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Abstract

Information diffusion prediction, which aims to forecast the future infected users
during the information spreading process on social platforms, is a challenging and
critical task for public opinion analysis. With the development of social platforms,
mass communication has become increasingly widespread. However, most existing
methods based on GNNs and sequence models mainly focus on structural and
temporal patterns in social networks, suffering from spurious diffusion connections
and insufficient information for diffusion analysis. We leverage the strong reasoning
capabilities of LLMs and develop an LLM-based causal framework for diffusion
influence derivation, named MILD. By comprehensively integrating four key
factors of social diffusion—i.e., connections, active timelines, user profiles, and
comments—MILD causally infers authentic diffusion links to construct a diffusion
influence graph, GI . To validate the quality and reliability of our constructed graph
GI , we propose a newly designed set of evaluation metrics for diffusion prediction.
In experiments, MILD provides a reliable information diffusion structure that
achieves an absolute improvement of 12% over the social network structure and
achieves state-of-the-art performance in diffusion prediction. MILD is expected to
contribute to higher-quality, more explainable, and more trustworthy public opinion
analysis. The code and data are available at: https://github.com/Shang-hub/
MILD-Official-Implementation.

1 Introduction

Information diffusion on social platforms (e.g., TikTok and Instagram) is characterized by a broad
reach and intricate, multifaceted pathways, leading to the formation of numerous diffusion cascades.
Information diffusion prediction aims to forecast the future participants of cascades, which is crucial
for tracing information flow dynamics and quantifying user influence, benefiting downstream appli-
cations such as social recommendation systems [21, 8, 15] and public opinion analysis [12, 13, 20].
Therefore, it is fundamentally important to achieve accurate information diffusion prediction, relying
on effectively modeling complex user interactions and influences.

Several learning-based approaches have emerged for predicting information diffusion. Initial efforts
focus on modeling the sequential nature of diffusion events, primarily employing Recurrent Neural
Networks (RNNs) or Transformer architectures to capture temporal influence patterns within observed
cascades [11, 31, 32, 33, 35]. More recently, Graph Neural Networks (GNNs) have proven highly
effective for graph data, leading to hybrid frameworks that combine GNNs with sequential models to
capture both global social network structure and local diffusion dynamics [5, 23, 28, 29, 37, 41]. For
instance, methods like MS-HGAT [28] and DisenIDP [3] utilize hypergraph networks to capture user
interactions and employ self-attention to model diffusion influence. However, this “GNN+Sequence
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Figure 1: Overview of diffusion influence derivation in the proposed MILD framework.

model” paradigm has limitations in explicitly identifying key influences, which makes it hard to
answer a fundamental question: who influences one to participate in the information diffusion?

In this paper, we propose a novel model of LLM-based diffusion influence derivation (MILD), which
aims at tackling the fundamentally key question of who-influences-whom using causal derivation.
In particular, MILD contains two derivations: explicitly deriving who-influences-whom diffusion
connections in the form of a digraph GI to represent the cascade, and utilizing the obtained diffusion
influence graph GI to enhance diffusion prediction. We lay the foundation with a key observation:
there is an imbalanced diffusion ability for different social actors within cascades. Some are hub
influencers, who can activate many inactive actors. But, some are minor influencers, even influencees
(i.e., influenced users). For instance, a new participant in a diffusion process is likely to be influenced
by close friends or opinion leaders, while unrelated influencees have no diffusion-influencing ability
on her/him. However, existing models cannot explicitly capture who-influences-whom connec-
tions within a cascade, which blindly takes all participants in a cascade as potential influencers.
Furthermore, we have conducted experimental studies to validate this observation in Section 4.3.

For diffusion influence deriving, as the authentic diffusion process is unknown, unexplainable, and
non-transparent, it becomes challenging. Leveraging strong reasoning capabilities, MILD employs
the LLM like a sociology expert at a high level to comprehensively analyze four key diffusion
influencing factors to derive who-influences-whom pairs, as shown in Figure 1. MILD extracts four
key factors of social relationships, active timestamps, user profiles, and comments. Integrating these
key factors, MILD finally derives a diffusion influence graph GI to represent the cascade diffusion.
To discover effective pathways for GI construction, we relax the formulated NP-hard problem and
develop fast heuristic strategies to find potential diffusion pathways in polynomial time.

Additionally, we propose a well-designed set of evaluation metrics to verify the reliability of diffusion
influence graph GI , which aims at capturing real key diffusion pathways. To reveal that social
relationship significantly differs from the information diffusion, we conduct a comparison analysis
visually and quantitatively to show the differences between our GI and social relationships in
Section 3.3. We found that GI is more reliable and effective, representing 12% more real-world
diffusion pathways and 28% more key interactions compared with the social network.

Finally, we integrate the diffusion influence graph GI to enhance the performance on the diffusion
prediction task and empirically demonstrate the effectiveness of MILD on two real-world datasets
with diffusion benchmarks. Extensive experiments validate the superiority of MILD against eight
state-of-the-art competitors [37, 28, 3, 23, 14, 5, 29, 41], by achieving ~7% improvement on average.

2 Preliminaries

The social network G = (V,E,O) is a directed graph, where V is the set of users, E ⊆ V × V
is the set of directed social relations (e.g., follower–followee), and O = {oi | vi ∈ V } is the set
of user profiles, with each oi contains attributes such as follower count, bi-follower count, and
status count, etc. An information diffusion cascade on social network G is an ordered sequence
C = ((v1, t1, b1), . . . , (vk, tk, bk)), where vi ∈ V and vi ̸= vj for all i ̸= j; t1 ≤ · · · ≤ tk are
the absolute timestamps at which users become active; bi denotes the behavior of user vi (e.g., like,
comment, share). |C| denotes the cascade length and |C| denotes the total number of cascades. Note
that throughout this paper, all mentioned paths are simple paths without loops.

Given a cascadeC and the social networkG, the objective of MILD is to derive the diffusion influence
graph GI to represent the diffusion process based on four extracted key factors {ψ, T,O,B} to
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enhance performances on diffusion prediction, where ψ denotes potential diffusion paths derived
from social networks, T denotes the temporal order of participants based on their active time, O
denotes the influence and activity levels of users derived from profiles, and B denotes the comments.

Diffusion influence graph. The diffusion influence graph is a digraph GI = (VI , EI), where
VI ⊆ V is the set of cascade participants (|VI | = |C| = k), and EI represents potential influence
relationships. We represent the (binary) influence matrix of GI as AI ∈ {0, 1}k×k, where AI

ij = 1
represent vi influences vj , i.e., (vi → vj) ∈ EI , otherwise 0.

Problem formulation of diffusion prediction. Given an observed cascade C with k ∈ Z+ existing
participants, and an influence matrix AI , the problem of diffusion prediction is to find γ ∈ Z+ users
as the candidate participants Topγ(V ) in future. Specifically, Topγ(V ) = {v ∈ V : fθ(v | AI) ≥
fθ(u | AI),∀u ∈ V \Topγ(V )} and |Topγ(V )| = γ, where fθ(·) is a learned scoring function over
all users in the social network G and θ denotes the parameter of the learning model.

3 Methodology

This section introduces a causal framework to enhance accurate diffusion prediction. Section 3.1
introduces a causal view C→Z→Y , emphasizing the necessity of explicit key influence representa-
tion Z. Section 3.2 outlines the method for prompting LLMs to infer a who-influences-whom graph,
converting each cascade C into a structured diffusion influence digraph Z. Section 3.3 proposes three
evaluation metrics and a comparison analysis to assess the reliability and consistency of the derived
Z. Section 3.4 integrates the LLM-derived diffusion influence Z into a downstream predictor Y ,
explicitly highlighting key influences to enhance prediction in practice.

3.1 Causal View on Information Diffusion
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Figure 2: SCM.

To better understand the limitations of existing information diffusion prediction
methods, we take a causal view of P (Y |C) and construct a structural causal model
(SCM) [22] in Figure 2(a). It describes the causalities among three variables, i.e.,
the information diffusion cascade C, spurious and incomplete diffusion pathways
U , and the diffusion prediction label Y . Specifically: (1) C → Y describes
that existing works predict the next participant Y by learning from the observed
historical cascade C; (2) C ← U → Y shows the dependence between C and Y
induced by the spurious and incomplete diffusion process U . To formulate the
true causal relationship between C and Y , we employ the back-door adjustment
to estimate P (Y |do(C)) as follows. The detailed analysis is in Appendix C.1.

P (Y |do(C)) =
∑
u∈U

P (U = u)P (Y |C = c, U = u), (1)

where u denotes a specific spurious diffusion process of U . In Eq. 1, we observe that P (Y |do(C))
comprises spurious diffusion directions, which may lead to incorrect decisions.

