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Abstract

Inferring 3D locations and shapes of multiple objects from a single 2D image is
a long-standing objective of computer vision. Most of the existing works either
predict one of these 3D properties or focus on solving both for a single object. One
fundamental challenge lies in how to learn an effective representation of the image
that is well-suited for 3D detection and reconstruction. In this work, we propose
to learn a regular grid of 3D voxel features from the input image which is aligned
with 3D scene space via a 3D feature lifting operator. Based on the 3D voxel
features, our novel CenterNet-3D detection head formulates the 3D detection as
keypoint detection in the 3D space. Moreover, we devise an efficient coarse-to-fine
reconstruction module, including coarse-level voxelization and a novel local PCA-
SDF shape representation, which enables fine detail reconstruction and one order
of magnitude faster inference than prior methods. With complementary supervision
from both 3D detection and reconstruction, one enables the 3D voxel features to
be geometry and context preserving, benefiting both tasks. The effectiveness of
our approach is demonstrated through 3D detection and reconstruction in single
object and multiple object scenarios. Code is available at http://cvlab.cse.
msu.edu/project-mdr.html.

1 Introduction

As a fundamental computer vision task, instance-level 3D scene understanding from a single image
has drawn substantial attention from researchers due to its importance in applications such as
robotics [1,2], AR/VR [3] and autonomous driving [4—6]. The important 3D properties include 3D
bounding box (pose, size, location) and 3D shape of object instances. In this work, we aim to design
a framework to infer all these 3D properties of multiple objects from a single 2D image.

In recent years, various monocular methods are proposed to predict either 3D boxes [7-12] or 3D
shapes [13—17]. However, only a few studies [ | 8—23] consider both 3D detection and reconstruction
for a total 3D scene understanding. The complexity of real-world scenarios and diverse category
variations make it challenging to fully reconstruct the scene context (both semantics and geometry) at
the instance level from a single image. Moreover, those methods primarily assign 3D semantic labels
to pixels. Yet, such a 2D representation with depth ambiguity is insufficient for 3D geometry and
context reasoning. It is thus crucial to develop an effective representation of the image that is relevant
to 3D geometry and spatial information for performing accurate 3D detection and reconstruction.

In light of this, attempts like grid-based representation have been made for tasks such as rendering [24],
detection [25,26], or reconstruction [27]. OFT [25] proposes to sample and transform image features
into a BEV grid representation, which enables holistic reasoning of the 3D scene configuration.
CaDDN [26] extends the BEV grid representation with a categorical depth prior, leading to higher 3D
detection accuracies. DeepVoxels [24] and UCLID-Net [27] build voxel features by back-projecting
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Figure 1: Given a single image as input, our proposed approach jointly predicts 3D object bounding
boxes and surfaces.

2D features to 3D space for respective rendering or single object reconstruction purposes. Inspired by
this line of works, we propose a novel voxel-based 3D detection and reconstruction framework for
predicting 3D bounding boxes and surfaces of multiple objects from a single image (see Fig. 1).

Specifically, we first divide a 3D scene space into a regular grid of voxels. For each voxel, we
assign 3D features by sampling from the image plane via a 2D-to-3D feature lifting operator and
the known camera projection matrix. As multiple voxels can be projected to the same position, this
leads to similar features along the camera ray and increased difficulty for downstream tasks. To
remedy this, we use a positional encoding strategy to make our voxel features position-aware and
more discriminative. Based on the intermediate voxel features, we carefully devise our detection and
reconstruction modules. For detection, we introduce a novel CenterNet-3D detector head. Instead of
formulating the 3D detection as 2D keypoint detection problem as conventional CenterNet-based
methods [28,29], each object is directly represented by its 3D keypoint. Predicting a class-specific
3D heatmap can show probabilities of 3D object centers in the pre-defined voxel space, leading to
improved 3D center accuracy. For reconstruction, we propose a multi-level shape representation with
two components: coarse-level occupancy representation and fine-level local PCA-SDF representation.
The coarse-level voxel grid represents the whole 3D scene with continuous occupancy values. At a
fine level, we represent the occupied voxels with a PCA-based signed distance function (SDF) by
assuming that the local shapes of different voxels are similar either within an object instance, or
across different objects.

