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ABSTRACT

The sharpness-aware minimization (SAM) procedure recently gained increasing
attention due to its favorable generalization ability to unseen data. SAM aims to find
flatter (local) minima, utilizing a minimax objective. An immediate challenge in the
application of SAM is the adjustment of two pivotal step sizes, which significantly
influence its effectiveness. We introduce a novel, straightforward approach for
adjusting step sizes that adapts to the smoothness of the objective function, thereby
reducing the necessity for manual tuning. This method, termed Smoothness-
Adaptive SAM (SA-SAM), not only simplifies the optimization process but also
promotes the method’s inherent tendency to converge towards flatter minima,
enhancing performance in specific models.

1 INTRODUCTION

In recent years, there has been a growing expectation for the practical application of machine learning,
as evidenced by the exponential increase in publicly available papers categorized under Al and
Machine Learning on Arxiv (Krenn et al., 2022). Recent breakthroughs in large language models
and generative models require increasingly complex and large models that are pre-trained on large
unlabeled datasets. Without powerful computing resources, adapting such large models, set aside
training from scratch, can be challenging. Such limitation would also hinder the practitioners from
performing a sweep of different hyperparameters (such as the step size or the weight decay parameter),
or even to fine-tune a pre-trained model for downstream tasks. This disparity in resources obstructs
the democratic development of machine learning methods and infrastructure.

As a result, what point a training algorithm converges to in a single training configuration is an
important criterion to consider. To that end, there have been many previous studies that investigate
the relation between generalization and various metrics. Among them, the sharpness of the local
minima has been reported to have an important correlation with generalization (Jiang et al., 2019;
Dziugaite et al., 2020). Confirming these empirical studies, recently, Zou et al. (2024) established the
theoretical connection between (relative) sharpness and out-of-distribution (OOD) generalization.

The correlation between the sharpness/flatness of the local minima and the ability to generalize has
long been observed in several works (Keskar et al., 2016; Foret et al., 2021; Adilova et al., 2023;
Cha et al., 2021). The intuition is rather simple: if the loss surface where an algorithm converged
to have low sharpness, the flat minima of the deep network should still have low loss when it is
slightly perturbed due to train vs. test, or OOD discrepancy. Indeed, recently, Liu et al. (2023)
empirically observed a strong correlation between flatness, measured by the trace of Hessian, Tr(H),
and downstream performance among models with the same pre-training loss.

Motivated by such reasoning, the sharpness-aware minimization (SAM) (Foret et al., 2021) recently
gained attention due to its ability to generalize well across many different domains (Naganuma &
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Figure 1: Test accuracy (OOD generalization) and the curvature information, measured by the trace
(Tr(H)) and the leading eigenvalue (A\yqc(H)) of the Hessian, on CIFAR10-C dataset trained with
VGG—-1 9 for the considered optimizers. Our proposed method, SA-SAM, not only achieves the best
test accuracy but also converges to flatter minima.

Kimura, 2023; Bahri et al., 2021; Na et al., 2022; Naganuma et al., 2022; Paranjape et al., 2023). In
particular, in lieu of simple minimization, SAM formulates the objective as a minimax problem:

min L3*M(w) + M|w||? where L5*M(w) := Hrrnlax L(w + €). (D
w ellp<p
Here, p > 0, which we call the perturbation radius, is a hyperparameter that needs to be tuned.
p € [1, o0] can be changed, but p = 2 is typically used (Foret et al., 2021). Further, in practice, the
maximization step is approximated with a single (stochastic) gradient ascent step:

N VwL(w
&(w) = pro Ly ~ A1e mex L(w +e),

where the gradient can be computed efficiently via: V,, L3*M =~ V,, L(w)|¢. Finally, the above
approximation results in the following SAM update:
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While the empirical benefit of (2) has been repeatedly observed, there is an immediate challenge to
be addressed: how to tune 7, and p; properly? How do they affect the point to which the algorithm
converges? What happens when these hyperparameters are not properly tuned?

Addressing the above, we propose the smoothness-adaptive sharpness-aware minimization (SA-SAM).
The core of SA-SAM is a simple step size rule in (5) combined with the SAM procedure in (2); see
also Algorithm 1. Surprisingly, the smoothness-adaptive step size not only alleviates tuning effort
aligning well with the resource-constraint setting but also reinforces the SAM’s implicit regularization
to flatter minima, as can be seen in Figure 1. Our contributions can be summarized as follows.