In this paper, we add an intermediate variable Z between C and Y , as the representation of the
diffusion influence shown in Figure 2(b), satisfying the Front-door Adjustment. In our SCM,
C → Z → Y shows that the diffusion influence Z is derived from the cascade C. Then, MILD
employs Z as the explicit diffusion cascade representation to make an accurate diffusion prediction
label Y . Based on the detailed analysis in Appendix C.2, we can formulate our model by chaining
together the two partial effects and summing over all states z of Z as follows:

P (Y |do(C)) =
∑
z∈Z

∑
c∈C′

P (Y |Z,C ′)P (C ′)P (Z|C), (2)

where C ′ contains all observed cascade sequences in the training data, and z denotes a specific
diffusion influence matrix in Z. In Eq. 2, we can observe that when MILD captures the diffusion
influence as closely as possible to the real-world one, we can achieve accurate prediction results.
Therefore, MILD contains two parts: deriving explicit diffusion influence from the cascade (C → Z),
and making diffusion prediction based on the derived diffusion influence (Z → Y ).
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Figure 3: The proposed MILD framework. (1) C → Z: To capture Z, we construct four essential
diffusion influencing factors for the LLM to understand and infer the diffusion process, which are
social relationships ψ, temporal order T , user profiles O, and shared comments B. LLM-derived
diffusion influence subgraphs are merged by aligning shared nodes and edges to form the final
diffusion influence graph Z. (2) Z → Y : A crafted cascade module integrates the structured diffusion
influence graph GI into the predictor, which can explicitly highlight key influences.

3.2 Diffusion Influence Deriving: C → Z

In this part, we introduce our MILD to explicitly identify and extract the diffusion process of cascade
C into a structured diffusion influence graph GI as the intermediate variable Z, making the diffusion
process transparent and explainable, as shown in Figure 3.

Given the current limitations of LLMs in reasoning about and structurally comprehending di-
graphs [26, 27, 10, 19, 30, 39], we propose constructing potential diffusion paths to represent
social relationships, thereby enhancing the LLM’s understanding of social diffusion patterns. Specifi-
cally, for a given cascade sequence C and social network G, we first extract the induced subgraph
consisting of all participants in C, forming the cascade graph GC = (VC , EC). Here, VC represents
the set of cascade participants, and EC represents their social links within G. Subsequently, we
transform the cascade graph GC into a set of potential diffusion paths, denoted as Ψ. We define this
process as the Diffusion Path Search problem. Its objective is to obtain a diverse and high-quality set
of paths Ψ suitable for LLM analysis.

Definition 1: [Diffusion path search problem] Given a cascade graph GC = (VC , EC) with one
unique root v1, the problem returns a collection of path structures Ψ ⊆ GC by satisfying the following
three constraints: (D1) all paths ψ ∈ Ψ start from the unique root v1; (D2) VΨ covers all nodes in
VC ; and (D3) Ψ contains all possible paths between v1 and v ∈ {vi|dist(v1, vi) ≥ ℓ}.

Theorem 1: The diffusion path search problem is NP-hard.

The detailed proof of Theorem 1 is shown in Appendix C. Given the NP-hardness of this problem, we
propose a heuristic alternative algorithm based on the combination of Breadth First Search (BFS) and
Depth First Search (DFS). This algorithm balances diffusion consistency (long, deep paths) against
diffusion coverage (short, shallow paths). First, we conduct the single-source BFS algorithm with
the original participant v1 as the single source in O(|VC |+ |EC |) time. The algorithm returns the
BFS tree TBFS composed of shortest paths between v1 and v ∈ VC , satisfying (D1) and (D2). In
TBFS, longer shortest paths signify greater social distance between participants, typically involving
more complex information diffusion routes. In contrast, shorter paths indicate closer social distance
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and simpler diffusion routes. Based on this analysis, for each long shortest path in TBFS, we select
its source s and target τ , and then search all simple paths between s and τ in GC using the DFS
algorithm, satisfying (D3). However, in the complete graph of order n, all simple paths can be
found in O(n!) time. Considering efficiency, we design a strict constraint on the density of GC
(details in Appendix B.3). If the density is less than r, we search all simple paths between s and τ
in O(|VC |drmax) time, where dmax denotes the maximum out-degree in GC . Otherwise, we search
all shortest paths between s and τ in O(|VC ||EC |) time. We iterate this process for each long
shortest path in TBFS. Meanwhile, we preserve short paths in TBFS that exclude the target from long
paths for (D2). Since O(|VC | + |EC |) ⊆ O(|VC |drmax + |VC ||EC |), the total time complexity is
O(|VC |drmax+ |VC ||EC |). Therefore, the algorithm can effectively search diffusion paths that satisfy
(D1), (D2), and (D3) in polynomial time O(|VC |drmax + |VC ||EC |).
Building on the preceding analysis, we design four critical factors for analyzing diffusion influence.
First, the potential diffusion pathway set Ψ represents social relationships. Second, the temporal order
T , which tracks the time of participant comments or shares, reflects the order of their involvement.
Third, user influence and activity levels O, which are estimated under the guidance of communication
theories from user profiles [2, 7, 4]. The detailed calculation process can be found in Appendix B.2.
We assign a specific level for each estimation, i.e., 0–20%: poor, 20%–40%: low, 40%–80%:
moderate, 80%–95%: high, 95%–100%: outstanding. Lastly, the comment contents shared by
participants B. We perform key sentence extraction on B based on the TextRank algorithm [16] to
mitigate the limitations of input length in language models and enhance key semantics in B.

Diffusion influence deriving. We design the prompt to instruct the LLM to analyze the diffusion
influence between users within each cascade. The potential diffusion path ψ ∈ Ψ, temporal order T ,
descriptions of user influence and activity levels O, and comments B are integrated into the designed
template Φ(·), forming prompts Φ(ψ, T,O,B) to provide sufficient information for analysis. To
guarantee the reliability of the derivation, we add basic principles of information diffusion to the
design of the instruction. For instance, later participants do not influence earlier participants. The
detailed prompt can be found in Appendix Figure 14. Then, we feed instructions and prompts into
the LLM to derive diffusion influence in the form of user-pair lists denoted as [[vi, vj ], ...], where vi
conveys the information to vj and influences vj to participate in this cascade.

Out-of-the-box diffusion influence representation. For each potential diffusion path, the LLM
infers critical diffusion influences within paths, namely [[vi, vj ], ...], which form a directed influence
subgraph G̃I . As each cascade contains multiple diffusion paths, a single cascade corresponds to
a set of several influence subgraphs {G̃I}. We then merge {G̃I} into a unified diffusion influence
graph GI by aligning shared nodes and edges across these subgraphs, as shown in Figure 3. In GI ,
each node represents one participant in the corresponding cascade, and each directed edge ⟨vi, vj⟩
signifies that user vj engages in the cascade under the influence of user vi. Thus, GI represents the
transparent and explainable diffusion process and functions as the intermediate variable Z.

3.3 Measurements of Diffusion Influence GI

To evaluate the reliability and consistency of GI derived from MILD, we carefully design quantitative
measures: (E1) Diffusion pathways evaluation assesses whether GI can accurately capture the real-
world information diffusion routes. (E2) Key interaction evaluation examines whether GI observes
participant interactions within cascades. (E3) Robustness evaluation assesses whether MILD
can distinguish real and fake diffusion pathways under the interference of misleading instructions,
ensuring consistent and reliable responses. (E4) Comparison of GI and GC analyzes the role of
social relationships in the diffusion process. Our findings are as follows:

1. The social network fails to effectively capture the real-world diffusion process compared to
our GI . Although it can establish the necessary social relationships to represent partial diffusion
connections, it can scarcely capture key and implicit diffusion connections. (E1&E2)

2. Multiple diverse diffusion pathways can enhance MILD’s inference ability in diffusion
influence derivation compared to shortest relationships, indicating that the diffusion process is
complex and cannot solely depend on the closest social relationships. (E1&E2)

3. Temporal order is critical for analyzing the diffusion process. (E1&E2)
4. MILD can distinguish real and fake diffusion processes under the interference of misleading

instructions and generate consistent results of diffusion influence analysis. (E3)
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Figure 4: Reliability evaluation of GI . Figure 5: Comparison of GI and GC .

5. The forming process of social relationships differs from the diffusion process, although social
relationships are significant for MILD in analyzing the diffusion process. (E4)

(E1) Diffusion pathways evaluation. In real-world data, diffusion pathways often appear in reply
chains, in the form of {A : [comment]@B : [comment]@C : [comment]}, where @ indicates the
reply and share behavior during the diffusion process. Thus, we can extract these real-world diffusion
pathways as the ground truth, such as C conveying the information to B, who then passed it on to
A, formulated as [[C, B], [B, A]]. Then, we evaluate GI based on our extracted ground-truth Ggt.
Considering the scarcity and absence of reply comments in the dataset, we design the following
evaluation method: (1) for each cascade, we evaluate GI and Ggt once; (2) calculate the number of
intersecting directed edges between GI and Ggt; (3) calculate the proportion of the intersection set in
Ggt and then average the overall results, which can be formulated as follows.