In summary, the contributions of this work include:

© We propose a novel voxel-based 3D detection and reconstruction framework, which infers the 3D
locations and 3D surfaces for multiple object instances with only a 2D image as input.

< We present a novel CenterNet-3D detector, where each object is represented by its center point
in a partitioned 3D grid space. CenterNet-3D avoids estimating depth directly from image features,
leading to increased detection performance.

© We propose a novel local PCA-SDF shape representation, which provides finer reconstruction and
order of magnitude faster inference than SOTA local implicit function methods like DeepLS [30].

© We demonstrate the superiority of our method in multiple object 3D reconstruction and detection,
as well as 3D shape representation. We assemble a 3D detection and reconstruction benchmark with
18, 000 real images, annotated with 3D models and bounding boxes of 19 object categories.

2 Related Work

3D Scene Understanding and Single Object Reconstruction. Tremendous efforts have been
devoted to instance-level 3D scene understanding [7,9, 18,28,31-37] over the last decade. However,
most of these approaches estimate object orientation [34,35,38] or 3D bounding boxes [7-9,39-45].
Since describing objects with boxes only offers a coarse information of 3D objects in images, the
usage of 3D models as shape priors can complement and enrich 3D scene understanding. Yet, scene
understanding at the instance level remains challenging due to the large number of objects with
various categories. With the substantial growth in the number of publicly available 3D models,
datasets such as ShapeNet [46] have allowed neural networks to train on the 3D shape reconstruction
task from single images [47-52]. To further leverage real-world images in 3D modeling, as Liu ef
al. [53] propose a semi-supervised learning framework for generic objects. However, most of these
methods estimate 3D shapes in the object-centric coordinate system, which differs from the shape
prediction of multiple instances at scene-level 3D reconstruction — the focus of our work.



Multiple Object 3D Reconstruction A common characteristic amongst aforementioned single
object 3D reconstruction approaches is that they usually treat objects as isolated geometries without
considering the scene context, such as object locations, and instance-to-instance interactions. Recently,
there is progress in multiple object 3D reconstruction. 3D-RCNN [18] exploits the idea of using
inverse graphics to map image regions to the 3D shape and pose of object instances. The shape is
represented by a simple linear subspace which limits its application for objects with large intra-class
variability. Mesh R-CNN [21] augments Mask R-CNN [54] with a mesh predictions branch that
estimates a 3D mesh for each detected in an image. Total3DUnderstanding [19] presents a framework
that predicts room layout, 3D object bounding boxes, and meshes for all objects in an image based on
the known 2D bounding boxes. However, these three methods first detect objects in the 2D image,
and then independently produce their 3D shapes with single object reconstruction modules. This
could be problematic when 3D boxes of objects intersect, such as a chair is pushed under a table.

Recently, CoReNet [22] performs multiple object reconstructions in a fixed 128° voxel grid without
recovering 3D position information in the world space. Points2Objects [23] combines a 3D object
detector and shape retrieval to detect and reconstruct 3D objects from an image. However, it suffers
from two limitations: 1) Its CenterNet-based 3D detector reasons 3D boxes directly in the 2D image
domain, which is inherently challenging due to the lack of reliable depth cue. 2) Retrieval-based
methods depend on the size and diversity of the pre-defined CAD model pool. Moreover, [22,23]
train on synthetic renderings, which limits their applicability to real-world scenarios. Instead of
relying on 2D feature for 3D detection or reconstruction, we propose to learn a geometry and context
preserving voxel feature representation, which is well suited for 3D detection and reconstruction.
Moreover, we validate our method on real-world images from 19 object categories.

Local Shape Priors Many neural architectures are proposed to model 3D objects via geometric
representations, e.g., point clouds [55], meshes [16, 56], voxels [13,57], or implicit functions [15,

—60]. Recently, neural implicit functions have demonstrated their effectiveness by encoding
geometry in latent vectors and network weights, which parameterize surfaces through level-sets.
Instead of an object-level representation, some follow-up works learn patch-level or primitive-level
representations of surfaces, e.g., PatchNet [61], CvxNet [62], BSP-Net [63]. To further leverage local
geometric priors, another line of works learn implicit geometry on sparse regular [64,65] or 3D voxel
grids [30,66]. A latent code of each voxel is responsible for representing implicit geometry in a
small neighborhood, enabling fine-grained reconstruction. However, these methods often suffer from
inefficient inference as each point needs a forward pass through of the implicit function network.
Instead, we build a local PCA-SDF shape representation, which represents each local shape as a
linear combination of implicit volumetric prototypes, leading to finer details and order of magnitude
faster inference than prior works. Similar eigenanalysis of SDF has been applied for either global
shape representation [67] or geometry compression [68,69]. However, none of them develop their
algorithms from our perspective of local shape priors, which is motivated from the assumption that
local shapes at the voxel level share similarities.