* We propose smoothness-adaptive sharpness-aware minimization (SA-SAM), where the step size of
SAM in (2) is approximated with the inverse of local smoothness, using (5) as shown in Algorithm 1
and validate its effectiveness shown in Figure 1.

* SA-SAM promotes the SAM’s inherent tendency to converge towards flatter minima, shown in
Figure 2 and more extensively in Section 3. Moreover, SA-SAM’s adaptivity reduces the necessity
for manual tuning, as demonstrated in Figure 3.

2 SMOOTHNESS-ADAPTIVE SAM AND RELATED WORK

In this section, we present SA-SAM, and make connections to related work. We first summarize
SA-SAM in Algorithm 1. We denote with V L(w; £) the stochastic gradients at w with mini-batch &.

Remark 1. In line 1, the initial choice of 1y should be provided. We recommend using a small ng
to prevent divergence in the first iteration in line 2. In the subsequent iterations, the step size 1y is
automatically adjusted according to line 5. In line 6, we tune the perturbation radius p; based on
Andriushchenko & Flammarion (2022, Theorem 2), which may be improvable. Finally, we use the
same mini-batch &, in all stochastic gradient evaluations—using different mini-batches may lead to
different dynamics of Algorithm 1.
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Algorithm 1 Smoothness-Adaptive Sharpness-Aware Minimization (SA-SAM)

1: input: wy € Rd Mo > 0,0y = +00, and &.
2: wy = wo — noVL(wo + Po%; )
: for eachround ¢t =1, .
Sample mini- batch ft

4
— i llws —we—1|] /

3 T = i { Q‘IVL(wt§£t)7VL%wtfl§£t)” V14 atntfl}
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9:

Wil = Wy — ntVL<wt + PtM’ gt)

Or = ne/Me—1
end for

Local smoothness-adaptive step size. The gradient descent (GD) method is arguably the most
fundamental optimization algorithm for minimizing a function L(w) : R* — R. GD iterates with the
step size n; as: w11 = wy — 1V L(w;). Under the assumption that the objective function is globally
[3-smooth, that is:

IVL(z) = VL) < B llo =yl Va,y eRY, 3)
the step size 7, = % is the “optimal” step size for GD, which converges for convex L at the rate:
x|2
L(wi1) — L(w*) < Sl @)

while n; € (0, ﬁ) defines the “admissible” step size range required to ensure that GD converges for
this function class (Polyak, 1963). However, in practice, estimating the (global) smoothness constant
£ is incredibly challenging.

In Malitsky & Mishchenko (2020), a novel step size rule for GD was introduced, which adapts to the
local curvature of the objective function. The proposed step size is simple:

llwe —wi—1]]

7 = min { ST ) =V L wr o V LT 9t—177t—1}, Or1=nt—1/Nt—2 Q)

The step size in (5) adapts to the local smoothness of the iterates, that is:
||VL(U}1§) —VL(wt,l)H < 615 . ||’U}t —’lUtf]”, Vt = 1,27... (6)

and can increase during iterations, while the second condition in (5) ensures 7, does not increase
arbitrarily. This step size was extended to the heterogeneous federated learning in Kim et al. (2024).

Connection to the edge of stability and implicit curvature regularization.

As can be seen in (5), the local smoothness constant 3; is at most the global smoothness constant 3 in
(3). As a result, the local smoothness-adaptive step size in (5) is lower bounded by 1/8. Connecting
to the concept of the edge of stability coined in Cohen et al. (2021), we conjecture the step size in (5)
implicitly regularize the sharpness in a non-trivial way.

Moreover, as mentioned in Section 1, SAM in (2) is designed to promote converging to flatter minima.
Indeed, in Agarwala & Dauphin (2023), it was demonstrated both empirically and theoretically that
SAM enjoys a modified edge of stability behavior, which leads to the stabilization of the largest
eigenvalues at a lower magnitude.

Combining both insights, SA-SAM in Algorithm | seems to enhance the implicit regularization that
favors flatter minima. In Section 3, we demonstrate this point empirically.

Related works on SAM. Foret et al. (2021) developed SAM to improve model generalization
by concurrently minimizing loss and sensitivity to input shifts. Due to the challenge of explicit
calculation of curvature in modern neural networks, SAM approximates this by optimizing (1).