Accuracy =
1

|Ggt|
∑

Ggt∈Ggt

|E(Gi) ∩ E(Ggt)|
|E(Ggt)|

, (3)

where E(·) denotes the edge set of the given graph and |Ggt| denotes the number of Ggt in the
total set Ggt. To verify the effectiveness of our method, we compare it with three representations
of diffusion influence: (1) the original social network, (2) our method with the shortest potential
diffusion paths, and (3) our method without temporal order. As shown in Figure 5(a), the social
network fails to accurately capture the real-world diffusion process. Furthermore, diverse potential
diffusion pathways and temporal order are critical and can provide necessary information for MILD
to analyze the diffusion process.

(E2) Key interaction evaluation. As the well-known communication theory, the Strength of Weak
Ties [7] posits that “the strength of any tie is a function of the frequency and duration of interaction,”
we assess whether GI can observe the key interactions among participants. We regard high-frequency
interactions as key interactions. To ensure fairness in evaluation and avoid information leakage, we
split the dataset by the cascade initiation time in an 8:2 ratio. We assess whether our method can
observe key interactions in the 20% of newly occurred cascades based on the interactions in the 80%
of historical cascades. The evaluation metric and baselines are the same as in the diffusion pathways
evaluation. As shown in Figure 5(b), compared to the other representations, we find that GI more
effectively captures strong ties and key interactions among participants in new cascades.

(E3) Robustness evaluation. To evaluate whether MILD can distinguish real and fake diffusion
paths, we construct pairs of such paths and intentionally mislead the LLM to assume that all paths are
real to analyze the influence strength. Initially, for each cascade, we generate multiple fake diffusion
paths by retaining the same source and target nodes as the real paths, but randomly replacing the
intermediate nodes with unrelated participants. We then mix all paths and prompt MILD to analyze
the pair-wise influence strength within these “real” diffusion paths as P (vi|vi−1) ∈ [0, 1], where vi−1

is the predecessor of vi in the path ψ. We calculate the path influence strength P (ψ) and the margin
difference between real and fake diffusion paths. The path influence strength of the true path ψ is
denoted as Ptrue(ψ). Similarly, the influence strength of a fake path ψ′ is Pfake(ψ′).

P (ψ) =

n∏
i=2

P (vi|vi−1, ..., v1)P (v1) =

n∏
i=2

P (vi|vi−1)P (v1), (4)
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marginC =
1

|Ψreal|
∑

ψ∈Ψreal

Ptrue(ψ)−
1

|Ψfake|
∑

ψ′∈Ψfake

Pfake(ψ
′), Ψreal,Ψfake ⊆ C, (5)

Based on the calculation, we introduce the Correct Distinguishing Rate (CDR), which assesses
instances where the margin difference exceeds a specified threshold δ.

f(marginC) =

{
1 if marginC > δ
0 if marginC ≤ δ

, CDR =

∑
C∈C

f(marginC)

|C|
. (6)

Figure 6: Robustness evaluation.

Detailed proof is provided in Appendix C.8. We adjust the thresh-
old δ of marginCi

from 2% to 14% to observe MILD’s ability
to distinguish, as depicted in Figure 6. Our findings indicate that
MILD can effectively distinguish real and fake diffusion paths
with a margin, even under the interference of misleading instruc-
tions, showing strong robustness. The results consistently show
that real paths have a greater diffusion influence strength than
fake paths. Even with a δ value of 10%, the CDR remains around
0.8 across two datasets. The detailed prompt is in Figure 16.

(E4) Comparison of GI and GC . We quantify the differences
between our diffusion influence graph GI and the social rela-
tionship graph GC , analyzing the role of social relationships in
the diffusion process. For each cascade, we calculate the cosine
distance as the difference between GI and GC . AI ∈ Rk×k and AC ∈ Rk×k are the adjacency
matrices of GI and GC , respectively, where k denotes the number of participants in the cascade. The
detailed calculation process is below.

vI = flatten(AI) ∈ Rk×k, vC = flatten(AC) ∈ Rk×k, (7)

dis(AI ,AC) = 1− vI · vC

∥vI∥ · ∥vC∥
. (8)

We calculate the matrix distances of all cascades in Figure 5. The range of dis(AI ,AC) is [0, 1].
The gray line separates close- and far-distance samples. The red line represents the average distance
between GI and GC . The results indicate that GI and GC are relevant, as more samples fall in the
close area. However, most GI structures differ from those of GC , with a 0.35 distance on average.
Our findings suggest that although social relationships are a key factor in the diffusion process, the
way these relationships are structured differs from the diffusion process itself.

3.4 Diffusion Prediction: Z → Y

To empirically verify the effectiveness, we further evaluate GI via the downstream prediction task.
Following common workflows [23, 28, 29, 41], we use a two-phase paradigm. First, following [6],
we employ the subgraph-centric encoder to learn the social network G. Second, a crafted attention
module captures the diffusion cascades. Specifically, we aim to harness an LLM-derived diffusion
influence graph GI as an explicit structured intermediate representation Z for each cascade C. A key
design principle is the controlled exclusion of raw contextual features (e.g., user profile attributes
or full-text embeddings) from the downstream predictor. This ensures that any gains in prediction
accuracy can be attributed solely to the structured diffusion influence information encoded within
GI , rather than to auxiliary side information. Formally, we inject the adjacency matrix AI of GI
directly into the self-attention computation. Given participant embeddings Hk ∈ Rk×d, we calculate

Q = HkW
Q, K = HkW

K , V = HkW
V , (9)

Attn(Q,K,V) = softmax
(

QK⊤
√
d′

+M+ αAI
)
V. (10)

where WQ,WK ,WV ∈ Rd×d are learnable projections, d′ := d/B with B attention heads, and
M ∈ {0,−∞}k×k enforces causality by masking future positions. The scalar α is a temperature
factor that calibrates the influence graph’s impact on attention scores. Subsequently, the multi-head
outputs are concatenated and processed by a position-wise feed-forward network to yield the final
cascade representation Hc, which is distilled solely from GI for downstream prediction tasks.
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Table 2: Performance of information diffusion prediction (averaged from 5 runs). Higher scores are
better. Corresponding standard deviations (±) are provided in the Appendix A.3.

Datasets News Weibo
Metrics H@10 H@50 H@100 M@10 M@50 M@100 H@10 H@50 H@100 M@10 M@50 M@100

DyHGCN [37] 18.94 24.50 27.31 10.50 10.76 10.80 10.51 15.39 18.50 6.01 6.23 6.27
MSHGAT [28] 20.10 25.82 28.85 11.68 11.95 11.99 11.41 18.34 21.77 6.16 6.48 6.53
DisenIDP [3] 20.47 26.33 29.08 12.03 12.29 12.36 12.04 18.83 22.61 6.73 7.01 7.06
RotDiff [23] 20.95 27.02 29.80 12.52 12.80 12.84 12.99 20.46 24.70 7.76 8.12 8.18
MINDS [14] 20.04 25.66 28.70 11.72 11.93 11.98 11.69 18.07 21.66 6.24 6.51 6.57
MGCL [5] 21.26 28.11 31.93 12.90 13.18 13.24 13.04 20.18 24.75 7.60 7.99 8.03

GODEN [29] 22.01 29.14 33.17 13.34 13.67 13.73 14.08 21.95 26.71 8.09 8.28 8.52
CARE [41] 22.47 28.71 32.01 14.53 14.81 14.85 13.35 21.96 26.62 7.65 8.05 8.11

MILD (Ours) 24.07 31.33 35.52 15.50 15.85 15.91 14.71 23.37 28.17 8.71 9.10 9.17
Improvement (%) +7.12 +7.52 +7.08 +6.67 +5.19 +7.14 +4.47 +6.42 +5.47 +7.66 +9.89 +7.63

4 Experiments

Table 1: Statistics of the used datasets.

Datasets News Weibo

# Users 10,255 31,061
# Edges 83,959 294,577
# Cascades 1,291 1,910
Avg Len. 63.45 175.46

Datasets. We mainly evaluate the performance on two real-
world datasets, News and Weibo, including the social network
structure, detailed user profiles, and information diffusion
cascades. In particular, a cascade contains participant IDs
with specific participation behavior, timestamps, associated
comments, and the original post. Following general settings,
we split the cascades in an 8:1:1 ratio for training, validation,
and testing in the order of post time. Additionally, we further
conduct empirical analysis to support our motivations on four
widely used datasets: Twitter [9], Douban [40], Android [24], and Christianity [24]. Owing to the
absence of textual data (participation behavior, user profiles, the original post, and comments) for
LLM reasoning, we only use them for motivation analysis in Appendix A.2.

Competitors. We evaluate the proposed MILD against eight state-of-the-art models for information
diffusion prediction: DyHGCN [37], MS-HGAT [28], DisenIDP [3], RotDiff [23], MINDS [14],
MGCL [5], GODEN [29], and CARE [41]. Generally, these methods adopt a two-phase framework—
“Graph + Cascade”—that employs GNNs to learn various user relations, and then uses RNNs or
Self-Attention to learn sequential cascades. Following standard settings [5, 29, 41], we use Hit
rate (Hits@K) and Mean Average Precision (MAP@K) to evaluate the performance of information
diffusion prediction. For comprehensive evaluation, we report the results at K ∈ {10, 50, 100}. We
provide more details of competitors and metrics in Appendix D.2 and D.3.

