
Uncovering RL Integration in SSL Loss:
Objective-Specific Implications for Data-Efficient RL

Ömer Veysel Çağatan
Department of Computer Engineering

Koç University
Sarıyer, İstanbul 34450

ocagatan19@ku.edu.tr

Barış Akgün
Department of Computer Engineering

Koç University
Sarıyer, İstanbul 34450
baakgun@ku.edu.tr

Abstract

In this study, we examine the impact of different SSL objectives within the Self
Predictive Representations (SPR) [35] framework. Specifically, we explore SSL
modifications like terminal state masking and prioritized replay weighting, which
were not explicitly discussed in the original framework. These modifications are
RL-specific but are not applicable to all RL algorithms. As such, it is of interest to
gauge their impact on performance and look at other SSL objectives. We evaluate
six SPR variants on the Atari 100k benchmark, including versions without these
modifications, as well as others incorporating feature decorrelation methods like
Barlow Twins and VICReg, which cannot accommodate these specific adjustments.
Additionally, we assess the performance of these objectives on the DeepMind
Control Suite, where the environment does not feature these modifications. Our
findings show that the SSL modifications within SPR significantly influence perfor-
mance, underscoring the critical importance of both the SSL objective selection and
its accompanying modifications in data-efficient and self-predictive reinforcement
learning.

1 Introduction

Self-supervised learning (SSL) has become increasingly popular in data-efficient RL due to its
benefits in enhancing both efficiency and performance [37, 48, 16, 41, 43, 25, 5]. However, the
application of SSL methods are often problem/domain specific (see in Appx. C for a more detailed
discussion) to maximize the performance of RL agents. Although this approach is rational given the
nature of these methods, it raises questions about generalization and transferability.

One of the main challenges in Deep RL is understanding what drives performance improvements,
whether through hyperparameter tuning or new algorithmic methods [31]. Although algorithmic
innovations are often well-documented, the lack of clarity around hyperparameter selection can be
problematic. In our study of different SSL objectives within the Self Predictive Representations
(SPR) [35] framework, we noticed that the SSL loss used in SPR differs from what is described in the
original literature. Unlike typical SSL methods in RL, which follow vision pretraining approaches [9]
and directly combine SSL and RL losses [41], SPR modifies the SSL loss before merging it with the
RL objective. This raises a critical question: How do these modifications affect the performance of
SSL objectives, and can they be effectively applied to other SSL techniques in the RL domain?

In this spirit, we use SPR as the main agent that we thoroughly describe in Appx. A.3. SPR uses
the BYOL/SimSiam [14, 10] auxiliary objective and includes two algorithm-specific adjustments to
the SSL objective; (i) masking SSL loss with boolean non-terminal state matrix and (ii) applying
prioritized replay weighting to the batch loss. These modifications are feasible in the context of SPR
due to the sample-wise nature of the objective it uses and the target domain.

NeurIPS 2024 Workshop: Self-Supervised Learning - Theory and Practice.

Encoder Latent RL Head RL Loss

Transition Model

Predicted Latent MLP

SSL Objective

ZA

ZBEncoder Ground Truth Latent MLP

Stop Gradient

Figure 1: General flow diagram of SPR based methods. An encoder is used to create representations
used for reinforcement learning and predicting future representations via a transition model and
ground truth representations are created by the same encoder. MLPs differ when the predictor layer is
used as in the case of BYOL/SimSiam. While we show the kth step here, the actual loss computation
covers steps 1 to K. The SSL objective and RL loss changes between specific methods.

On the other hand, a multitude of novel self-supervised representation learning objectives [50, 4, 32, 6]
has been proposed which has been shown to excel beyond image pretraining [24, 13, 52, 53]. Since
these objectives are based on feature decorrelation, they do not inherently support the modifications
used in SPR, as described in Appx. B. Consequently, another important question is how other
objectives perform relative to the original SPR without SSL modifications. This is significant because
the information required to modify SSL objectives may not always be available in the environment.

Therefore, we investigate an additional six SPR models, along with the original SPR: (i) SPR-
Naked, featuring no modifications, (ii) SPR-Naked+Non, incorporating terminal masking, (iii)
SPR-Naked+Prio, integrating prioritized replay weighting, (iv) SPR-Barlow, (v) SPR-VICReg-High,
characterized by a high covariance weight, and (vi) SPR-VICReg-Low, characterized by a low
covariance weight.

Even though there are newly proposed SSL objectives [39, 51, 46], it is impractical to include all
objectives in experiments due to limited computational resources and the need to prioritize rigorous
evaluation to draw precise conclusions however, we attempt to cover the two main families of SSL
methods within SPR. The first is self-distillation, represented by BYOL [14] or SimSiam [10], which
are already incorporated into SPR. The second family includes canonical correlation methods, such as
VICReg and Barlow. Another category is Deep Metric Learning, which includes contrastive learning
variants [3]. However, we do not separately test contrastive objectives, as they have already been
shown to be ineffective in SPR [35].

With a central focus on data efficiency, our primary evaluation of these models is conducted on
Atari 100k [20]. Our results show that the RL specific modifications to the SPR’s SSL objective
have significant impact on performance and using a pure feature decorrelation method like Barlow
Twins perform on par. We further evaluate these SSL objectives in the DeepMind Control Suite
100k [42] with appropriate modifications to handle continuous actions. Notably, VICReg emerges as
the top performer, surpassing even PlayVirtual [49], which features a more complex transition model
than SPR. Overall, our findings underscore the importance of SSL objectives in data-efficient RL,
revealing variations in performance depending on the chosen objective and the environment, and
suggest that pure SSL objectives may mitigate the need for problem specific modifications.

2 Analysis

2.1 Atari 100k

Figure 2 shows the performance of the seven agents in the Atari 100k benchmark, calculated using
the rliable framework [1]. The individual game performances are given in Appx. E and we describe
evaluation setup in Appx. D.

2

0.24 0.30 0.36 0.42
Naked

Naked+Non
Naked+Prio
VICReg-Low

VICReg-High
Barlow

SPR
Median

0.275 0.300 0.325 0.350

IQM

0.52 0.56 0.60 0.64

Mean

0.58 0.60 0.62

Optimality Gap

Human Normalized Score

Figure 2: Mean, median, interquartile mean human normalized scores and optimality gap (lower is
better) computed with stratified bootstrap confidence intervals in Atari 100k. 50 runs for SPR-Barlow,
SPR-VICReg-High, SPR-VICReg-Low, SPR-Naked+Prio, SPR-Naked+Non,SPR-Naked, 100 runs
for SPR from [1].

