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Abstract

This paper investigates the problem of bounding counterfactual queries from a1

combination of observational data and qualitative assumptions about the underlying2

data-generating model. These assumptions are usually represented in the form3

of a causal diagram (Pearl, 1995). We show that all counterfactual distributions4

(over finite observed variables) in an arbitrary causal diagram could be generated5

by a special family of structural causal models (SCMs), compatible with the6

same causal diagram, where unobserved (exogenous) variables are discrete, taking7

values in a finite domain. This entails a reduction in which the space where the8

original, arbitrary SCM lives can be mapped to a dual, more well-behaved space9

where the exogenous variables are discrete, and more easily parametrizable. Using10

this reduction, we translate the bounding problem in the original space into an11

equivalent optimization program in the new space. Solving such programs leads to12

optimal bounds over unknown counterfactuals. Finally, we develop effective Monte13

Carlo algorithms to approximate these optimal bounds from a finite number of14

observational data. Our algorithms are validated extensively on synthetic datasets.15

1 Introduction16

This paper studies the problem of inferring counterfactual queries from the combination of non-17

experimental data (e.g., observational studies) and qualitative assumptions about the data-generating18

process. These assumptions are represented in the form of a causal diagram [32], which is a19

directed acyclic graph where arrows indicate the potential existence of functional relationships among20

corresponding variables; some variables are unobserved. This problem arises in diverse fields such21

as artificial intelligence, statistics, cognitive science, economics, and the health and social sciences.22

For example, when investigating the gender discrimination in college admission, one may ask “what23

would the admission outcome be for a female applicant had she been a male?” Such a counterfactual24

query contains conflicting information: in the real world the applicant is female, in the hypothetical25

world she was not. Therefore, it is not immediately clear how to design effective experimental26

procedures for evaluating counterfactuals, let alone how to compute them from observations alone.27

The problem of identifying counterfactual distributions from the combination of data and a causal28

diagram has been studied in the causal inference literature. First, there exist a complete proof system29

for reasoning about counterfactual queries [19]. While such a system, in principle, is sufficient in30

evaluating any identifiable counterfactual expression, it lacks a proof guideline which determines the31

feasibility of such evaluation efficiently. There are algorithms to determine whether a counterfactual32

distribution is inferrable from all possible controlled experiments [41]. There exist also algorithms33

for identifying path-specific effects from experimental data [1] and observational data [42].34

In practice, however, the combination of quantitative knowledge and observed data does not always35

permit one to point-identify the target counterfactual queries. Partial identification methods concern36

with deriving informative bounds over the target counterfactual probability, even when the target37
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Figure 1: DAGs (a-d) containing a treatment X , an outcome Y , an ancestor Z, and exogenous
variables U ; Z in (a) is also referred to as an instrumental variable.

itself is non-identifiable. Several algorithms have been developed to bound counterfactuals from the38

combination of observational and experimental data [30, 36, 3, 4, 14, 35, 23, 24, 16, 25, 49].39

In this work, we build on the approach introduced by Balke & Pearl in [3], which involves direct40

discretization of the exogenous domains, also referred to as the principal stratification [17, 34]. Con-41

sider the causal diagram of Fig. 1a, where X,Y, Z are binary variables in {0, 1}; U is an unobserved42

variable taking values in an arbitrary continuous domain. [3] showed that domains of U could be43

discretized into 16 equivalent classes without changing the original counterfactual distributions and44

the graphical structure in Fig. 1a. For instance, despite it being induced by an arbitrary distribution45

P ⇤(u) over a continuous domain of the exogenous variable U , the observational distribution P (x, y|z)46

must be reproduced by a generative model of the form P (x, y|z) =
P

u P (x|u, z)P (y|x, u)P (u),47

where P (u) is a discrete distribution over a finite exogenous domain {1, . . . , 16}.48

Using the finite-state representation of unobserved variables, [4] derived tight bounds on treatment49

effects under the condition of noncompliance in Fig. 1a. [11, 21] applied the parsimony of finite-state50

representation in a Bayesian framework, to obtain credible intervals for the posterior distribution of51

causal effects in noncompliance settings. Despite their optimal guarantees, these bounds are only52

applicable to the specific noncompliance setting in Fig. 1a. For the most general cases, a systematic53

procedure for bounding counterfactual queries in arbitrary causal diagrams is still missing.54