Implementation Details. In the diffusion path search algorithm, we impose the graph-density
constraint r = 1.5 for efficiency. For LLM inference, we use GPT-4o with the temperature set to 0
and top_k set to 1 to ensure the reproducibility of GI , leaving all other parameters at their default
values. For the diffusion predictor, model weights are optimized with AdamW at a learning rate
of 1e-3. The number of GAT layers is 1, and the number of attention heads is 6. α defaults to
1. Some hyperparameters are analyzed in Appendix A.1. We train with mini-batches of size 32,
using 256-dimensional embeddings, for up to 50 epochs. All baselines are re-evaluated under their
original published settings, with a uniform maximum cascade length of 200 for fair comparison. All
experiments are conducted on 2 NVIDIA RTX V100 (32 GB) GPUs.

4.1 Diffusion Prediction

Table 2 demonstrates that our MILD significantly outperforms eight state-of-the-art baselines on
two real-world information diffusion prediction datasets, achieving average improvements of 6.3%
on Hits@K and 7.4% on MAP@K. Unlike leading methods such as CARE and GODEN, which
model social network structure and temporal sequences to implicitly capture patterns, MILD’s core
distinction is the explicit modeling and integration of a structured diffusion influence graph
derived using LLMs. This directly represents the underlying dynamics driving user participation, a
factor often lacking explicit capture in prior work. These improvements underscore two key insights:
(1) LLMs can discern causal influence patterns beyond surface-level statistics; and (2) integrating
this influence structure enhances the cascade learner’s power by focusing on critical transmission
links. Crucially, these gains are achieved without using additional raw contextual data as direct input
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Table 3: Ablation studies on information diffusion prediction.

Datasets News Weibo
Metrics H@10 H@50 H@100 M@10 M@50 M@100 H@10 H@50 H@100 M@10 M@50 M@100

w/o Path Selection 23.14 29.20 33.72 14.53 14.76 14.82 14.33 21.96 27.15 8.44 8.82 8.87
w/o Post Content 23.72 29.98 33.65 14.90 15.21 15.24 14.58 22.87 27.64 8.51 8.96 9.02

w/o Time Information 23.16 30.08 33.97 14.77 14.83 14.89 14.36 22.15 26.83 8.49 8.84 8.89
w/o User Profile 23.77 30.73 34.62 14.96 15.24 15.28 14.52 22.81 27.46 8.52 8.90 8.93

w Social bias 22.92 27.64 31.35 14.68 14.75 14.90 14.33 22.12 26.64 8.45 8.77 8.96
w/o Influence bias 21.81 27.52 30.62 14.03 14.31 14.35 14.08 21.98 26.21 8.26 8.62 8.68

Full Model 24.07 31.33 35.52 15.50 15.85 15.91 14.71 23.37 28.17 8.71 9.10 9.17
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Figure 7: Stability across different LLMs.
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Figure 8: Runtime of our heuristic algorithm.

for the prediction task. This controlled setting rigorously validates that the predictive power stems
directly from the structured diffusion influence representations extracted by our LLM. These findings
highlight the value of explicit influence modeling in diffusion and the insights of LLMs.

4.2 Ablation Study

To investigate the contributions of MILD’s components, particularly LLM-based influence identi-
fication and its subsequent integration, we conduct comprehensive ablation studies in Table 3. (1)
Ablation on Four Key Factors: We first ablate the four key factors used by the LLM to identify the
diffusion influence graph. Removing any single factor—w/o Structure, w/o Post Content, w/o Time
Information, or w/o User Profile—consistently degrades performance, which verifies their necessity
in the diffusion influence analysis. The largest performance drop, seen in w/o Structure, highlights the
significance of our novel algorithm of potential diffusion pathways. (2) Ablation on GI : We evaluate
whether GI effectively enhances diffusion prediction performance and more accurately represents
the diffusion process than social networks. The w/o Influence bias variant (removing influence graph
integration) results in a significant performance drop, validating the necessity of explicit influence
modeling GI . The w Social bias variant (using simple social adjacency instead of our GI ) shows
only marginal improvement over w/o Influence bias. This significant gap between w Social bias and
MILD convincingly proves that GI can more accurately represent the diffusion process than social
networks, and truly capture the nuanced influence relationships to enhance prediction performance.

MILD across Different LLMs. To evaluate the adaptability of MILD across a diverse range of
LLMs, we measure performance on six advanced models: Gemini 2.5, Claude 4, LLaMA 3, Qwen
3, Qwen-Turbo, and DeepSeek R1. As illustrated in Figure 7, MILD exhibits consistently strong
performance across all variants, indicating stable behavior under changes in the underlying LLM.

Efficiency Evaluation of our Heuristic Algorithm. We evaluate the computational efficiency of our
heuristic algorithm on a range of graphs with varying scales and densities. As shown in Figure 8, our
heuristic solution demonstrates strong efficiency, achieving a time cost of 0.0334 seconds per cascade,
even on large-scale, dense graphs comprising millions of nodes and an average degree of 120.

4.3 Empirical Analysis on Influence

Influence Intervention. To validate the existence of spurious influences in cascades, we conduct
Influence Intervention experiments. Self-attention mechanisms are widely adopted to capture inter-
node influence [28, 29, 37]. We randomly mask k% of the self-attention weights (setting the masked
Q_K values to −∞) and observe the results. Interestingly, Figure 9 shows that randomly masking
some influences does not critically impair performance—it even performs better than full attention
when less than 15% are masked, indicating the presence of numerous spurious diffusion influences.
Therefore, accurately identifying key influences is crucial for enhancing prediction performance.
This observation is also evident on the widely used benchmark datasets (see Appendix A.2).
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Figure 9: Influence intervention. Figure 10: Attention visualization.

Attention Visualization. To better understand the role of GI , we further visualize the Q_K attention
matrix for a case from the Weibo dataset (Appendix A.2 provides more cases). As shown in Figure 10,
the left shows self-attention, and the right shows our MILD with influence bias. Furthermore,
we also compute the variance of attention weights to provide a quantitative assessment. Both the
visual patterns and the increased variance indicate that our proposed MILD effectively amplifies key
diffusion influences, leading to the significant performance gains in diffusion prediction.

5 Related Work

Information diffusion on social media reflects how users influence one another and propagate opinions
across a network. Information Diffusion Prediction aims to identify which users will be “infected” by
a piece of content, given observed diffusion cascades and the social graph [34, 8, 18, 13]. Recent
approaches typically combine GNNs with sequence models to capture, respectively, the social network
structure and the temporal ordering within cascades [36, 37, 28, 23, 3, 5, 29, 41, 25]. Concretely,
GNNs are often used to learn homophilous ties—reflecting that friends often share interests—while
sequence models, such as RNNs or self-attention, encode the dependencies among users within a
specific cascade. For example, GODEN [29] employs an ODE-based GNN to track dynamic user
relations before applying self-attention to model the cascade sequence. CARE [41] uses a GAT to
embed the social graph, and then applies a Transformer for cascade modeling enhanced by retrieved
in-context historical cascades to enrich current predictions. However, despite their effectiveness
in modeling structure and sequence, these methods often face significant challenges in explicitly
distinguishing the nuanced influence mechanisms driving user participation in a diffusion process.
Furthermore, a common constraint across existing works is relying solely on network structure and
basic cascade metadata (user IDs and timestamps). They largely overlook richer contextual signals,
such as detailed user profiles, post content, and interaction metadata. In this work, we introduce
two new datasets featuring such rich contextual information. Leveraging these datasets, we propose
MILD, a framework that explicitly exploits and understands the diverse diffusion influences, enabling
more explainable prediction and significant performance improvements.

6 Conclusion and Future Work

We propose MILD, a novel diffusion influence inference framework that builds on four diffusion
influencing factors and guides LLMs to comprehend and infer the authentic diffusion process, thereby
improving diffusion prediction performance. We show that MILD provides a reliable diffusion
process analysis that achieves 12% absolute improvement over the social network structures. We
conduct extensive experiments on large-scale real-world datasets and verify the effectiveness of
MILD. This diffusion influence analysis further contributes to better and more explainable public
opinion analysis.

Limitations. This work is limited by the availability of accessible real-world datasets composed
of user profiles, social network structure, and diffusion dynamics. Due to privacy concerns and
government regulations, accessing extensive social and public opinion data has become increasingly
challenging. Recognizing the necessity of such datasets, we are dedicated to addressing this limitation
by legally constructing novel benchmark datasets in the future.
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models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to
point out that a generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used as intended
and functioning correctly, harms that could arise when the technology is being used as intended but gives
incorrect results, and harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g.,
gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse,
mechanisms to monitor how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of data
or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped
datasets)?
Answer: [Yes]
Justification: We have implemented safety filters for the scraped datasets.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary safeguards

to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or
restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how
they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require this, but
we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly
credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package or dataset.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of that source

should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should be provided.