0.66 0.72 0.78
Barlow
VICReg

SPR
Barlow+Pred
VICReg+Pred

Virtual
Median

0.65 0.70 0.75 0.80

IQM

0.60 0.65 0.70 0.75

Mean

0.25 0.30 0.35 0.40

Optimality Gap

Max Normalized Score

Figure 3: Mean, median, interquartile mean max normalized scores and optimality gap (lower is
better) computed with stratified bootstrap confidence intervals in Deep Mind Control Suite 100k, 10
runs for all agents.

SPR and SSL Modifications. The original SPR-agent performs the best (top row of Fig. 2). The
modifications to the SPR’s SSL objective (see Appx. A.3) have significant impact on the performance
but they are not mentioned in the relevant papers (SPR [35], SR-SPR [11], or BBF [37]). The no
modifications version, SPR-Naked, performs the worst with a nearly 20% performance drop based on
the IQM score (last row of Fig. 2). This is crucial because such modifications may not be suitable for
all problem domains, which limits their transferability and generalizability. On the other hand, the
role of terminal masking and prioritized replay weighting in SPR is especially interesting, as they
help boost performance in situations where pure representation learning struggles.

Incorporating prioritized replay weights has a positive effect on SPR (5th row of Fig. 2). These
weights act as markers for Bellman errors that mirror the agent’s Q-value approximation performance
on particular transitions. Introducing these weights into the representation loss intensifies the emphasis
on refining representations that the agent struggles with.

Empirically, terminal state masking shows negligible positive effects, unlike replay weighting, (6th

row of Fig. 2). The limited impact of masking might be attributed to the episode lengths, where the
agent encounters many regular states but only a single terminal state. The SSL loss may be primarily
influenced by intermediate states, which could reduce the effectiveness of masking in these scenarios.

On the other hand, there is a clear synergy between these modifications within SPR. Masking terminal
states might be advantageous when agents encounter frequent failures during the initial stages of
training or due to the nature of the games. In such cases, terminal states may dominate the replay
buffer, which could introduce biased representations that become challenging to correct later on and
make it harder for the agent to adapt and improve as it progresses

SPR-Barlow. The performance of the Barlow Twins agent is close to the SPR’s (2nd row of
Fig. 2), with only a 5% difference, where as SPR-Naked has a 20% gap. As described in Appx. B,
modifications related to SSL do not directly apply to Barlow Twins, VICReg, or any other method
regularization in the feature dimension. As such, performing similar to a method with RL specific
modifications suggests that Barlow Twins has the potential to serve as a substitute, indicating its
promise as a versatile SSL objective for data-efficient RL.

The performance gap between SPR-naked and the feature decorrelation methods (Barlow and VI-
CReg) in this context is somewhat surprising since BYOL or Simsiam outperform them in image
classification. In vision pretraining, the goal is to obtain embeddings with well-defined clusters based
on the training corpora, enhancing classification performance, where feature decorrelation may be of
hindrance. In RL, it is important to differentiate between states (good, bad, or promising if they have

3

not been explored yet) which may not be too different in the image space. As such, methods that
emphasize the use of the entire embedding space potentially have a better chance of state separation.

To test this, we evaluate the rank [22] of the advantage and value heads, as well as the output of
the convolution head, which is shared by both the RL and SSL objectives. We evaluated multiple
methods like Barlow Twins and VICReg, in addition to a variant without SSL loss. We found that the
rank converges similarly across different games and even if they don’t, this does not correlate with
performance. We also measured dormant neurons [40] and observed that the results were consistent
with the rank findings. These evaluations are detailed in Appx. G.

SPR-VICRegs. Initially, we used the default VICReg hyperparameters given in the original paper [4].
Surprisingly, VICReg exhibits a 13% lower performance (4th row of Fig. 2) compared to SPR although
it surpasses SPR-Naked. It also falls short of Barlow Twins. This outcome is not immediately evident
given that it has a high similarity to the Barlow Twins’ objective. One plausible explanation could
be the presence of multiple loss components, possibly undermining covariance. To address this, we
explore alternative hyperparameters, selecting the set with the highest covariance hyperparameter
that avoids collapse and denote it as SPR-VICReg-High, while the previous one is referred to as
SPR-VICReg-Low. However, the performance only marginally increases by 2% (3rd row of Fig. 2),
lacking behind Barlow Twins once again. The underlying reasons for this performance gap remain
subject to further exploration. Nonetheless, it still showcases the effectiveness of feature decorrelation
based objectives since both types outperform SPR-Naked.

2.2 DMControl

We further evaluate the SSL objectives with the DMControl suite, described in Appx. D) since this
domain can provide additional insights into the efficacy of SSL objectives in RL. However, since
there is no terminal state in this environment and a uniform replay buffer is used, modifications to the
SPR loss are not feasible. As such, this evaluation will focus on the generalization of used objectives
across domains without targeted optimization for specific problems.

Moreover, SPR is not explicitly designed for continuous control. As such, we use a different
set of agents modified for continuous control as described in Appx. B but keep the same SSL
hyperparameters from the Atari benchmark. We pick SPR-VICReg-High due to its better performance
over the lower covariance version. We additionally evaluate SPR-Barlow and SPR-Vicreg with
an MLP layer as an additional predictor, reflecting Bardes et al. [4]’s findings on the enhanced
performance of BYOL with variance regularization. We build upon the PlayVirtual [49] methodolody,
which is an SPR equipped with an improved transition model, and use it as our baseline.

We observe from Fig. 3 that the Barlow Twins objective exhibits the lowest performance, although it
closely aligns with SPR, with IQM scores of 0.656, and 0.677 respectively. An interesting observation
is that VICReg with an IQM of 0.75 is as good as PlayVirtual [49] with 0.744. This underscores
the potential of SSL objectives in continuous control. While their impact is vital in discrete control
as well, the overall effect, especially when considering the maximum score (representing human
performance), is relatively modest. Nevertheless, a substantial improvement is evident in continuous
control, even when compared to the highest achievable score. We also see that adding a predictor
network has a minimal but positive impact on the IQM performances of both Barlow and VICReg.

3 Conclusion

Our study investigates the impact of RL specific and off-the-shelf SSL objectives on SPR. We find that
RL-based modifications are essential in discrete control but may not be always applicable, especially
in continuous control. Despite SSL coupled with RL being most effective in Atari, Barlow Twins
performs well without any modifications, indicating that SSL objectives can yield strong results
without problem-specific modifications. However, its success in Atari doesn’t transfer to DMControl,
where VICReg excels. VICReg stands out with consistent performance in both domains, highlighting
its effectiveness as an SSL objective in self-predictive RL, while being problem-agnostic.