Our goal in this paper is to overcome these challenges. We investigate the expressive power of discrete55

structural causal models (SCMs) [33] where each unobserved variable is drawn from a discrete56

distribution, takes values in a finite set of states. We show that when inferring about counterfactual57

distributions (over finite observed variables) in an arbitrary causal diagram, one could restrict domains58

of unobserved variables to a finite space without loss of generality. This observation allows us to59

develop novel partial identification algorithms to bound unknown counterfactual probabilities from60

the observational data. More specifically, our contributions are as follows. (1) We introduce a61

special family of discrete SCMs, with finite unobserved domains, and show that it could represent62

all categorical counterfactual distributions in an arbitrary causal diagram. (2) Using this result, we63

translate the original partial identification task into equivalent polynomial programs. Solving such64

programs leads to informative bounds over unknown counterfactual probabilities, which are provably65

optimal. (3) We develop an effective Monte Carlo algorithm to approximate optimal counterfactual66

bounds from a finite number of observational data. Finally, our algorithms are validated extensively67

on synthetic datasets. Given space constraints, all proofs are provided in Appendices A and B.68

1.1 Preliminaries69

We introduce in this section some basic notations and definitions that will be used throughout the70

paper. We use capital letters to denote variables (X), small letters for their values (x) and ⌦X for71

their domains. For an arbitrary set X , let |X| be its cardinality. For convenience, we denote by P (x)72

probabilities P (X = x); for an arbitrary subdomain X ✓ ⌦X , P (X ) ⌘ P (X 2 X ). Finally, the73

indicator function 1X=x returns 1 if an event X = x holds true; otherwise 1X=x = 0.74

The basic semantical framework of our analysis rests on structural causal models (SCMs) [33,75

Ch. 7]. An SCM M is a tuple hV ,U ,F , P i where V is a set of endogenous variables and U is76

a set of exogenous variables. F is a set of functions where each fV 2 F decides values of an77

endogenous variable V 2 V taking as argument a combination of other variables in the system. That78

is, v  fV (paV , uV ),PaV ✓ V , UV ✓ U . Exogenous variables U 2 U are mutually independent,79

values of which are drawn from the exogenous distribution P (u). Naturally, M induces a joint80

distribution P (v) over endogenous variables V , called the observational distribution. Each SCM81

is associated with a causal diagram G (e.g., Fig. 1), which is a directed acyclic graph (DAG) where82
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solid nodes represent endogenous variables V , empty nodes represent exogenous variables U and83

arrows represent the arguments PaV , UV of each function fV .84

An intervention on an arbitrary subset X ✓ V , denoted by do(x), is an operation where values of85

X are set to constants x, regardless of how they are ordinarily determined. For an SCM M , let86

Mx denote a submodel of M induced by intervention do(x). For any subset Y ✓ V , the potential87

response Yx(u) is defined as the solution of Y in the submodel Mx given U = u. Drawing values88

of exogenous variables U following the probability measure P induces a counterfactual variable Yx.89

Specifically, the event Yx = y (for short, yx) can be read as “Y would be y had X been x”. For any90

subsets Y , . . . ,Z, X, . . . ,W ✓ V , the distribution over counterfactuals Yx, . . . ,Zw is defined as:91

P (yx, . . . , zw) =

Z

⌦U

1Yx(u)=y ^ · · · ^ 1Zw(u)=zdP (u). (1)

Distributions of the form P (yx) is called the interventional distribution; when the treatment set92

X = ;, P (y) coincides with the observational distribution. Throughout this paper, we assume93

that endogenous variables V are discrete and finite; while exogenous variables U could take any94

(continuous) value. The counterfactual distribution P (yx, . . . , zw) defined above is thus a categorical95

distribution. For a more detailed survey on SCMs, we refer readers to [33, Ch. 7].96

2 Discretization of Structural Causal Models97

For a DAG G with endogenous V and exogenous variables U , let P ⇤ denote the collection of all98

counterfactual distributions over variables V . Formally,99

P ⇤ = {P (yx, . . . , zw) | 8Y , . . . ,Z,X, . . . ,W ✓ V } . (2)
Let M be the family of all the SCMs compatible with the causal diagram G, i.e., M =100

{8M | GM = G}
1. Counterfactual distributions in G are defined as the collection {P ⇤

M : 8M 2M }101

that contains all counterfactual probabilities induced by SCMs M in the candidate family M . In this102

section, we will show that counterfactual distributions in any causal diagram G could be generated by103

an alternative family of “generic” SCMs compatible with G, which we will define later.104

Definition 1 (Counterfactual-Equivalence). For a DAG G, let M ,N be two sets of SCMs compatible105

with G. M and N are said to be counterfactually equivalent (for short, ctf-equivalent) if for any106

M 2M , there exists an alternative N 2 N such that P ⇤
M = P ⇤

N , and vice versa.107

Our analysis rests on a special family of SCMs where values of each exogenous variable are drawn108

from a discrete distribution over a finite set of states.109

Definition 2. An SCM M = hV ,U ,F , P i is said to be a discrete SCM if110

1. Values of every U 2 U are drawn from a discrete distribution P (u) over a domain ⌦U ; let111

✓u denote the probability P (U = u), for any u 2 ⌦U . f112

2. Values of every V 2 V are decided by function v  fV (paV , uV ) ⌘ ⇠(paV ,uV )
V , where for113

8paV , uV , ⇠(paV ,uV )
V is a constant in the finite domain ⌦V .114

Given a causal diagram G, our goal is to construct a family of discrete SCMs N that is counter-115

factually equivalent to the original family of SCMs M . Our construction utilizes a special type of116

clustering of nodes in the diagram, called the confounded component [45].117

Definition 3. For an DAG G, a subset C ✓ V is a c-component if any pair X,Y 2 C is connected118

in G by a bi-directed path of the form V1 $ V2 $ · · · $ Vn, n = 1, 2, . . . , where (1) V1 = X ,119

