Published in Transactions on Machine Learning Research (02/2025)

Reset-free Reinforcement Learning with World Models

Zhao Yang z.yang@liacs.leidenuniv.nl
The Leiden Institute of Advanced Computer Science
Leiden University

Thomas M. Moerland
The Leiden Institute of Advanced Computer Science
Leiden University

Mike Preuss
The Leiden Institute of Advanced Computer Science
Leiden University

Aske Plaat
The Leiden Institute of Advanced Computer Science
Leiden University

Edward S. Hu
GRASP Lab
University of Pennsylvania

Reviewed on OpenReview: https: //openreview. net/ forum? id=ZdMIX1tJzK

Abstract

Reinforcement learning (RL) is an appealing paradigm for training intelligent agents, enabling
policy acquisition from the agent’s own autonomously acquired experience. However, the
training process of RL is far from automatic, requiring extensive human effort to reset the
agent and environments. To tackle the challenging reset-free setting, we first demonstrate the
superiority of model-based (MB) RL methods in such setting, showing that a straightforward
adaptation of MBRL can outperform all the prior state-of-the-art methods while requiring
less supervision. We then identify limitations inherent to this direct extension and propose
a solution called model-based reset-free (MoReFree) agent, which further enhances the
performance. MoReFree adapts two key mechanisms, exploration and policy learning, to
handle reset-free tasks by prioritizing task-relevant states. It exhibits superior data-efficiency
across various reset-free tasks without access to environmental reward or demonstrations
while significantly outperforming privileged baselines that require supervision. Our findings
suggest model-based methods hold significant promise for reducing human effort in RL.
Website: https://yangzhao-666.github.io/morefree

1 Introduction

Reinforcement learning presents an attractive framework for training capable agents. At first glance,
RL training appears intuitive and autonomous - once a reward is defined, the agent learns from its own
automatically gathered experience. However, in practice, RL training often assumes the access to environmental
resets that can require significant human effort to setup, which poses a significant barrier for real world
applications of RL like robotics.

Most RL systems on real robots to date have employed various strategies to implement resets, all requiring
a considerable amount of effort (Levine et al., |2016} Yahya et al.l 2017} [Zhu et al.| [2019; Nagabandi et al.,
2020). In Nagabandi et al.| (2020]), which trains a dexterous hand to rotate balls, the practitioners had to

https://openreview.net/forum?id=ZdMIXltJzK
https://yangzhao-666.github.io/morefree

Published in Transactions on Machine Learning Research (02/2025)

(1) position a funnel underneath the hand to catch dropped balls, and (2) deploy a separate robot arm to
pick up the dropped balls for resets, and (3) script the reset behavior. These illustrate that even for simple
behaviors, proper implementation of reset mechanisms can result in significant human effort and time.

Rather than depending on human-engineered reset mechanisms, the agent can operate within a reset-free
training scheme, learning to reset itself (Eysenbach et al., [2017; [Sharma et al.| 2021a; [2022; |Haldar et al.)
2023) or train a policy capable of starting from diverse starting states (Zhu et al., 2020). However, the
absence of resets introduces unique exploration challenges. Without periodic resets, the agent can squander
significant time in task-irrelevant regions that require careful movements to escape and may overexplore, never
returning from indefinite exploration. Recent unsupervised model-based RL (MBRL) approaches (Mendonca
et al.l 2021} |[Hu et al., 2023) in the episodic setting have shown sophisticated exploration, high data-efficiency
and promising results in long-horizon tasks. This prompts the question: would MBRL agents excel in the
reset-free RL setting?

As an initial attempt, we first evaluate an unsupervised MBRL agent, in a reset-free Ant locomotion task.
The ant is reset to the center of a rectangular arena, and is tasked with navigating to the upper right corner.
The agent is reset only once at the start of training. The evaluation is episodic - the agent is reset at the
start of each evaluation episode.

For the MBRL agent, we use PEG (Hu et al.| |2023)), which was developed to solve hard exploration tasks in the
episodic setting. As seen in Figure [I} PEG, with minor modifications for the reset-free version, outperforms
prior state-of-the-art, model-free agent, IBC (Kim et al.l [2023)), tailored for the reset-free setting.

In Figure[I} we plot state visitation heatmaps of the agents,
where lighter colors correspond to more visitations. The
oracle agent, with access to resets, explores the the “task-
relevant” area between the initial and top right corner,
which is ideal for training a policy that succeeds in episodic
evaluation. IBC’s heatmap (bottom) shows that it fails to — SOTA model-free (IBC)
explore effectively, never encountering the goal states in the 0.5

top right region. In contrast, PEG exhaustively explores

the entire space, as seen through its uniform heatmap.

This results in an overexploration problem - PEG may

devote considerable time on finding irrelevant states rather

than concentrating on the task-relevant region of the task. 0-00_5 30 55

- - agent with resets

This leads us to ask: how can MBRL agents acquire Steps (1e5)
more task-relevant data in the reset-free setting
to improve its performance? Figure 1: Performance and collected data of dif-

ferent agents on the reset-free Ant locomotion

We propose Model-based, Reset-Free (MoReFree), which task

improves two key mechanisms in model-based RL, explo-

ration and policy optimization, to better handle reset-free training. Following the top row of Figure [2} to
gather task-relevant data without resets, we define a training curriculum that alternates between temporally
extended phases of task solving, resetting, and exploration. Next, as seen in the bottom row of Figure [2| we
bias the policy training within the world model towards achieving task-relevant goals such as reaching initial
states and evaluation states.

Our key contributions are as follows: (1) We demonstrate the viability of using model-based agents with strong
exploration abilities for the reset-free setting as well as their inherent limitations. We address such limitations
through the MoReFree framework which focuses exploration and policy optimization on task-relevant states.
(2) We evaluate the adapted reset-free version of MBRL baseline and MoReFree against state-of-the-art
reset-free methods in 8 challenging reset-free tasks ranging from manipulation to locomotion. Notably,
both model-based approaches outperform prior state-of-the-art baselines in 7/8 tasks in final performance
and data efficiency, all the while requiring less supervision (e.g. environmental reward or demonstrations).
MoReFree outperforms the model-based baseline in the 3 hardest tasks. (3) We perform in-depth analysis of
the MoReFree and baselines behaviors, and show that MoReFree explores the state space thoroughly while

Published in Transactions on Machine Learning Research (02/2025)

retaining high visitation counts in the task-relevant regions. Our ablations show that the performance gains
of MoReFree come from the proposed design choices and justify the approach.

Real 7°(-|-. @)

-\ : exploration policy

S_: goal-cond. policy

Imagined Practice Achieving Practice Achieving Practice Achieving @ : sampled goal
Eval Goal Initial State Random State

e~ pF e~ P

2~ Pe e~D

Figure 2: MoReFree is a model-based RL agent for solving reset-free tasks. Top row: MoReFree strikes a
balance between exploring unseen states and practicing optimal behavior in task-relevant regions by directing
the goal-conditioned policy to achieve evaluation states, initial state states (emulating a reset), and exploratory
goals. Bottom row: MoReFree focuses the goal-conditioned policy training inside the world model on
achieving evaluation states, initial states, and random replay buffer states to better prepare the policy for the
aforementioned exploration scheme.

