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Abstract
Identifying latent variables and the causal struc-
ture involving them is essential across various
scientific fields. While many existing works fall
under the category of constraint-based methods
(with e.g. conditional independence or rank defi-
ciency tests), they may face empirical challenges
such as testing-order dependency, error propaga-
tion, and choosing an appropriate significance
level. These issues can potentially be mitigated
by properly designed score-based methods, such
as Greedy Equivalence Search (GES) (Chicker-
ing, 2002) in the specific setting without latent
variables. Yet, formulating score-based meth-
ods with latent variables is highly challenging.
In this work, we develop score-based methods
that are capable of identifying causal structures
containing causally-related latent variables with
identifiability guarantees. Specifically, we show
that a properly formulated scoring function can
achieve score equivalence and consistency for
structure learning of latent variable causal mod-
els. We further provide a characterization of the
degrees of freedom for the marginal over the ob-
served variables under multiple structural assump-
tions considered in the literature, and accordingly
develop both exact and continuous score-based
methods. This offers a unified view of several
existing constraint-based methods with different
structural assumptions. Experimental results vali-
date the effectiveness of the proposed methods.

1. Introduction
At the core of understanding complex systems lies causal
discovery, the identification of causal relations from ob-
servational data (Spirtes et al., 2001; Pearl, 2009). One
common assumption in causal discovery algorithms is the
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absence of latent confounders, known as causal sufficiency,
positing that the observed correlations stem either from true
causation or can be sufficiently explained by other observed
variables. Yet, real-world scenarios often defy this assump-
tion. For instance, in psychological studies, the measured
questionnaires are indirect proxies of latent mental factors.
In unstructured data like images and texts, the observed pix-
els and words are confounded by latent semantic variables.
Directly applying causal discovery methods without consid-
ering these latent variables can lead to false discoveries, as
latent variables may introduce spurious correlations among
observed ones that cannot be attributed to true causation.

Notable efforts have thus been made to identify the true
causal relations in the presence of latent variables. Earliest
attempts include Fast Causal Inference (FCI) (Spirtes et al.,
2001; Zhang, 2008) and its variants (Colombo et al., 2012;
Spirtes et al., 2013; Claassen et al., 2013; Akbari et al., 2021)
that exploit conditional independence information. There
are two main limitations of FCI: First, the results, presented
by partial ancestral graphs (PAG) (Richardson, 1996), tend
to be overgeneralized – e.g., whenever two observed vari-
ables may be confounded, it indicates so. Second, it focuses
solely on causal relations among observed variables and
does not provide information about those among latent vari-
ables. In short, FCI does not require specific assumptions
about the latent structure, at the cost of having a less informa-
tive output. In contrast, one may often be interested in iden-
tifying the causal relations among latent variables (e.g., the
latent mental and semantic variables in the above examples).

Hence, another line of work has been developed to dis-
cover the causal structure also among latent variables. For
the identifiability conditions, these methods typically in-
troduce additional parametric assumptions to mitigate the
large model indeterminacies faced by FCI. This includes
rank or tetrad condition-based methods with linearity as-
sumption (Silva et al., 2003; 2006; Silva & Scheines, 2005;
Choi et al., 2011; Kummerfeld & Ramsey, 2016; Huang
et al., 2022; Dong et al., 2023), high-order moments-based
methods (Shimizu et al., 2009; Zhang et al., 2018; Cai et al.,
2019; Salehkaleybar et al., 2020; Xie et al., 2020; Adams
et al., 2021; Dai et al., 2022; Chen et al., 2022; Améndola
et al., 2023; Wang & Drton, 2023), matrix decomposition-
based methods (Anandkumar et al., 2013), copula model-
based methods (Cui et al., 2018), mixture oracles-based
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methods (Kivva et al., 2021), and multiple domains-based
methods (Zeng et al., 2021; Sturma et al., 2023). For the
algorithmic procedures, these methods generally fall under
the category of constraint-based methods, by matching the
statistical properties to possible structural patterns and con-
structing the whole causal structure iteratively. A typical
constraint-based method in the causally sufficient case is
PC (Spirtes & Glymour, 1991). Despite the asymptotic
consistency, the empirical reliability of constraint-based
methods may be limited due to testing-order dependency
and error propagation (Spirtes, 2010; Colombo et al., 2012),
especially when the number of variables is large.

To address such empirical issues of constraint-based meth-
ods, score-based causal discovery methods have been in-
troduced, and may be more favored in practical applica-
tions (Nandy et al., 2018; Ramsey et al., 2017). Unlike the
iterative construction of a single causal graph by constraint-
based methods, score-based methods assign a score to each
potential graph reflecting how well it explains the observed
data and generally search over the graph space to find the
optimal graph. In the causally sufficient case, one typi-
cal score-based method is the Greedy Equivalence Search
(GES) (Chickering, 2002). There also exists several score-
based methods that can handle latent variables (Shpitser
et al., 2012; Triantafillou & Tsamardinos, 2016; Nowzohour
et al., 2017; Bhattacharya et al., 2021; Shahin & Chechik,
2020; Bernstein et al., 2020; Bellot & van der Schaar, 2021;
Claassen & Bucur, 2022). Similar to FCI, most of them
do not discover the causal relations among latent variables,
except the method by Zhang (2004) without identifiabil-
ity guarantee. When latent variables are introduced and
relations among them are further allowed in the causal struc-
tures, challenges arise in characterizing the degrees of free-
dom (Geiger et al., 1996; 2001), formulating a scoring func-
tion, and structuring the search procedure. We tackle these
challenges in this paper, and to the best of our knowledge,
this is the first score-based method that identifies causal
structures containing causally-related latent variables with
identifiability guarantees.

Contributions. We develop score-based methods, called
SALAD (which stands for Score-bAsed Latent cAusal Dis-
covery), for causal discovery of latent variable causal mod-
els, providing a unified view for several existing constraint-
based methods (Silva et al., 2003; Huang et al., 2022). Our
contributions can be summarized as follows:

• We develop a formulation of scoring function for iden-
tifying linear latent variable causal models. We show
(1) that it is score equivalent and (2) that minimizing
it yields a structure that is algebraic equivalent to the
true structure. The latter implies that both structures
have the same equality constraints (on the marginal
over the observed variables), including conditional in-
dependence and rank deficiency constraints.

• We provide a characterization of the degrees of free-
dom for the marginal over the observed variables under
the structural assumptions considered by Silva et al.
(2003); Huang et al. (2022).

• We develop exact score-based methods for estimating
the causal structure, and show that they can asymptoti-
cally identify the true equivalence class of the whole
structure. We also provide continuous score-based
methods in some of the settings to improve the compu-
tational efficiency.

• We demonstrate that the proposed score-based methods
achieve improved performance over existing constraint-
based methods for estimating the structures of latent
variable causal models, which further validate the ef-
fectiveness of score-based methods.

Notations. For a matrix M , we define its support set as
supp(M) := {(i, j) : Mi,j ̸= 0}. We denote by MS,: the
rows in M indexed by set S, and similarly by M:,S for the
columns. For a directed acyclic graph (DAG) G, we denote
by |G| the number of edges in G. Also, let diag(Rm

>0) be the
set of m×m diagonal matrices with positive diagonal en-
tries, Um be the set of m×m strictly upper triangular matri-
ces, and Gm be the set of graphs with m measured variables
that follow Equation (1). For set S, we define its k-partition
as a partition of its elements into k non-empty subsets.

2. Latent Variable Causal Models
In this section, we discuss several aspects of latent variable
causal models. Specifically, we describe the preliminaries
and problem setting in Section 2.1, as well as the formu-
lation of likelihood function in Section 2.2. We provide a
discussion of latent variable causal models in Appendix A.1.

2.1. Preliminaries and Problem Setting

We consider a linear latent variable causal model with DAG
G, in which the measured variables X = (X1, . . . , Xm)
and latent (unmeasured) variables L = (L1, . . . , Ln) follow
the data generating procedure:

L = CL+ EL and X = BL+ EX , (1)

where EX and EL are jointly independent noise terms that
follow Gaussian distributions. The structure of DAG G is de-
fined by the support of matrices B and C, i.e., Lj → Li is an
edge in G if Ci,j ̸= 0 and Lj → Xi is an edge in G if Bi,j ̸=
0. For DAG G, we denote by BG ∈ {0, 1}m×n the binary
adjacency matrix that represent the edges from latent vari-
ables L to measured variables X , and by CG ∈ {0, 1}n×n

the binary adjacency matrix that represent the edges among
latent variables L. Without loss of generality, we assume
that matrices C and CG are strictly upper triangular.

2



Score-Based Causal Discovery of Latent Variable Causal Models

Let ΣX and ΣL be the population covariance matrices of
measured variables X and latent variables L respectively.
Also let ΩX and ΩL be the (diagonal) covariance matrices of
noise terms EX and EL respectively. ΣL can be written as

ΣL = (I − C)−1ΩL(I − C)−⊤.