4 Acknowledgements

This work was supported by KUIS AI Center computational resources.

4

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G.

Bellemare. 2021. Deep Reinforcement Learning at the Edge of the Statistical Precipice. In
Neural Information Processing Systems.

[2] Benjamin J. Ayton and Masataro Asai. 2021. Width-Based Planning and Active Learning for
Atari. In International Conference on Automated Planning and Scheduling.

[3] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Gold-
stein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild,
Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed
Pirsiavash, Yann LeCun, and Micah Goldblum. 2023. A Cookbook of Self-Supervised Learning.

[4] Adrien Bardes, Jean Ponce, and Yann LeCun. 2021. VICReg: Variance-Invariance-Covariance
Regularization for Self-Supervised Learning. ArXiv, abs/2105.04906.

[5] Omer Veysel Cagatan and Baris Akgun. 2023. BarlowRL: Barlow Twins for Data-Efficient
Reinforcement Learning.

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
2021. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.

[7] Edoardo Cetin, Philip J. Ball, Steve Roberts, and Oya Çeliktutan. 2022. Stabilizing Off-Policy
Deep Reinforcement Learning from Pixels. In International Conference on Machine Learning.

[8] Edoardo Cetin, Benjamin Paul Chamberlain, Michael M. Bronstein, and Jonathan J. Hunt. 2022.
Hyperbolic Deep Reinforcement Learning. ArXiv, abs/2210.01542.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020. A Simple
Framework for Contrastive Learning of Visual Representations. ArXiv, abs/2002.05709.

[10] Xinlei Chen and Kaiming He. 2020. Exploring Simple Siamese Representation Learning.
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
15745–15753.

[11] Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron C. Courville. 2023. Sample-Efficient Reinforcement Learning by Breaking the Replay
Ratio Barrier. In International Conference on Learning Representations.

[12] Manuel Goulão and Arlindo L. Oliveira. 2022. Pretraining the Vision Transformer using self-
supervised methods for vision based Deep Reinforcement Learning. ArXiv, abs/2209.10901.

[13] Manuel Goulão and Arlindo L. Oliveira. 2023. Pretraining the Vision Transformer using
self-supervised methods for vision based Deep Reinforcement Learning.

[14] Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. 2020. Bootstrap
Your Own Latent: A New Approach to Self-Supervised Learning. ArXiv, abs/2006.07733.

[15] Tuomas Haarnoja, Aurick Zhou, P. Abbeel, and Sergey Levine. 2018. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. ArXiv,
abs/1801.01290.

[16] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. 2023. Mastering Diverse
Domains through World Models. arXiv preprint arXiv:2301.04104.

[17] H. V. Hasselt, Matteo Hessel, and John Aslanides. 2019. When to use parametric models in
reinforcement learning? ArXiv, abs/1906.05243.

[18] Matteo Hessel, Joseph Modayil, H. V. Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. 2017. Rainbow: Combining
Improvements in Deep Reinforcement Learning. In AAAI Conference on Artificial Intelligence.

5

https://api.semanticscholar.org/CorpusID:238226837
https://api.semanticscholar.org/CorpusID:238226837
http://arxiv.org/abs/2304.12210
http://arxiv.org/abs/2308.04263
http://arxiv.org/abs/2308.04263
http://arxiv.org/abs/2006.09882
https://api.semanticscholar.org/CorpusID:250265109
https://api.semanticscholar.org/CorpusID:250265109
https://api.semanticscholar.org/CorpusID:252693361
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:211096730
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:252439214
https://api.semanticscholar.org/CorpusID:252439214
http://arxiv.org/abs/2209.10901
http://arxiv.org/abs/2209.10901
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:219687798
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:186206746
https://api.semanticscholar.org/CorpusID:19135734
https://api.semanticscholar.org/CorpusID:19135734

[19] Tao Huang, Jiacheng Wang, and Xiao Chen. 2022. Accelerating Representation Learning with
View-Consistent Dynamics in Data-Efficient Reinforcement Learning. ArXiv, abs/2201.07016.

[20] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, G. Tucker, and Henryk Michalewski. 2019. Model-Based Reinforcement Learning
for Atari. ArXiv, abs/1903.00374.

[21] Ilya Kostrikov, Denis Yarats, and Rob Fergus. 2020. Image Augmentation Is All You Need:
Regularizing Deep Reinforcement Learning from Pixels. ArXiv, abs/2004.13649.

[22] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. 2021. Implicit Under-
Parameterization Inhibits Data-Efficient Deep Reinforcement Learning.

[23] Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo,
Se-Young Yun, and Chulhee Yun. 2023. Enhancing Generalization and Plasticity for Sample
Efficient Reinforcement Learning. ArXiv, abs/2306.10711.

[24] Hojoon Lee, Koanho Lee, Dongyoon Hwang, Hyunho Lee, Byungkun Lee, and Jaegul Choo.
2023. On the Importance of Feature Decorrelation for Unsupervised Representation Learning
in Reinforcement Learning.

[25] Xiang Li, Jinghuan Shang, Srijan Das, and Michael S. Ryoo. 2023. Does Self-supervised
Learning Really Improve Reinforcement Learning from Pixels?

[26] Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander T. Ihler, P. Abbeel, and
Roy Fox. 2022. Reducing Variance in Temporal-Difference Value Estimation via Ensemble of
Deep Networks. ArXiv, abs/2209.07670.

[27] Hao Liu and P. Abbeel. 2021. APS: Active Pretraining with Successor Features. In International
Conference on Machine Learning.

[28] Vincent Micheli, Eloi Alonso, and Franccois Fleuret. 2022. Transformers are Sample Efficient
World Models. ArXiv, abs/2209.00588.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski,
Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nature, 518:529–533.

[30] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron C. Courville.
2022. The Primacy Bias in Deep Reinforcement Learning. In International Conference on
Machine Learning.

[31] Johan Obando-Ceron, João G. M. Araújo, Aaron Courville, and Pablo Samuel Castro. 2024.
On the consistency of hyper-parameter selection in value-based deep reinforcement learning.

[32] Serdar Ozsoy, Shadi S. Hamdan, Sercan Ö. Arik, Deniz Yuret, and Alper Tunga Erdogan. 2022.
Self-Supervised Learning with an Information Maximization Criterion. ArXiv, abs/2209.07999.

[33] Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. 2023. Transformer-based
World Models Are Happy With 100k Interactions. ArXiv, abs/2303.07109.

[34] Jan Robine, Tobias Uelwer, and Stefan Harmeling. 2021. Smaller World Models for Reinforce-
ment Learning.

[35] Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. 2020. Data-Efficient Reinforcement Learning with Self-Predictive Representations.
In International Conference on Learning Representations.