2 Related Work

Reset-free RL: There is a growing interest in researching reinforcement learning methods that can effectively
address the complexities of reset-free training. Sharma et al.| (2021b) proposes a reset-free RL benchmark
(EARL) and finds that standard RL methods like SAC (Haarnoja et all |2018]) fail catastrophically in
EARL. Multiple approaches have been proposed to address reset-free training, which we now summarize.
One approach is to add an additional reset policy, to bring the agent back to suitable states for learning
(Eysenbach et al., 2017} [Kim et al., 2022; [Sharma et al., |2021a; 2022} |[Kim et al., 2023). LNT
let al., |2017) and Kim et al.| (2022) train a reset policy to bring the agent back to initial state distribution,
supervised by dense rewards and demonstrations respectively. MEDAL (Sharma et al.l {2022} 2023)), train a
goal-conditioned reset policy and direct it to reset goal states from demonstrations. IBC (Kim et al. |2023])
defines a curriculum for both task and reset policies without requiring demonstrations. VaPRL (Sharma,
trains a single goal-conditioned policy to reach high value states close to the initial states.
Instead of guiding the agent back to familiar states, R3L (Zhu et al., [2020) and Xu et al.| (2020)) learn to
reset the policy to diverse initial states, resulting in a policy that is more robust to variations in starting
states. However, such methods are limited to tasks where exploration is unchallenging. The vast majority of
reset-free approaches are model-free, with a few exceptions 2020bfa)). Other works
[2021} |Smith et all [2019) model the reset-free RL training process as a multi-task RL problem and require
careful definition of the task distribution such that the tasks reset each other.

Goal-conditioned Exploration: A common theme running through the aforementioned work is the
instantiation of a curriculum, often through commanding goal-conditioned policies, to keep the agent in
task-relevant portions of the environment while exploring. Closely related is the subfield of goal-conditioned
exploration in RL, where a goal-conditioned agent selects its own goals during training time to generate
data. There is a large variety of approaches for goal selection, such as task progress (Baranes & Oudeyer
2013; Veeriah et al. [2018)), intermediate difficulty (Florensa et al. [2018)), value disagreement (Zhang et al.
2020), state novelty (Pong et al., 2019} |Pitis et al., 2020, world model error (Hu et al.| [2023; [Sekar et al.
2020), and more. Many goal-conditioned exploration methods use the “Go-Explore” (Ecoffet et al., [2021)
strategy, which first selects a goal and runs the goal-conditioned policy (“Go”-phase), and then switches

Published in Transactions on Machine Learning Research (02/2025)

to an exploration policy for the latter half of the episode (“Explore”-phase). PEG (Hu et al., |2023]), which
MoReFree uses, extends Go-Explore to the model-based setting, and utilizes the world model to plan states
with higher exploration value as goals. However, such methods are not designed for the reset-free RL setting,
and may suffer from over-exploration of task-irrelevant states.

Learned Reward Functions: Instead of requiring the environment to provide a reward function, the agent
can learn its own reward function from onboard sensors and data. Given human specified example states, e.g.
a goal image, VICE and C-Learning train reward classifiers over examples (Fu et al.l 2018; |Eysenbach et al.|
2021)) and agent data. The learned dynamical distance function (Hartikainen et al. 2019) learns to predict
the number of actions between pairs of states. The dynamical distance function is used by unsupervised
MBRL approaches like LEXA and PEG (Mendonca et all {2021} Hu et al.l [2023) to train the goal-conditioned
policy. MoReFree also employs the dynamical distance function as the reward function to eliminate the need
of the environmental reward.

Table 1: A conceptual overview of reset-free methods. Existing methods are model-free, and most of them
require other forms of supervision (environmental reward or demonstrations or both). In performance,
MoReFree improves over reset-free PEG, which significantly outperforms privileged baselines IBC, MEDAL
and R3L.

Approach MEDAL IBC VaPRL R3L ‘ reset-free PEG ~ MoReFree
Model-based X X X X v v
Demonstrations v X v X X X
Environmental reward v v v X X X

We notice that the majority of all prior work are model-free and may suffer from poor sample efficiency and
exploration issues. In contrast, our model-based approaches use world models to efficiently train policies
and perform non-trivial goal-conditioned exploration with minimal supervision. See Table [I] for a conceptual
comparison between prior work and two model-based methods (MoReFree and reset-free PEG).

3 Preliminaries

3.1 Reset-free RL

We follow the definition of reset-free RL from EARL (Sharma et al., [2021b), and extend it to the
goal-conditioned RL setting. Consider the goal-conditioned Markov decision process (MDP) M =
(S,G,A,p,r, po, pg=,7). At each time step ¢ in the state s; € S, a goal-conditioned policy 7 (-|s¢, g) under the
goal command g € G selects an action a; € A and transitions to the next state sy;;1 with the probability
p(si+1lst,ar), and gets a reward r(s;, as, g). po is the initial state distribution, py- is the evaluation goal
distribution, and +y is the discount factor.

The learning algorithm A is defined: {s;,a;, Si—s-l}z;é — (ay,), which maps the transitions collected until
the time step ¢ to the action a; the agent should take in the non-episodic training and the best guess m; of
the optimal policy 7* on the evaluation goal distribution (pg«). In reset-free training the agent will only be
reset to the initial state sg ~ py a few times. The evaluation of agents is still episodic. The agent always
starts from so ~ pg, and is asked to achieve g ~ pg«. The evaluation objective for a policy = is:
T
J(ﬂ') = Esomzpo,gwpg* saj~m(-[s;,9),85+1~p(+|s5,a5) [Z ’}/JT(Sja aj, g)]a (1)
j=0

where T is the total time steps during the evaluation. The goal of algorithm A during the reset-free training
is to minimize the performance difference D(A) of the current policy 7 and the optimal policy 7*:

oo

D(A) =Y (J(x") = J(m)). (2)

t=0
In summary, the algorithm A should output an action a; that the agent should take in the non-episodic data
collection and a policy 7y that can maximize J(m;) at every time step ¢ based on all previously collected data.

Published in Transactions on Machine Learning Research (02/2025)

3.2 Model-based RL setup

Recent goal-conditioned MBRL approaches like LEXA (Mendonca et al., |2021) and PEG (Hu et al., [2023)
train goal-conditioned policies purely using synthetic data generated by learned world models. Their robust
exploration demonstrates significant success in solving long-horizon goal-conditioned tasks. In the reset-free
setting, strong exploration is crucial, as the agent can no longer depend on episodic resets to bring it back to
task-relevant areas if it gets stuck. Therefore, we select PEG as the backbone MBRL agent for its strong
exploration abilities and sample efficiency.

PEG (Hu et al.l [2023) is a model-based Go-Explore framework that extends LEXA (Mendonca et al.| 2021)),
an unsupervised goal-conditioned variant of DreamerV2 (Hafner et al., |2020). The following components are
parameterized by 6 and learned:

world model: ﬁ(st\st,l, ai—1)
goal conditioned policy: 7§ (a¢|st, g) goal conditioned value: V< (s, g) (3)

exploration policy: 78 (ay|s;) exploration value: V;F(s;)

The world model is a recurrent state-space model (RSSM) which is trained to predict future states and is used
as a learned simulator to train the policies and value functions. The goal-conditioned policy 7T0G is trained to
reach random states sampled from the replay buffer. The exploration policy 775 is trained on an intrinsic
motivation reward that rewards world model error, expressed through the variance of an ensemble (Sekar
et al.l [2020])(see Appendix for more details). Both policies are trained on simulated trajectory rollouts in
the world model.

» Self-supervised Goal-reaching Reward Function: Rather than assuming access to the environmental
reward, PEG learns its own reward function. PEG uses a dynamical distance function (Hartikainen et al.
2019)) as the reward function within world models, which predicts the number of actions between a start and
goal state. The distance function is trained on random state pairs from imaginary rollouts of 7. 7§ is then
trained to minimize the dynamical distance between its states and commanded goal state in imagination. See
Appendix [C]] for more details.

» Phased Exploration via Go-Explore: For dat.a—collectlon, PEG employs Algorithm 1 Go-Explore
the Go-Explore strategy. In the “Go”-phase, a goal is sampled from some goal
distribution p. The goal-conditioned policy, conditioned on the goal is run for
some time horizon Hg, resulting in trajectory 7.