Among works that aim to understand why SAM has high generalization performance, some claim
that SAM leads to low-rank feature acquisition (Andriushchenko et al., 2023), while others show that
SAM can achieve high generalization even with little correlation between flatness and generalization
(Wen et al., 2023). SAM mechanism was also studied for different batch sizes: Wen et al. (2022)
subdivided the problem into minimizing Tr(H) for single batch and Ay (H) for full batch.
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In terms of efficiency, Mueller et al. (2023) proposed a method to reduce computational cost while
maintaining generalization performance by adapting SAM only to the batch normalization layer.
Liu et al. (2022) proposed to compute only the steps of the internal gradient ascent periodically. In
training pre-trained models for the downstream task of NLP, Liu et al. (2023) reported that Tr(H )
correlates with the performance of the downstream task. Our proposal may enable the training of
pre-trained models that can further improve the performance of the downstream task.

3  EXPERIMENTS

In this section, we perform empirical evaluations of the proposed method. We focus on the general-
ization performance, both in-distribution, denoted by the validation accuracy, and out-of-distribution,
denoted by the test accuracy. We first recall the experimental details below.

Datasets. We use the CIFAR10-C dataset (Hendrycks & Dietterich, 2019) as a primary dataset for
examining OOD generalization. This dataset, featuring CIFAR images corrupted by 19 types of noise,
helps assess how well models perform under shifts in data distribution—a key challenge in real-world
applications. The noise in CIFAR10-C mimics common disturbances in practice, emphasizing the
need for models that maintain accuracy despite these corruptions.

Model architectures. We consider two distinct model architectures, ViT—Small and VGG-19,
applied in many imaging applications.

Optimizers. We consider five different optimizers, including SA-SAM in Algorithm 1, vanilla SAM
(Foret et al., 2021), smoothness-adaptive SGD (SA-SGD) (Malitsky & Mishchenko, 2020), momen-
tum SGD (MSGD), and ADAM (Kingma & Ba, 2014). For learning rates (LR), we use a simple grid:
{1074,1073,1072,10~!}. Similarly, for the weight decay parameter, we use {0, 1078, 1076, 10~4}.
For the other hyperparameters, such as the two momentum values for Adam, we use the default
values from Pytorch. For SA-SAM and SAM, we need a way to tune the perturbation radius, p;.
Following Andriushchenko & Flammarion (2022, Theorem 2), we set it to be p; < /1;. For SA-
SAM and SA-SGD, we append ¢ in front of the second condition: /1 + d6,n; following Malitsky &
Mishchenko (2020), and use § = 0.02 for all experiments.

Curvature measurements. We focus on the eigenvalues of the Hessian matrix of the loss function for
the curvature information. Due to the computational complexity, we utilize approximation methods
based on PyHessian (Yao et al., 2020). Further details can be found in Appendix A.

3.1 SA-SAM CONVERGES TO FLATTER MINIMA

Figure 1 shows the results of the grid search with LR and weight decay on the OOD dataset (CIFAR10-
C) for the hyperparameter configuration with the highest validation accuracy for CIFAR10, trained
with VGG-19. In this setting, SA-SAM (blue line) not only achieves the best test accuracy (OOD
generalization), but also enjoys considerably lower curvature, measured by Tr(H) and A\ (H).

To investigate further, in Figure 2, we plot the test Tr(H ) for various learning rates' and weight decay
parameters, for both VGG-19 and ViT-Small. As can be seen, SA-SAM consistently achieves
lower curvature for both models, regardless of the hyperparameters. In the extreme case, Tr(H) of
SA-SAM is smaller than that of Adam by 10%4. Note that we also provide the Amax (H ), as well as
the curvature information in validation datasets (in-distribution generalization) in Appendix B.

3.2 EASE OF TUNING

The step size of stochastic gradient-based methods is notoriously hard to tune (Moulines & Bach,
2011; Toulis & Airoldi, 2017; Kim et al., 2022). On top of that, SAM requires the perturbation
radius, py, to be tuned as well. In this regard, a major advantage of SA-SAM is that it significantly
alleviates the tuning effort required, as the main step size 7, is computed automatically according
to (5). As mentioned before, for the perturbation radius p;, we simply use p; < /7 following
Andriushchenko & Flammarion (2022, Theorem 2); other choices might improve SA-SAM, but we
leave the investigation of the optimal choice of p; for future work.