[36] Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. 2021. Repository published by the SPR. https://github.com/mila-iqia/spr.

6

https://api.semanticscholar.org/CorpusID:246035501
https://api.semanticscholar.org/CorpusID:246035501
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:216562627
https://api.semanticscholar.org/CorpusID:216562627
http://arxiv.org/abs/2010.14498
http://arxiv.org/abs/2010.14498
https://api.semanticscholar.org/CorpusID:259203876
https://api.semanticscholar.org/CorpusID:259203876
http://arxiv.org/abs/2306.05637
http://arxiv.org/abs/2306.05637
http://arxiv.org/abs/2206.05266
http://arxiv.org/abs/2206.05266
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:250341019
https://api.semanticscholar.org/CorpusID:235825462
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:251979354
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:248811264
http://arxiv.org/abs/2406.17523
https://api.semanticscholar.org/CorpusID:257496038
https://api.semanticscholar.org/CorpusID:257496038
http://arxiv.org/abs/2010.05767
http://arxiv.org/abs/2010.05767
https://api.semanticscholar.org/CorpusID:222163237
https://github.com/mila-iqia/spr

[37] Max Schwarzer, Johan S. Obando-Ceron, Aaron C. Courville, Marc G. Bellemare, Rishabh
Agarwal, and Pablo Samuel Castro. 2023. Bigger, Better, Faster: Human-level Atari with
human-level efficiency. ArXiv, abs/2305.19452.

[38] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
Devon Hjelm, Philip Bachman, and Aaron C. Courville. 2021. Pretraining Representations for
Data-Efficient Reinforcement Learning. In Neural Information Processing Systems.

[39] Thalles Silva, Helio Pedrini, and Adín Ramírez Rivera. 2024. Learning from Memory: Non-
Parametric Memory Augmented Self-Supervised Learning of Visual Features. In Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pages 45451–45467. PMLR.

[40] Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. 2023. The Dormant
Neuron Phenomenon in Deep Reinforcement Learning.

[41] A. Srinivas, Michael Laskin, and P. Abbeel. 2020. CURL: Contrastive Unsupervised Represen-
tations for Reinforcement Learning. ArXiv, abs/2004.04136.

[42] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin
Riedmiller. 2018. DeepMind Control Suite.

[43] Manan Tomar, Utkarsh A. Mishra, Amy Zhang, and Matthew E. Taylor. 2021. Learning
Representations for Pixel-based Control: What Matters and Why?

[44] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019. Representation Learning with
Contrastive Predictive Coding.

[45] Ziyun Wang, Tom Schaul, Matteo Hessel, H. V. Hasselt, Marc Lanctot, and Nando de Freitas.
2015. Dueling Network Architectures for Deep Reinforcement Learning. In International
Conference on Machine Learning.

[46] Xi Weng, Yunhao Ni, Tengwei Song, Jie Luo, Rao Muhammad Anwer, Salman Khan, Fa-
had Shahbaz Khan, and Lei Huang. 2024. Modulate Your Spectrum in Self-Supervised Learn-
ing.

[47] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. 2020.
Improving Sample Efficiency in Model-Free Reinforcement Learning from Images.

[48] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. 2021. Mastering
Atari Games with Limited Data.

[49] Tao Yu, Cuiling Lan, Wenjun Zeng, Mingxiao Feng, Zhizheng Zhang, and Zhibo Chen. 2021.
Playvirtual: Augmenting cycle-consistent virtual trajectories for reinforcement learning. Ad-
vances in Neural Information Processing Systems, 34.

[50] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. 2021. Barlow Twins:
Self-Supervised Learning via Redundancy Reduction. ArXiv, abs/2103.03230.

[51] Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, and Yang Yuan. 2024. Matrix
Information Theory for Self-Supervised Learning. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 59897–59918. PMLR.

[52] Jinghao Zhou, Li Dong, Zhe Gan, Lijuan Wang, and Furu Wei. 2022. Non-Contrastive Learning
Meets Language-Image Pre-Training.

[53] Ömer Veysel Çağatan. 2024. UNSEE: Unsupervised Non-contrastive Sentence Embeddings.

7

https://api.semanticscholar.org/CorpusID:258987895
https://api.semanticscholar.org/CorpusID:258987895
https://api.semanticscholar.org/CorpusID:235377401
https://api.semanticscholar.org/CorpusID:235377401
https://proceedings.mlr.press/v235/silva24c.html
https://proceedings.mlr.press/v235/silva24c.html
http://arxiv.org/abs/2302.12902
http://arxiv.org/abs/2302.12902
https://api.semanticscholar.org/CorpusID:215415964
https://api.semanticscholar.org/CorpusID:215415964
http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/2111.07775
http://arxiv.org/abs/2111.07775
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://api.semanticscholar.org/CorpusID:5389801
http://arxiv.org/abs/2305.16789
http://arxiv.org/abs/2305.16789
http://arxiv.org/abs/1910.01741
http://arxiv.org/abs/2111.00210
http://arxiv.org/abs/2111.00210
https://api.semanticscholar.org/CorpusID:232110471
https://api.semanticscholar.org/CorpusID:232110471
https://proceedings.mlr.press/v235/zhang24bi.html
https://proceedings.mlr.press/v235/zhang24bi.html
http://arxiv.org/abs/2210.09304
http://arxiv.org/abs/2210.09304
http://arxiv.org/abs/2401.15316

A Background

A.1 Barlow Twins

The Barlow Twins [50] employs a symmetric network with twin branches, each processing a different
augmented perspective of input data. It aims to minimize off-diagonal components and align diagonal
elements of a cross-covariance matrix derived from the representations of these branches. The process
involves generating two altered views (Y A and Y B) using data augmentations, inputting them into a
function fθ to produce embeddings (ZA and ZB).

The Barlow Twins loss is defined as:

LBT ≜
∑
i

(1− Cii)2︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j ̸=i

Cij2︸ ︷︷ ︸
redundancy reduction term

(1)

where λ > 0 balances the invariance (diagonal elements) and redundancy reduction (off-diagonal) in
the loss function. C is the cross-correlation matrix from embedding outputs of identical networks in
the batch. A matrix element is defined as:

Cij ≜
∑

b z
A
b,iz

B
b,j√∑

b (z
A
b,i)

2
√∑

b (z
B
b,j)

2
(2)

where b represents the samples in the batch, and i and j represent dimension indices of the networks’
output. Each dimension of the square covariance matrix, C, is the same as the embedding dimension
(output dimensionality of the networks). Its values range between -1 (indicating complete anti-
correlation) and 1 (representing perfect correlation).