By ΣX = BΣLB
⊤ +ΩX , we then have

ΣX = B(I − C)−1ΩL(I − C)−⊤B⊤ +ΩX . (2)

We say that a DAG G can generate a covariance matrix if
there exists a parameterization of G such that Equation (2)
holds. Furthermore, since the labeling of latent variables
in general cannot be identified, we say that two DAGs
are Markov equivalent if they are Markov equivalent after
relabeling of latent variables. Given T i.i.d. samples of
variables X , denoted as D with empirical covariance matrix
S, the goal is to estimate the structure G up to certain type
of model equivalence (specified in Sections 4 and 5).

2.2. Formulation of Likelihood Function

We first discuss about the indeterminacy of parameter ΩL

via the following lemma, since it affects how we formulate
the likelihood. The proof is given in Appendix B.1.

Lemma 1 (Indeterminacy of ΩL). For any parameters
B,C,ΩX ,ΩL, and ΣX that follow Equation (2), there ex-
ist parameters B̃ and C̃ with supp(B) = supp(B̃) and
supp(C) = supp(C̃) such that

ΣX = B̃(I − C̃)−1(I − C̃)−⊤B̃⊤ +ΩX .

In other words, any covariance matrix ΣX resulting from
DAG G and arbitrary ΩL can be generated by alternative
parameters from the same DAG with Ω̃L = I . This implies
that the parameter ΩL cannot be estimated from ΣX without
additional information and further assumption. Furthermore,
since the goal is to estimate the structure G, this suggests
that one may assume ΩL to be an identity matrix during
estimation without loss of generality. It is worth noting that
such indeterminacy of ΩL has been discussed in various
existing works (Squires et al., 2023), which we make precise
here, as it is crucial for formulating the likelihood.

We now provide the likelihood formulation for the linear
latent variable causal model in Equation (1). As suggested
by Lemma 1, we set ΩL = I in the likelihood. Given the
empirical covariance matrix S obtained from T samples, the
negative log-likelihood is given up to additive constant by

L (B,C,ΩX ;D)

=
T

2
tr
(
S
(
B(I − C)−1(I − C)−⊤B⊤ +ΩX

)−1
)

+
T

2
log det

(
B(I − C)−1(I − C)−⊤B⊤ +ΩX

)
.

3. Score-Based Identification of Latent
Variable Causal Models

In this section, we discuss how to learn linear latent variable
causal models with scoring function. First, we introduce the
notion of distribution sets and equality constraints in Sec-
tion 3.1. We formulate the scoring function in Section 3.2,
and show how it enables structure identification up to alge-
braic equivalence in Section 3.3. We then discuss about the
BIC score in Section 3.4.

3.1. Distribution Sets and Equality Constraints

We describe the notion of distribution set that is a key ingre-
dient of our score-based search procedure. It refers to the set
of marginal distributions generated by a specific structure.
Definition 1 (Distribution set). The distribution set of
DAG G, denoted byM(G), is defined as

M(G) := {B(I − C)−1ΩL(I − C)−⊤B⊤ +ΩX :

supp(B) ⊆ supp(BG), supp(C) ⊆ supp(CG),

ΩX ∈ diag(Rm
>0),ΩL ∈ diag(Rn

>0)}.

Specifically,M(G) is the set of covariances matrices ΣX

that can be generated by DAG G by varying the parame-
ters in matrices B, C, ΩX , and ΩL. Moreover, since CG is
acyclic by assumption, we have (I − C)−1 =

∑n−1
k=0 C

k.
It follows that Equation (2) is a polynomial map, and thus
the distribution set M(G) is, by Tarski–Seidenberg theo-
rem (Benedetti & Risler, 1990), a semialgebraic set. Note
that a set is said to be semialgebraic if it can be equivalently
represented by a finite number of polynomial equalities and
inequalities (Benedetti & Risler, 1990).

Structure G imposes various types of equality (i.e., alge-
braic) constraints on the covariance matrices, such as con-
ditional independence (i.e., vanishing partial correlation)
constraints (Spirtes et al., 2001), rank deficiency (i.e., van-
ishing determinant) constraints (Spirtes et al., 2001; Sulli-
vant et al., 2010), and possibly Verma constraints (Verma
& Pearl, 1991). We refer the readers to Drton (2018) for
an overview. Let H(G) be the set of equality constraints
imposed by structure G on the distribution setM(G), and
Hm :=

⋃
G∈Gm H(G) be the set of possible equality con-

straints imposed by any structure G (with m measured vari-
ables). Two structures G1 and G2 are said to be algebraic
equivalent if they lead to the same equality constraints, i.e.,
H(G1) = H(G2) (van Ommen & Mooij, 2017).1

Furthermore, let dim(G) denote the model dimension or
degrees of freedom of DAG G for the marginal over the ob-
served variables, which can be viewed as the number of free
parameters for the distribution setM(G). In general, the

1In the terminology of algebraic geometry, M(G1) and M(G2)
share the same vanishing ideal or Zariski closure (Cox et al., 2015).
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degrees of freedom are not necessarily equal to the number
of parameters (i.e., sum of number of edges and measured
variables) in the presence of latent variables (Geiger et al.,
1996; 2001). In Sections 4 and 5, we further characterize the
degrees of freedom under specific structural assumptions.

3.2. Formulation of Scoring Function

We now provide the formulation of the scoring function for
identifying linear latent variable causal models. Specifically,
our score-based method involves searching for the structure
with the smallest degrees of freedom that can generate the
covariance matrix. Given structure G with samples D and
empirical covariance matrix S, the scoring function is

scoredim(G,D) :=

{
dim(G) if G can generate S,

∞ otherwise.

To determine whether structure G can generate S, one may
minimize the squared errors between S and the covariance
matrix parameterized by G, or compare the maximum likeli-
hood w.r.t. G (e.g., see Equation (3)) to the likelihood of S.
Moreover, we show in Section 3.4 that the scoring function
satisfies the property of score equivalence.

Similar scoring function has been discussed by Raskutti &
Uhler (2014). Roughly speaking, there may exist multiple
structures that can generate the same distribution; the scor-
ing function identifies one of them with the smallest degrees
of freedom. In Sections 3.3, 4 and 5, we discuss how this
scoring function identifies structures up to different types
of model equivalence in the large sample limit. Specifi-
cally, we show in Section 3.3 that it yields a structure that is
algebraic equivalent to the ground truth.

Since the key idea is to identify the structure that generates
the population covariance matrix (in the large sample limit)
with the smallest degrees of freedom, different types of
scoring functions that can achieve so can also be used. In
Section 3.4, we further discuss the use of the BIC score.

3.3. Identifying Structures up to Algebraic Equivalence

Having formulated the scoring function in Section 3.2, the
question remains as how to leverage it to identify the under-
lying structure G. To do so, a key ingredient is to establish
the correspondence between the covariance matrix and the
structure G. As discussed in Section 3.1, the structure G im-
poses different types of constraints on the entries of covari-
ance matrices, including equality and inequality constraints.
Here, we adopt the following assumption which requires
that the equality constraints are imposed by the structure G.

Assumption 1 (Generalized faithfulness (Ghassami et al.,
2020)). A distribution ΣX is said to be generalized faithful
to DAG G if the entries of ΣX satisfy an equality constraint
κ ∈ Hm only if κ ∈ H(G).

It is worth noting that different types of faithfulness assump-
tions have been adopted in causal discovery (Spirtes et al.,
2001; Ghassami et al., 2020; Huang et al., 2022) to relate
the constraints of the distributions (e.g., conditional inde-
pendence and rank deficiency constraints) to the underlying
structure. This is often motivated by the fact that the set of
parameters violating these assumptions has Lebesgue mea-
sure zero (see, e.g., Ghassami et al. (2020, Proposition 8)).

We then present the following result that describes the notion
of equivalence achieved by minimizing the scoring function.
The proof is provided in Appendix B.3, which is partly
inspired by the proof of Ghassami et al. (2020, Theorem 3).

Theorem 1 (Algebraic equivalence). Suppose the true DAG
G∗ and the distribution ΣX satisfy the generalized faith-
fulness assumption. Let Ĝ ∈ argminG∈Gm scoredim(G,D).
Then, Ĝ and G∗ are algebraic equivalent, i.e., H(Ĝ) =
H(G∗), in the large sample limit.

Remark 1. Under generalized faithfulness assumption, The-
orem 1 implies that minimizing the scoring function leads
to a structure with the same equality constraints (on the
marginal over the measured variables) as the true structure.

In general, relating the estimated structure to the true one,
which are algebraically equivalent, can be challenging with-
out any restrictions on the structures. In Sections 4 and 5, we
show that, under specific structural assumptions, Theorem 1
helps achieve notions of model equivalence that are more
fine-grained than algebraic equivalence (including Markov
equivalence in Section 4). Therefore, a general recipe may
involve identifying suitable structural assumptions that al-
low algebraic equivalence to translate into more fine-grained
notions of model equivalence. This enables the application
of the score based procedure in Theorem 1, given an appro-
priate characterization of the degrees of freedom. We give a
further discussion of generalized faithfulness and algebraic
equivalence in Appendices A.2 and A.3, respectively.