For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their
licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it
has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?
Answer: [Yes]
Justification: We have provided the details of the dataset/code/model as part in supplementary materials.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submissions via

structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either create an

anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full
text of instructions given to participants and screenshots, if applicable, as well as details about compensation
(if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
• Including this information in the supplemental material is fine, but if the main contribution of the paper

involves human subjects, then as much detail as possible should be included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor

should be paid at least the minimum wage in the country of the data collector.
15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were
disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent ap-
proval/review based on the requirements of your country or institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be required

for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
• We recognize that the procedures for this may vary significantly between institutions and locations, and we

expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if applicable), such as

the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing, editing, or
formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the
research, declaration is not required.
Answer: [Yes]
Justification: LLM is a component of the proposed framework for information diffusion analysis.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs as any

important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or

should not be described.
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Figure 11: Hyperparameter analysis of information diffusion predictor on two real-world datasets.

Figure 12: Influence intervention on four widely-used basic datasets.

A Additional Evaluation

A.1 Sensitivity Analysis

As illustrated in Figure 11, we conduct a comprehensive sensitivity analysis on two key hyperparameters
using both the News and Weibo datasets, which are Temperature Factor α and (2) Number of GNN Layers L.
Each hyperparameter is varied independently while the others remain fixed. Performance trends are evaluated
to inform robust settings. (1) Temperature Factor α: This parameter, introduced in Eq. 10, modulates the
sharpness of attention weights based on the influence graph. A larger α emphasizes the strongest influence
connections by increasing the softmax contrast, potentially suppressing secondary or implicit correlations—
such as shared preferences among users in the same cascade—that may still contribute valuable contextual
signals. While emphasizing dominant influence paths is beneficial to a certain extent, excessive α values risk
discarding useful structural information and thereby degrading performance. On the other hand, very small α
leads to overly uniform attention, reducing the model’s ability to distinguish key influencers. Empirical results
indicate that setting α = 1 provides a balanced calibration, effectively preserving both focused attention and
peripheral contextual relevance. (2) Number of GNN Layers L: We employ a classical GAT encoder for social
representation learning, and examine how the number of GNN layers L affects performance. Deeper GNNs
aggregate information from more distant neighbors, which can, in principle, capture higher-order structural
signals and extend homophily-based reasoning. However, increasing L introduces the risk of over-smoothing,
where node embeddings become indistinguishable and less informative. In our experiments, a single GAT
layer (L = 1) consistently yields the best results. This suggests that in diffusion-centered networks, the
most relevant information is often localized within the closest neighborhood, which represents frequent co-
participants in cascades, thus making deeper aggregation unnecessary and potentially harmful. We note that
other hyperparameters (e.g., hidden dimensionality, learning rate) follow expected trends and exhibit limited
sensitivity. Their configurations are reported in the implementation details.

A.2 Empirical Analysis on Influence

In this paper, we use LLMs to analyze the key influences in information diffusion. Widely-used benchmark
datasets do not include any textual data for advanced LLMs, and only contain a social network structure and basic
cascade metadata (participant IDs and timestamps). Therefore, we analyze these datasets here, as in Section 4.3,
to verify our observation that there is an imbalanced diffusion ability for different social actors within cascades.
To empirically assess the necessity and robustness of the causal influences, we introduce a controlled intervention
experiment. Specifically, for a given cascade, we randomly select a fraction of participant-to-participant influence
edges and set their corresponding attention scores to −∞, eliminating these links from contributing to the
diffusion dynamics modeled by the attention mechanism. We then evaluate how this partial influence masking
affects the performance of the downstream diffusion prediction task. As illustrated in Figure 12, we observe
a counter-intuitive but insightful result: moderate levels of influence masking, particularly at intervention
ratios below 15%, do not degrade model performance. In fact, across all four benchmark datasets, slight
performance improvements are consistently observed under such interventions. This phenomenon suggests that
many influence relations in social cascades are either spurious or redundant. While some users play critical roles
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Figure 13: Attention Visualization (Q_K): Self-Attention vs. our MILD with influence bias.

Table 4: Performance on information diffusion prediction. The higher scores are better.

Datasets News Weibo
Metrics H@10 H@50 H@100 M@10 M@50 M@100 H@10 H@50 H@100 M@10 M@50 M@100

DyHGCN [37] 18.94 24.50 27.31 10.50 10.76 10.80 10.51 15.39 18.50 6.01 6.23 6.27
Standard Deviation ± 1.12 ± 1.89 ± 1.45 ± 0.33 ± 0.41 ± 0.36 ± 0.56 ± 0.66 ± 0.74 ± 0.42 ± 0.47 ± 0.35

MSHGAT [28] 20.10 25.82 28.85 11.68 11.95 11.99 11.41 18.34 21.77 6.16 6.48 6.53
Standard Deviation ± 0.98 ± 1.25 ± 1.03 ± 0.47 ± 0.43 ± 0.39 ± 0.72 ± 0.67 ± 0.75 ± 0.34 ± 0.42 ± 0.39

DisenIDP [3] 20.47 26.33 29.08 12.03 12.29 12.36 12.04 18.83 22.61 6.73 7.01 7.06
Standard Deviation ± 0.50 ± 0.76 ± 0.88 ± 0.13 ± 0.09 ± 0.14 ± 1.37 ± 1.24 ± 1.18 ± 0.62 ± 0.47 ± 0.55

RotDiff [23] 20.95 27.02 29.80 12.52 12.80 12.84 12.99 20.46 24.70 7.76 8.12 8.18
Standard Deviation ± 1.30 ± 1.12 ± 0.98 ± 0.55 ± 0.69 ± 0.63 ± 0.81 ± 1.14 ± 1.20 ± 0.68 ± 0.79 ± 0.82

MINDS [14] 20.04 25.66 28.70 11.72 11.93 11.98 11.69 18.07 21.66 6.24 6.51 6.57
Standard Deviation ± 0.89 ± 1.10 ± 1.06 ± 0.25 ± 0.30 ± 0.28 ± 1.25 ± 1.54 ± 1.67 ± 0.61 ± 0.78 ± 0.71

MGCL [5] 21.26 28.11 31.93 12.90 13.18 13.24 13.04 20.18 24.75 7.60 7.99 8.03
Standard Deviation ± 1.67 ± 1.58 ± 1.72 ± 0.54 ± 0.48 ± 0.63 ± 1.40 ± 1.92 ± 1.88 ± 0.31 ± 0.37 ± 0.35

GODEN [29] 22.01 29.14 33.17 13.34 13.67 13.73 14.08 21.95 26.71 8.09 8.28 8.52
Standard Deviation ± 1.15 ± 1.29 ± 1.68 ± 0.86 ± 0.79 ± 0.90 ± 1.34 ± 1.53 ± 1.44 ± 0.67 ± 0.66 ± 0.61

CARE [41] 22.47 28.71 32.01 14.53 14.81 14.85 13.35 21.96 26.62 7.65 8.05 8.11
Standard Deviation ± 1.16 ± 1.38 ± 1.33 ± 0.68 ± 0.74 ± 0.76 ± 1.58 ± 1.82 ± 1.79 ± 0.37 ± 0.34 ± 0.35

MILD (Ours) 24.07 31.33 35.52 15.50 15.85 15.91 14.71 23.37 28.17 8.71 9.10 9.17
Standard Deviation ± 1.10 ± 0.99 ± 1.04 ± 0.84 ± 0.61 ± 0.67 ± 1.23 ± 1.47 ± 1.26 ± 0.69 ± 0.53 ± 0.52

in propagating information, others are likely peripheral participants whose modeled connections may introduce
noise rather than signal. These findings strongly support our core hypothesis: the effectiveness of modeling
information diffusion can be substantially improved by identifying and prioritizing key influences while
suppressing inconsequential ones. This experiment serves as an empirical validation of our influence-centric
design: a fine-grained representation of selective influence, rather than a dense or fully-connected modeling
assumption, yields a more faithful and efficient representation of real-world information diffusion dynamics.

A.3 Experiment statistical significance

The dataset is divided according to the chronological order of events and cannot be shuffled. In real applications,
we can only use past information diffusion events to predict future events and avoid label leakage. Therefore, we
randomly selected five seeds for statistical significance. We clearly calculate the standard deviation. As shown
in Table 4, the experimental results show that our MILD consistently and stably outperforms eight baselines.

B Algorithm Details

B.1 Potential diffusion path search

The detailed diffusion path search algorithm can be found in Algorithm 1. Lines 1-2 conduct the single-source
BFS algorithm with the original participant v1 as the single source, which returns the BFS tree TBFS. TBFS is
composed of shortest paths between v1 and v ∈ VC , satisfying (D1) and (D2). For each shortest path in TBFS,
the algorithm filter the long shortest path ψ with length greater than ℓ (Lines 3-4). Considering the efficiency,
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Algorithm 1 Potential Diffusion Path Search.