A.2 VICReg

VICReg [4] is a method designed to tackle the challenge of collapse directly. It achieves this
by introducing a straightforward regularization term that specifically targets the variance of the
embeddings along each dimension independently. In addition to addressing the variance, VICReg
includes a mechanism to diminish redundancy and ensure decorrelation among the embeddings,
accomplished through covariance regularization.

The variance regularization term is a hinge function on the standard deviation of the embeddings
along the batch dimension:

v(Z) =
1

d

d∑
j=1

max(0, γ − S(zj , ϵ)) (3)

where S is the regularized standard deviation defined by:

S(x; ϵ) =
√

Var(x) + ϵ (4)

Covariance matrix of Z is defined as:

C(Z) =
1

n− 1

n∑
i=1

(zi − z̄)(zi − z̄)T (5)

where z̄ = 1
n

∑n
i=1 zi. Covariance regularization is defined as:

c(Z) =
1

d

∑
i

∑
j ̸=i

Cij2 (6)

where d is the feature dimension. The invariance criterion between Z and Z ′ is the mean-squared
Euclidean distance between each pair of vectors, without any normalization.

s(Z,Z ′) =
1

n

n∑
i=1

||zi − z′i||2 (7)

8

The overall loss function is a weighted average of the invariance, variance, and covariance terms:

l(Z,Z ′) = αv(Z) + βc(Z) + γs(Z,Z ′) (8)

where α, λ, and γ hyper-parameters control the importance of each term in the loss.

VICReg is quite similar to Barlow Twins in terms of its loss formulation. However, instead of
decorrelating the cross-correlation matrix directly, it regularizes the variance along each dimension
of the representation, reduces correlation and minimizes the difference of embeddings. This prevents
dimension collapse and also forces the two views to be encoded similarly. Additionally, reducing
covariance encourages different dimensions of the representation to capture distinct features.

A.3 SPR

Self Predictive Representations (SPR) [35] is a performant data-efficient agent and a baseline of many
other performant agents [37, 30, 11, 49] and its general architecture is depicted in Figure 1. The
approach trains an agent by having it predict the latent state based on the current state. It encodes the
present state, forecasts the latent representation of the next state using a transition model, and calcu-
lates loss by measuring the mean squared error between normalized embeddings. Additionally, SPR
adjusts its loss through terminal masking and prioritized replay weighting. These two modifications
inject RL-specific information into the auxiliary self-supervised learning task. While the utilization
of these ideas is not explicitly mentioned by Schwarzer et al. [35], it is possible that these techniques
were considered self-evident and consequently were included in their implementation [36]. We
mention them here so as to be able to better differentiate between SPR and other SPR variants.

SSL loss matrix in SPR denoted as L, encompasses negative cosine similarities between predicted
latent representations and ground truth latent representations, with dimensions of B× (K+1), where
B is the batch size, and K is the prediction horizon with 1 coming from the current observation. The
batch of interactions is drawn from the replay buffer, and their terminal status is known. The terminal
mask matrix, M , is composed of 0s and 1s denoting terminal and non-terminal states. The process
involves updating L through a Hadamard product with M , denoted as L ◦M , effectively modifying
the loss matrix.

The loss matrix is divided into two components: SPR loss and Model SPR loss. SPR loss is between
the latent representations of the augmented views of the present state. Model SPR loss is between
the latent representations of the augmented views of the future states and the predicted future latent
representations, generated by the transition model. Model SPR is averaged across the temporal
dimension and as a result, both components have N × 1 dimensionality.

The loss of each transition is multiplied by the prioritized replay weighting, as determined by the
temporal difference errors. Then the final loss is computed as the weighted sum of the average SPR
loss and half the average of the Model SPR loss across a batch, defined as follows:

LSPR =
1

N

N∑
i=1

ωi(λSPRi + γModel SPRi) (9)

where N is the batch size, ωi is the priority weight (
∑

i ωi = 1), and i indexes individual transitions,
where λ,γ are hyperparameters.

B SPR-*

Despite variations in SSL objectives and RL algorithms across different benchmarks, the architecture
remains largely consistent, as depicted in Figure 1. SPR employs a BYOL [14] objective with
a momentum of 1, essentially adopting the SimSiam [10] approach. The primary architectural
distinction lies in the inclusion of an extra predictor layer in the online MLP of BYOL or SimSiam to
prevent collapse, a feature omitted in the original Barlow Twins and VICReg formulations as their
objectives inherently mitigate the risk of collapse.

SPR-Nakeds While SPR demonstrates considerable efficacy, the fundamental question remains
unanswered—what is the impact of pure self-supervised learning and potential adaptations leading
to SPR? Consequently, we introduce SPR-Naked, representing pure SSL. To assess the effects

9

Median IQM Mean Opt. Gap
Stop-Gradient 0.271 0.303 0.615 0.577

No Stop-Gradient 0.266 0.282 0.595 0.611
Table 1: Human-normalized aggregate metrics in Atari 100k by VICReg-High. Scores, collected
from 10 random runs to assess the efficacy of including stop-gradient.

Median IQM Mean Opt. Gap
Barlow 0.324 0.320 0.605 0.5930
VICReg 0.281 0.289 0.600 0.610

VICReg + Non 0.221 0.279 0.554 0.617
Barlow + Non - 0.009 - 0.011 -0.171 1.171

ZeroJump 0.270 0.262 0.528 0.636
Table 2: Human-normalized aggregate metrics in Atari 100k. Scores were collected from 10 random
runs.

of prioritized replay weighting and terminal masking, we further establish SPR-Naked+Prio and
SPR-Naked+Non, respectively.

SPR-Barlow To extend the Barlow Twins to future predictions, we compute individual cross-
correlation matrices for both the current and predicted latent representations at each time step. This
results in a total of K + 1 matrices, each with dimensions d × d, where d denotes the embedding
dimension within a single batch. Subsequently, we calculate the loss for each matrix and average
the results. To make it easier to compare, we can define SPR Loss and Model SPR Loss analogously
to their SPR counterparts, where the first is about the current state and the latter is about the future
states. The final loss is then;

LSPR−Barlow = SPR +
1

K

K∑
k=1

Model SPRk (10)

where K is the number of predicted future observations.

SPR-VICRegs We employ a parallel procedure as in Barlow Twins for VICReg. We introduce
two variations of VICReg-High and VICReg-Low, featuring high or low covariance weights in the
VICReg loss (Equation 8), while maintaining consistency in other hyperparameters. The primary
objective is to observe the impact of feature decorrelation without inducing model collapse.