3.4. Remark on the BIC Score

The scoring function discussed in Section 3.2 is justified
in the large sample limit and may not perform well for
finite-sample cases. We consider the BIC score (Schwarz,
1978; Chickering, 2002) that maximizes the likelihood while
penalizing the degrees of freedom of structure G:

scoreBIC(G,D) := scoreL(G,D) +
log T

2
dim(G).

where scoreL(G,D) denotes the maximum likelihood w.r.t.
structure G, given by

scoreL(G,D) := min
(B,C,ΩX):

supp(B)⊆supp(BG),
supp(C)⊆supp(CG),

ΩX∈diag(Rm
>0)

L (B,C,ΩX ;D) .

(3)
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Since it may not be straightforward to derive a closed-form
solution, various numerical solvers or continuous optimiza-
tion methods, such as L-BFGS (Byrd et al., 1995) and gra-
dient descent, as well as the expectation-maximization algo-
rithm (Dempster et al., 1977), can be used to compute the
maximum likelihood above.

It is worth noting that the BIC score has been widely
adopted in score-based causal discovery (Chickering, 2002).
Haughton (1988) showed that it is an asymptotic approxima-
tion for the log marginal likelihood of curved exponential
families, which include Gaussian DAG models without la-
tent variables (Geiger et al., 2001; Richardson & Spirtes,
2002). In the presence of latent variables, the models are
stratified exponential families, and complications arise in
using BIC for model selection. Although the typical theoret-
ical justifications of using BIC (Schwarz, 1978; Haughton,
1988) may not apply for identifying latent variable causal
models in our setting, we apply it in place of scoredim(G,D)
in our experiments, since the latter is justified in the large
sample limit and may not perform well for finite-sample
cases. Surprisingly, using the BIC score leads to a superior
empirical performance, specifically under the structural as-
sumptions described in Sections 4 and 5. This suggests that
BIC may be a valid scoring criterion in these cases. There-
fore, future works involve studying the theoretical justifica-
tions of using BIC score under these structural assumptions.

Recall that a scoring function is score equivalent if ev-
ery pair of Markov equivalent structures have the same
score (Chickering, 2002). This is a desirable property for
score-based procedure as it implies that we can search in
the space of Markov equivalence classes (MECs) instead of
DAGs. That is, one does not have to compute the score mul-
tiple times for the DAGs in the same MEC, which may help
improve the runtime. We show that our scoring functions
satisfy such a property, with a proof given in Appendix B.2.

Proposition 1 (Score equivalence). Suppose that
DAGs G1 and G2 are Markov equivalent. Then,
we have scoredim(G1,D) = scoredim(G2,D) and
scoreBIC(G1,D) = scoreBIC(G2,D).

4. Linear 1-Factor Latent Variable Models
In the previous section, we show that the scoring function
can produce a structure algebraic equivalent to the ground
truth. We now discuss how such result helps estimate a
structure up to Markov equivalence. In this section, we focus
on the structural assumption by Silva et al. (2003; 2006).2

Assumption 2 (Silva et al. (2003)). Each measured variable
has a single latent parent, and each latent variable has at
least three measured variables as children.

2In our setting, it may be sufficient to require that each latent
variable has at least two measured variables as children.
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Figure 1: Example of 1-factor latent variable model.

An example illustrating the above assumption is provided
in Figure 1. Silva et al. (2003) proposed a search procedure
based on statistical tests of tetrad constraints that can
identify structures under this assumption. In this section,
we develop a score-based method based on this structural
assumption. We first characterize the degrees of freedom
of the structure in Section 4.1, as required by the scoring
function. We then establish the consistency and provide an
exact score-based search procedure in Section 4.2. We also
develop a continuous search procedure in Section 4.3 that
may be more computationally efficient.

4.1. Degrees of Freedom

The scoring function requires a proper specification of the
degrees of freedom during the search procedure. For the
structural assumption in Assumption 2, the degrees of free-
dom, as one may expect, equals the number of edges in DAG
G plus the number of measured variables. Here, the num-
ber of edges include those among the latent variables and
those from the latent variables to the measured ones. The
proof follows straightforwardly from parameter identifiabil-
ity under Assumption 2 (Bollen, 1989), which is provided
in Appendix B.4 for completeness.

Proposition 2 (Degrees of freedom). Suppose that DAG G
satisfies Assumption 2. Then, dim(G) = |G|+m.

To illustrate, the degrees of freedom of the example in Fig-
ure 1 are simply equal to 24. The above property holds
in many other settings such as the typical setting without
latent confounders (Chickering, 2002), as well as those with
bow-free acyclic mixed graphs (Brito & Pearl, 2002) and
cycles (excluding 2-cycles) (Amendola et al., 2020). Note
that such property, while desirable, does not hold in general
for structures with latent variables (Geiger et al., 1996). For
instance, the degrees of freedom of the structures that we
consider in Section 5 are generally not equal to |G|+m.

4.2. Consistency and Exact Score-Based Search

Having characterized the degrees of freedom, we now estab-
lish the correctness of score-based approach under Assump-
tion 2 and accordingly develop an exact search procedure.
Specifically, under Assumption 2 and the generalized faith-
fulness assumption, we show that the structure with the
optimal score is Markov equivalent to the true structure.
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Algorithm 1 Enumerating structures under Assumption 2

Input: Measured variables X1, . . . , Xm

Output: Set of DAGs A
Initialize A as an empty set;
for n = 1 to ⌊m/3⌋ do

foreach latent MEC with n variables do
Generate a latent DAG CG from the latent MEC;
foreach ordered n-partition (Pj)

n
j=1 of {Xi}mi=1 do

if |Pj | ≥ 3 for j = 1, . . . , n then
Construct DAG G with latent DAG CG and
each latent Lj pointing to the variables in Pj ;
if G is not Markov equivalent to all DAGs in A
then
A← A ∪ {G};

return set A

Theorem 2 (Correctness). Suppose that the true DAG G∗
and the distribution ΣX satisfy the generalized faithfulness
assumption, and that G∗ satisfies Assumption 2. Let Ĝ be a
global minimizer of the following optimization problem:

min
G∈Gm

scoredim(G,D)

subject to G satisfies Assumption 2,
(4)

where dim(G) = |G| + m. Then, Ĝ and G∗ are Markov
equivalent in the large sample limit.

The proof can be found in Appendix B.5, which leverages
Theorem 1 that shows how the scoring function produces
a structure that is algebraic equivalent to the true structure.
Moreover, the theorem above indicates that one could per-
form exact search for all structures under Assumption 2. A
naive approach is to iterate over all possible structures and
check if each of them satisfy Assumption 2. This may be
computationally infeasible because much of the time may
be spent on structures that do not fall within the model class.

The question is then how to efficiently enumerate and per-
form exact search for these structures. We provide an al-
gorithm to do so in Algorithm 1. Leveraging the score
equivalence property in Proposition 1, we consider only
structures that are not Markov equivalent to one another,
since they are indistinguishable based on Theorem 2 and
give rise to the same score. First, we generate the possi-
ble structures CG among the latent variables that are not
Markov equivalent to one another. To construct the structure
BG from latent variables to measured variables, we then find
all ordered partitions of measured variables and add each
subset from the partition to be the children of each latent
variable. We compute the score for each structure enumer-
ated by Algorithm 1, and find the structure with the optimal
score. Under Theorem 2, such an exact search procedure
will output a structure Markov equivalent to the true one.

4.3. Continuous Search

The exact search procedure presented in the previous section
requires computing the score for each structure satisfying
the structural assumption, which can be computationally
intensive when there is a large number of variables. For
instance, when using the BIC score, each computation in-
volves solving a continuous optimization problem in Equa-
tion (3); the same applies to scoredim(G,D). This is inherent
to discrete score-based search that assigns a score to each
structure. A key question naturally arises: how do we unify
the structure search part and likelihood computation into a
single continuous optimization problem? Such a unified pro-
cedure helps reduce the computational burden of separately
computing the score for each structure in a discrete search.
Furthermore, this aligns with recent studies in continuous
optimization for causal discovery (Zheng et al., 2018; Ng
et al., 2020; Vowels et al., 2022).

We first provide a reformulation of Equation (4) with the
BIC score that is more amenable to continuous optimization.
The key lies in characterizing the penalty term |G| and the
constraint involving Assumption 2. Specifically, we solve
the following constrained optimization problem:

min
MB∈{0,1}m×n̄,

MC∈{0,1}n̄×n̄,

B∈Rm×n̄,C∈Un̄,
ΩX∈diag(Rm

>0)

( 1

T
L (MB ⊙B,MC ⊙ C,ΩX ;D)

+ λ∥MB∥1 + λ∥MC∥1
)

subject to

n̄∑
k=1

(MB)i,k − 1 = 0, i ∈ [m], (5)(( m∑
k=1

(MB)k,j +

n̄∑
k=1

(MC)k,j

)
( m∑

k=1

(MB)k,j − 3

))
≥ 0, j ∈ [n̄],

where n̄ = ⌊m/3⌋ is an upper bound of the number of latent
variables and λ = log T/2T . In the formulation above, the
matrices MB and MC can be viewed as the support matri-
ces of B and C; they act as binary masks which indicate
which edges are present in the structure. Furthermore, the
two constraints in Equation (5) serve as a characterization
of Assumption 2 using the support matrices MB and MC .
Specifically, the first constraint requires each row of MB

to have one nonzero entry (i.e., each measured variable has
one a single latent parent). The second constraint requires
each column of MB and MC to satisfy the following: either
the column of MB has at least three nonzero entries, or the
column of MB and MC have no nonzero entries (i.e., each
latent variable has at least 3 measured variables as children,
or no child at all).