Vn = Y ; (2) {V1, . . . , Vn} ✓ V ; and (3) each Vi $ Vj is a sequence Vi  Uk ! Vj and Uk 2 U .120

A c-component C in G is maximal if there exists no other c-component that contains C. We denote121

by C(G) the collection of all maximal c-components in G. Naturally, c-components in C(G) form a122

partition over endogenous variables V , which, in turn, defines a partition {[V 2CUV | 8C 2 C(G)}123

over exogenous variables U . Therefore, for every U 2 U , there must exist a unique c-component124

in C(G), denoted by CU , such that U 2 [V 2CUUV . For example, exogenous variables U1, U2 in125

Fig. 1a corresponds to c-components CU1 = {Z} and CU2 = {X,Y } respectively; while the causal126

diagram of Fig. 1b only has a single c-component {X,Y, Z}.127

1We will use the subscript M to represent the restriction to a specific SCM M . Therefore, GM represents the
causal diagram associated with SCM M ; so does the collection of counterfactuals P ⇤

M .
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Theorem 1. For a DAG G, consider the following conditions2: (1) M is the set of all SCMs128

compatible with G; (2) N is the set of all discrete SCMs compatible with G where for every U 2 U ,129

its cardinality |⌦U | =
Q

V 2CU
|⌦PaV 7! ⌦V |, i.e., the number of functions mapping from PaV to130

V for every variable V in the c-component CU . Then, M and N are counterfactually equivalent.131

Thm. 1 establishes the expressive power of discrete SCMs in representing counterfactual distributions132

in a causal diagram G. It implies that the counterfactual distribution P (yx, . . . , zw) in any SCM M133

could be generated using a generic model as follows, for dU =
Q

V 2CU
|⌦PaV 7! ⌦V |,134

P (yx, . . . , zw) =
X

U2U

X

u=1,...,dU

1Yx(u)=y ^ · · · ^ 1Zw(u)=z

Y

U2U

✓u. (3)

Among above quantities, ✓u are parameters of the exogenous distribution P (u) over a finite domain135

{1, . . . , dU}. Counterfactual variables Yx(u) are recursively defined as follows:136

Yx(u) = {Yx(u) | 8Y 2 Y } , where Yx(u) =

(
xY if Y 2X

⇠({Vx(u)|V 2PaY },uY )
Y otherwise

(4)

where xY is the value assigned to variable Y in constants x. As an example, consider the causal137

diagram G described in Fig. 1b where X,Y, Z are binary variables in {0, 1}. Since G has a single c-138

component {X,Y, Z}, exogenous variables U1, U2 must share the same cardinality d in the proposed139

family of discrete SCMs N . It follows from Thm. 1 the counterfactual distribution P (z, xz0 , yx0) in140

any SCM compatible with G could be written as follows:141

P (z, xz0 , yx0) =
dX

u1,u2=1

1
⇠
(u1)
Z =z

^ 1
⇠
(z0,u1,u2)
X =x

^ 1
⇠
(x0,u2)
Y =y

✓u1✓u2 , (5)

where ⇠(u1)
Z , ⇠(z,u1,u2)

X , ⇠(x,u2)
Y are parameters taking values in {0, 1}; ✓ui , i = 1, 2, are probabilities142

of the discrete distribution P (ui) over the finite domain {1, . . . , d}. The cardinality d = |⌦Z | ⇥143

|⌦Z 7! ⌦X |⇥ |⌦X 7! ⌦Y | = 32. The total cardinalities of domains for U1, U2 are thus 2d = 64.144

Comparison with related work One could naïvely apply the discretization procedure in [3] and145

obtain a family of discrete SCMs that are sufficient in representing distributions in an causal diagram.146

However, such parametrization is not necessarily complete. To witness, consider again the causal147

diagram in Fig. 1b with binary X,Y, Z. Applying the discretization in [3] leads to a family of discrete148

SCMs compatible with a different diagram in Fig. 1c where the cardinality of exogenous variable149

U is equal to d = 32 (see Appendix D for details). However, this parametrization fails to capture150

some critical constraints over counterfactual distributions since it does not maintain the original151

structure of the causal diagram. For instance, counterfactual variables Z and Yx in the original152

diagram of Fig. 1b are independent due to independence restrictions [33, Ch. 7.3.2]; while Z and153