Why not employ replay weighting and terminal state masking in Barlow/VICReg? The key
limitation preventing the use of replay weighting or terminal masking in feature decorrelation-based
methods lies in their reliance on covariance regularization. These methods employ either a cross-
correlation matrix or a covariance matrix, both with dimensions matching the feature dimension. This
structure prohibits applying the weighting of a feature dimension matrix using a batch dimension
matrix. Consequently, these methods produce a unified loss for the entire batch, unlike approaches
such as BYOL or SimSiam, which generate losses on a per-sample basis.

Why use stop-gradient in Barlow/VICReg? Barlow Twins and VICReg effectively prevent collapse
without resorting to symmetry-breaking architectural techniques such as predictor layers or stop-
gradient mechanisms. While not strictly necessary in this scenario, we choose to include a stop-
gradient due to its empirically observed performance improvement, as depicted in Table 1. A more
grounded reason stems from the architectural asymmetry introduced by the transition model. In the
absence of a stop-gradient, gradients from the encoder’s upper branch flow through the transition
model, whereas gradients from the lower branch directly influence the encoder. This asymmetry
can potentially lead to suboptimal encoder updates. Despite collapse avoidance in both cases, the
inclusion of a stop-gradient is maintained for its superior performance outcomes.

Removing Features with Masking We discussed why post-loss-calculation modifications cannot
be applied to objectives that involve components in the feature dimension rather than the batch
dimension. However, non-terminal masking can be employed to exclude samples from the batch
before calculating the SSL loss. Thus, we masked features during the training of the SPR-VICReg
and SPR-Barlow agents, leading to unexpected results. As shown in Table 2, the SPR-Barlow agent
performed even worse than the random agent. A likely explanation is that the Barlow Twins’ objective

10

relies on batch normalization to compute the cross-covariance matrix. Since masking causes the
batch size to vary dynamically, the batch statistics become inconsistent, adversely affecting the
batch normalization process.However, this degradation is not observed to the same extent in the
SPR-VICReg agent, as the VICReg objective does not rely on batch normalization.

Continuous Control Formulation Although SPR is created specifically for discrete control, delving
into the impact of SSL objectives solely within discrete control domains doesn’t provide a compre-
hensive understanding. This is why we adopt a parallel setup to that of PlayVirtual [49], where they
establish an SPR-like scheme referred to as SPR† as a baseline for continuous control. They utilize
the soft actor-critic algorithm [15], instead of q-learning due to the continuous nature of the actions.
They do not use terminal state masking (since terminal states for control problems are target states)
and prioritized replay weighting (since they use a uniform buffer). This shows the importance of
generally applicable auxiliary tasks for data-efficient RL.

We evaluate PlayVirtual and SPR† from scratch since we were not able to replicate Yu et al. [49]’s
results, potentially due to different benchmark versions. Furthermore, we assess the performance of
VICReg-High and Barlow Twins within the SPR† configuration. We exclude VICReg-Low in this
setting due to the minimal performance difference observed in Atari.

Finally, we explore the potential impact of incorporating the predictor network into Barlow Twins
and VICReg, even though they inherently do not need it to prevent dimension collapse. Although
the addition of a predictor network is novel in Barlow Twins, VICReg becomes similar to the SPR
with this addition like SPR with variance-covariance regularization. The decision to refrain from
conducting similar experiments in Atari stems from the substantially higher experimental costs, which
are at least 10 times greater than those in the control setting.

C Related Work

Tomar et al. [43] tackles a more challenging setting with background distractors, using a simple
baseline approach that avoids metric-based learning, data augmentations, world-model learning,
and contrastive learning. They analyze why previous methods may fail or perform similarly to the
baseline in this tougher scenario and stress the importance of detailed benchmarks based on reward
density, planning horizon, and task-irrelevant components. They propose new metrics for evaluating
algorithms and advocate for a data-centric approach to better apply RL to real-world tasks.

Li et al. [25] explore whether SSL can enhance online RL from pixel data. By extending the
contrastive reinforcement learning framework [41] to jointly optimize SSL and RL losses, and
experimenting with various SSL losses, they find that the current SSL approaches offer no significant
improvement over baselines that use image augmentation alone, given the same data and augmentation.
Even after evolutionary searches for optimal SSL loss combinations, these methods do not outperform
carefully designed image augmentations. Their evaluation across various environments, including
real-world robots, reveals that no single SSL loss or augmentation method consistently excels.

C.1 Data Efficient RL in Atari 100k

The introduction of the Atari 100k benchmark [20] has expedited the advancement of sample-efficient
reinforcement learning algorithms. Model-based approach, SimPLe [20], outperformed Rainbow
DQN [18], showcasing superior performance. Building on Rainbow’s framework, Hasselt et al. [17]
enhanced its efficacy through minor hyperparameter adjustments, resulting in Data-Efficient Rainbow
(DER), which achieved a higher score compared to SimPLe.

DrQ [21] employs a multi-augmentation strategy to regularize the value function during training of
both Soft Actor-Critic [15] and Deep Q-Network [29]. This approach effectively reduces overfitting
and enhances training efficiency, leading to performance improvements for both algorithm

Several prevalent methods adopt the Atari 100k dataset, and these can be classified as follows:
Model-Based [16, 33, 28, 2, 34], Pretraining [12, 38, 23, 27], Model-Free [37, 19, 30, 7, 23, 26]

11

C.2 Representation Learning in Atari 100k

Cetin et al. [8] presents a deep reinforcement learning method using hyperbolic space for latent
representations. Their innovative approach tackles optimization challenges in existing hyperbolic
deep learning, ensuring stable end-to-end learning through deep hyperbolic representations.

Huang et al. [19] proposes a Multiview Markov Decision Process (MMDP) with View-Consistent
Dynamics (VCD), a method that enhances traditional MDPs by considering multiple state perspectives.
VCD trains a latent space dynamics model for consistent state representations, achieved through data
augmentation.

Srinivas et al. [41] incorporate the InfoNCE [44] as an auxiliary component within DER. Cagatan and
Akgun [5] uses Barlow Twins [50] instead of a contrastive objective to further improve results. This
integration serves to enhance the learning process. SPR [35] outperforms all previous model-free
approaches by predicting its latent state representations multiple steps into the future with BYOL [14].

PlayVirtual [49] introduces a novel transition model as an alternative to the simplistic module in
SPR. The methodology enriches actual trajectories by incorporating a multitude of cycle-consistent
virtual trajectories. These virtual trajectories, generated using both forward and backward dynamics
models, collectively form a closed ’trajectory cycle.’ The crucial aspect is ensuring the consistency of
this cycle, validating the projected states against real states and actions. This innovative approach
significantly improves data efficiency, empowering reinforcement learning algorithms to acquire
robust feature representations with reduced reliance on real-world experiences. This method proves
particularly advantageous for tasks where obtaining real-world data is costly or challenging.