We now discuss how to solve Equation (5) using continuous
constrained optimization procedure. We first introduce slack
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variable ti ≥ 0 and convert the inequality constraints into
equality constraints. To estimate the binary matrices MB

and MC , we apply the Gumbel-Softmax technique (Maddi-
son et al., 2017; Jang et al., 2017) that is widely used to sam-
ple and approximate samples from a categorical distribution,
which has also been adopted in continuous optimization
approaches for causal discovery (Ng et al., 2022; Brouil-
lard et al., 2020). Specifiaclly, we apply Gumbel-Sigmoid
for each entry of MC , and Gumbel-Softmax with n̄ cate-
gories for each row of MB; the latter also incorporates the
first constraint of Equation (5) that requires each row of
MB to have one nonzero entry. The resulting continuous
constrained optimization problem can then be solved using
standard methods such as augmented Lagrangian method
and quadratic penalty method (Bertsekas, 1982; 1999; No-
cedal & Wright, 2006). These methods transform the con-
strained problem into a series of unconstrained problems,
each of which can be solved via continuous optimization
methods such as gradient descent or L-BFGS (Byrd et al.,
1995). In this work, we adopt augmented Lagragian method
that is commonly used in causal discovery with continuous
optimization (Zheng et al., 2018; Vowels et al., 2022).

5. Linear Latent Hierarchical Structures
The structural assumption in Section 4 requires (i) each mea-
sured variable to have only one latent parent and (ii) each
latent variable to have measured children. In real-world
cases, the structure may be more complex – the measure-
ment model may not be a tree and some latent variables may
not have measured children. Thus, we also consider a more
general assumption formulated by Huang et al. (2022).

We first explain the notions of pure children, pure descen-
dants, and latent atomic cover, which serve as the fundamen-
tal building blocks of the whole structure.
Definition 2 (Pure children (Huang et al., 2022)). Vari-
ables V are pure children of variables L in structure G,
iff PaG(V) =

⋃
Vi∈V PaG(Vi) = L and L ∩ V = ∅. We

denote the pure children of L in G by PChG(L).

Accordingly, pure descendants of a set of variables L, i.e.,
PDeG(L), are defined as all recursive pure children of L.
Definition 3 (Latent atomic cover (Huang et al., 2022)). Let
L be a set of latent variables in G with |L| = k. L is an
atomic cover if the following conditions hold:

(i) There exists a set of variables C such that C ⊆
PChG(L) and |C| ≥ k + 1.

(ii) There exists a set of variables N such that every el-
ement in N is a neighbour of L, |N| ≥ k + 1, and
N ∩C = ∅.

(iii) There does not exist a partition of L = L1 ∪ L2 such
that both L1 and L2 are latent atomic covers.

!!
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Figure 2: Example of latent hierarchical structure.

Having introduced the required notions, we now provide the
structural assumptions considered by Huang et al. (2022).

Assumption 3 (Identifiable linear latent hierarchical
graph (Huang et al., 2022)). A graph G is an identifiable
linear latent hierarchical graph if (i) every latent variable
Li belongs to at least one latent atomic cover and there is
no triangle structure in the graph, and (ii) if there exists a
set of variables V such that every variable in V is a collider
of two latent atomic covers V1, V2, and denote by T the
minimal set of variables that d-separates V1 from V2, then
we must have |V|+ |T| ≥ |V1|+ |V2|.

The assumption above requires that each latent variable be-
longs to at least one latent atomic cover, since a latent atomic
cover is the minimal identifiable substructure in a graph us-
ing rank constraints of covariance over observed variables.
Also, the assumption requires certain graphical patterns that
are related to the common pure descendants across different
latent atomic covers for the identifiability of the whole latent
structure. The assumption above may be more general than
Assumption 2 as it allows each measured variable to have
multiple latent variables as parents, and also allow some
latent variables to not have any measured child at all; see Ap-
pendix A.4 for more details. An example is given in Figure 2.
Under the assumption above, Huang et al. (2022) developed
a constraint-based method based on rank deficiency test to
estimate the equivalence class of the true structure.

In this section, we develop a score-based method under As-
sumption 3. We characterize the degrees of freedom in Sec-
tion 5.1 and provide an exact search method in Section 5.2.
We do not provide a continuous search method for this
structural assumption, since it cannot be straightforwardly
formulated as inequality constraints, similar to Equation (5).

5.1. Degrees of Freedom

As noted in Sections 3.2 and 4, a key ingredient of the score-
based method is the specification of the degrees of freedom.
It may be natural to expect that the degrees of freedom are
equal to the number of edges and measured variables, similar
to the structural assumption considered in Section 4 and the
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Algorithm 2 Degrees of freedom under Assumption 3

Input: Structure G
Output: Degrees of freedom d
Initialize degrees of freedom d← |G|+m;
foreach subset L of latent variables where |L| ≥ 2 do

if variables in L have the same parents and children
and no proper superset of L satisfies the previous con-
dition then
d← d− |L|(|L| − 1)/2;

return degrees of freedom d

standard setting without latent variables (Chickering, 2002).
However, this property does not hold for latent hierarchical
structures, as illustrated by the following lemma.

Proposition 3. Suppose that DAG G follows the linear latent
variable causal model in Equation (1). Suppose also that
there exist k ≥ 2 latent variables in G with the same set of
parents and children, where either the number of parents or
children is at least k. Then, dim(G) ≤ |G|+m−k(k−1)/2.

The proof is given in Appendix B.6. As shown in the proof,
under these circumstances, there exists an alternative struc-
ture G̃ obtained by removing k(k− 1)/2 edges (correspond-
ing to edges involving the parents or children) from G such
that G̃ leads to the same distribution set as G, i.e.,M(G̃) =
M(G). Thus, the degrees of freedom in this scenario are
reduced compared to the number of edges and measured
variables. This reduction can be intuitively explained by the
redundancy of certain edges in such situations. For instance,
the degrees of freedom for the structure are 44 instead of 46
(i.e., the sum of number of edges and measured variables),
because the variables {L2, L3} and {L4, L5} (i.e., in the
same atomic covers) have the same parents and children.

Building on the result above, we develop a procedure in
Algorithm 2 to calculate the degrees of freedom under As-
sumption 3. Specifically, the algorithm iterates over all
subsets of latent variables and calculate the degrees of free-
dom that can be reduced. The following proposition shows
that the algorithm outputs the upper bound of the degrees of
freedom, with a proof provided in Appendix B.7.

Proposition 4 (Degrees of freedom). Suppose that DAG G
satisfies Assumption 2. Then, Algorithm 2 outputs the upper
bound of dim(G).

We conjecture, supported by simulations over 10, 000 exam-
ples (by computing the rank of Jacobian matrices (Geiger
et al., 2001)) and the experiments in Section 6, that the upper
bound provided by this algorithm is tight, although a proof
seems to involve tools from algebraic statistics and is not
straightforward. For instance, Drton et al. (2023) analyzed
the degrees of freedom for sparse factor analysis, which is
technically complex even with independent latent variables.

Algorithm 3 Enumerating structures under Assumption 3

Input: Measured variables X1, . . . , Xm

Output: Set of DAGs A
Initialize A as an empty set;
for n = 1 to n̄ do

for partition {Ci}li=1 of {Li}ni=1 as atomic covers do
for DAG GC→C among {Ci}li=1 do

for DAG GC→X from {Ci}li=1 to {Xi}mi=1 do
Construct DAG G by combining GC→C and
GC→X ;
if G satisfies Assumption 3 and is not Markov
equivalent to all DAGs in A then
A← A ∪ {G};

return set A

5.2. Consistency and Exact Score-Based Search

With the algorithm to compute the degrees of freedom, we
now develop a score-based method to estimate latent hier-
archical structures. We first establish the correctness of the
score-based method. Under Assumption 3 and the gener-
alized faithfulness assumption, we prove that the structure
with the optimal score is Markov equivalent to the true hi-
erarcahical structure, up to certain rank equivalent graph
operators. The proof and definition of the operators together
with illustrative examples can be found in Appendix B.8.

Theorem 3 (Correctness). Suppose that the true DAG G∗
and the distribution ΣX satisfy the generalized faithfulness
assumption, and that G∗ satisfies Assumption 3. Let Ĝ be a
global minimizer of the following optimization problem:

min
G∈Gm

scoredim(G,D)

subject to G satisfies Assumption 3,

G = Omin(Oskeleton(G)).