3 Methodology

We illustrate the overall architecture of our method in Fig. 2, which consists of three key modules: i)
3D voxel feature learning; ii) CenterNet-3D detector; and iii) Coarse-to-fine 3D reconstruction.

3.1 3D Voxel Feature Learning

Our network learns to produce a compact 3D voxel feature representation of the image with com-
plementary supervision from both 3D detection and reconstruction, which enables rich 3D context
and geometric information and allows the two tasks to benefit each other. We first define a 3D grid
V € R¥*Y>Z by partitioning of the scene space into voxels V; with a voxel size of 7. The 3D grid
size, Xr x Yr x Zr, is set based on the minimum volume of the scenes in the width, height and
length dimensions, that can encompass all annotated instances in the dataset.

Feature Extraction. We utilize a convolutional feature extractor to generate a hierarchy of multi-
scale 2D feature maps. Specifically, the input to the feature extraction network is a RGB image
I € RWrxHix3 where W; and H; are the image size. The convolutions are followed by down
scaling the input, creating growing receptive fields and resulting in D-channel multi-scale 2D feature
maps F € RWrxHrxD "W and Hy are the width and height of feature F.
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Figure 2: Overview of our approach. The proposed joint framework is composed of three key
modules: 3D voxel feature learning (consists of feature backbone and 2D-to-3D feature lifting),
CenterNet-3D detector, and coarse-to-fine 3D reconstruction. 2D feature maps are first generated
from input image I, which are back-projected into voxel features G using a known camera projection
matrix P. The voxel features serve for our novel 3D object detection and reconstruction.

Lifting 2D Features to 3D. The lifting layer back-projects 2D feature maps F into 3D voxel
space, resulting in initial 3D voxel features G. Formally, the objective of the lifting operator is
to populate the 3D voxel features G(z, y, z) with the projected 2D features F{(u, v)}, where {-}
denotes bilinear interpolation on the 2D feature maps. We assume a full perspective camera model.
Any voxel center (x,, z) can be projected to image plane via a camera projection matrix P € R3*4:
[u-d,v-d,dT =Plx,y,2,1]T. Here u and v are the 2D position of the projection and d is its depth
from the camera. The resulting voxel features G € RX*Y *ZxD provide a scene representation that
is free from the effects of perspective projection.

3D Voxel Features Aggregation. The lifting mechanism we use is similar to the one in [24,25,27],
which has a major weakness that all voxels along a camera ray will receive the same 2D feature.
This feature smearing issue increases the difficulties of 3D detection and reconstruction. To mitigate
this issue, we propose to employ the positional encoding (PE) [70] strategy that adds 3D voxel

center position to the voxel features: RX*Y xZxD PE, RXXYxZx(D +3), which helps the voxel
features to be more discriminative and position-embedded. We further utilize a 3D convolutional
hourglass (U-Net) network [71], comprised of a series of down- and upsampling convolutions with
skip connections, to integrate both local and global information. The final voxel features are thus

U—Net .
G RXXYxZx(D+3) 222 RXXYxZx(D+3) Thijs voxel features serve as the cornerstone for

the downstream tasks of 3D detection and reconstruction.