Yx in Fig. 1c are generally correlated due to the presence of unobserved confounder U . Compared154

with [3], the discretization method in Thm. 1 captures all constraints over counterfactual distributions155

while requiring only a factor of |U | increase in the cardinality of exogenous domains.156

More recently, [15] proved a special case of Thm. 1 for interventional distributions in a specific157

class of causal diagrams that satisfy the running intersection property. When there is no direct arrow158

between endogenous variables, [38] showed that the observational distribution in a diagram could be159

represented using finite-state exogenous variables. Thm. 1 generalizes these results by showing that,160

for the first time, all counterfactual distributions in an arbitrary causal diagram could be generated161

using discrete exogenous variables taking values from a finite domain, without any loss of generality.162

2.1 Partial identification of Counterfactual Distributions163

To demonstrate the expressive power of discrete SCMs, we investigate the problem of partial iden-164

tification of counterfactual distributions. For an SCM M⇤ = hV ,U ,F , P i, we are interested in165

evaluating an arbitrary counterfactual probability P (yx, . . . , zw). The detailed parametrization of166

M⇤ is unknown. Instead, the learner only has access to the causal diagram G and the observa-167

tional distribution P (v) induced by M⇤. Our goal is to derive an informative bound [l, r] from the168

combination of G and P (v) that contains the actual counterfactual probability P (yx, . . . , zw).169

2For every V 2 V , ⌦PaV 7! ⌦V is the set of all functions mapping from domains ⌦PaV to ⌦V .
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Let N denote the family of discrete SCMs defined in Thm. 1 which are compatible with the causal170

diagram G. We derive a bound [l, r] over P (yx, . . . , zw) from the observational data P (v) by solving171

the following optimization problem:172

[l, r] = min /max
n
PN (yx, . . . , zw) | 8N 2 N , PN (v) = P (v)

o
(6)

For instance, consider again the double-bow diagram G in Fig. 1b. The observational distribution173

P (x, y, z) in any discrete SCM in N could be written as:174

P (x, y, z) =
dX

u1,u2=1

1
⇠
(u1)
Z =z

^ 1
⇠
(z,u1,u2)
X =x

^ 1
⇠
(x,u2)
Y =y

✓u1✓u2 . (7)

One could derive a bound over the counterfactual distribution P (z, xz0 , yx0) from the observational175

data P (x, y, z) by solving polynomial programs which optimize the objective Eq. (5) over parameters176

✓u1 , ✓u2 , ⇠
(u1)
Z , ⇠(z,u1,u2)

X , ⇠(x,u2)
Y , subject to the observational constraints Eq. (7).177

As a corollary, it follows immediately from Thm. 1 that the solution [l, r] of the optimization problem178

Eq. (6) is guaranteed to be a valid bound over the unknown counterfactual P (yx, . . . , zw).179

Corollary 1 (Soundness). Given a DAG G and an observational distribution P (v), let M be the set180

of all SCMs compatible with G and let Mo = {8M 2M | PM (v) = P (v)}. For the solution [l, r]181

of Eq. (6), PM (yx, . . . , zw) 2 [l, r] for any SCM M 2Mo.182

Since the underlying SCM M⇤
2Mo, Corol. 1 implies that the derived bound [l, r] must contain the183

actual counterfactual probability P (yx, . . . , zw). Our next result shows that such a bound [l, r] is184

provably tight, i.e., it cannot be improved without additional assumptions.185

Corollary 2 (Tightness). Given a DAG G and an observational distribution P (v), let M be the set186

of all SCMs compatible with G and let Mo = {8M 2M | PM (v) = P (v)}. For the solution [l, r]187

of Eq. (6), there exist SCMs M1,M2 2Mo such that PM1(yx, . . . , zw) = l, PM2(yx, . . . , zw) = r.188

Corol. 2 confirms the tightness of the bound [l, r] obtained from Eq. (6). Suppose there exists a valid189

bound [l0, r0] strictly contained in [l, r]. One could construct from Corol. 2 an SCM M compatible190

with the causal diagram G and the observational distribution P (v), but its counterfactual probability191

P (yx, . . . , zw) lies outside [l0, r0], which is a contradiction.192

The optimization problem of Eq. (6) is reducible to equivalent polynomial programs (see Appendix E).193

Despite the soundness and tightness of derived bounds, solving such programs may take exponentially194

long in the most general case [29]. Our focus here is upon the causal inference aspect of the problem195

and like earlier discussions we do not specify which solvers are used [3, 4]. In some cases of196

interest, effective approximate planning methods for polynomial programs do exist. Investigating197

these methods is an ongoing subject of research [26, 31, 48, 28, 27].198

3 Bayesian Approach for Partial Identification199

This section describes an effective algorithm to approximate the optimal counterfactual bound in200

Eq. (6), provided with finite samples v̄ =
�
v(n)