D Evaluation Setup

D.1 Atari 100k

We assess the SPR framework in a reduced-sample Atari setting, called the Atari 100k bench-
mark [20]. In this setting, the training dataset comprises 100,000 environment steps, which is
equivalent to about 400,000 frames or slightly under two hours of equivalent human experience.
This contrasts with the conventional benchmark of 50,000,000 environment steps, corresponding to
approximately 39 days of accumulated experience.

The main metric for this setting, widely acknowledged for assessing performance in the Atari 100k
context, is the human-normalized score. This measure is mathematically defined as in equation 11,
where random score pertains to outcomes achieved through a random policy and the human score is
derived from human players [45].

scoreagent − scorerandom

scorehuman − scorerandom
(11)

D.2 Deep Mind Control Suite

In the Deep Mind Control Suite [42], the agent is configured to function solely based on pixel inputs.
This choice is justified by several reasons: the environments involved offer a reasonably challenging
and diverse array of tasks, the sample efficiency of model-free reinforcement learning algorithms is
notably low when operating directly from pixels in these benchmarks and the performance on the
DM control suite is comparable to the context of robot learning in real-world benchmarks.

We use the following six environments [47] for benchmarking: ball-in-cup, finger-spin, reacher-easy,
cheetah-run, walker-walk and cartpole-swingup, for 100k steps each.

The main metric for this setting is the normalized score with respect to the maximum score. Note that
human scores are not suitable for such a continuous control setting.

D.3 Benchmarking: Rliable Framework

Agarwal et al. [1] discusses the limitations of using mean and median scores as singular estimates
in RL benchmarks and highlights the disparities between conventional single-point estimates and
the broader interval estimates, emphasizing the potential ramifications for benchmark dependability

12

and interpretation. In alignment with their suggestions, we provide a succinct overview of human-
normalized scores, furnished with stratified bootstrap confidence intervals, in Figures 2 and 3.

E Full Results on Atari 100k

Table 3: Returns on the 26 games of Atari 100k after 2 hours of real-time experience, and human-
normalized aggregate metrics. (VR: VICReg, results with 5 integral digits are rounded to the first
integer to fit the table)

Game Rand. Human Naked Non Prio VR-L VR-H Barlow SPR

Alien 227.8 7127.7 868.9 881.7 872.7 902.9 922.4 891.8 841.9
Amidar 5.8 1719.5 165.6 179.1 164.2 181.1 176.4 177.1 179.7
Assault 222.4 742.0 544.5 564.6 589.2 536.4 575.7 581.4 565.6
Asterix 210 8503.3 972.0 951.0 977.8 955.4 1021.7 981.2 962.5
BankHeist 14.2 753.1 61.6 70.1 60.2 79.9 82.9 73.5 345.4
BattleZone 2360 37188 7552.4 9424.2 13102 12557 14892 14954 14834
Boxing 0.1 12.1 27.3 30.4 36.4 31.3 33.9 35.1 35.7
Breakout 1.7 30.5 16.7 18.0 18.2 16.9 16.3 17.0 19.6
ChopComm 811 7387.8 906.8 949.8 901.0 832.9 929.9 938.9 946.3
CrzyClmbr 10781 35829 30056 32667 35829 27035 29023 29229 36701
DemonAtt 152.1 1971.0 514.7 511.0 522.9 461.2 547.2 519.2 517.6
Freeway 0.0 29.6 17.4 13.71 16.3 28.0 27.7 29.5 19.3
Frostbite 65.2 4334.7 1137.2 1010.9 1014.2 1353.0 1181.4 1191.3 1170.7
Gopher 257.6 2412.5 585.0 660.1 548.4 737.9 713.5 691.2 660.6
Hero 1027 30826 6937.8 6497.8 5686.6 5495.1 5559.6 5746.8 5858.6
Jamesbond 29 302.8 327.2 359.9 349.1 357.6 384.3 404.2 366.5
Kangaroo 52 3035.0 2970.9 2812.1 3016.5 2290.6 1998.3 1771.2 3617.4
Krull 1598 2665.5 3980.4 4061.8 4213.1 4166.6 4513.9 4363.2 3681.6
KFMaster 258.5 22736 13126 14595 15757 1488.4 15548 15998 14783
MsPacman 307.3 6951.6 1262.1 1162.6 1324.6 1366.8 1588.2 1388.2 1318.4
Pong -20.7 14.6 -1.8 -6.0 -7.2 -6.3 -10.1 -6.7 -5.4
PrivateEye 24.9 69571 85.6 77.0 88.0 100.9 96.6 99.6 86.0
Qbert 163.9 13455 847.2 758.6 759.8 796.9 687.6 765.8 866.3
RoadRunner 11.5 7845.0 12595 12713 11211 10683 9531.5 12412 12213
Seaquest 68.4 42055 524.0 524.2 523.2 576.3 651.0 669.1 558.1
UpNDown 533.4 11693 9569.3 8130.6 10331 7952.7 9415.3 10818 10859

#Sprhmn(↑) 0 N/A 4 3 3 4 4 4 6
Mean (↑) 0.00 1.000 0.542 0.555 0.608 0.558 0.585 0.608 0.616
Median (↑) 0.00 1.000 0.225 0.221 0.308 0.297 0.280 0.312 0.396
IQM (↑) 0.00 1.000 0.273 0.278 0.298 0.292 0.298 0.321 0.337
Opt. Gap (↓) 1.00 0.000 0.617 0.615 0.603 0.609 0.605 0.587 0.577

13

F Full Results on DMControl 100k

Table 4: Returns on the of DMControl 100k, and Max-normalized aggregate metrics.

Environment Virtual VICReg+Pred Barlow+Pred SPR VICReg Barlow

FINGER, SPIN 896.2 760.6 781.0 755.9 730.0 861.8
CARTPOLE, SWINGUP 815.1 791.6 784.0 826.0 780.1 778.6
REACHER, EASY 827.0 790.7 589.6 671.5 736.1 526.5
CHEETAH, RUN 489.6 504.3 461.6 435.2 493.5 478.6
WALKER, WALK 404.7 622.8 521.7 404.7 765. 182.2
BALL IN CUP, CATCH 835.4 891.6 622.8 835.4 937.5 924.9

Mean (↑) 0.705 0.738 0.673 0.660 0.740 0.625
Median (↑) 0.803 0.772 0.703 0.726 0.750 0.652
IQM (↑) 0.744 0.773 0.670 0.677 0.750 0.656
Optimality Gap (↓) 0.294 0.260 0.326 0.339 0.259 0.374

G Rank and Dormant Neuron

Kumar et al. [22] introduced the concept of *effective rank* for representations, represented as
srankδ(ϕ), with δ being a threshold parameter, set to 0.01 as per their study. They proposed that
effective rank is linked to the expressivity of a network, where a decrease in effective rank implies an
implicit under-parameterization. The study provides evidence indicating that bootstrapping is the
primary factor contributing to the collapse of effective rank, which in turn degrades performance.