3.2 Monocular CenterNet-3D Detector

Conventional CenterNet-based [28] monocular 3D detection methods such as Points2Objects [23]
formulate 3D detection as a projected 2D keypoint detection problem. In contrast, we propose a novel
CenterNet-3D detection head, where each object is directly represented by its 3D keypoint. Then 3D
properties such as object size and orientation can be intuitively inferred from the 3D voxel features at
the center location by a regression branch. Compared to [23], CenterNet-3D avoids estimating depth
values of 3D boxes directly from 2D features, leading to improved detection accuracy.
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Figure 3: 2D examples of (a) DeepSDF [59], (b) DeepLS [30], and (c) our local PCA-SDF shape
representation. DeepSDF describes the surfaces with global shape codes. The SDF function f
in DeepLS outputs a scalar value conditional on the local latent code z; and local coordinate x.
However, its inference is computationally expensive since it requires forward pass through f for
every x. Our shape representation consists of coarse-level voxelization and fine-level local PCA-SDF.
The coarse-level voxelization holistically represents the whole 3D surface with binary values. To
further represent fine-level surfaces, we propose a novel local PCA-SDF model, representing any
occupied voxel as a linear combination of regular SDF function bases, which enables a more efficient
and accurate representation than DeepLS.

3D Keypoint Branch. The 3D keypoint branch takes the voxel features G as input and predicts a
3D heatmap Y € RX*YxZxC (see Fig. 2), where C is the number of object categories. The values
of each voxel in ) indicates how likely the 3D centroid of a certain object category exists at the
voxel center. By computing the local maxima and filtering via a threshold, we obtain a preliminary
estimation of the 3D centroids, denoted as €34 = [z, Ye, ZC]T. To remedy the discretization error of
voxels, the regression branch additionally predicts a local offset to €34, which is discussed next.

Regression Branch. The regression branch predicts the essential properties to construct a 3D bound-
ing box for each voxel of the 3D heatmap. We parameterize a 3D box as the prior works [8, 19] and set
up the world system located at the camera center with its vertical (y-) axis perpendicular to the floor
and its forward (z-) axis toward the camera, such as the pitch and roll angles could be included in the
camera pose. Specifically the 3D box is encoded as a 8-tuple 7 = [d,, Jy,, 0., O, Ou, 07, 8in 0, cos 6]
Here Acsy = [04,,0,,,0..]7 denotes the 3D center offset compensating voxel discretization.
[1,h,w]T =1[I-€%, h-e - e®]7T represents the object size, where [I, h, w]” is a pre-calculated
category-wise average box size, [0, d,, 0;] represents the corresponding transformations. 6 denotes
the rotation angle around y-axis. Here the network estimates the vectorial representation of rotation
angle 6 [72]. The output size of the regression branch is thus X x Y x Z x 8. Given the outputs of
keypoint and regression branches, the 3D bounding box B € R3*8 can be restored as 8 corners:

+/2
+h/2
+w/2

B = Ry +c34, €3q = €34+ Acag, )]

where Ry € R3*3 is the rotation matrix.

3.3 Coarse-to-Fine 3D Reconstruction

Our reconstruction module is based on a coarse-to-fine shape representation, which consists of two
components: coarse-level voxelization and fine-level local PCA-SDF.

Coarse-Level Voxelization. Based on the extracted 3D voxel features G, we first estimate a
coarse-level voxelization V by a specific branch. The coarse-level voxelization holistically represents
the whole 3D surface with binary occupancy values, where the unoccupied voxels cover “air" in the
scene, and occupied voxels can be either fully occupied ones inside the object, or voxels intersecting
with the object’s surface. For the occupied voxels of both types, we further reconstruct a fine-level
local shape via the local PCA-SDF.

Local PCA-SDF Shape Representation. Recent works such as DeepSDF [59] aims to learn global
implicit functions to represent shapes (see Fig. 3(a)). However, representing the entire objects with a
single latent code often results in loss of details, which limits its application for scene-level object
reconstruction. DeepLS [30] represents 3D surfaces by a set of independent latent codes on a regular



grid (see Fig. 3(b)). Each latent code z;, concatenated with any point location x, can be decoded into
a SDF value s; by the learned implicit network f: s; = f(z;,x). However, this shape representation
has two limitations. i) Inference is inefficient (in the order of seconds) since every point of a test voxel
(e.g., 2563 points) is required to be sent to f for SDF calculation, making it unsuitable for real-time
applications. ii) Our key observation is that local voxels, either within an object instance or across
different categories, share similar local shapes, e.g., voxels across a table’s surface all have planar
shapes. However, DeepLS treats voxels as independent training samples, without fully leveraging
such local shape priors in training. To address these issues, we propose a novel local PCA-SDF
shape representation, which represents each voxel shape as a linear combination of a set of implicit
volumetric prototypes, leading to significantly finer reconstruction and 10x faster inference speed
than DeepLS (see Tab. 4).