 N
n=1

drawn from the observational distribution201

P (v), and prior distributions over parameters ✓u and ⇠(paV ,uV )
V (possibly uninformative).202

We first introduce Markov Chain Monte Carlo (MCMC) algorithms that sample the posterior distribu-203

tion P (✓ctf | v̄) over a counterfactual probability ✓ctf = P (yx, . . . , zw). More specifically, for every204

V 2 V , 8paV , uV , parameters ⇠(paV ,uV )
V are drawn uniformly over the finite domain ⌦V . For every205

U 2 U , exogenous probabilities ✓u are drawn from a generalized Dirichlet distribution [12]. We will206

take the view of a stick-breaking construction [40] which successively breaks pieces off a unit-length207

stick with size proportional to random draws from a Beta distribution. Parameters ✓u are proportions208

of each of the pieces relative to its original size. Formally,209

8u = 1, 2, . . . , dU , ✓u = µu

u�1Y

i=1

(1� µi), µu ⇠ Beta
⇣
↵(u)
U ,�(u)

U

⌘
, (8)
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Figure 2: The data-generating process for the observational data
�
X(n), Y (n), Z(n)

 N
n=1

in an SCM
associated with the causal diagram in Fig. 1b. For every exogenous variable U 2 U , ✓U = {✓u | 8u}.
For every endogenous variable V 2 V , ⇠V =

n
⇠(paV ,uV )
V | 8paV , uV

o
.

where dU =
Q

V 2CU
|⌦PaV 7! ⌦V | and ↵(u)

U ,�(u)
U > 0 are hyperparameters. Finally, we truncate210

this construction by setting µdU = 1. Note from Eq. (8) that all parameters ✓u for u > dU are equal211

to zero. As an example, Fig. 2 shows a graphical representation of the data-generating process over212

parameters ✓u and ⇠(paV ,uV )
V associated with SCMs in Fig. 1b, spanning over N observations.213

Gibbs sampling is a well-known MCMC algorithm that allows one to sample posterior distributions.214

For convenience, we introduce the following notations. Let parameters ✓ = {✓u | 8U 2 U , 8u}215

and ⇠ =
n
⇠(paV ,uV )
V | 8V 2 V , 8paV , uV

o
. The set Ū =

�
U (n)

 N
n=1

are exogenous variables216

affecting N observations V̄ =
�
V (n)

 N
n=1

; we use ū to represent their realizations. Our blocked217

Gibbs sampler works by iteratively drawing values from the conditional distributions of variables as218

follows [22]. Detailed derivations of complete conditional distributions are shown in Appendix F.219

Sampling P (ū | v̄,✓, ⇠). Exogenous variables U (n), n = 1, . . . , N , are mutually independent220

given parameters ✓, ⇠. We could draw each
�
U (n)

| ✓, ⇠, V̄
�

corresponding to the nth observation221

independently. The complete conditional for U (n) is given by222

P
⇣
u(n)

| v(n),✓, ⇠
⌘
/

Y

V 2V

1
⇠
(pa(n)

V ,u
(n)
V )

V =v(n)

Y

U2U

✓u. (9)

Sampling P (⇠,✓ | v̄, ū). Parameters ⇠,✓ are independent given V̄ , Ū . Therefore, we will derive223

complete conditional ⇠,✓ separately. Note that in discrete SCMs, the nth observation of variable224

V 2 V is decided by v(n)  ⇠(paV ,uV )
V given pa(n)

V = paV , u(n)
V = uV . Thus, draw values of each225

⇠(paV ,uV )
V 2 ⇠ from the complete conditional defined as:226

P
⇣
⇠(paV ,uV )
V | v̄, ū

⌘
=

(
1
⇠
(paV ,uV )
V =v(i) if 9i, s.t. pa(i)

V = paV , u
(i)
V = uV ,

1/|⌦V | otherwise.
. (10)

Let nu =
PN

n=1 1u(n)=u records the number of values in u(n) that are equal to u. By the conjugacy227

of the generalized Dirichlet distribution, the complete conditional of ✓u is given by, for every U 2 U ,228

8u = 1, 2, . . . dU , ✓u = µu

u�1Y

i=1

(1� µi), µu ⇠ Beta

 
↵(u)
U + nu,�

(u)
U +

dUX

k=u+1

nk

!
. (11)

Doing so eventually produces values drawn from the posterior distribution over
�
✓, ⇠, Ū | V̄

�
. Given229

parameters ✓, ⇠, we compute the counterfactual probability ✓ctf = P (yx, . . . , zw) following the230

three-step algorithm in [33] which consists of abduction, action, and prediction. Thus computing ✓ctf231

from each draw ✓, ⇠, Ū eventually gives us the draw from the posterior distribution P (✓ctf | v̄).232

3.1 Collapsed Gibbs Sampling233

We also describe an alternative sampler that applies to stick-breaking priors with a known Pólya234

urn characterization. Formally, consider stick-breaking priors in Eq. (8) with hyperparameters235
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↵(u)
U = ↵U/dU and �(u)