Require: A cascade graph GC = (VC , EC), the graph density constraint r, the threshold of shortest
path ℓ.

Ensure: ψ ∈ Ψ satisfies the requirements (D1), (D2) and (D3).
1: Select the original participant v1 as the source node;
2: TBFS ← shortest paths between v1 and vi ∈ VC \ v1 by single-source BFS;
3: for ψ ∈ TBFS do
4: if |ψ| ≥ ℓ then
5: Calculate the graph density of GC by d̂ = |VC |/|EC |; (Details in Appendix B.3)
6: Select the source s and the target τ in ψ;
7: if d̂ ≥ r then
8: {ψ}simple ← {ψ′|vi ̸= vj ,∀vi, vj ∈ ψ′, ψ′ ∈ GC} from s to τ by DFS;
9: Ψ ∪ {ψ}simple;

10: else
11: {ψ}shortest ← select all shortest paths from s to τ by BFS;
12: Ψ ∪ {ψ}shortest;
13: else
14: if ∀vi ∈ ψ and vi /∈ Ψ then
15: Ψ ∪ ψ;
16: return Ψ;

Line 5 calculates the graph density d̂ of GC based on analysis in Appendix B.3 to control the time complexity
of searching all possible paths. Firstly, the algorithm selects the source s and target τ of the filtered ψ. Then,
conduct the DFS algorithm to find all simple paths between s and τ if d̂ ≥ r and add them into Ψ (Lines 7-9).
If d̂ ≤ r, conduct the BFS algorithm to find all shortest paths between s and τ if d̂ ≥ r and add them into Ψ
(Lines 10-12). If ψ is a short shortest path, add ψ into Ψ if any nodes in ψ are excluded by Ψ (Lines 13-15).
Finally, line 16 returns the satisfied Ψ.

B.2 User Influence and Activity Levels Estimation

The estimation process of user influence and activity levels can be divided into four steps: key user attributes
selection from user profiles, min-max normalization of the selected attributes, influence and activity values
estimation, and assigning specific levels based on the estimated values.

1st step: key user attributes selection from user profiles. Based on the well-known communication theory, we
select the key user attributes. The details are as follows.

• Follower Number (x1) directly reflects a user’s network centrality, aligning with the scale-free feature
described in complex network theory (Barabási-Albert model)[2]. Users with a high number of followers act
as hub nodes that can trigger cascaded propagation, and the influence range follows a power-law distribution.

• Bi-followers Number (x2). Based on the theory of strong ties (Granovetter) [7], mutual relationships represent
bidirectional trust links, and such connections have a higher conversion rate in information diffusion.

• Published Statuses Number (x3), which is in accordance with the attention economy model [4]. High-
frequency publishers occupy users’ attention bandwidth through content streams, thereby establishing a
temporal advantage.

• Verified as an influential user by the online platform (x4).

2nd step: Min-Max Normalization of the selected attributes. For each of the above selected attributes, we
normalize the value across all users based on min-max normalization as follows.

xscaled =
x− xmin

xmax − xmin
(11)

3rd step: Influence and activity estimation. Based on the normalized attributes, we calculate the influence and
activity values of each user. For influence values, we assign the normalized value x1 of the follower number as
the influence value. For activity value, we calculate it as follows.

f(x) = w2x2 + w3x3 + w4x4, (12)

where w2, w3, w4 are the hyperparameters designed based on the above communication theories, which are
w2 = 0.1, w3 = 0.8, w4 = 0.1, respectively.
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4th step: Assigning specific levels based on the estimated values. We assign specific levels for each estimation,
i.e., 0-20%: poor, 20%-40%: low, 40%-80%: moderate, 80%-95%: high, 95%-100%: outstanding.

B.3 Graph Density Calculation in Diffusion Path Search Algorithm

The graph density calculation in Algorithm 1 follows E. Lawler (1976), Combinatorial Optimization: Networks
and Matroids [17]. The formulation is:

graph density =
|E|
|V | , (13)

where |E| is the number of edges) and |V | is the number of nodes. This calculation formulation is closely
relevant to the time complexity analysis in Section 3.2.

C Theoretical Analysis

C.1 Back-door Adjustment of Existing Methods

According to the SCM, the statistical distribution of P (Y |C) has following mathematical expression,

P (Y |C) =
∑
u∈U

P (u|C)P (Y |C, u) = EP (u|C)P (Y |C, u), (14)

The key is to capture the true causal relationship between C and Y . From the perspective of causal inference,
we can achieve this via modeling P (Y |do(C)), where do(C) denotes the do-calculus operation and introduces
an intervention on C. Specifically, do(C) removes links from U to C and blocks associative paths from C to Y
apart from the direct causal one C → Y . We employ the basic back-door adjustment to estimate P (Y |do(C))
as below.

P (Y |do(C)) =
∑
u∈U

P (u)P (Y |C, u). (15)

However, the above equation does not satisfy the backdoor condition since the associations between bothC ← U
and U → Y are unobserved. Thus, the variable U is unobserved and implicit. Hence, U cannot be used to block
the backdoor path from C to Y . There is no way to estimate P (u) and P (Y |C, u). The causal effect of the
historical cascade on future participants is not identifiable in this model.

C.2 Front-Door Adjustment of Our Method

We add the transparent diffusion influence as the intermediate variable Z between C and Y as shown in Figure 2.
It satisfies the following front-door criterion: (C1) Z intercepts all directed paths from C to Y , (C2) there is no
unblocked back-door path from C to Z, and (C3) all backdoor paths from Z to Y are blocked by C. The (C1)
condition requires Z to represent the nature of the cascade that provides necessary and sufficient information
for predicting the next participants Y , and the (C2) and (C3) conditions suggest that only the observed cascade
sequence C can be used to estimate the causal relationship C → Z, as the backdoor path from Z to Y , namely
Z ← C ← U → Y , can be blocked by conditioning on C.

Based on the above conditions, we can formulate our model by chaining together the two partial effects
and summing over all states z of Z as follows If the do-calculus is performed on Z, the probability of Y is
P (Y |do(Z)). Then, if the do-calculus is performed on X , the probability of conducting the do-calculus of Z is
P (Z|do(x)).

P (Y |do(C)) =
∑
z∈Z

P (Y |do(Z))P (Z|do(C)) (C1) =
∑
z∈Z

P (Y |do(Z))P (Z|C) (C2)

=
∑
z∈Z

∑
c∈C′

P (Y |Z,C′)P (C′)P (Z|C) (C3), (16)

where C′ contains all observed cascade sequences in training data, z denotes the specific diffusion influence
matrix in Z.

C.3 MILD Under Causal Framework

MILD is strictly designed to satisfy three front-door criteria in the causal framework to make a more accurate
diffusion prediction. (C1) Z intercepts all directed paths from C to Y . When Z can represent the information

22



diffusion itself, Z can intercept all directed paths fromC to Y . To achieve it, MILD captures almost all necessary
and sufficient diffusion information to derive Z based on communication theories to make sure that Z can
represent the nature of the information cascade. (C2) there is no unblocked back-door path from C to Z, and
(C3) all backdoor paths from Z to Y are blocked by C. MILD extract observed information cascades from
the real-world social platform as C to block the backdoor path from Z to Y , which is Z ← C ← U → Y ,
satisfying (C2) and (C3).

C.4 Do-operation analysis of MILD

P (Y |do(C)) contains two do-operations, which can be formulated as P (Y |do(C)) =∑
z∈Z

P (Y |do(Z))P (Z|do(C)) based on the front-door criterion (C1). In MILD, do(C) is to select

several users who can form an observed information cascade, forcing C = c. do(Z) operation is to derive
diffusion influence representation z based on given interventions, which are designed potential diffusion paths
ψ, temporal order T , user influence and activity levels O, and comments B from specific cascade c, forcing
LLM to derive Z = z. In the Z space, given the observed cascade c without interventions, Z contains all
possible random diffusion processes. Thus, P (Z|do(C)) can be assumed as P (z|do(C)) = 1

|Z| , z ∈ Z. With
interventions of Z, P (Y |do(Z)) is the probability of Transformer prediction Y conditioned on our derived
diffusion influence graph z = GI .

C.5 NP-Complete Proof of Hamiltonian Path Problem

Problem Definition. A Hamiltonian Path in a graph is a path that visits each vertex exactly once. Given a graph
G = (V,E), the Hamiltonian Path Problem (HPP) asks whether there exists such a path in G. If the path starts
and ends at the same vertex, it is called a Hamiltonian Cycle.

Proof. As with any NP-completeness proof, this one has two parts. First, we will go over why Hamiltonian
Path is in the NP class. To be in NP means that, given a proposed solution (a certificate) to the problem, we can
verify the solution in polynomial time. In this case, that means that given a directed graph G and path between 2
vertices, we can check in polynomial time if the path is a Hamiltonian Path.