Formally, as shown in Fig. 3(c), for each occupied voxel V, we define a regular lattice q € RF>*FxFx3
and compute their SDFs s € R¥* kX1 toward the surface. By collecting SDFs of Ng occupied
voxels from the training surfaces, we apply Principal Component Analysis (PCA) to find I (Ip <<
k3) local shape bases, Sp € RExkxkxly ~Ag cuch, given the learned Sp and the latent code z;, any
local shape S; of the underlying surface can be implicitly represented by S; = Spz;. The latent code
z; for S; can be generated by the corresponding voxel feature G; via z; = MLP(G;). MLP is a
mapping network, implemented with two fully-connected layers. By combining the contributions of
all the occupied voxels, we can infer a global iso-surface from the SDF field. Similar to DeepLS [30],
we apply a 1.5 times receptive field strategy to mitigate the inconsistent surface predictions at the
voxel boundaries (Fig. 3(c)). Accordingly, during inference, we could apply average pooling to
combine the SDF values for the boundary area. It is worth mentioning that our local PCA-SDF also
allows reconstruction at resolutions higher than the one used during training by simply applying
trilinear interpolation on the learned local shape bases Sp.

3.4 Loss Functions and Implementation Details

The training data of one example consists of RGB image I, ground-truth 3D bounding boxes 5*
of objects, coarse-level voxelization V*, and a set of regular SDF pairs {(idx;,s;)}, sampled

from the surface. Here, each set of SDFs s; € RF*#** idx; is the idx -th voxel of the holistic grid.
During training, we jointly optimize the parameters of 2D feature extraction network, 3D U-Net,
detection and reconstruction modules by minimizing three losses: 3D keypoint classification loss
L1, regression 10ss L4, and 3D reconstruction 10ss Ly ccon, i.e.,

L= ['cls + »Creg + »Crecorv @)

Loss Functions. We generate the target heatmaps V* by splatting the ground truth 3D center points
using a Gaussian kernel (please refer to Supp for details). If two Gaussians of the same class overlap,
we take the element-wise maximum. The 3D keypoint branch is trained with a penalty-reduced focal

loss [28,73] in a point-wise manner on the 3D heatmap.
-1 (1 - ymyzc)'ulog(ymyzc) if y;;yzc =1
Lcls = W . (3)
zyzC (1- y;yzc)a(ywyZC)“IOg(l - yzyZC) otherwise

where N is the number of objects per image, ;1 = 2 and ¢ = 4 are hyper-parameters of the focal loss.

We define the 3D bounding box regression loss as the L; distance between the predicted transform B
and the ground truth B*: L., = +||B — B*||1. The reconstruction loss consists of cross-entropy
classification loss L, for coarse-level voxelization and fine-level SDF regression loss.

K
Lrecon = /:v(V, V*) + Z HSBZj - Sj”%? z; = MLP(Gide)- “4)
J

Implementation Detail. We use a ResNet-34 network as our 2D feature extractor. We extract
features immediately before the final three downsampling layers, resulting in a set of feature maps at
1/8,1/16, 1/32 scales of the input resolution. We then resize them to the original size of the input
images via bilinear interpolation. Convolutional layers with 1 x 1 kernels are used to map these
feature maps to a common channel size of 64. The set of feature maps is summarized as F before



Table 1: Multiple object reconstruction comparison. We report per-class and mean IoU over all
classes, and class-agnostic global IoU on 1283 voxel grid.

Method | ShapeNet-triplets | ShapeNet-pairs
| bottle bowl chair mug sofa table | mean global | mean global
CoReNet [22] 61.8 36.2 30.1 48.0 529 348 | 439 49.8 43.1 52.7
Points20bjects [23] | 63.5 30.2 189 41.5 445 19.8 | 364 44.7 - -
Proposed ‘ 63.3 385 318 51.7 543 36.1 | 46.0 523 H 46.7 55.1

-

Input

CoReNet

Proposed

Figure 4: Qualitative results on ShapeNet-triplets dataset. We compare to CoReNet [22] in two
different viewpoints. Our model more accurately reconstructs details and hallucinates occluded parts.

passing to 3D lifting layers. For the main experiments, we train our models with a batch size of 8 on
a GTX 1080Ti GPU for 200 epochs. The learning rate is set at 5 x 10~* and drops at 50 and 100
epochs by a factor of 10. For more details, please refer to Sec. 4 or Supp.