U = (dU � u)↵U/dU for some real ↵U > 0. Let Ū�n denote the set236

difference Ū \U (n); so does V̄�n = V̄ \ V (n). Our collapsed Gibbs sampler first iteratively draws237

values from the conditional distribution of
�
U (n)

| Ū�n, V̄
�
, n = 1, . . . , N , as follows.238

Sampling P
�
u(n)

| v̄, ū�n

�
. At each iteration, draw U (n) from the conditional given by239

P
⇣
u(n)

| v̄, ū�n

⌘
/

Y

V 2V

P
⇣
v(n) | pa(n)

V , u(n)
V , v̄�n, ū�n

⌘ Y

U2U

P
⇣
u(n)

| v̄�n, ū�n

⌘
. (12)

Among quantities in the above equation, for every V 2 V ,240

P
⇣
v(n) | pa(n)

V , u(n)
V , v̄�n, ū�n

⌘
=

(
1v(n)=v(i) if 9i 6= n, pa(i)

V = pa(n)
V , u(i)

V = u(n)
V ,

1/|⌦V | otherwise.
. (13)

For every U 2 U , let ū�n be a set of exogenous samples
�
u(1), . . . , u(n�1), u(n+1), . . . , u(N)

 
. Let241

{u⇤
1, . . . , u

⇤
K} denote K unique values that samples in ū�n take on.242

P
⇣
u(n)

| v̄�n, ū�n

⌘
=

8
>><

>>:

n⇤
k + ↵U/dU

↵U +N � 1
if u(n) = u⇤

k, for k = 1, . . . ,K

↵U (1�K/dU )

↵U +N � 1
if u(n)

62 {u⇤
1, . . . , u

⇤
K}

. (14)

where n⇤
k =

P
i 6=n 1u(i)=u⇤

k
records the number of values in u(i)

2 ū�n that are equal to u⇤
k.243

Doing so eventually produces exogenous variables drawn from the posterior distribution of
�
Ū | V̄

�
.244

We then sample parameters from the posterior distribution of
�
✓, ⇠ | Ū , V̄

�
; the complete conditional245

P (⇠,✓ | v̄, ū) are given in Eqs. (10) and (11). Finally, computing ✓ctf from each sample ✓, ⇠ gives246

us a draw from the posterior distribution P (✓ctf | v̄).247

When the cardinality dU of exogenous domains is high, the collapsed Gibbs sampler described here is248

more computational efficient than the blocked sampler, since it does not iteratively draw parameters249

✓, ⇠ in the high-dimensional space. Instead, the collapsed sampler only draws ✓, ⇠ once after samples250

drawn from the distribution of
�
Ū | V̄

�
converge. On the other hand, when the cardinality dU is251

reasonably low, the blocked Gibbs sampler is preferable since it exhibits better convergence [22].252

3.2 Credible Intervals over Counterfactual Probabilities253

Given a MCMC sampler, one could bound the counterfactual probability ✓ctf by computing credible254

intervals from the posterior distribution P (✓ctf | v̄).255

Definition 4. Fix ↵ 2 [0, 1). A 100(1� ↵)% credible interval [l↵, r↵] for ✓ctf is given by256

l↵ = sup {x | P (✓ctf  x | v̄) = ↵/2} , r↵ = inf {x | P (✓ctf  x | v̄) = 1� ↵/2} . (15)

For a 100(1� ↵)% credible interval [l↵, r↵], any counterfactual probability ✓ctf that is compatible257

with observational data v̄ lies between the interval l↵ and r↵ with probability 1 � ↵. Credible258

intervals have been widely applied for computing bounds over counterfactuals provided with finite259

observations [20, 47, 37, 8, 46]. As the number of observational data N grows (to infinite), the 100%260

credible interval [l0, r0] eventually converges to the optimal asymptotic bound [l, r] in Eq. (6) [11].261

Let
�
✓(t)
 T
t=1

be T samples drawn from P (✓ctf | v̄). One could compute the 100(1� ↵)% credible262

interval for ✓ctf using the following consistent estimators [39]:263

l̂↵(T ) = ✓(d(↵/2)Te), r̂↵(T ) = ✓(d(1�↵/2)Te), (16)

where ✓(d(↵/2)Te), ✓(d(1�↵/2)Te) are the d(↵/2)T eth smallest and the d(1 � ↵/2)T eth smallest of264 �
✓(t)
 

3. Our next results establish non-asymptotic deviation bounds for the empirical estimates of265

credible intervals defined in Eq. (16) for finite samples.266

Lemma 1. Fix T > 0 and � 2 (0, 1). Let function f(T, �) =
p
2T�1 ln(4/�). With probability at267

least 1� �, estimators l̂↵(T ), r̂↵(T ) for any ↵ 2 [0, 1) is bounded by268

l̂↵(T ) 2
⇥
l↵�f(T,�), l↵+f(T,�)