Step 1: Proving Hamiltonian Path is in NP. To show that HPP is in NP, we need to prove that a given solution
can be verified in polynomial time. Suppose we are given a certificate (a sequence of vertices). Then, we need to
check two constraints: (1) The sequence contains all vertices exactly once. (2) There exists an edge between
each consecutive vertex in the sequence. For time complexity analysis, if we check edges in an adjacency matrix,
the verification takes at most O(|V |2) time. While, if we check edges in adjacency lists, the verification takes at
most O(|V |+ |E|). Thus, we can know that the verification can be processed in polynomial time. Since the
verification is polynomial, HPP belongs to NP.

Step 2: Proving NP-Hardness. To prove HPP is NP-Hard, we reduce a known NP-Complete problem to it. A
standard reduction is from the Hamiltonian Cycle Problem (HCP), which is already NP-complete. Thus, we
give the following explanations of the reduction from Hamiltonian Cycle to Hamiltonian Path. Given a graph
G = (V,E), we need to check it for a Hamiltonian Cycle. The goal of the reduction is the transformation of
modifying G to construct a new graph G′. First, we pick an arbitrary vertex v ∈ V . Then, we remove v from G,
resulting in graph G′. After transforming G, we can claim as follows,

Claim: G has a Hamiltonian Cycle if and only if G′ has a Hamiltonian Path.

Here, we prove this claim and analyze that this reduction can be done in polynomial time. IfG has a Hamiltonian
Cycle, removing v will break this Hamiltonian Cycle into a Hamiltonian Path. Conversely, if G′ has a
Hamiltonian Path, adding v back can reconstruct a Hamiltonian Cycle. This transformation is done in polynomial
time, proving that HPP is at least as hard as HCP. Since HCP is NP-Complete, and we have reduced it to HPP in
polynomial time, it follows that HPP is NP-Hard.

We prove HPP is in the NP class and it is NP-hard. Thus, HPP is an NP-complete problem.

C.6 NP-hard Proof of All Simple Path Problem

Problem Definition. Given a graph G = (V,E), a simple path is a path in G that does not repeat any vertex.
Given two random vertices in G as the source s and target τ , find all possible simple paths between s and τ in G.

Proof. To prove that All Simple Path Problem (ASPP) is an NP-hard problem, we reduce a proved NP-complete
problem to it. As proved in Appendix C.5, the Hamiltonian Path is an NP-complete problem. Thus, we give
the following explanations of the reduction from the Hamiltonian Path to All Simple Paths. Given a graph
G = (V,E), we need to check it for a Hamiltonian Path.

Claim: If you could find all simple paths between two nodes, you could determine if there is a Hamiltonian path
between them by checking if any of the paths visit all the vertices.
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We explain this claim as follows. First, we construct an arbitrary instance of HPP. We choose any two vertices s
and t in G. Then, we determine if there is a Hamiltonian path starting at s and ending at t. Second, we list all
simple paths from s to t and check if any of these paths visit all vertices exactly once. If such a path exists, it
is a Hamiltonian path. The ability to find all simple paths allows us to solve the Hamiltonian Path problem by
simply checking the length of each path. Hence, solving the problem of finding all simple paths would solve the
Hamiltonian Path problem. This reduction from HPP can be done in polynomial time, which proves that ASPP
is NP-hard, as HPP is a proven NP-complete problem.

C.7 NP-hard Proof of Diffusion Path Search Problem

Problem definition. Given a cascade graph GC = (VC , EC) with one unique root v1, the problem returns
a collection of path structures Ψ ⊆ GC . There are three constraints. (D1): all paths ψ ∈ Ψ start from
the unique root v1. (D2): VΨ covers all nodes in VC . (D3): Ψ contains all possible path between v1 and
v ∈ {vi|dist(v1, vi) ≥ ℓ}.

As all paths in this paper are non-loop paths with no repeated nodes, the Diffusion Path Search Problem (DPSP)
is similar to the All Simple Paths Problem (ASPP). The proof of NP-hardness of DPSP is also similar to the
proof of ASPP, which is in Appendix C.6.

Proof. To prove that DPSP is an NP-hard problem, we reduce the proved NP-complete problem to it. As proved
in Appendix C.5, the Hamiltonian Path is an NP-complete problem. If we can prove that a polynomial-time
reduction exists from the Hamiltonian Path Problem (HPP) to the Diffusion Path Search Problem (DPSP), we
prove the DPSP is an NP-hard problem. Thus, we give the following explanations of the reduction from the
Hamiltonian Path to the Diffusion Path. Given a graph G = (V,E), we need to check it for a Hamiltonian Path.

Claim: If you could find a diffusion path set Ψ between two nodes s and τ , you could determine if there is a
Hamiltonian path between them by checking if any of the path in Ψ visit all the vertices.

We explain this claim as follows. First, we construct an arbitrary instance of HPP. We choose the same graph
GC and two vertices s and t in GC . Second, we use an algorithm for the diffusion path search problem to list all
potential diffusion paths in Ψ between s and t. Then, we check if any enumerated path in Ψ has length n− 1
(where n = |VC |). If such a path exists, GC contains a Hamiltonian path. Otherwise, it does not.

Based on the above steps, we can find that the reduction requires no modification to G, so it runs in O(1) time.
The reduction can be done by simply checking the length of each path. Thus, it is a polynomial-time reduction.
While enumerating all paths may take exponential time, the reduction assumes the existence of a polynomial-time
diffusion influence path search problem oracle. If such an oracle existed, solving the Hamiltonian Path Problem
would also take polynomial time (contradicting its NP-completeness). Thus, the diffusion influence path search
problem must be NP-hard.

C.8 Diffusion Influence Degree Proof in Robustness Evaluation

Here, we give the proof of the path diffusion influence degree.

Proof. Based on the chain rule of conditional probability, given a diffusion path ψ = (v1, v2, ..., vn) with n
nodes, we can easily obtain the diffusion influence degree of the whole path ψ, which can be formulated as

P (ψ) =
∏

1<i≤n

P (vi|vi−1, ..., v1)P (v1). (17)

An information diffusion path indicates the predecessor passing the information to the successor. For example,
given a diffusion path ⟨v1.v2, v3⟩, v1 passes the diffusion influence to v3 solely through v2 within this path,
which means v1 and v3 are conditionally independent on v3. Generally, vi−1 and vi+1 are conditionally
independent on vi. Thus, the Equation 17 can be simplified as

P (ψ) =
∏

1<i≤n

P (vi|vi−1, ..., v1)P (v1) =
∏

1<i≤n

P (vi|vi−1)P (v1). (18)

□

D Details of Experimental Setup

D.1 Datasets

We conduct our experiments on two real-world datasets harvested from Weibo [38, 1], a leading Chinese
microblogging platform. We refer to these two corpora as News and Weibo, defined as follows:
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• News. This dataset consists of all repost cascades initiated by the official Weibo account “Daily News”, social
network structures and user profiles. Each cascade captures the reposting timeline, user interactions, and
comment threads triggered by a single news post.

• Weibo. This dataset contains social network structures, user profiles, and numerous repost cascades published
by five randomly chosen opinion leaders on the Weibo platform, one from each domain: sports, entertainment,
technology, society, and lifestyle. These hub influencers exhibit heterogeneous diffusion patterns due to their
distinct audience profiles.

Here, we detail the data preprocessing methods applied to News and Weibo, focusing primarily on user profile
features, social graph construction, and cascade formation.

User Profile Features For every user involved in a cascade, we extract the following 13 profile attributes:

bi_followers_count Number of mutual followers
verified_status Boolean, official verification flag
followers_count Total follower count
location, province, city Self-declared geographic metadata
friends_count Number of followees
name, gender Display name and gender
created_time Account creation timestamp
verified_type Verification category (e.g. personal, media)
statuses_count Total number of posts published
description Self-written bio text

Social Graph Construction We model the “following” relations among users as a directed graph G =
(V, E), where each node v ∈ V is a user and each edge (u → v) ∈ E indicates that u follows v. This graph
underpins all diffusion processes we analyze.

Cascade Formation Each original post is treated as an information unit. To assemble a diffusion cascade, we
record for every participant: (1) The type of behavior (repost, comment, like); (2) The timestamp of the behavior;
(3) Any textual content of comments. These elements yield a temporally ordered cascade C = {(ui, ti, ai)}|C|−1

i=0 ,
where ui is the user, ti the action time, and ai the action type.

Table 5: Statistics of the four widely-used datasets.
Twitter Douban Android Christianity

# Users 12,627 12,232 9,958 2,897
# Links 309,631 396,580 48,573 35,624
Density (%) 24.52 30.21 4.87 12.30

# Cascades 3,442 3,475 679 589
Avg. Len. 32.60 21.76 33.30 22.90
Density (%) 8.89 6.18 2.27 4.66

In addition to our News and Weibo datasets, in the supplemented empirical evaluation, we benchmark against four
widely used public diffusion collections, including Twitter [9], Douban [40], Android [24], and Christianity [24].
Each dataset comprises an underlying social network and a set of basic cascades, where each cascade records
only user IDs and their timestamps. Table 5 presents the descriptive statistics for these benchmarks.