: Input: g,ﬂf,wg

s g —{hTe < {}

: fort =1 to Hg do
ar ~ 75 (- |st,9)
ser1 ~ T (- s, ar)
Ty < Tg U{s:}

: end for

: fort=1to Hg do

1

2

3
Then, in the “Explore”-phase, starting from the last state in the “Go”-phase, .
the exploration policy is run for Hg steps, resulting in 7.. The interleaving of .,
goal-conditioned behavior with exploratory behavior results in more directed g
exploration and informative data. This in turn improves accuracy of the world
model, and the policies that train inside the world model. See Algorithm [I] 8
and Algorithm [2) for pseudocode. The choice of goal distribution p is important 9 ay ~ 7T9E(' |s¢)
for Go-Explore. In easier tasks, the evaluation goal distribution pg- may be . Sea1 ~ T |se,ar)
sufficient. But in longer-horizon tasks, evaluation goals may be too hard to ;. To 7o U {5}
achieve. Instead, intermediate goals from an exploratory goal distribution pr 5. end for
can help the agent explore. We choose PEG, which generates goals by planning 5. peturn ..+
through the world model to maximize exploration value (see Appendix for S
details).

4 Method

As motivated in Section[I]and Figure[l} the direct application of PEG to the reset-free setting shows promising
performance but suffers from over-exploration of task-irrelevant states. To adapt model-based RL to the
reset-free setting, we introduce MoReFree, a model-based approach that improves PEG to handle the lack of
resets and overcome the over-exploration problem. MoReFree improves two key mechanisms of MBRL for
reset-free training: exploration and policy training.

Published in Transactions on Machine Learning Research (02/2025)

4.1 Back-and-Forth Go-Explore

First, we introduce MoReFree’s procedure for collecting new datapoints in the real environment. PEG (Hu
et al., [2023) already has strong goal-conditioned exploration abilities, but was developed for solving episodic
tasks. Without resets, PEG’s Go-Explore procedure can undesirably linger in unfamiliar but task-irrelevant
portions of the state space. This generates large amounts of uninformative trajectories, which in turn degrades
world model learning and policy optimization.

MoReFree overcomes this by periodically Algorithm 2 MBRL Backbone
directing the agent to return to the states —
relevant to the task (i.e. initial and eval- 1: Input: 7T9G , 7T9E , world model Ty, goal distribution p (including:
uation goals). We call this exploration exploratory goal distribution pg, evaluation goal distribution
procedure “Back-and-Forth Go-Explore”, pg~, initial state distribution pg)

where we sample pairs of initial and eval- 2: D < {}

uation goals and ask the agent to cycle 3: while within the reset-free horizon do

back and forth between the goal pairs,
periodically interspersed with exploration
phases (see Figure [2| top row).

Now, we define the “Back-and-Forth Go-
Explore” strategy as seen in Algorithm
First, we decide whether to perform ini-
tial / evaluation state directed explo-

MoReFree
Ty, Te <—Back-and-Forth G()—Explorv(\ﬂf)". Trf, p)
D+DUtyUT,

10: update ’7?9 with D

E . -
ration. With probability «, we sample 1 update " with ?:9 In Imagation
goals (g*,go) from py-,po respectively. 12: update Wg; with 7y in imagination, cond. on goals ¢':
Then, we execute the Go-Explore routine 13 L 7 , .
for each goal. We name Go-Explore tra- 14 g~ D with Pr=1—«, g" ~ pg+, po with Pr = a

15: end while

jectories conditioned on initial state goals
as “Back” trajectories, and Go-Explore trajectories conditioned on evaluation goals as “Forward” trajectories.
With probability 1 — «, we execute exploratory Go-Explore behavior by sampling exploratory goals from PEG.
The difference between reset-free PEG and MoReFree can be seen in Algorithm 2, unlike PEG, MoReFree
employs the “Back-and-Forth Go-Explore”.

By following this exploration strategy, the agent modulates between various Go-Explore strategies, alternating
between solving the task by pursuing evaluation goals, resetting the task by pursuing initial states, and
exploring unfamiliar regions via exploratory goals.

4.2 Learning to Achieve Relevant Goals in Imagination

Ne>.(t, we describe how MoReFree t'rainz the goal-conditioned Algorithm 3 Back-and-Forth Go-Explore
policy in the world model. To train 7y, MoReFree samples
various types of goals and executes 7§ (- | -, g) inside the world
model to generate “imaginary” trajectories. The trajectory data
is scored using the learned dynamical distance reward mentioned
in Section [3:2], and the policy is updated to maximize the
expected return. This procedure is called imagination (Hafner:
et al.,|2019), and allows the policy to be trained on vast amounts

of synthetic trajectories to improve sample efficiency. of the previous Go-Explore.
))) 7o Ty, T2 < Go-Explore(go, 7§, 7E)
First, we choose to sample evaluation goals from pg« since . Ty Tgr UTgy: Te = 7L U T2

the policy will be evaluated on its evaluation goal-reaching 4. glge

performance. Next, recall that Back-and-Forth Go-Explore . g~ pE

procedure also samples initial states from pg as goals for the ;. 7. Te + Go-Explore(g, Wg:’ ﬂf)
Go-phase to emulate resetting behavior. Since we would like 5. ond if

7§ to succeed in such cases so that the task is reset, we will 13: return 7,, 7,
also sample from pg. Finally, we sample random states from the

Input: Wg, 775, Pg*»> PO, PE
Generate a random number r in [0, 1]
if r < a then

9", 90 ~ Pg+; Po

Tg+, T& < Go-Explore(g*, wec, m¥)

Continue from the terminal state

Published in Transactions on Machine Learning Research (02/2025)

replay buffer to increase 7T§; ’s ability to reach arbitrary states. The sampling probability for each goal type is
set to /2, /2,1 — « respectively. In other words, MoReFree biases the goal-conditioned policy optimization
procedure to focus on achieving task-relevant goals (i.e. evaluation and initial states), as they are used during
evaluation and goal-conditioned exploration to condition the goal-reaching policy (see Figure 2| bottom row).
This leads to additional changes of line 13 in Algorithm 2.

4.3 Implementation Details

Our work builds on the top of PEG (Hu et al.| [2023), and we use its default hyperparameters for world model,
policies, value functions and temporal reward function. We set the length of each phase for Go-Explore
(Hg, Hg) to half the evaluation episode length for each task. We set the default value of o = 0.2 for all tasks
(never tuned). See Appendix for more details and the supplemental for MoReFree code.

5 Experiments

We evaluate three MBRL methods (PEG (Hu et al.} 2023), the extension reset-free PEG and our proposed
method MoReFree) and four competitive reset-free baselines on eight reset-free tasks. We aim to address the
following questions: 1) Do MBRL approaches work well in reset-free tasks in terms of sample efficiency and
performance? 2) What limitations arise from running MBRL in the reset-free setting, and does our proposed
solution MoReFree address them? 3) What sorts of behavior do MoReFree and baselines exhibit in such
tasks, and are our design choices for MoReFree justified?

Baselines: All baselines except for R3L are implemented using official codebases, see Appendix for
details.

o« PEG (Hu et al., 2023)) is the original episodic PEG in which exploratory goals are only sampled
once at the beginning of each episode (in the reset-free setting, the episode is extremely long). The
goal-conditioned policy and the exploration policy are then executed for the first half and second
half of the episode, respectively.

o reset-free PEG is a straightforward extension of PEG to the reset-free setting. Exploratory goals
are sampled every Hg + Hpg steps. Then, the goal-conditioned policy is executed for Hg steps
followed by the exploration policy being executed for Hg steps.

o DreamerV2 (Hafner et al., [2020)) is a commonly used MBRL method. The goal-conditioned policy
is executed for the whole reset-free episode.

e MEDAL (Sharma et al., [2022) requires demonstrations and trains two policies, one for returning to
demonstration states and another that achieves task goals.

o IBC (Kim et al.,|2023)) is a competitive baseline that outperforms prior reset-free work (e.g. MEDAL,
VaPRL) by defining a bidirectional curriculum for the goal-conditioned forward and backwards (i.e.
reset) policies trained using the environmental reward.

e R3L (Zhu et al.; |2020) trains two policies, one for achieving task goals and another that perturbs
the agent to novel states. Notably, it is the only baseline that operates without any additional
assumptions (i.e. environmental rewards, demonstrations, and resets).

o Oracle is SAC (Haarnoja et al.| [2018) trained under the episodic setting on the environmental
reward.