⇤
, r̂↵(T ) 2

⇥
r↵+f(T,�), r↵�f(T,�)

⇤
. (17)

3For any real ↵ 2 R, d↵e denotes the smallest integer n 2 Z larger than ↵, i.e., d↵e = min{n 2 Z | n � ↵}.
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Algorithm 1: CREDIBLEINTERVAL

1: Input: Credible level ↵, tolerance level �, ✏.
2: Output: An credible interval [l↵, h↵] for ✓ctf.
3: Let T = d2✏�2 ln(4/�)e.
4: Draw samples

�
✓(1), . . . , ✓(T )

 
from the

posterior distribution P (✓ctf | v̄).
5: Return interval

h
l̂↵(T ), r̂↵(T )

i
(Eq. (16)).

We summarize our algorithm, CREDIBLEIN-269

TERVAL, in Alg. 1. It takes a credible level270

↵ and tolerance levels �, ✏ as inputs. In par-271

ticular, CREDIBLEINTERVAL repeatedly draw272

T � d2✏�2 ln(4/�)e samples from P (✓ctf | v̄).273

It then computes estimates l̂↵(T ), ĥ↵(T ) from274

drawn samples following Eq. (16) and return275

them as the output. It follows immediately from276

Lem. 1 that such a procedure efficiently approx-277

imates a 100(1� ↵)% credible interval.278

Corollary 3. Fix � 2 (0, 1) and ✏ > 0. With probability at least 1 � �, the interval [l̂, r̂] =279

CREDIBLEINTERVAL(↵, �, ✏) for any ↵ 2 [0, 1) is bounded by l̂ 2 [l↵�✏, l↵+✏] and r̂ 2 [r↵+✏, r↵�✏].280

Corol. 3 implies that any counterfactual parameter ✓ctf compatible with observational data v̄ falls281

between [l̂, r̂] = CREDIBLEINTERVAL(↵, �, ✏) with probability P
⇣
✓ctf 2 [l̂, r̂] | v̄

⌘
⇡ 1�↵± ✏. As282

the tolerance rate ✏! 0, [l̂, r̂] converges to a 100(1� ↵)% credible interval with high probability.283

4 Simulations and Experiments284

We demonstrate our algorithms on various simulated SCM instances and a real world patient dataset285

collected from the International Stroke Trial (IST) [10]. Overall, we found that simulation results sup-286

port our findings and the proposed bounding strategy consistently dominates state-of-art algorithms.287

When target distributions are identifiable (Experiment 1), our bounds collapse to the actual, unknown288

counterfactual probabilities. For non-identifiable settings, our algorithm obtains sharp asymptotic289

bounds when closed-form solutions already exist (Experiments 2 & 3); and improves over state-of-art290

bounds in other more general cases where the optimal strategy is unknown (Experiment 4).291

In all experiments, we evaluate our proposed bounding strategy based on credible intervals (ci). In292

particular, we draw 4 ⇥ 103 samples from the posterior distribution over the target counterfactual293 �
✓ctf | V̄

�
. This allows us to compute 100% credible interval over ✓ctf within error ✏ = 0.05, with294

probability at least 1�� = 0.95. As the baseline, we also include the actual counterfactual probability295

✓⇤. For details on simulation setups and additional experiments, we refer readers to Appendix C.296

X W Y

U1 U2

Figure 3: Frontdoor

Experiment 1: Frontdoor Graph This experiment evaluates our sam-297

pling algorithm on interventional probabilities that are identifiable from298

the observational data. Consider the “Frontdoor” graph described in299

Fig. 3 where X,Y,W are binary variables in {0, 1}; U1, U2 2 R. In this300

case, the interventional distribution P (yx) is identifiable from P (x,w, y)301

through the frontdoor adjustment [33, Thm. 3.3.4]. We collect N = 105302

observational samples V̄ = {X(n), Y (n),W (n)
}
N
n=1 from a randomly303

generated SCM. Fig. 4a shows samples drawn from the posterior distribution of the target probability304 �
P (Yx=0 = 1) | V̄

�
. The analysis reveals that these samples collapse to the actual interventional305

probability P (Yx=0 = 1) = 0.5085, which confirms the identifiability of P (yx) in Fig. 3.306

Experiment 2: Instrumental Variables (IV) This experiment evaluates our bounding strategy in307

non-identifiable settings, while closed-form solutions for the optimal bounds over target probabilities308

already exist. Consider first the “IV” diagram in Fig. 1a where X,Y, Z 2 {0, 1} and U1, U2 2 R.309