"For SA-SAM and SA-SGD, learning rate (LR) indicates the initial step size, no.
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Figure 2: Heatmap of the test (OOD generalization) Tr(H) for considered optimizers with various
learning rates and weight decay parameters, for CIFAR10-C dataset trained with VGG-19 (top) and
ViT-Small (bottom).
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Figure 3: Heatmap of test accuracy (OOD generalization) for considered optimizers with various
learning rates and weight decay parameters, for CIFAR10-C dataset trained with ViT—-Small.

To demonstrate the ease of tuning, in Figure 3, we plot the test accuracy (OOD generalization) of
the considered optimizers for various learning rates and weight decay parameters, for ViT-Small.
SA-SAM generally exhibits better performance compared to other optimizers. As expected, the
performance of MSGD, SAM, and Adam varies significantly with LR, in contrast to SA-SAM and
SA-SGD. A caveat for SA-SGD is that the initial learning rate should not be too large; see Remark 1.

Additional results for the evaluation on the validation dataset (in-distribution generalization) as well
as results using VGG-19 can be found in Figure 4 in Appendix B.

4 CONCLUSION AND FUTURE WORK

In this work, we proposed SA-SAM, an automatic step size tuner for sharpness-aware minimization.
Our proposed method is adaptive to the local smoothness of the objective function. Equipped with the
SAM motion, SA-SAM not only alleviates the tuning effort but also reinforces the implicit regulariza-
tion towards flatter minima. We empirically demonstrated our findings by training ViT-Small and
VGG-19 with various optimizers, and investigated the validation and test accuracies, as well as the
corresponding curvature information measured by the trace and leading eigenvalue of the Hessian.

While the implicit regularization of SA-SAM towards flatter minima is interesting on its own, further
investigation is required on the utilization of the property. To that end, recently, Liu et al. (2023)
empirically observed a strong correlation between flatness measured by the trace of Hessian and the
downstream task performance, spearheading a concrete case where converging to flatter minima can
indeed be helpful. Investigating the performance of SA-SAM in such scenario constitutes important
future work of SA-SAM.

SA-SAM also has much potential for improvements. In particular, as mentioned in Remark 1, our
choice of the perturbation radius p, might be suboptimal; similarly, different choices of mini-batch
sampling scheme may lead to better OOD generalization performance of SA-SAM. Finally, theoretical
understandings of SA-SAM in the flavor of Zou et al. (2024) and its connection to the edge of stability
and progressive sharpening can be investigated.
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APPENDIX

A DETAILS OF THE EXPERIMENTAL SETUP

Hardware Configurations: In our experiments, we used an anonymous cloud (to appear in the
camera-ready version). The detailed machine specifications are as follows:

* Memory: 64 GB

e CPU: AMD EPYC 7502 x40

* GPU: Quadro RTX 8000x1
Software and Library Configurations: The following is the software and library environment we
used.

e Python: 3.7.6

* PyTorch: 1.8.1

* CUDA: 11.1

* CUDNN: 8005
Hessian Calculation: In our experimental setup, explicitly calculating the Hessian presents a chal-
lenge due to memory size limitations, particularly in practical problem settings. Consequently, we

opted to use approximation calculations. More specifically, we utilized the calculation methods for
Tr(H) and Amax (H) provided in PyHessian” (Yao et al., 2020).

The Hutchinson method, a widely-used algorithm known for approximating the trace of the Hessian
matrix, was employed (Avron & Toledo, 2011). The Hutchinson method approximates the expected
value of the quadratic form of the Hessian matrix and a Rademacher random vector—where each
element takes the value of either 1 or —1 with equal probability of %

Tr(H) = Tr(HI) = Tr(HE[vv™])

= E[Tr(Hvv")] = E[v” Ho) @

The computation of Ay, (H ) was computed using the power iteration method. This computational
approach ensures a balance between resource efficiency and computation accuracy, enabling the
practical estimation of critical metrics within our experimental context.

B ADDITIONAL EXPERIMENTAL RESULTS

Figure 4 shows the validation (i.e., in-distribution generalization) performance and curvature informa-
tion trained on VGG-19.

The overall results of part of the results presented in Section 3 are shown in Figure 5 .

Validation Accuracy / VGG-19 Tr(Hva) / VGG-19 Amax(Hval) / VGG-19
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Figure 4: Validation Accuracy, Tr(H ) and Ay (H) / CIFAR10-C on VGG-19.

2https ://github.com/amirgholami/PyHessian
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Figure 5: Accuracy, Tr(H) and Apu(m) / CIFAR10-C on ViT-Small for both validation (in-
distribution) and test (OOD generalization).
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