Note that most baselines enjoy some advantage over two MBRL methods: MEDAL, IBC and Oracle use
ground truth environmental reward, while MEDAL also uses demonstrations and Oracle uses resets. See
Table [I] for a conceptual comparison between MoReFree and prior work.

Environments: We evaluate MoReFree and baselines on eight tasks (see Figure [3]). We select five tasks
from IBC’s evaluation suite (Kim et all [2023) of six tasks; (PointUMaze, Tabletop, Sawyer Door, Fetch

Published in Transactions on Machine Learning Research (02/2025)

PointUMaze Tabletop Sawyer Door Fetch Push and PP Push and PP (hard)

Figure 3: We evaluate MoReFree on eight reset-free tasks ranging from navigation to manipulation. PP is
short for Pick&Place.

Push and PP, Fetch Reach is omitted because it is trivially solvable). Next, we increased the complexity of
the two hardest tasks from IBC, Fetch Push and Fetch Pick&Place, by extending the size of the workspace,
replacing artificial workspace limits (which cause unrealistic jittering behavior near the limits, see the website
for videos) with real walls, and evaluating on harder goal states (i.e. Pick&Place goals only in the air rather
than including ones on the ground). In addition, we contributed a difficult locomotion task, Ant, which is

adapted from the PEG codebase (Hu et al [2023]).

e PointUMaze: A point-mass agent navigates a U-shape maze through continuous acceleration
commands. During evaluation, the agent starts from the bottom-left corner and is tasked to reach
the top-left corner.

¢ Tabletop Manipulation: The agent needs to grab and move the mug to one of the four goal
locations. The initial state is always fixed and the goal state is uniformly sampled from four fixed
locations.

e Sawyer Door: The agent controls a Sawyer robot arm to close the door in an open position. During
the reset-free training, it needs to learn to close the door and open the door again to practice. The
door is opened to 60 degrees for evaluation.

o Fetch Push&PP: The agent commands a Fetch robot arm to push / pick&place the object initialized
at the center of the table to goal locations. The environment is taken from IBC’s evaluation suite,
which modified the original environment from [Plappert et al.| (2018]). To prevent the block from falling
off the table, the IBC authors artificially limited the block position with block position constraints.

o Push&PP (hard): Using block position constraints (in Fetch Push&PP) resulted in unrealistic
jittering behavior near the limits. To avoid this, we removed the artificial joint constraints and
surrounded the table with physical walls. Furthermore, we enable the usage of the grippers (disabled
in IBC’s version) to permit picking behaviors (i.e. useful for resetting), at the cost of increased action
space and exploration difficulty.

e Ant: The 4-legged ant agent needs to navigate in a square room to a given goal, which is uniformly
located in the top-right corner. The initial state is at the center point with randomness. It is adapted

from (2023)), with changing the U-shape maze into a square room.

Most methods are run with 5 seeds, and the mean performance and standard error are reported. During the
evaluation, the performance on tasks with randomly sampled goals from py- is measured by averaging over
10 episodes. See Appendix [B| for more experimental details.

5.1 Results

As shown in Fig 4] two reset-free model-based methods (MoReFree and reset-free PEG), without demonstra-
tions or access to environmental reward, outperform other baselines with privileged access to supervision in
both final performance and sample efficiency in 7/8 tasks. We observe that the two reset-free MBRL methods
learn good behaviors: the pointmass agent hugs the wall of the UMaze to minimize travel time and the Fetch
robot deftly pushes and picks up the block into multiple target locations. MoReFree is always competitive

Published in Transactions on Machine Learning Research (02/2025)

1.0

y /

0.5

0.5

Success rate
o
w

0.5

MoReFree

- reset-free PEG

PEG
— [
0.0 0.0 0.0 0.0
0.2 0.4 0.6 0.2 0.8 1.4 2.0 0.4 1.6 2.8 0.5 3.0 55 8.0
Steps (1e5) Steps (1e5) Steps (1e5) Steps (1e5) Dreamervz
PointUMaze Tabletop Sawyer Door Push IBC
10 1.0 SR e 1.0
————————————————————— MEDAL
0.5 0.5 0.5 R3L
QP oracle (200k)
- Y A ™ 2
%%s5 45 85 125 %%s 30 55 80 905 30 50 70 %%5 25 45 65
Steps (1e5) Steps (1e5) Steps (1e5) Steps (1e5)
Pick&Place Push (hard) Pick&Place (hard) Ant

Figure 4: Two reset-free MBRL methods (MoReFree and reset-free PEG) significantly outperform baselines
in 7/8 tasks. However, directly applying MBRL methods (PEG and DreamerV2) works poorly. In 4 tasks,
only MBRL methods are able to learn meaningful behavior, showcasing MBRL’s sample efficiency in the
reset-free setting. MoReFree outperforms reset-free PEG in the 3 most difficult tasks.

with or outperforms reset-free PEG, with large gains in the 3 hardest tasks: Push (hard) by 45%, Pick&Place
(hard) by 13% and Ant (hard) by 36%. We observe that MoReFree learns non-trivial reset behaviors such as
picking and pushing blocks back into the center of the table for the hard variants of the Fetch manipulation
tasks. However, the original PEG performs poorly, suggesting that directly applying episodic MBRL methods
in a reset-free setting without adaptations yields suboptimal results. See the website for videos of MoReFree
and baselines.

In many tasks, the baselines fail to learn at all. We believe this is due the low sample budget, which may be
too low for the baselines to fully explore the environment and learn the proper resetting behaviors necessary to
train the actual task policy. In Appendix [G] we increased the training budget by 3x for the IBC baseline and
it still fails, underscoring the difficulty of the tasks and the sample-efficiency gains of MoReFree and MBRL.
On the other hand, we noticed that one environment, Sawyer Door, seemed particularly hard for MBRL
agents to solve. We hypothesize that the dynamics of the task are hard to model, resulting in performance
degradation for model-based approaches (see Appendix [F| for more analysis).

5.2 Analysis

To explain the performance differences between MoReFree and baselines, we closely analyze the exploration
behaviors.

MoReFree focuses on task-relevant states. In Figure 5[we visualize the state visitation heatmaps of
methods in various environments, and also compute the percentage of “task-relevant” states (initial and goal
regions, highlighted with white borders). We highlight two trends. First, the heatmaps show that MoReFree
and reset-free PEG explore thoroughly while baselines have more myopic exploration patterns, as seen in the
Ant heatmaps at the top.

Next, performance differences between reset-free PEG and MoReFree are intuitively explained by the amount
of task-relevant data collected by each agent. In easier environments like Push or Pick&Place where both
reset-free PEG and MoReFree encounter similar amounts of task-relevant states, the performance is roughly
similar between reset-free PEG and MoReFree. But in harder environments (Ant, Push (hard), Pick&Place
(hard)) with larger state spaces and more complicated resetting dynamics, MoReFree collects 1.3 — 5x more
task-relevant data and has large performance gains over reset-free PEG. By experiencing more task-relevant

Published in Transactions on Machine Learning Research (02/2025)

1.0

MoReFree reset-free PEG Drv2 MEDAL R3L

Push Pick&Place

Pick&Place (hard) - 02

Tl hicte iy

MoReFree reset-free PEG MoReFree reset-free PEG

Figure 5: State visitation heatmaps of different agents. White areas are task-relevant states (including initial
and goal state distributions) and we overlay the percentages of task-relevant states. reset-free MBRL methods
explore more and in harder environments, MoReFree experiences more task-relevant states.

states and training policies on them in imagination, MoReFree policies are more suited towards succeeding at
the episodic evaluation criteria. See Appendix [D] for additional visualizations.