The non-identifiability of P (yx) from the observational data P (x, y, z) with the instrument Z and the310

unobserved confounding between X and Y has been acknowledged in [5]. For binary X,Y, Z, [2]311

derived closed-form, sharp bounds over P (yx) (labelled as opt). We collect N = 105 observational312

samples V̄ = {X(n), Y (n), Z(n)
}
N
n=1 from a randomly generated SCM instance. Fig. 4b shows313

samples drawn from the posterior distribution of
�
P (Yx=0 = 1) | V̄

�
. As a baseline, we also include314

the optimal bound opt, and posterior samples obtained from the Gibbs sampler of [11], which utilizes315

the canonical partitions of exogenous domains in [2] (bp). The analysis reveals that our algorithm316

derives the valid bound over the actual probability P (Yx=0 = 1) = 0.3954; the 100% credible317

interval converges to the optimal IV bound l = 0.1468, r = 0.6617.318
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(a) Frontdoor (b) IV (c) PNS (d) IST

Figure 4: Histogram plots for samples drawn from the posterior distribution over target counterfactual
probabilities. For all plots (a - d), ci represents our proposed algorithms; bp stands for Gibbs samplers
using the representation of canonical partitions [2]; ✓⇤ is the actual counterfactual probability. (b, c)
opt represents the optimal asymptotic bound, if exists. (d) nb stands for the natural bounds [30].

Experiment 3: Probability of Necessity and Sufficiency (PNS) We now study the problem of319

evaluating the probability of necessity and sufficiency P (Yx=1 = 1, Yx=0 = 0) from the observational320

data P (x, y) in the “Bow” diagram of Fig. 1d where X,Y 2 {0, 1} and U 2 R. The sharp bound for321

P (Yx=1 = 1, Yx=0 = 0) from P (x, y) was introduced in [44] (labelled as opt). We collect N = 105322

observational samples V̄ = {X(n), Y (n)
}
N
n=1 from an SCM instance. Fig. 4c shows samples drawn323

from the posterior distribution of
�
P (Yx=1 = 1, Yx=0 = 0) | V̄

�
. As a baseline, we also include the324

optimal bound opt, and posterior samples obtained from the Gibbs sampler which discretizes the325

exogenous domains using canonical partitions [2] (bp). The analysis reveals that our 100% credible326

interval (ci) matches the optimal PNS bound l = 0, r = 0.6775, i.e., the proposed strategy achieves327

the sharp bound over the counterfactual probability P (Yx=1 = 1, Yx=0 = 0) = 0.1867.328

Experiment 4: International Stroke Trials (IST) IST was a large, randomized, open trial of up329

to 14 days of antithrombotic therapy after stroke onset [10]. In particular, the treatment X is a pair330

(i, j) where i = 0 stands for no aspirin allocation, 1 otherwise; j = 0 stands for no heparin allocation,331

1 for median-dosage, and 2 for high-dosage. The primary outcome Y 2 {0, . . . , 3} is the health332

of the patient 6 months after the treatment, where 0 stands for death, 1 for being dependent on the333

family, 2 for the partial recovery, and 3 for the full recovery.334

To emulate the presence of unobserved confounding, we filter the experimental data with selection335

rules f (Z)
X , Z 2 {0, . . . , 9}, following a procedure in [49]. Doing so allows us to obtain N = 3⇥103336

synthetic observational samples V̄ = {X(n), Y (n), Z(n)
}
N
n=1 that are compatible with the “Double337

bow” diagram of Fig. 1b. We are interested in evaluating the treatment effect E[Yx=(1,0)] for338

only assigning aspirin X = (1, 0). Fig. 4d shows samples drawn from the posterior distribution339

of
�
E[Yx=(1,0)] | V̄

�
. As a baseline, we also include a naïve generalization of the discretization340

procedure (bp) [2] (see Appendix D) and the natural bounds [36, 30] estimated at the 95% confidence341

level (nb) [49]. Posterior samples of ci and bp are drawn using our proposed collapsed sampler342

due to the high-dimensional latent space. The analysis reveals that all algorithms achieve bounds343

that contain the actual, target causal effect E[Yx=(1,0)] = 1.3418. Our bounding strategy obtains a344

100% credible interval lci = 1.2604, rci = 1.4687, which consistently improves over all the other345

algorithms (lbp = 1.1121, rbp = 1.8073, lnb = 1.1195, rnb = 1.6221).346

5 Conclusion347

This paper investigated the problem of partial identification of counterfactual distributions, which348

concerns with bounding unknown counterfactual probabilities from the combination of the obser-349

vational data and qualitative assumptions of the data-generating process, represented in the form of350

a directed acyclic causal diagram. We studied a special family of SCMs with discrete exogenous351

variables, taking values from a finite set of unobserved states, and showed that it could represent all352

counterfactual distributions (over finite observed variables) in an arbitrary causal diagram. That is,353

this new family of discrete SCMs is counterfactual equivalent to the original family of candidate354

SCMs compatible with the causal diagram. Using this result, we developed a novel algorithm to355

derive bounds over counterfactual probabilities from finite observations, which are provably tight.356
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