Then, Oatomic(Ĝ) and Oatomic(Omin(Oskeleton(G∗))) are
Markov equivalent in the large sample limit.

Based on the theorem above, we develop an exact search
procedure for structures under Assumption 3. We introduce
a procedure in Algorithm 3 for enumeration of these struc-
tures, where n̄ is a hyperparameter indicating the maximal
number of latent variables. Note that a possible upper bound
for n̄ is 3m. Similar to the algorithm developed in Algo-
rithm 1, we enumerate only structures that are not Markov
equivalent to one another, leveraging the score equivalence
property. The whole procedure of Algorithm 3 is roughly as
follows. We maintain a set of DAGs, A. Given the number
of observed variables, we first decide the possible number
of latent variables, and then enumerate all possible combi-
nations of atomic covers. For each combination of atomic
covers, we enumerate all possible DAGs among atomic cov-
ers and all possible DAGs from atomic covers to observed
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Table 1: F1 scores of skeletons across various structural assumptions and sample sizes. For each setting, the top two methods
are in bold. For FOFC, the number within the brackets indicates the number of valid runs (for which an error did not occur).

Model type Sample size SALAD SALAD-CS HUANG FOFC GIN

1-Factor
model

100 0.99± 0.03 0.97± 0.07 0.50± 0.20 0.90± 0.12 (8) 0.35± 0.02
300 0.99± 0.01 0.99± 0.02 0.85± 0.15 0.98± 0.03 (9) 0.35± 0.02
1000 0.99± 0.01 0.99± 0.01 0.93± 0.03 0.98± 0.03 (12) 0.35± 0.02
3000 1± 0 0.99± 0.02 0.93± 0.03 0.99± 0.01 (12) 0.35± 0.02
10000 1± 0 0.99± 0.02 0.93± 0.03 0.99± 0.01 (11) 0.37± 0.07

Hierarchical
structure

100 0.92± 0.06 N/A 0.57± 0.13 N/A (0) 0.48± 0.05
300 0.92± 0.07 N/A 0.66± 0.09 N/A (0) 0.48± 0.05
1000 0.95± 0.04 N/A 0.76± 0.13 N/A (0) 0.48± 0.05
3000 0.97± 0.03 N/A 0.87± 0.11 N/A (0) 0.48± 0.05
10000 0.98± 0.03 N/A 0.88± 0.15 N/A (0) 0.47± 0.05

variables. Finally, we combine both enumerated DAGs to
get a possible graph G; if G satisfies Assumption 3 and is
not Markov equivalent to all structures in A, we add it to A.
Once the search space is constructed, the algorithm identi-
fies the structure with the optimal score, with the degrees of
freedom for each structure computed using Algorithm 2.

6. Experiments
We conduct experiments to validate our score-based meth-
ods, by comparing them to existing methods that support
causally-related latent variables, such as FOFC (Kummer-
feld & Ramsey, 2016), HUANG (Huang et al., 2022), and
GIN (Xie et al., 2020). We do not include the comparison
with FCI because, even when working perfectly, it will out-
put complete PAGs over the observed variables for most
ground truths considered here, which do not have any infor-
mation of the orientation and are not informative. Moreover,
we denote our exact search method by SALAD and continu-
ous one by SALAD-CS, and adopt the BIC score here.

For the ground truths, we consider the 1-factor models and
hierarchical structures provided in Figures 4 and 5 in Ap-
pendix C. For each structure, the nonzero elements of ma-
trices B and C are generated uniformly at random from the
interval [−2,−0.5] ∪ [0.5, 2.0]. For GIN, the noise terms
EX and EL follow Uniform[−α, α], where α is sampled
uniformly from [

√
6,
√
15]. For the other methods, the noise

terms follow Gaussian distributions with variances sampled
uniformly from interval [2, 5]. We consider sample size
T ∈ {100, 300, 1000, 3000, 10000}. We evaluate the esti-
mated structures using F1 scores calculated over the skeleton
and structural Hamming distance (SHD) over the MEC. We
run three random trials for each ground truth, and report the
mean and standard devation for each metric. Further details
about the metrics and baselines can be found in Appendix C.

The F1 scores of skeletons are reported in Table 1, while the
SHDs of MECs are given in Table 2 in the supplementary
material. One observes that our methods achieve much bet-

ter F1 scores and SHDs as compared to the other baselines,
especially for small sample sizes. For instance, for 100
samples, our SALAD method achieves average F1 scores
of 0.99 and 0.92 for 1-factor model and hierarchical struc-
tures, respectively, while the second best baseline achieves
F1 scores of 0.90 and 0.57, respectively. Note that although
FOFC achieves an F1 score of 0.90 for 1-factor model in this
case, four of the runs are not valid (i.e., an error occurred).
A possible reason of the improvement is that the existing
constraint-based baselines, as discussed in Section 1, may
be prone to the issue of error propagation during the es-
timation procedure, while our score-based method is not
susceptible to such an issue. Furthermore, the F1 scores of
our method are close to one for both structural assumptions
when the sample size is large, which suggest that BIC may
be a valid scoring function in our setting and help verify the
correctness established in Theorems 2 and 3. The runtime
and computational efficiency are discussed in Appendix D.

7. Conclusion and Discussion
In this work, we propose SALAD, a score-based causal
discovery method capable of identifying causal relations
among latent variables. Achieving score equivalence and
consistency, along with degrees of freedom characteriza-
tion and exact and continuous score-based methods, our
work provides a unified view on multiple existing constraint-
based methods with latent variables, and further validates
the effectiveness of score-based methods. We hope that this
work could spur future research on developing score-based
methods for latent variable causal models.

Indeed, our exact methods require a relatively long runtime,
similar to the exact score-based methods even without latent
variables (Singh & Moore, 2005; Yuan & Malone, 2013).
Future works include developing greedy approaches similar
to GES to make the search procedure more efficient and
scalable, and studying the theoretical justifications of using
BIC score under the structural assumptions considered.
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Supplementary Material

A. Further Discussions
We provide supplementary discussions below as complements to various sections in the main paper.

A.1. Latent Variable Causal Models

In real-world scenarios, one may often encounter the latent variable causal model in Equation (1), where the measured
variables do not influence each other and are effects of latent variables. Thus, there have been many works that aim to estimate
this type of linear latent variable causal models (Silva et al., 2003; 2006; Silva & Scheines, 2005; Zhang, 2004; Choi et al.,
2011; Kummerfeld & Ramsey, 2016; Cai et al., 2019; Xie et al., 2020; Dai et al., 2022; Huang et al., 2022; Chen et al., 2022).

To provide some examples, in psychometrics, multiple questions are often used as indirect proxies for each latent personality
dimension (e.g., openness, extraversion, self-esteem) (Goldberg, 1992; Byrne, 2001; Himi et al., 2019), forming a latent
variable causal model. When analyzing fMRI data, a large number of voxels are measured, which do not necessarily have
clear semantic meanings. A hierarchical structure can then be used to model functionally meaningful brain regions at
different levels (Huang et al., 2022). In representation learning, recent works typically assumed that measured variables
(e.g., image pixels) are effects of latent variables and that there are no direct causal influences among the measured
variables (Schölkopf et al., 2021; Hyvärinen et al., 2023; Zhang et al., 2024).

A.2. Generalized Faithfulness Assumption

We discuss the necessity of the generalized faithfulness assumption adopted in our results. One of the advantages of score-
based causal discovery is that it typically relies on the sparsest Markov representation (SMR) assumption (or unique frugality
assumption) (Forster et al., 2017; Raskutti & Uhler, 2014), which is strictly weaker than the faithfulness assumption (Spirtes
et al., 2001) in the setting without latent variables. In our setting with latent variables, it is possible to modify Theorems 1, 2,
and 3 to replace generalized faithfulness with a formulation similar to the SMR assumption. However, doing so may not be
informative because (1) SMR may not be strictly weaker than the faithfulness assumption in our setting, and (2) simply
assuming SMR in our setting may not provide insights into what structural assumptions the true structure should obey. Thus,
we adopt the generalized faithfulness assumption and various structural assumptions to make the results more informative.

A.3. Algebraic Equivalence

We provide a further discussion of algebraic equivalence (van Ommen & Mooij, 2017) as a complement to Section 3.3.
First note that two algebraic equivalent structures are not necessarily Markov equivalent. The reason is that, without any
restriction on the structures, one may construct different structures that entail the same equality constraints. For instance,
consider the structure in Figure 5(a), denoted as G1, and another structure G2 that is identical to G1, except that the edges
L1 → X1, L2 → X1, and L1 → X2 are removed in G2. One can show G1 and G2 are algebraic equivalent, but clearly they
are not Markov equivalent.

Nonetheless, algebraic equivalence may be a reasonable way for estimating linear latent variable causal models, because
equality constraints (of the covariance matrices) are some of the major footprints in the data that one could leverage (without
considering higher-order statistics) to identify the underlying structures. This can be done by relating these constraints to the
structures via the generalized faithfulness assumption.