D.2 Competitors

Most existing methods for diffusion prediction adopt a two-phase framework: GNNs + sequence models. In this
setting, graph neural networks learn structural representations from social or diffusion graphs, and sequential
models (e.g., RNNs or transformers) model cascade dynamics over time. We summarize the representative
baselines as follows:

• DyHGCN [37] builds a dynamic heterogeneous graph by combining the social network with historical
diffusion paths. A heterogeneous GCN captures time-sensitive node embeddings, followed by multi-head
self-attention to model cascade-level dependencies.

• MS-HGAT [28] represents diffusion history using timestamped hypergraphs and learns user embeddings
through hierarchical attention. It integrates static social links with dynamic cascades using gated memory
modules.

• DisenIDP [3] disentangles user intent by constructing dual hypergraph networks. Intent-specific embeddings
are generated and aligned using self-supervised losses, allowing fine-grained modeling of diffusion factors.
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• RotDiff [23] maps users into a hyperbolic space, where Lorentzian rotations encode asymmetric influence
patterns. Rotated self-attention captures hierarchical dependencies for cascade prediction.

• MINDS [14] introduces multi-scale hypergraph learning to jointly capture micro- and macro-level cascade
patterns. An adversarial alignment module ensures cross-scale consistency.

• MGCL [5] applies contrastive learning to suppress noise from low-quality graphs. Multiple structural views
are generated, and agreement is enforced via contrastive objectives to enhance embedding quality.

• GODEN [29] formulates diffusion as a continuous-time process using neural ODEs. Two coupled ODEs
evolve node and edge states, which are fused with timestamp-aware attention for temporal prediction.

• CARE [41] enhances prediction by retrieving semantically similar historical cascades. These retrieved
instances are encoded via a transformer to support retrieval-augmented diffusion modeling.

D.3 Evaluation Metrics

To assess the accuracy of predicting the next participant in a diffusion cascade, we adopt two widely-used
ranking metrics of the diffusion prediction task: Hits@K and Mean Average Precision@K (MAP@K). Hits@K
measures the recall at a fixed cutoff, i.e., the fraction of cascades for which the true participant appears among
the top K predictions. While MAP@K further penalizes late placements by weighting each hit by the inverse of
its rank, thus evaluating the quality of the ordering within the top-K list.

Formally, let N be the number of test cascades, and for each cascade i let ui denote the ground-truth next
participant and

Ûi =
[
ûi,1, ûi,2, . . . , ûi,K

]
be the ordered list of top-K predictions. Define the rank function

rank(ui) =

{
r, if ui = ûi,r for some r ≤ K,
∞, otherwise,

and the indicator 1[·]. Then:

Hits@K =
1

N

N∑
i=1

1
[
rank(ui) ≤ K

]
, (19)

MAP@K =
1

N

N∑
i=1

1
[
rank(ui) ≤ K

]
rank(ui)

. (20)

By combining these two metrics, we capture both the ability to include the true user within a limited prediction
budget and the precision with which it is ranked among the top candidates.

E Prompt Design

Prompt design in MILD. We design the prompt to instruct the LLM to analyze the diffusion influence between
users within each cascade. The potential diffusion path ψ ∈ Ψ, temporal order T , descriptions of user influence
and activity levels O, and comments B are integrated into the designed template Φ(·), forming prompts
Φ(ψ, T,O,B) to provide sufficient information for analysis. To guarantee the reliability of the derivation, we
add common sense of information diffusion to the design of the instruction. For instance, the latter participants
do not influence the earlier participants. The detailed prompt can be found in Appendix Figure 14.

Prompt design in measurements of GI . In Robustness Evaluation, we construct real and fake diffusion paths
within cascades, and design the misleading instructions to lead the LLM into believing that all paths are real to
analyze the influence degree. For each cascade, we create multiple real and fake diffusion paths. We randomly
select one user out of the real path to replace one user in the real path to create the fake diffusion path and iterate
it several times. We then mix all paths as real diffusion paths. Then we instruct the LLM to analyze the diffusion
degrees of each edge in each path. The detailed prompt can be found in Appendix Figure 15.

Prompt design in ablation studies. We conduct ablation studies to evaluate the necessity of the four key
diffusion influencing factors. For each ablation study, we remove the relevant factor from the prompt. For
instance, if we evaluate the necessity of temporal order, we change the original prompt Φ(ψ, T,O,B) to
Φ(ψ,O,B) as the prompt for the ablation study of the temporal order. The detailed prompt can be found in
Appendix Figure 16. The prompts without user profiles and shared comments are similar to the prompt without
temporal order. Particularly, for the ablation study without our potential diffusion pathways, we use all shortest
paths in TBFS to replace the potential diffusion paths in the original as Φ(ψ∗, T,O,B), where ψ∗ denotes the
shortest path. The detailed algorithm can be found in Section 3.2 and Algorithm 1.
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Figure 14: Example Prompt for Diffusion Influence Deriving

SYSTEM
[English Version] Please identify all possible pairs of users that may have influence, considering the
chronological order of replies, potential influence pathways, user influence and activity, and user reply
content. Note: 1. Users who reply earlier in the chronological order will not be influenced by later
respondents; 2. Only the influence between the given user IDs will be analyzed. Use a standard list
format, and do not provide any text. Respond with pairs of user IDs in the following format: [[..,..],..].
[Chinese Version]请你找出所有可能存在影响的用户对，结合回复时间顺序，潜在影响路径，
用户影响力和活跃度，用户回复内容。注意1.在回复时间顺序中更早回复的用户不会被更晚
的用户影响，2.只分析给定user id之间的影响。使用标准list格式，禁止回答任何文字，用user
id组成用户对，回答格式如下：[[..,..],..]。

USER
[English Version]
Reply timeline based on user IDs: ‘[’4659’, ’28931’, ’6603’]‘.
Potential influence path: ‘[’4659’, ’6603’, ’28931’]‘.

User influence and activity levels:
User 4659: outstanding influence, outstanding activity level.
User 6603: high influence, high activity level.
User 28931: high influence, moderate activity level.

Comments published by each user:
4659: "Yi Siling wins the first gold medal at the London Olympics."
6603: "Watching this made my heart race! [Touched by the victory] [Thumbs up] [Thumbs up]."
28931: "Especially that moment of overtaking."

[Chinese Version]
由用户id组成的回复时间顺序:[’4659’, ’28931’, ’6603’]。
潜在影响路径:[’4659’, ’6603’, ’28931’]。

用户影响力和活跃度：
4659:影响力高,活跃度高。6603:影响力较高,活跃度较高。28931:影响力较高,活跃度中等。

每个用户发表内容:
4659说伦敦奥运会易思玲夺首金。
6603说看的我心跳超快[夺冠感动][赞][赞]。
28931说尤其反超那一刻。

ASSISTANT
[[4659, 6603], [4659, 28931], [28931, 6603]]
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Figure 15: Example Prompt without Temporal Order

SYSTEM
Please identify all possible pairs of users that may have influence, considering potential influence
pathways, user influence and activity, and user reply content. Note: Only the influence between the
given user IDs will be analyzed. Use a standard list format, and do not provide any text. Respond with
pairs of user IDs in the following format: [[..,..],..].

USER
Potential influence path: ‘[’4659’, ’6603’, ’28931’]‘.

User influence and activity levels:
User 4659: outstanding influence, outstanding activity level.
User 6603: high influence, high activity level.
User 28931: high influence, moderate activity level.

Comments published by each user:
4659: "Yi Siling wins the first gold medal at the London Olympics."
6603: "Watching this made my heart race! [Touched by the victory] [Thumbs up] [Thumbs up]."
28931: "Especially that moment of overtaking."

ASSISTANT
[[4659, 6603], [6603, 28931]]

Figure 16: Example Prompt for True and Fake Diffusion Paths

SYSTEM
Please analyze the diffusion influence degree for each edge in the diffusion path, with a value range
of [0,1]. The difference in propagation influence degrees within the same propagation path should
not exceed 0.2. Carefully examine whether the content published by intermediate users discusses the
same topic, as there may be false propagation paths. Respond in standard JSON format, without any
additional text, as follows: [{edge : [..., ...], influence_value : ...}, ...]

USER
Potential influence path: ‘[’4659’, ’17264’, ’11799’]‘.

Comments published by each user:
4659: "Lin Dan staged a dramatic comeback against Lee Chong Wei to claim China’s 26th gold medal."
17264: "Woooahhh[tears] Such an emotional victory! This was so hard-fought!"
11799: "[Thumbs up][Olympic gold medal][Moved by the win]."

ASSISTANT
[{edge : [4659, 17264], influence_value : 0.8}, edge : [17264, 11799], influence_value : 0.9}]
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