MoReFree effectively resets. Next, we investigate the qualitative behavior of MoReFree’s Back-and-Forth
Go-Explore. To see if “Back” trajectories help free the agent from the sink states, we analyze the replay buffer
of MoReFree for the environments, and plot the starting locations of the agent / object up to 100 timesteps
before a successful “Back” trajectory is executed in Figure [6] The color intensity of the dots correspond to
state density over the last 100 steps (i.e. dark red means the agent / object has rested there for a while).
We observe that the starting locations (red dots) of the agent / object are in corners or next to walls in all
environments. This suggests that these areas act as sink states, where the agent / object would remain for
long and waste time. We observe that MoReFree learns reset behaviors like picking the block out of corners
and walls in Fetch Push and Fetch Pick&Place. See detailed videos of the reset behavior on the website.

PointUMaze Tabletop Push (hard) Pick&Place (hard) Ant

Figure 6: We visualize the start position (red dots) of successful “Back” trajectories of MoReFree’s Back-and-
Forth Go-Explore, where 779G is directed to reset the environment. The color intensity of the dots correspond
to state density over the last 100 steps.

10

Published in Transactions on Machine Learning Research (02/2025)

5.3 Ablations

To justify our design choices, we ablate the two mechanisms of MoReFree, the back-and-forth exploration
and task-relevant goal-conditioned policy training, and plot the results in Figure [7]

First, removing all mechanisms (MF w/o Explore & Imag.) reduces to reset-free PEG, and we can see a
large gap in performance. Next, MF with Only Task Goals sets a« = 1, which causes an extreme bias
towards task-relevant states in the exploration and policy training. This also degrades performance, due to
the need for strong exploration in the reset-free setting. Examinations of more values for a can be found in

Appendix [B:3]

Finally, we isolate individual components of MoRe-
Free. First, we disable Back-and-Forth Go-Explore 1.0

by disallowing the sampling of initial or evaluation = miﬁzre;(;nz & el
goals during Go-Explore. Only exploratory goals are 0.8 B MF with Only Task Goals
used in Go-Explore for this ablation (named MF BN MF w/o Imag.

w/o BF-GE). Next, in MF w/o Imag. we turnoff) ¢ R s

the initial / evaluation goal sampling in imagination,

so only random replay buffer goals are used to train 0.4

7§’. We see that both variants perform poorly. This }

is somewhat intuitive, as the two components rely 0.2 i

on each other. Having both forms a synergistic cycle

where 1) the goal-conditioned policy’s optimization 0.0 ‘

is more focused towards reaching initial / goal states,

and 2) the exploration is biased towards reaching Figure 7: Ablations on 5 variants of MoReFree over
initial / goal states by using the goal-conditioned 3 hard environments, Push (hard), Pick&Place (hard)
policy we just optimized in step 1. If we remove one and Ant, with normalized final performance.

without the other, then the cycle breaks down. In

MF w/o Imag., Back-and-Forth Go-Explore will suffer since 71'(? trained on random goals cannot reliably
reach initial / evaluation goals. In MF w/o BF-GE, the exploration strategy will not seck initial / evaluation
states, resulting in an inaccurate world model and degraded policy optimization. In summary, the ablations
show that MoReFree’s design is sound and is the major factor behind its success in the reset-free setting. See
Appendix [F] for details.

6 Conclusion and Future Work

As a step towards reset-free training, we adapt model-based methods to the reset-free setting and demonstrate
their superior performance. Specifically, we show that with minor modifications, unsupervised MBRL method
substantially outperforms the state-of-the-art model-free baselines tailored for the reset-free setting while being
more autonomous (requires less supervision like environmental reward or demonstrations). We then identify
a limitation of unsupervised MBRL in the reset-free setting (over-exploration on task-irrelevant states), and
propose MoReFree to address such limitations by focusing model-based exploration and goal-conditioned
policy training on task-relevant states. We conduct a thorough experimental study of MoReFree and baselines
over 8 tasks, and show considerable performance gains over the MBRL baseline and prior state-of-the-art
reset-free methods.

Despite its overall success, MoReFree is not without limitations. Being a model-based approach, it inherits
all associated disadvantages. For example, we believe Sawyer Door is a task where learning the dynamics is
harder than learning the policy (see Appendix , disadvantaging MBRL approaches. Next, MoReFree uses a
fixed percentage of task-relevant goals for exploration and imagination, whereas future work could consider an
adaptive curriculum. Finally, scaling MoReFree to high-dimensional observations and real-world applications
would be natural extensions. We hope MoReFree inspires future efforts in increasing autonomy in RL.

11

Published in Transactions on Machine Learning Research (02/2025)

References

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically motivated
goal exploration in robots. Robotics and Autonomous Systems, 61(1):49-73, 2013. ISSN 0921-8890. doi:
https://doi.org/10.1016/j.robot.2012.05.008. URL https://www.sciencedirect.com/science/article/
pii/S0921889012000644.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then explore.
Nature, 590(7847):580-586, 2021.

Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no trace: Learning to reset for
safe and autonomous reinforcement learning. arXiv preprint arXiv:1711.06782, 2017.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve goals
via recursive classification. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=tcbqisoB-C.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pp. 1515-1528. PMLR, 2018.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control with events:
A general framework for data-driven reward definition. Advances in neural information processing systems,
31, 2018.

Abhishek Gupta, Justin Yu, Tony Z Zhao, Vikash Kumar, Aaron Rovinsky, Kelvin Xu, Thomas Devlin, and
Sergey Levine. Reset-free reinforcement learning via multi-task learning: Learning dexterous manipulation
behaviors without human intervention. In 2021 IEEFE International Conference on Robotics and Automation
(ICRA), pp. 6664-6671. IEEE, 2021.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete world
models. arXiv preprint arXiv:2010.02193, 2020.

Siddhant Haldar, Jyothish Pari, Anant Rai, and Lerrel Pinto. Teach a robot to fish: Versatile imitation from
one minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023.

Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance learning for
semi-supervised and unsupervised skill discovery. arXiv preprint arXiv:1907.08225, 2019.

Edward S. Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for exploration. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=6geBuZSo7Pr.

Jigang Kim, J hyeon Park, Daesol Cho, and H Jin Kim. Automating reinforcement learning with example-based
resets. IEEE Robotics and Automation Letters, 7(3):6606-6613, 2022.

Jigang Kim, Daesol Cho, and H Jin Kim. Demonstration-free autonomous reinforcement learning via implicit
and bidirectional curriculum. In International Conference on Machine Learning. PMLR, 2023.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

12

https://www.sciencedirect.com/science/article/pii/S0921889012000644
https://www.sciencedirect.com/science/article/pii/S0921889012000644
https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=tc5qisoB-C
https://openreview.net/forum?id=6qeBuZSo7Pr
https://openreview.net/forum?id=6qeBuZSo7Pr

Published in Transactions on Machine Learning Research (02/2025)

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Reset-free lifelong learning with skill-space
planning. arXiv preprint arXiv:2012.03548, 2020a.

Kevin Lu, Igor Mordatch, and Pieter Abbeel. Adaptive online planning for continual lifelong learning, 2020b.
URL https://openreview.net/forum?id=HkgFDgSYPH.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering and
achieving goals via world models, 2021.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning, pp. 1101-1112. PMLR, 2020.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain exploration
for long horizon multi-goal reinforcement learning. In International Conference on Machine Learning, pp.
7750-7761. PMLR, 2020.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell, Jonas
Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforcement learning: Challenging
robotics environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Planning
to explore via self-supervised world models. In ICML, 2020.

