visualized the prediction results for both acces-
sible (locally loadable models) and inaccessible (commercial API interfaces) models. As shown in
Figure 13, when ResNet50 is used as a surrogate model for data protection, adversarial images tend
to cause incorrect predictions, while the recovered images are correctly classified with high confi-
dence in the GT labels. In Figure 14, we tested recognition using commercial APIs, where training
models are typically difficult to obtain, making attacks more challenging. The results demonstrate
that SceneLock-protected data effectively misled the recognition models in these commercial APIs
as well. In summary, this further validates the strong performance of SceneLock in cross-model
protection.
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Clean Image Data SceneLock Image Data

Figure 14: Visualization of Recognition Results from Commercial API Model. The blue image
content represents the result returned by the server.
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