4 Experiments
4.1 Multiple Object Detection and Reconstruction on ShapeNet-pairs and -triplets

Datasets. Following the experimental setting of CoReNet [22] and Points2Objects [23], we evaluate
multiple object detection and reconstruction on ShapeNet-pairs and ShapeNet-triplets datasets [22].
These datasets contain 256 x 256 photorealistic renderings of either pairs or triplets of ShapeNet [46]
objects placed on a ground plane with random scale, rotation, and camera viewpoint. The ShapeNet-
pairs has several pairs of object classes: bed-pillow, bottle-bowl, bottle-mug, chair-table, display-lamp,
guitar-piano, motorcycle-car and sofa-table, which contains 365, 600 images on trainval and 91, 200
on test. The ShapeNet-triplets is with bottle-bowl-mug and chair-sofa-table, which includes 91, 400
on trainval and 22, 000 on test.

Experimental Settings. In this experiment, we set a voxel grid of size X XY xZ = 40x25x25
(r = 0.1), which is sufficient to enclose all objects in the datasets. We randomly select 200 surfaces
from the training set to generate Ng ~ 200, 000 occupied voxels. In this experiment, we set k = 11,
lp = 64, C' = 6 (ShapeNet-triplets) or C' = 14 (ShapeNet-pairs). We compare with SOTA methods
for multiple object reconstruction: CoReNet [22] and Points2Objects [23]. As CoReNet doesn’t
perform 3D detection, we only compare with Points20bjects on detection. Following [23], we use
mean average precision (mAP) as the detection metric with 3D box intersection-over-union (IoU)
thresholds 0.25 and 0.5. Following [22,23], the metric for reconstruction is IoU on a 1282 voxel grid.

Results. We first report the 3D detection results. Our method achieves a higher detection accuracy
than Points2Objects [23]: 51.5% vs. 48.6% (threshold@0.5) and 80.3% vs. 77.2% (threshold@0.25),
which demonstrates that voxel features perform better than image-based features for monocular 3D
detection. For reconstruction, we report the mean over the per-class IoU, as well as the global IoU of
all object instances within a scene, which does not concern predicted class labels. As compared in
Tab. 1, our method significantly outperforms two SOTA baselines on both datasets. On ShapeNet-
triplets, our method achieves relative 5.0% global IoUs gains while 4.8% mean IoUs gains, which
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Figure 5: (a) Qualitative comparison on Pix3D. Our reconstructions closely match objects’ genuine
shape, e.g., the table legs and chair arms. (b) Explained variation of our PCA-SDF representation with
three voxel sizes r. (c) Reconstruction errors (Chamfer Distance-L2) of PCA-SDF w.r.t. translated
and rotated 3D shapes.

Proposed CoReNet Input

Ground-truth

Figure 6: Qualitative results on real images from ScanNet-MDR. Our reconstructions closely
match the objects than CoReNet [22]. Moreover, our method performs better for reconstruction of
the truncated objects.

indicates that our model performs well on reconstructing the overall shapes of objects. Qualitative
results of detection and reconstruction are shown in Fig. 4.

4.2 Single Object Reconstruction on Pix3D

We further compare to CoReNet [22] and Points2Objects [23] on the real image database, Pix3D [74]
in the same protocol (splits S7 and S3) as in [21]. In this experiment, we train our model with the
same experimental setting and the same pre-computed PCA-SDF bases as in Sec. 4.1. On average
ToU over all 9 object classes, we achieve 38.6% vs. 34.1% (CoReNet) vs. 33.3% (Points2Objects)
on S; and 28.6% vs. 26.3% (CoReNet) vs. 23.6% (Points2O0bjects) on Ss. The results demonstrate
that our approach improves over baselines on real images. Qualitative results are shown in Fig. 5(a).