Archit Sharma, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Autonomous reinforcement
learning via subgoal curricula. Advances in Neural Information Processing Systems, 34:18474-18486, 2021a.

Archit Sharma, Kelvin Xu, Nikhil Sardana, Abhishek Gupta, Karol Hausman, Sergey Levine, and Chelsea
Finn. Autonomous reinforcement learning: Formalism and benchmarking. arXiv preprint arXiv:2112.09605,
2021b.

Archit Sharma, Rehaan Ahmad, and Chelsea Finn. A state-distribution matching approach to non-episodic
reinforcement learning. arXiv preprint arXiv:2205.05212, 2022.

Archit Sharma, Ahmed M Ahmed, Rehaan Ahmad, and Chelsea Finn. Self-improving robots: End-to-end
autonomous visuomotor reinforcement learning. arXiv preprint arXiv:2303.01488, 2023.

Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine. Avid: Learning multi-stage
tasks via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443, 2019.

Vivek Veeriah, Junhyuk Oh, and Satinder Singh. Many-goals reinforcement learning. ArXiv, abs/1806.09605,
2018.

Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual learning of control primitives:
Skill discovery via reset-games. Advances in Neural Information Processing Systems, 33:4999-5010, 2020.

Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine. Collective robot rein-
forcement learning with distributed asynchronous guided policy search. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 79-86. IEEE, 2017.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value disagreement.
Adwvances in Neural Information Processing Systems, 33:7648-7659, 2020.

Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous manipulation
with deep reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on
Robotics and Automation (ICRA), pp. 3651-3657. IEEE, 2019.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Kumar, and
Sergey Levine. The ingredients of real-world robotic reinforcement learning. arXiv preprint arXiv:2004.12570,
2020.

13

https://openreview.net/forum?id=HkgFDgSYPH

Published in Transactions on Machine Learning Research (02/2025)

A Broader Impacts

As we increase the autonomy of RL agents, the possibility of them acting in unexpected ways to maximize
reward increases. The unsupervised exploration coupled alongside the learned reward functions further add
to the unpredictability; neither mechanisms are very interpretable. As such, we expect research into value
alignment, interpretability, and safety to be paramount as autonomy in RL improves.

B Experimental Details

B.1 Environments

PointUMaze: The state space is 7D and the action space is 2D. The initial state is (0,0), which located
in the bottom-left corner, and noise sampled from /(—0.1,0.1) is added when reset. The goal during the
evaluation is always located in at the top-left corner of the U-shape maze. The maximum steps during the
evaluation is 100. Hard reset will happen after every 2e5 steps. In the whole training process we performed,
it only reset once at the beginning of the training. Taken from the IBC (Kim et al. 2023)) paper.

Tabletop: The state space is 6D, and the action space is 3D. During the evaluation, four goal locations
are sampled in turn, the initial state of the agent is always fixed and located in the center of the table. The
maximum steps during the evaluation is 200. Hard reset will happens after every 2e5 steps. In the whole
training process we performed, it only reset once at the beginning of the training. Taken from the EARL
(Sharma et al., 2021b]) benchmark and also used in the IBC paper.

Sawyer Door: The state space is 7D and the action space is 4D. The position of door is initialized to open
state (60 degree with noise sampled from (0, 18) degree) and the goal is always to close the door (0 degree).
The arm is initialized to a fixed location. Maximum number of steps is 300 for the evaluation. Hard reset
will happen after every 2e5 steps. In the whole training process we performed, it resets twice. Taken from
the EARL (Sharma et al, 2021b]) benchmark and also used in the IBC paper.

Fetch Push and Pick&Place: The state space is 25D and action space is 4D. These are taken from the IBC
paper. Authors converted the original Fetch environments to a reversible setting by defining a constraint on
the block position. The initial and goal distributions are identical to the original Fetch Push and Pick&Place.
More details can be found in the IBC paper.

Push (hard): Different from the original Fetch Push task, in our case walls are added to prevent the block
from dropping out of the table. The workspace of the robot arm is also limited. The block is always initialized
to a fixed location, and goal distribution during the evaluation is ¢ (—0.15,15). Fetch Push used in the IBC
paper, the block is limited by joint constraint, which shows unrealistic jittering behaviors near the limits
(we observe such phenomenon by running model-based go-explore, the exploration policy prefers to always
interact with the block and keep pushing it towards the limit boundary, see videos on our project website E[)
Meanwhile, the gripper is blocked, which makes the task easier. In our case, we release the gripper and it
can now open and close again which add two more dimension of the state space. We found it is important
to release the gripper in our version of Push task, when the block is in corners, it will need to operate the
gripper to drag the block escape from corners. The maximum steps the agent can take in 50 during the
evaluation. Hard reset will happen after every leb steps. In the whole training process we performed, it
resets b times in total.

Pick&Place (hard): We add walls in the same way as we did for Push (hard). We make it more difficult
by only evaluating the agent on goals that are in the air. Then it has to learn to perform picking behavior
properly, whereas goals on the ground can just be solved by pushing. The goal will be uniformly sampled
from a 5 x 5 x 10 cm cubic area above the table. It has the same observation space, action space, initial state
and maximum steps with Fetch Push described above. Hard reset will happens after every leb steps. In
the whole training process we performed, it resets 5 times in total. See the visual difference between our
Pick&Place and IBC’s in Figure[3] Since the workspace of the robot is limited within the walls as well in
Push (hard) and Pick&Place (hard), when the block gets stuck in corners, the robot needs to precisely move

Thttps://yangzhao-666.github.io/morefree

14

https://yangzhao-666.github.io/morefree

Published in Transactions on Machine Learning Research (02/2025)

to the corner and bring the block back. In contrast, the robot in IBC’s version can move to everywhere, being
able to create various circumstance to solve such difficult position.

Ant: We adapt the AntMaze task from environment&ﬂ codebase of PEG and change the shape of the maze
to square, also change the evaluation goal distribution to be a uniform distribution #/(2, 3) for both x and
y location, which lies on the top-left corner of the square. The ant is always initialized to the center point
(0, 0) of the square to start from, with uniform noise (U4(—0.1,0.1)) added. The state space is 29D and the
action space is 8D. The maximum steps for evaluation is 500. Hard reset will happen after every 2e5 steps.
In the whole training process we performed, it reset 4 times in total.

B.2 Baseline Implementations

PEG: We use the official implementation of PEGE| and only optimize the exploratory goal distribution once
at the beginning of each reset-free training episode, i.e. Hg and Hg are set to half of the reset-free episode
length.

reset-free PEG: We extend the official implementation of PEGE| to reset-free setting by 1) set Hg and Hg
to half of the evaluation episode length; 2) optimizing the goal distribution every Hg + Hp steps; 3) keeping
all other hyperparameters the same as MoReFree.

IBC: We use the official implementation from authorsﬂ and keep hyperparameters unchanged.

DreamerV2: We use the official implementation of PEG. In order to reduce it to DreamerV2 (Hafner et al.,
2020), we remove the exploration policy and only execute goal-conditioned policy for the whole reset-free
episode. During imagination training, the goal-conditioned policy is only trained on the evaluation goal
distribution.

MEDAL: We follow the official implementation of MEDAIE and use the deafult setting for experiments.
Since MEDAL requires demonstrations, for tasks from EARL benchmark, demonstrations are provided. For
other environments, we generate demonstrations by executing the final trained MoReFree to collect data. 30
episodes are generated for each task.

R3L: We implement R3L agent by modifying the FBRL agent from MEDAL codebase. The backward policy
is replaced by an exploration policy trained using the random network distillation (RND) objective (Burda
et al., |2018]). The RND implementation we follow is from DI—engineﬂ

Oracle: This is a episodic SAC agent, we use the implementation from MEDAL codebase and keep all the
hyper-parameters unchanged.