A.4. Structural Assumptions

We discuss the similarities and differences between the structural assumptions considered in our work. First, both
Assumptions 2 and 3 require that the observed variables are leaf nodes, and that there are no direct causal influences among
observed variables. The key differences between them are as follows. (1) Assumption 2 requires that each latent variable has
at least three measured variables as its children, while Assumption 3 allows latent variables to form a hierarchical structure -
some latent variables may only have latent variables as their children. (2) Assumption 2 requires each observed variable to
be caused by a single latent variable, while Assumption 3 allows an observed variable to be caused by a group of latent
variables. Since Assumption 3 does not require each latent variable to have measured variables as children, the structure
among latent variables cannot be arbitrary, and thus there is a tradeoff between Assumptions 2 and 3.
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B. Proofs
B.1. Proof of Lemma 1

Lemma 1 (Indeterminacy of ΩL). For any parameters B,C,ΩX ,ΩL, and ΣX that follow Equation (2), there exist
parameters B̃ and C̃ with supp(B) = supp(B̃) and supp(C) = supp(C̃) such that

ΣX = B̃(I − C̃)−1(I − C̃)−⊤B̃⊤ +ΩX .

Proof. Let B̃ := BΩ
1
2

L and C̃ := Ω
− 1

2

L CΩ
1
2

L . We have supp(B) = supp(B̃), supp(C) = supp(C̃), and

ΣX = B(I − C)−1ΩL(I − C)−⊤B⊤ +ΩX

= BΩ
1
2

LΩ
− 1

2

L (I − C)−1Ω
1
2

LΩ
1
2

L(I − C)−⊤Ω
− 1

2

L Ω
1
2

LB
⊤ +ΩX

= (BΩ
1
2

L)(I − Ω
− 1

2

L CΩ
1
2

L)
−1(I − Ω

− 1
2

L CΩ
1
2

L)
−⊤(BΩ

1
2

L)
⊤ +ΩX

= B̃(I − C̃)−1(I − C̃)−⊤B̃⊤ +ΩX

B.2. Proof of Proposition 1

The following proof is partly inspired by that of the score equivalence property in the setting without latent variables (Koller
& Friedman, 2009).
Proposition 1 (Score equivalence). Suppose that DAGs G1 and G2 are Markov equivalent. Then, we have scoredim(G1,D) =
scoredim(G2,D) and scoreBIC(G1,D) = scoreBIC(G2,D).

Proof. Because structures G1 and G2 are Markov equivalent, they can generate the same set of covariance matrices over
variables X and L. Thus, for any parameters B,C,ΩX of G1 with ΩL = I , there exists parameters B′, C ′,Ω′

X ,Ω′
L of

G2 that can generate the same covariance matrix over X and L, which imply that B′, C ′,Ω′
X ,Ω′

L can generate the same
covariance matrix over X . By Lemma 1, there exists parameters of G2, denoted as B̃, C̃, Ω̃X = Ω′

X and Ω̃L = I , that can
generate the covariance matrix. Note that the likelihood function depends only on the covariance matrix, which indicates

scoreL(G1,D) = L(B̂, Ĉ, Ω̂X ;D) = L(B̃, C̃, Ω̃X ;D) ≥ scoreL(G2,D),

where B̂, Ĉ, Ω̂X are the solutions of the optimization problem in Equation (3) for G = G1, and, as described above,
B̃, C̃, Ω̃X are the corresponding parameters of structure G2.

Similarly, the same reasoning implies scoreL(G2,D) ≥ scoreL(G1,D). Combining both cases, we have scoreL(G1,D) =
scoreL(G2,D). Furthermore, since G1 and G2 can generate the same set of covariance matrices over variables X and L,
they can generate the same set of covariance matrices over variables X . This implies dim(G1) = dim(G2). Therefore, we
have scoreBIC(G1,D) = scoreBIC(G2,D) and scoredim(G1,D) = scoredim(G2,D).

B.3. Proof of Theorem 1

The overall proof strategy below is partly inspired by the proof of Ghassami et al. (2020, Theorem 3).
Theorem 1 (Algebraic equivalence). Suppose the true DAG G∗ and the distribution ΣX satisfy the generalized faithfulness
assumption. Let Ĝ ∈ argminG∈Gm scoredim(G,D). Then, Ĝ and G∗ are algebraic equivalent, i.e., H(Ĝ) = H(G∗), in the
large sample limit.

Proof. Since the search space contains the true DAG G∗ that can generate ΣX in the large sample limit, the estimated DAG
Ĝ can also generate ΣX , because otherwise its score will be infinity and will not be a solution of the optimization problem.
Therefore, ΣX belongs to the distribution set of Ĝ, i.e., ΣX ∈M(Ĝ), which implies that ΣX contains all the equality and
inequality constraints of Ĝ. Under the generalized faithfulness assumption, we have

H(Ĝ) ⊆ H(G∗). (6)

Now suppose by contradiction that H(Ĝ) ⊊ H(G∗). This implies dim(Ĝ) > dim(G∗), which is a contradiction because the
objective function implies dim(Ĝ) ≤ dim(G∗). Thus, we obtain

H(Ĝ) ̸⊊ H(G∗). (7)

By Equations (6) and (7), we have H(Ĝ) = H(G∗).
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B.4. Proof of Proposition 2

We first state the following lemma adapted from Leung et al. (2015) that relates the parameter identifiability from a given
structure to the underlying degrees of freedom.

Lemma 2 (Leung et al. (2015)). Suppose f : S→ Rd is a polynomial map defined on an open set S ⊆ Rp. The following
statements are equivalent:

(i) f is generically finite-to-one.

(ii) The Jacobian matrix of f is generically of full column rank.

We now provide the proof of the following proposition.

Proposition 2 (Degrees of freedom). Suppose that DAG G satisfies Assumption 2. Then, dim(G) = |G|+m.

Proof. By Corollary 1, it suffices to consider the case where ΩL = I . Since the structure G satisfies Assumption 2, by
Bollen (1989), the corresponding parameters B,C and ΩX of G are identifiable from ΣX up to certain indeterminacy.
Specifically, B is identifiable up to column permutations and sign changes, C is identifiable up to equal row and column
permutations, and ΩX is identifiable. Therefore, the map from B,C, and ΩX to ΣX is finite-to-one.

The map from B,C, and ΩX (with ΩL = I) to ΣX is a polynomial map. By Lemma 2, the Jacobian matrix of such map
has full column rank. Note that the degrees of freedom (or dimension) of a polynomial map are equal to the maximal rank
of the corresponding Jacobian matrix (Geiger et al., 2001, Theorem 10). Therefore, the degrees of freedom are equal to the
number of parameters in B,C, and ΩX , i.e., dim(G) = ∥BG∥0 + ∥CG∥0 +m = |G|+m.

B.5. Proof of Theorem 2

Theorem 2 (Correctness). Suppose that the true DAG G∗ and the distribution ΣX satisfy the generalized faithfulness
assumption, and that G∗ satisfies Assumption 2. Let Ĝ be a global minimizer of the following optimization problem:

min
G∈Gm

scoredim(G,D)

subject to G satisfies Assumption 2,
(4)

where dim(G) = |G|+m. Then, Ĝ and G∗ are Markov equivalent in the large sample limit.

Proof. Since the search space contains the true DAG G∗ that can generate ΣX in the large sample limit, the estimated DAG
Ĝ can also generate ΣX , because otherwise its score will be infinity and will not be a solution of the optimization problem.
Because G∗ and ΣX satisfy the generalized faithfulness assumption, we have H(Ĝ) = H(G∗) in the large sample limit by
Proposition 2 and restricting the set of structures to those satisfying Assumption 2 in Theorem 1. This indicates that Ĝ and
ΣX also satisfy the generalized faithfulness assumption.

Since Ĝ and G∗ satisfy Assumption 2 and both can faithfully generate the covariance matrix ΣX , we have:

• By Silva et al. (2003, Corollary 1), the measurement models of Ĝ and G∗ are identical (up to relabeling of latent
variables). In other words, the columns of BĜ are a permutation of the columns of BG∗ .

• With a correct measurement model, by leveraging the transitivity of Markov equivalence, it follows straightforwardly
from Silva et al. (2006, Theorems 20) that the structural models (i.e., the subgraphs over all and only the latent variables)
of Ĝ and G∗ are Markov equivalent (up to relabeling of latent variables).

Combining the reasoning for both measurement model and structural model, Ĝ and G∗ are Markov equivalent (up to
relabeling of latent variables).
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B.6. Proof of Proposition 3

For structure G, we define the following distribution set with the constraint ΩL = I:

M(G; ΩL = I) := {B(I−C)−1(I−C)−⊤B⊤+ΩX : supp(B) ⊆ supp(BG), supp(C) ⊆ supp(CG),ΩX ∈ diag(Rm
>0)}.

Note that the dimension of the domain and the image space are upper bounds for the dimension ofM(G; ΩL = I). By
Lemma 1, it is straightforward to obtain the following corollary.