4.3 Multiple Object Detection and Reconstruction on ScanNet-MDR

Dataset. Since there is no benchmark providing both 3D CAD models and 3D bounding boxes for
multiple objects within a single real image, we assemble a dataset with 18, 000 real images from the



Table 2: Comparisons of 3D object detec- Table 3: Effect of the voxel size r
tion and reconstruction on ScanNet-MDR dataset. and latent code size [ in detection
[Key: D=CenterNet, @=CenterNet-3D], (D=DeepLS, and reconstruction on ScanNet-MDR

(@=Local PCA-SDF] dataset (mAP/IoU), and inference time
per image.

Method | Detection | Recon. || Evaluation

| @ O @ | mAP(@0.15) | ToU ) 5] 46 | 32 | 64 (T‘mj
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ScanNet [75], termed ScanNet Monocular Detection and Reconstruction (ScanNet-MDR) dataset.
For each object in an image, its CAD model is produced by [76]. We then generate the corresponding
3D bounding box label and camera calibration matrix. Unlike the ShapeNet-pairs or ShapeNet-triplets
datasets, all the 3D objects in ScanNet-MDR are at absolute scale. Additionally, this dataset contains
greater diversity including 19 object categories (bag, basket, bathtub, bed, bench, bookshelf, cabinet,
chair, display, file, lamp, microwave, piano, printer, sofa, stove, table, trash and washer). We split the
data into 80% for training and 20% for testing.

Experimental Settings. In this dataset, we use a voxel grid of size 10.28 x 3.2 x 6.4m (X =
64,Y = 20, Z = 40, r = 0.16m), a minimum to encompass all annotated 3D objects in the dataset.
The PCA-SDF is pre-computed with Ng ~ 560, 000 occupied voxels from 200 training surfaces. We
set k =17, C = 19 and [ = 64. For comparison, we train CoReNet [22] using the released code
on our training data. We use mAP with 3D box IoU threshold of 0.15 as detection metric [19], and
global 3D IoU on a 1283 voxel grid as reconstruction metric.

Results and Ablation Studies. We report detection and reconstruction results on the testing set. As
shown in Tab. 2, our method significantly improves over CoReNet [22] on 3D reconstruction and
advances the ablated versions on both detection and reconstruction. Qualitative results are shown
in Fig. 6. CoReNet, as an image-to-voxel reconstruction network without special design for feature
smearing issue, cannot handle truncated objects in the input image.

Joint Framework vs. Separate Modules. Moreover, Tab. 2 shows the ablation results of our models
without detection (Proposed-1) or reconstruction (Proposed-2) modules, where one can conclude that
joint framework in this work performs better than solving either task exclusively.

CenterNet-3D and PCA-SDF. To further validate the effectiveness of the proposed CenterNet-3D
detector over the conventional CenterNet, we train a model (Proposed-3) by combining the recon-
struction module with the conventional CenterNet, which formulates 3D detection as a problem of
2D keypoint detection directly from the pixel-based image features. As compared in Tab. 2, our
model outperforms Proposed-3 in both detection and reconstruction. To compare PCA-SDF with
DeepLS [30] in the joint detection and reconstruction framework, we train a model (Proposed-4)
by using DeepLS representation as our fine-level reconstruction module. Tab. 2 shows that both
detection and reconstruction performances are worse than ours.

Effect on Voxel Size r Latent Code Size | 5. The validity of local shape pair, expressed by PCA-SDF
in our work, depends on the voxel size. For instance, we show the percentage of explained variation
for three voxel sizes in Fig. 5(b). As larger voxel sizes are used, the first few bases could explain less
variation, due to the diminished local shape similarity among larger voxels, i.e., weakened local shape
prior. This is also validated by the ablation of voxel size r and latent code size [ in Tab. 3, where
larger voxel sizes lead to lower detection and reconstruction accuracies. On the other hand, a larger
latent code size results in better representation power (Fig. 5(b)) but not necessarily reconstruction,
since it imposes a more challenging task for the network to predict a higher-dim code.

Effect on Positional Encoding. To investigate the effect of positional encoding operator on 3D
detection and reconstruction, we retrain a model without the positional encoding (Proposed-w/o PE).
As compared in Tab. 2, both detection and reconstruction accuracies are worse than ours, which
indicates that the positional encoding indeed enhances the voxel feature representation.