MoReFree: Our agent is built on the model-based go-explore method PEG (Hu et al., 2023)), we extend
their codebase by adding back-and-forth goal sampling procedure and training on evaluation initial and goal
states in imagination goal-conditioned policy training. See our codebase in the supplemental.

B.3 Hyperparameters

Train ratio (i.e. Update to Data ratio) is an important hyper-parameter in MBRL. It controls how frequently
the agent is trained. Every n steps, a batch of data is sampled from the replay buffer, the world model is
trained on the batch, and then policies and value functions are trained in imagination. In all our experiments,
we only vary n on different tasks. See the table below for different values on different tasks we used through
experiments. MoReFree also introduces a new parameter «, which we keep o = 0.2 for all tasks and did not
tune it at all. All other hyperparameters we keep the same as the original code base.

%https://github.com/edwhu/mrl
Shttps://github.com/penn-pal-lab/peg
4https://github.com/penn-pal-lab/peg
Shttps://github.com/snu-larr/ibc_official
Shttps://github.com/architsharma97/medal
"https://opendilab.github.io/DI-engine/12_policies/rnd.html

15

https://github.com/edwhu/mrl
https://github.com/penn-pal-lab/peg
https://github.com/penn-pal-lab/peg
https://github.com/snu-larr/ibc_official
https://github.com/architsharma97/medal
https://opendilab.github.io/DI-engine/12_policies/rnd.html

Published in Transactions on Machine Learning Research (02/2025)

Table 2: Different train ratio we used for different tasks. We keep all other hyperparameters the same as
default ones.

PointUMaze 2 | Sawyer Door | 5 Tabletop 1 | Fetch Push | 2
Fetch Pick&Place | 2 | Push (hard) | 2 | Pick&Place (hard) | 2 Ant 2

Different values for a. We examine different values of o in MoReFree on Fetch Push task, which affects
how much MoReFree focuses on task-relevant goals in exploration and imagination. In Figure [§ we see that
introducing a moderate amount of task-relevant goals («=0.2, «=0.5) results in sensible performance, while
too many task-relevant goals (a=0.7, «=1.0) degrades performance. We use the same value of alpha, 0.2,
across all tasks, which showcases MoReFree ’s consistency.

B.4 Results Clarification

In Push and Pick&Place results, we retrieved the final performance of ;4

MEDAL directly from the IBC paper (dashed purple lines) and did not B
have time to run R3L in these two environments. R3L is shown to be a —
lot worse than MEDAL in the MEDAL paper and performs obviously bad
in other tasks shown in Figure 4| In Push (hard) and Pick&Place (hard),
we ran R3L and MEDAL with less budget since other methods clearly

outperform and their learning curves do not show any evidence for going
up.

— a=1.0

0.75

0.50

B.5 Resource Usage
0.25

We submit jobs on a cluster with Nvidia 2080, 3090 and A100 GPUs.
Our model-based experiments take 1-2 days to finish, and the model-free

baselines take half day to one day to run. 00,5 20 35 50
Steps (1e5)
C Method Details Figure 8: Performance of MoRe-

Free with different values of a in
Here, we provide a more in-depth exposition of self-supervised goal-reaching Push (hard).
reward function (Hartikainen et al., |2019)) that is used for training the
goal-conditioned policy, PEG (Hu et al., [2023) that is used for generating exploratory goal distribution, and
P2E (Sekar et al 2020) that is used for training the exploration policy.

C.1 Self-supervised Goal-reaching Reward Function

MoReFree does not require environment reward functions, instead it learns a distance function d,, for training
the goal-conditioned policy. d,, is trained by sampling pairs of states s¢, s;4 from an imagined rollout of the
goal-conditioned policy and predicting the distance k/H, where H is the maximum distance equal to the
imagination horizon. Then the reward is defined as r(s¢, g) = —dw(st,).

C.2 Exploratory Goal Distribution

We use PEG to generate the exploratory goal distribution pg in MoReFree. PEG generates goals that have
high exploration potentials. To evaluate a goal g, the goal-conditioned policy is rolled out for K trajectories
7, within the learned world model. Then the terminal state exploration value for each trajectory with the
learned exploration value function VGE(sé) is estimated, where sk, is the last state of the trajectory 7. Then
the estimates are averaged.

The goal variable g is optimized using model predictive path integral control (MPPI). First, N goal candidates
g are sampled from an initial distribution. These candidates are then evaluated as described above. This
averaged exploration value acts as the “score" for the goal candidate. Once we have scores for each goal

16

Published in Transactions on Machine Learning Research (02/2025)

MoReFree reset-free PEG MEDAL R3L Oracle

0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: XY state visitation heatmap of the mug in Tabletop of various approaches. MoReFree’s heatmap
shows high state diversity while retaining high visitation counts near the task-relevant states (red circles
are goal states, the blue circle is the initial state). reset-free PEG also shows diverse exploration, but it
over-explores the bottom-right corner which is entirely task-irrelevant. IBC’s bi-directional curriculum leads
the exploration shuttles between the initial state and goal states, but fails to explore well. All other methods
fail to explore, visited states mostly cluster in few spots.

candidate, a Gaussian distribution is fit according to the rule:

_ Y@ (gn)
(e V)

e (4)

where v is the reward weight hyperparameter. We then sample candidates from the computed Gaussian, and
repeat the process for multiple iterations. After the last iteration, pg is defined as the computed Gaussian.

C.3 Plan2Explore

The world model 75 consists of the following components:

encoder: e; = ency(x) posterior: qp(s¢|St—1,at—1,€t)

(5)

dynamics: pg(s¢|si—1,at—1) decoder: pg(x¢|st)
The model states s; contain a deterministic component h; and a stochastic component z;.

P2E is the objective we used to train the exploration policy, and it encourages the agent to visit states that
can improve the world model the most. We train an ensemble of 1-step models to predict the next model
state from the current model state:

Ensemble : fse,0%) =28, for k=1..K (6)

Then the exploration reward is the variance of the ensemble predictions averaged across dimension of the
model state, 7(s;) = % >_,, Vargey [f (st 0k)In-

D More Visualizations on Replay Buffer

We visualize the replay buffer of different agents on more tasks. See Figure [9] for XY location of the mug
in Tabletop, Figure [11]| for XY location data of the agent in PointUMaze, Figure [10| for XZ location of the
block in Pick&Place (hard) and Figure [12] for XY location data of the block in Push (hard) and Pick&Place
(hard). Overall, we see MoReFree explores the whole state space better. Meanwhile, due to back-and-forth
procedure, MoReFree collects more data near initial / goal states, which are important for the evaluation.
However, IBC, MEDAL, R3L and Oracle all fail to explore well; their heatmaps are mostly populated with
low visitation cells.

E Detailed Ablations

We report learning curves for each variant agent we ablate in Section [5.3| on every task in Figure Since
MoReFree does not learn at all in Saywer Door task, we exclude the ablation for it. In each task, MoReFree

17

Published in Transactions on Machine Learning Research (02/2025)

MoReFree reset-free PEG IBC R3L Oracle

Figure 10: XZ state visitation heatmap of the block in Pick&Place (hard). States above the red line are in
the air, which are crucial for solving the picking task. Two MBRL methods collect more data diversely in the
air, while other reset-free methods barely pick up the block.

MoReFree MEDAL Oracle

Figure 11: State visitation heatmap on point maze. MoReFree has special focuses on both initial state (blue
circles) corner and goal state (red circles), while explore much uniformly. MEDAL collects lots of data near
the goal state and little data on the initial state. Both MEDAL and Oracle explore less extensively.

IBC

MEDAL Oracle

MEDAL Oracle

Figure 12: Block state visitation heatmap on Fetch Push (left) and Fetch Pick&Place (right) of different
agents. MoReFree better explores the whole state space, while IBC and MEDAL do not have too much
interactions with the block, thus lighted areas are scattered everywhere.

is better or on par with all other ablations. Through learning curves, we see different components contribute
differently on different tasks.