Corollary 1. For any structure G satisfying Equation (1), we have

M(G) =M(G; ΩL = I) and dim(G) ≤ min

(
|G|+m,

1

2
m(m+ 1)

)
.

Therefore, it suffices to analyze the degrees of freedom forM(G; ΩL = I) instead ofM(G).

We first provide the following lemma which shows that an appropriate orthogonal transformation of B and C can generate
the same covariance matrix.

Lemma 3 (Orthogonal transformation). Consider any set of parameters B,C,ΩX , and ΣX that satisfy

ΣX = B(I − C)−1(I − C)−⊤B⊤ +ΩX .

For any orthogonal matrix Q, i.e., QQ⊤ = I . the parameters B̃ = BQ and C̃ = Q⊤CQ also satisfy

ΣX = B̃(I − C̃)−1(I − C̃)−⊤B̃⊤ +ΩX .

Proof. The proof follows from straightforward algebraic manipulations:

ΣX = B(I − C)−1(I − C)−⊤B⊤ +ΩX

= BQQ⊤(I − C)−1QQ⊤(I − C)−⊤QQ⊤B⊤ +ΩX

= (BQ)(I −Q⊤CQ)−1(I −Q⊤CQ)−⊤(BQ)⊤ +ΩX

= B̃(I − C̃)−1(I − C̃)−⊤B̃⊤ +ΩX .

The following result shows that, in specific cases, some of the edges can be removed from the structure while still leading to
the same distribution set.

Lemma 4. Suppose that DAG G follows the linear latent variable causal model in Equation (1). Suppose also that there
exist k ≥ 2 latent variables L in G with the same set of parents and children, where the number of children (parents) is at
least k. Then, there exists a structure, denoted by G̃, such that: (1) G̃ is identical to G, except that k(k − 1)/2 edges among
those latent variables L and their children (parents) are removed in G̃, and (2)M(G̃) =M(G).

Proof. Consider any set of parameters B,C,ΩX , and ΣX that satisfy

ΣX = B(I − C)−1(I − C)−⊤B⊤ +ΩX . (8)

We first consider the case where the number of children is at least k. Denote by S the set of indices of the latent variables in
L. Since the latent variables L have the same set of children, the rows that correspond to the nonzero entries in each column
of B:,S and C:,S are the same, which we denote by R1 and R2 for B:,S and C:,S, respectively. Let D = (BR1,S, CR2,S) be
a matrix by concatenating the rows of BR1,S and CR2,S; that is, D is a matrix of dimension (|R1|+ |R2|)× k. Applying
orthogonal transformation as in the QR-decomposition, D can be written as D = D̃Q, where D̃ is a lower-triangular matrix
and Q is an orthogonal matrix. We rewrite the equation as D̃ = DQ−1 where Q−1 is also an orthogonal matrix.

Consider the reversed mapping of the indices A1 := {1, 2, . . . , |R1|} and A2 := {|R1|+ 1, |R1|+ 2, . . . , |R1|+ |R2|}.
We now construct an n×n orthogonal matrix U as follows: (1) US,S = Q−1, (2) the other non-diagonal entries are zero, and
(3) the other diagonal entries are one. Let B̃ = BU and C̃ = U⊤CU . Clearly, the entries in B̃ are the same as B, except
that BR1,S is replaced with (DQ−1)A1,: = D̃A1,:. Similarly, the entries in C̃ are the same as C, except that (1) CR2,S is
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replaced with (DQ−1)A2,: = D̃A2,:, and (2) CS,: is replaced with U⊤
S,SCS,:. Since the latent variables L have the same set

of parents, we have supp(U⊤
S,SCS,:) ⊆ supp(CS,:). This implies that B̃, C̃, and ΩX are parameterization of, e.g., structure

G̃, where G̃ has the same edges as G, except that k(k − 1)/2 of the edges from G are removed in G̃ (which correspond to the
“non-lower-triangular” entries from D that become zero in D̃ after QR-decomposition). Clearly, G̃ is identical to G, except
that k(k − 1)/2 edges among those latent variables L and their children are removed in G̃. Furthermore, by Lemma 3, the
parameters B̃, C̃, and ΩX can generate the same covariance matrix ΣX .

Since we are able to construct the same structure G̃ using the above procedure for every parameterization B, C, and ΩX of
G in Equation (8), we haveM(G̃; ΩL = I) =M(G; ΩL = I), which, by Corollary 1, impliesM(G̃) =M(G). The same
reasoning also applies when the number of parents is at least k, i.e., such a structure G̃ can also be constructed.

We now provide the proof of the following proposition.

Proposition 3. Suppose that DAG G follows the linear latent variable causal model in Equation (1). Suppose also that
there exist k ≥ 2 latent variables in G with the same set of parents and children, where either the number of parents or
children is at least k. Then, dim(G) ≤ |G|+m− k(k − 1)/2.

Proof. By Lemma 4, there exists a structure, denoted by G̃, such that: (1) G̃ is identical to G, except that k(k − 1)/2 edges
are removed in G̃, and (2)M(G̃) =M(G). By Corollary 1, this implies

dim(G) = dim(G̃) ≤ |G̃|+m = |G|+m− 1

2
k(k − 1).

B.7. Proof of Proposition 4

Proposition 4 (Degrees of freedom). Suppose that DAG G satisfies Assumption 2. Then, Algorithm 2 outputs the upper
bound of dim(G).

Proof. Let L1,L2, . . . ,Lp be the pairwise disjoint sets of latent variables in structure G such that (1) each Li has at least
two latent variables, (2) the variables of each Li have the same set of parents and children in G, (3) no proper superset of
each Li has the same set of parents and children G. Since the structure G is a DAG, we assume without loss of generality
that L1,L2, . . . ,Lp are sorted based on the reversed causal ordering in G. That is, variables Li1 cannot be the ancestors of
variables Li2 in structure G for i1 < i2.

Although Algorithm 2 does not impose any specific order on the sets of latent variables, we suppose that the algorithm
computes the dimension based on L1,L2, . . . ,Lp (sorted according to reversed causal ordering), which does not affect the
computed degrees of freedom. Denote by dj the output of the algorithm in the j-th iteration where j ∈ [p]. The final output
is then dp. It suffices to show dim(G) ≤ dj in each iteration.

We provide a proof by induction. Specifically, we show that, for the j-th iteration, there exists a structure G̃j such that:

1. G̃j is identical to G, except that |G|+m− dj edges among the variables
⋃j

i=1 Li and their children are removed in G̃j .

2. M(G̃j) =M(G).

By Corollary 1, this implies the desired outcome

dim(G) = dim(G̃j) ≤ |G̃j |+m = |G|+m− (|G|+m− dj) = dj .

For induction, we first consider the base case j = 1. By assumption, the variables L1 have the same set of parents and
children in G, where, under Assumption 3, the number of children is at least |L1|. By Lemma 4, there exists a structure,
denoted by G̃1, such that: (1) G̃1 is identical to G, except that |L1|(|L1| − 1)/2 = |G|+m− d1 edges among the variables
L1 and their children are removed in G̃1, and (2)M(G̃1) =M(G). Therefore, the base case is done.

Suppose that the statements hold for j = t, i.e., there exists a structure G̃t such that: (1) G̃t is identical to G, except that
|G|+m− dt edges among the variables

⋃t
i=1 Li and their children are removed in G̃t, and (2)M(G̃t) =M(G).

18



Score-Based Causal Discovery of Latent Variable Causal Models

Now consider j = t+ 1. Note that only the edges among
⋃t

i=1 Li and their children are removed in G̃t (as compared to G);
by assumption, the variables

⋃t
i=1 Li are not ancestors of the variables Lt+1. Therefore, the incoming and outgoing edges

of variables Lt+1 in G̃t are the same as those in G. This implies that Lt+1 have the same set of parents and children in G̃t,
because they have the same set of parents and children in G. Furthermore, under Assumption 3, the number of children is
at least |Lt+1|. By Lemma 4, there exists a structure, denoted by G̃t+1, such that: (1) G̃t+1 is identical to G̃t, except that
|Lt+1|(|Lt+1| − 1)/2 edges among the variables Lt+1 and their children are removed in G̃t+1, and (2)M(G̃t+1) =M(G̃t).

By the induction hypothesis, we haveM(G̃t+1) =M(G̃t) =M(G). Also, it is clear that G̃t+1 is identical to G, except that

|G|+m− dt +
1

2
|Lt+1|(|Lt+1| − 1) = |G|+m− dt+1

edges among the variables
⋃t+1

i=1 Li and their children are removed in G̃t+1. Therefore, the induction step is done.

B.8. Definition of Graph Operators and Proof of Theorem 3

We provide the definition of structure operations Oatomic, Omin, and Oskeleton below, with an example in Figure 3.