Table 4: Comparison of reconstructing 3D shapes from ShapeNet test set, evaluated by Chamfer
Distance-L2 (multiplied by 10%). PCA-SDF achieves higher accuracy and efficiency than DeepL.S
even with fewer decoder and representation parameters. Decoder para. refer to the decoder network
parameters for DeepSDF or DeepLS, and PCA bases for our PCA-SDF. [Key: Best, Second Best]

. #Decoder | #Represent. | Inference
Method Chair Plane Table Lamp Sofa | Mean || Unseen Para. (M) Para. (K) Time (s)
DeepSDF [59] 0.204 0.143 0.553 0.832 0.132 | 0.372 - 1.8 0.3 6.9626
DeepLS [30] (Ip=125) | 0.030 0.018 0.032 0.078 0.044 | 0.040 - 0.05 4096 0.8081
PCA-SDF (I5=32) 0.031 0.016 0.033 0.035 0.032 | 0.029 || 0.111 0.02 1049 0.0126
PCA-SDF (Ip=64) 0.027 0.012 0.030 0.027 0.030 | 0.025 | 0.059 0.05 2097 0.0129
PCA-SDF (I5=125) 0.026 0.010 0.029 0.016 0.029 | 0.022 || 0.028 0.09 4096 0.0132

Computation Time. Tab. 3 validates our inference time per image with different voxel sizes on a GTX
1080Ti GPU. Since g does not affect the runtime much, we show the average time across three I 5.

4.4 3D Shape Representation Power of PCA-SDF

While PCA-SDF has demonstrated its advantage in 2D to 3D reconstruction, this is rooted from
its ability in representing 3D shapes. To quantify its 3D shape representation power, we design the
following experiment and compare with DeepSDF [59] and DeepLS [30], without involving 2D
image inputs. Following the setting of [30], we utilize 1, 000 ShapeNet shapes (200 each from 5
categories) to compute our PCA-SDF bases. Each 3D shape is split by a 32x32x32 grids (r = é).
During training, both DeepSDF and DeepLS optimize the latent codes and decoder weights through
backpropagation, to best represent the training shapes. In inference, decoder weights are fixed, and
the optimal latent code is estimated given a testing shape. In contrast, we compute the latent codes
whose multiplication with PCA-SDF bases can best approximate the ground-truth SDF.

We evaluate 3D shape reconstruction accuracy on various categories. As shown in Tab. 4, PCA-SDF
has lower reconstruction error than DeepLS, even with a smaller number of representation parameters.
Moreover, our inference is 10x more efficient (infer at 2563 resolution) which meets the real-time
requirement for downstream tasks.

To study whether the PCA-based representation is sensitive to tiny geometry perturbation, we apply
minimal translation (0.1, £0.05r) and rotation (+4°, £2°) to testing surfaces of the 5 categories
and evaluate surface reconstruction error on these data, while no data augmentation was applied to
the training data of shape bases computing. As shown in Fig. 5(c), the error is stable in a very small
range, which illustrates that PCA-SDF is robust to translation and rotation variations.

Generalization to Unseen Category. In order to investigate the generalization of PCA-SDF, we design
an experiment to compute PCA-SDF from a single category (200 shapes), and reconstruct 3D shapes
from the other four unseen categories. We repeat the training/testing 5 times across 5 categories.
As reported in Tab. 4, PCA-SDF trained on unseen categories achieves a comparable performance
(0.028 vs. 0.022) with the one trained on seen categories when [ = 125, which indicates that local
3D shapes at the voxel level are indeed similar to each other, even across different categories.

5 Conclusion

We present a voxel-based 3D detection and reconstruction framework for predicting 3D bounding
boxes and shapes of multiple objects from a single image. Specifically, we first learn a regular grid of
3D voxel features for the input images. Based on the voxel features, we devise a novel CenterNet-3D
detector to detect and regress 3D bounding boxes in the 3D space. With a coarse-level voxelization
and a fine-level local PCA-SDF representation, our reconstruction module provides highly efficient
and accurate reconstructions. The comprehensive experiments show the superiority of the proposed
method in 3D detection and reconstruction, as well as shape representation power. The same as
CoReNet and Points2Objects, one limitation of our approach is that it requires the camera calibration
matrix as input which might limit its application to real images. Therefore, one future direction is to
invest the necessity of this requirement and/or integrate with auto-calibration methods.
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