We further analyze the ablation on PointUMaze as an example by visualizing the replay buffer of different
variants, see Figure In the performance on PointUMaze from Figure [13] sampling exploratory goals
for data collection is important (MF w/o Explore & Imag. outperforms other ablations). But we see in
MF w/o Explore & Imag. does not have focus on the initial / goal state which we care about for the
evaluation, which makes it slightly worse than MoReFree. MF with Only Task Goals has a strong preference

18

Published in Transactions on Machine Learning Research (02/2025)

1.00 1.00

0.75

0.50

Z 025

06 202 08 14 20 o 0.5 2.0 35 5.0 0'000.5 20 35 5.0 0‘000‘4 24 44 64

Stepos"(‘leS) Steps (1e5) Steps (1e5) Steps (1e5) Steps (1e5)
PointUMaze Tabletop Push (hard) Pick&Place (hard) Ant

Figure 13: Learning curves of ablation study on 5 tasks. We see different components contribute differently
in different tasks. For instance, in Tabletop, MF w/o Imag. even performs better than MoReFree, maybe
because the whole state space can be explored quickly, then randomly sampling states from the replay buffer
as goals for training already has good coverage on evaluation initial / goal states.

on initial / goal state, we think it is because in the later phase of the training when the agent is able to solve
the task, it goes back-and-forth consistently to collect data. But in the early phase of the training, it might
lack exploration which causes the degraded performance compare with MoReFree. MF w/o Explore and
MF w/o Imag. only either go to initial / goal state for data collection and do not practice on it during the
imagination training, or practice without really going, which both does not form the positive cycle, and end
up with poor performance.

MoReFree (MF) MF w/o Explore & Imag. MF with Only Task Goals

MF w/o Explore MF w/o Imag.

Figure 14: State visitation heatmap on PointUMaze task of all ablations. Red circles are evaluation goal
states and blues are initial states. We see MoReFree collect good amount of data near initial / goal states
while stronger exploration. MF w/o Explore and MF w/o Imag. could not gather task-relative data, which
further causes poor performance.

F MBRL on Sawyer Door

We investigate why two MBRL methods fail on Sawyer Door tasks. Note that MoReFree is able to solve
intermediate goals such as closing the door in some angles, but is unable to solve the original IBC evaluation
goal (see website for more videos).

We simplify Sawyer Door task by limiting the movement range of the robot to a box and also having a
block holds the door to prevent it from opening it too much, see Figure [I5] Although MBRL methods are

19

Published in Transactions on Machine Learning Research (02/2025)

trained on the simplified environment, we see learning curves on Sawyer Door are completely flat in Figure 4]
compared with other baselines trained on the original task. We wonder why MBRL methods can show the
same performance and gain benefits as it does in other environments.

MoReFree and reset-free PEG use DreamerV2 as backbone agents and extend it to reset-free settings. We
hypothesize that Dreamer itself, even under the episodic setting with task reward function, would not work
well. If that’s the case, then MBRL methods in the reset-free setting with self-supervised reward function
would almost certainly not work either. For example, if the backbone agent cannot model the dynamics
precisely, then policy learning, dynamical distance reward learning, will be degraded.

Figure 15: Simplified version of Sawyer Door. Orange walls show the limited workspace for the robot arm,
and a grey wall is added to limit the movement of the door. The door can only move to maximum 60 degrees.

0.5)\
y W
. —— DreamerV2

/ ~——— DreamerV3
g == SAC

3.5 6.5 9.5
Steps (1e5)

0.0
0.5

Figure 16: Performance of DreamerV2 and V3 on episodic Sawyer Door task. SAC can solve the task in 200k
steps, while after 1 million steps MBRL is still not able to steadily solve the task.

We then run the underlying MBRL backbones under the episodic setting. Figure |16|shows DreamerV2 EI, and
Dreamerv3 EI struggle to solve the task, while model-free method SAC can steadily solve the task after 200k
steps. This might be a potential reason that MBRL methods do not work on the more difficult reset-free
setting. We hypothesize that the combination of the sparse environmental reward and dynamics of the door
result in a hard prediction problem for world modelling approaches. We leave further investigation for the
future work.

G More Analysis on Fetch Environments

Although IBC gains good final performance in Push and Pick&Place, it starts learning late compared with
MBRL methods and fails entirely in our harder versions. We suspect IBC might need more computational
budget to start learning in harder tasks. Thus we train IBC with two millions environment steps and results
in Figure[17] show that it still fails to solve the harder version of Push.

8https://github.com/danijar/dreamerv2
9https://github.com/danijar/dreamerv3

20

https://github.com/danijar/dreamerv2
https://github.com/danijar/dreamerv3

Published in Transactions on Machine Learning Research (02/2025)

1.0 1.0 —— MoReFree
/_ — IBC
—— MoReFree
0.5 —— IBC 0.5
9005 55 10.5 15.5 0005 55 10.5 155
Steps (1e5) Steps (1e5)

Push (hard) Pick&Place (hard)

Figure 17: Longer training of IBC in our Fetch tasks, where the state space is larger and artificial constraints
are replaced with surrounded walls. IBC still can not learn meaningful behaviors.

Push Push (hard)

Figure 18: XY location of the block collected by IBC on Push (hard) and its original version (Push). IBC
covers the whole state space very well in Push while fails in Push (hard), where the block stays for long time
in corners or areas next to walls.

Figure |18 shows 600k data of the obejct (XY view) collected by IBC on our Push (hard) and IBC’s Push.
We see the block stays in corners or next to walls a lot in Push (hard), while goes everywhere and covers the
whole space in IBC’s Push, indicating object interaction is more difficult in Push (hard) due to the larger
state space, surrounded walls and limited work space. In IBC’s Push, the block can bounce back when it hits
the limit of joint constraints. However, in Push (hard), the block needs to be explicitly brought back from
the corner or walls, requiring more sophisticated behaviors. Meanwhile, larger size of the limited area (our
version is 3x larger than IBC’s.) also increases the difficulty of the task.

H Analysis on R3L

R3L trains two policies, one for reaching the goal and another that brings the agent to novel states. The
goal-reaching policy is trained using a learned classifier to classify the goal state and other states. Original
R3L takes images as inputs, thus the trained classifier can successfully classify goal images from random
state images. In our work, we use low-dimensional state input. Outputs of the trained classifier on the whole
state space of PointUMaze is shown in Figure [I9] We see that the classifier learns to output higher values
for states close to the goal state (red dot) and lower values for states further away. Nonetheless, due to the
smoothness of the output scope, states near the initial state (blue circle) that are numerically closer but
spatially further to the goal state also have higher values. R3L agent trained using such reward function will
always tend to follow states with higher values to the corner instead of going forward. See the website for
more videos. These trained reward functions are misleading for learning reasonable policies which result in
poor performance we see in Figure E[

21

Published in Transactions on Machine Learning Research (02/2025)

Figure 19: Outputs of the learned classifier on the whole state space. Due to the smoothness of the output
scope, states near the initial state (blue circle) also have higher values.

22

	Introduction
	Related Work
	Preliminaries
	Reset-free RL
	Model-based RL setup

	Method
	Back-and-Forth Go-Explore
	Learning to Achieve Relevant Goals in Imagination
	Implementation Details

	Experiments
	Results
	Analysis
	Ablations

	Conclusion and Future Work
	Broader Impacts
	Experimental Details
	Environments
	Baseline Implementations
	Hyperparameters
	Results Clarification
	Resource Usage

	Method Details
	Self-supervised Goal-reaching Reward Function
	Exploratory Goal Distribution
	Plan2Explore

	More Visualizations on Replay Buffer
	Detailed Ablations
	MBRL on Sawyer Door
	More Analysis on Fetch Environments
	Analysis on R3L