Definition 4 (Minimal-graph operator (Huang et al., 2022; Dong et al., 2023)). For every two atomic covers L and P in
structure G, we merge L to P if the following conditions hold: (i) L is the pure children of P, (ii) all elements of L and
P are latent and |L| = |P|, and (iii) the pure children of L form a single atomic cover, or the siblings of L form a single
atomic cover. We denote such an operator as minimal-graph operator Omin(G).
Definition 5 (Skeleton operator (Huang et al., 2022; Dong et al., 2023)). Given an atomic cover L in structure G. Consider
S as the set of atomic covers such that for all S ∈ S, we have S ⊆ L. Let C = PChG(L)\ ∪S∈S PChG(S). We add edges
from elements in L to elements in C, and we denote such an operator as skeleton operator Oskeleton(G).
Definition 6 (Intra atomic operator). For every atomic cover L in structure G, if |L| ≥ 2, then we add edges between
elements in L such that L form a fully connected DAG. We denote such an operator as intra atomic operator Oatomic(G).
Example 1 (Example for graph operations). Let the graph in Figure 3(a) be G. By the skeleton operator, we add edges from
L2 and L3 to X7, and we arrive at Oskeleton(G), which is shown in Figure 3(b). By the minimal graph operator, we delete L5

and directly link L1 to X8, X9, X10, and arrive at Omin(Oskeleton(G)), which is shown in Figure 3(c). Finally, by the intra
atomic operator, we add edges among L2, L3, L4 such that they are fully connected, and arrive atOatomic(Omin(Oskeleton(G))),
which is shown in Figure 3(d).

Remark 2 (Necessity of graph operators). These three graph operators do not change the rank constraints (among measured
variables), and thus by using rank constraints for causal discovery as in Huang et al. (2022); Dong et al. (2023), we can at
most identify the structure up to these graph operators.

We now provide the proof of the following result.

Theorem 3 (Correctness). Suppose that the true DAG G∗ and the distribution ΣX satisfy the generalized faithfulness
assumption, and that G∗ satisfies Assumption 3. Let Ĝ be a global minimizer of the following optimization problem:

min
G∈Gm

scoredim(G,D)

subject to G satisfies Assumption 3,

G = Omin(Oskeleton(G)).

Then, Oatomic(Ĝ) and Oatomic(Omin(Oskeleton(G∗))) are Markov equivalent in the large sample limit.

Proof. Since the search space contains the DAG Omin(Oskeleton(G∗)) that can generate ΣX in the large sample limit, the
estimated DAG Ĝ can also generate ΣX , because otherwise its score will be infinity and will not be a solution of the
optimization problem. Because G∗ and ΣX satisfy the generalized faithfulness assumption, we have H(Ĝ) = H(G∗) in
the large sample limit by restricting the set of structures to those satisfying Assumption 3 and G = Omin(Oskeleton(G)) in
Theorem 1. This indicates that Ĝ and ΣX also satisfy the generalized faithfulness assumption.

Let G′ be the structure estimated by Algorithm 1 in Huang et al. (2022) based on the covariance matrix ΣX . Since Ĝ
satisfies Assumption 3 and can faithfully generate ΣX , Huang et al. (2022, Theorem 10) and Dong et al. (2023, Theorem 13)
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imply that Oatomic(G′) and Oatomic(Omin(Oskeleton(Ĝ))) are Markov equivalent. With similar reasoning, we can show that
Oatomic(G′) and Oatomic(Omin(Oskeleton(G∗))) are Markov equivalent. Therefore, by the transitivity of Markov equivalence,
Oatomic(Omin(Oskeleton(Ĝ))) and Oatomic(Omin(Oskeleton(G∗))) are Markov equivalent.

Recall that Ĝ = Omin(Oskeleton(Ĝ)). This implies that Oatomic(Ĝ) and Oatomic(Omin(Oskeleton(G∗))) are Markov equivalent.

C. Supplementary Experiment Details
Implementation details. To improve the efficiency of Algorithm 2, we iterate over the latent atomic covers to identify
latent variables with the same set of parents and children. For our exact search method, we use L-BFGS (Byrd et al.,
1995) implemented through SciPy (Virtanen et al., 2020) and PyTorch (Paszke et al., 2019) packages (with the default
hyperparameters) to solve the optimization problem in Equation (3) when computing BIC. The experiments for the exact
search method are conducted on 16 CPUs in parallel. For the continuous search method, i.e., SALAD-CS, we use augmented
Lagrangian method (Bertsekas, 1982; 1999; Nocedal & Wright, 2006) to solve the continuous constrained optimization
problem, in which each subproblem is solved using the Adam optimizer (Kingma & Ba, 2014) with 3000 iterations.
Furthermore, Equation (5) involves a nonconvex optimization problem; similar to continuous optimization methods for
causal discovery (Ng et al., 2024), this procedure may yield suboptimal local solutions. Thus, we run the SALAD-CS
method from 10 random initializations, and select the final solution with the best score.

For HUANG, GIN, and RCD, we use the publicly available implementations with default hyperparameters. For FOFC, we
use the implementation through the py-causal package (Scheines et al., 1998) with Wishart test and significance level of
0.001. Note that we also experimented with significance level of 0.01, 0.05 and 0.1, for which many of the runs are invalid
(because an error occurred).

Metrics. Since the goal is to recover the structure up to Markov equivalence, we compute the SHDs over the MECs. Note
that the labeling of the latent variables is not important; therefore, we calculate the SHDs of the estimated MECs over all
possible permutations of the latent variables, and select the smallest SHD. Similarly, we also compute the F1 scores of the
estimated skeletons over all permutations of latent variables, and select the highest F1 score.

For FOFC, an error occurred in some of the experimental runs. Therefore, we additionally report the number of valid runs
(for which an error did not occur).

D. Runtime and Computational Efficiency
In this section, we report the runtime for different methods considered. For the 1-factor models, our SALAD method has a
runtime of 8.77 ± 0.73 and 44.88 ± 8.02 minutes for 10 and 11 measured variables, respectively, while for hierarchical
structures, it takes 16.11 ± 2.01 minutes. For the SALAD-CS method, each optimization run takes 14.17 ± 0.69 and
14.73± 1.91 minutes for 10 and 11 measured variables, respectively. For the baselines, GIN, HUANG, and FOFC generally
finish within one minute. For the 1-factor models, RCD requires 17.23± 34.84 and 13.06± 24.33 minutes for 10 and 11
measured variables, respectively, while for hierarchical structures, it has a runtime of 7.76± 15.33 minutes.

Our methods have a comparable runtime as RCD, but achieve better performance. Although the runtime of our methods
exceeds that of GIN, HUANG, and FOFC, the improvement in the causal discovery performance is significant. As
discussed in Appendix C, our experiments are conducted on CPUs. It is worth noting that the runtime may be further
decreased by (i) conducting experiments with GPU acceleration (specifically when using gradient-based optimization to
solve Equations (3) and (5)), or (ii) performing more score computations of different structures (specifically for exact search)
concurrently on different CPUs.

Indeed, the relatively long runtime of our methods may be unsurprising because, even without latent variables, exact
score-based methods (Singh & Moore, 2005; Yuan & Malone, 2013) are known to require a long runtime. The search
procedure developed in our work serves as a proof of concept, tailored for scenarios involving a relatively small number of
variables. Nonetheless, the empirical performance validates the effectiveness of score-based methods for estimating latent
variable causal models. Future works include developing greedy approaches similar to GES to make the search procedure
more efficient and scalable.
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Table 2: SHDs of MECs across various structural assumptions and sample sizes. For each setting, the top two methods are
in bold. For FOFC, the number within the brackets indicates the number of valid runs (for which an error did not occur).

Model type Sample size SALAD SALAD-CS HUANG FOFC GIN

1-Factor
model

100 0.33± 0.65 0.75± 1.76 11.50± 4.58 3.13± 2.64 (8) 15.25± 1.36
300 0.08± 0.29 0.17± 0.39 3.50± 3.45 1.67± 1.11 (9) 15.25± 1.36
1000 0.33± 0.89 0.08± 0.29 1.67± 0.78 1.67± 1.07 (12) 15.25± 1.36
3000 0± 0 0.17± 0.39 1.67± 0.78 1.25± 1.14 (12) 15.17± 1.34
10000 0± 0 0.17± 0.39 1.67± 0.78 1.18± 1.17 (11) 14.75± 2.01

Hierarchical
structure

100 4.50± 3.32 N/A 14.25± 2.73 N/A (0) 18.50± 3.73
300 3.67± 3.06 N/A 11.42± 3.20 N/A (0) 18.50± 3.73
1000 2.75± 2.18 N/A 8.00± 3.64 N/A (0) 18.50± 3.73
3000 1.92± 1.98 N/A 4.92± 4.08 N/A (0) 18.50± 3.73
10000 1.42± 1.56 N/A 4.17± 4.91 N/A (0) 18.42± 3.75

(a) Graph G. (b) Oskeleton(G).

(c) Omin(Oskeleton(G)). (d) Oatomic(Omin(Oskeleton(G))).

Figure 3: Example to illustrate graph operators Oatomic, Omin, and Oskeleton.
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Figure 4: Ground truths for 1-factor latent variable models.
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Figure 5: Ground truths for latent hierarchical structures.
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