To investigate how SSL objectives might mitigate rank collapse, we computed the rank of the
convolution output and the outputs of the penultimate layers from the advantage and value heads
of three different agents: SPR-VICReg, SPR-Barlow, and ZeroJump (SPR without a transition
model), scores in 2. Our observations indicate that, although there are some rank differences among
the agents, they often converge to the same rank, and these differences do not correlate with the
performance scores. Figure 4, 6 and 5 include ranks across all games.

To explore this further, we examined the proportion of dormant neurons, which are neurons that have
near-zero activations. Sokar et al. [40] showed that deep reinforcement learning agents experience a
rise in the number of dormant neurons within their networks. Additionally, a higher prevalence of
dormant neurons is associated with poorer performance.

We also do not observe a clear pattern in the fractions of dormant neurons, in Figure 7 that could
account for the disparities in performance scores, similar to what was seen in the case of neuron ranks.
Unlike rank-based observations, where patterns may emerge, the distribution of dormant neurons
does not offer an explanation for the differences in the scores across models. This suggests that
the relationship between neuron activity and performance metrics might be more complex and not
directly attributable to the proportion of inactive neurons.

H Experimental Details

We retain all hyperparameters of SPR, SR-SPR, and BBF, except for SPR-Barlow and SPR-VICReg,
where we adjust the SPR loss weight and increase the batch size from 32 to 64. The official
repositories of the models are used, and all experiments are conducted on a Tesla T4 GPU.

14

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 100002000030000400005000060000700008000090000100000
Iteration

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

0 100002000030000400005000060000700008000090000100000
Iteration

227.5

230.0

232.5

235.0

237.5

240.0

242.5

245.0

Ra
nk

 o
f v

al
ue

assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 100002000030000400005000060000700008000090000100000
Iteration

200

210

220

230

240

Ra
nk

 o
f v

al
ue

asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

battle_zone
Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 100002000030000400005000060000700008000090000100000
Iteration

210

220

230

240

Ra
nk

 o
f v

al
ue

boxing

Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 100002000030000400005000060000700008000090000100000
Iteration

60

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

breakout

Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 100002000030000400005000060000700008000090000100000
Iteration

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

chopper_command
Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 100002000030000400005000060000700008000090000100000
Iteration

0

20

40

60

80

100

120

140

Ra
nk

 o
f v

al
ue

crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 100002000030000400005000060000700008000090000100000
Iteration

225

230

235

240

245

Ra
nk

 o
f v

al
ue

demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

freeway

Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

205

210

215

220

225

230

235

240

245

Ra
nk

 o
f v

al
ue

jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

kangaroo
Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

50

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f v

al
ue

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

80

100

120

140

160

180

200

220

Ra
nk

 o
f v

al
ue

pong

Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

75

100

125

150

175

200

225

Ra
nk

 o
f v

al
ue

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

240

Ra
nk

 o
f v

al
ue

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f v

al
ue

up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

Figure 4: Rank of the output from the penultimate layer of the value head, measured every 10,000
steps and averaged across 10 different runs for every game.

15

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

Alien
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

Ra
nk

 o
f c

on
v_

ou
t

Alien
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1800

2000

2200

2400

2600

2800

Ra
nk

 o
f c

on
v_

ou
t

assault

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1000

1200

1400

1600

1800

2000

Ra
nk

 o
f c

on
v_

ou
t

asterix
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

0

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

bank_heist
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

battle_zone
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

1000

1200

1400

1600

1800

2000

Ra
nk

 o
f c

on
v_

ou
t

boxing

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

100

200

300

400

500

600

700

800

Ra
nk

 o
f c

on
v_

ou
t

breakout
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

chopper_command
Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

50

100

150

200

250

Ra
nk

 o
f c

on
v_

ou
t

crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 100002000030000400005000060000700008000090000100000
Iteration

1800

1900

2000

2100

2200

2300

2400

2500

2600

Ra
nk

 o
f c

on
v_

ou
t

demon_attack

Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

freeway

Barlow
95% Confidence Interval
VICReg
95% Confidence Interval
Zero Jump
95% Confidence Interval

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 100002000030000400005000060000700008000090000100000
Iteration

200

300

400

500

600

700

800

900

Ra
nk

 o
f c

on
v_

ou
t

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

1400

1600

1800

2000

2200

Ra
nk

 o
f c

on
v_

ou
t

jamesbond

Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

100

150

200

250

300

350

400

Ra
nk

 o
f c

on
v_

ou
t

kangaroo

Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

100

200

300

400

500

600

Ra
nk

 o
f c

on
v_

ou
t

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

300

400

500

600

700

800

900

Ra
nk

 o
f c

on
v_

ou
t

pong
Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

Ra
nk

 o
f c

on
v_

ou
t

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

Ra
nk

 o
f c

on
v_

ou
t

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

400

600

800

1000

1200

1400

1600

Ra
nk

 o
f c

on
v_

ou
t

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

200

400

600

800

1000

1200

1400

1600

1800

Ra
nk

 o
f c

on
v_

ou
t

up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

Figure 5: Rank of the output from the convolution encoder, measured every 10,000 steps and averaged
across 10 different runs for every game.

16

0 100002000030000400005000060000700008000090000100000
Iteration

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

0 100002000030000400005000060000700008000090000100000
Iteration

234

236

238

240

242

244

246

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 100002000030000400005000060000700008000090000100000
Iteration

210

215

220

225

230

235

240

245

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 100002000030000400005000060000700008000090000100000
Iteration

25

50

75

100

125

150

175

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

battle_zone

Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 100002000030000400005000060000700008000090000100000
Iteration

215

220

225

230

235

240

245

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

boxing

Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

breakout

Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 100002000030000400005000060000700008000090000100000
Iteration

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

chopper_command

Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 100002000030000400005000060000700008000090000100000
Iteration

234

236

238

240

242

244

246

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

freeway

Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 100002000030000400005000060000700008000090000100000
Iteration

220

225

230

235

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 100002000030000400005000060000700008000090000100000
Iteration

40

60

80

100

120

140

160

180

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

kangaroo

Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 100002000030000400005000060000700008000090000100000
Iteration

60

80

100

120

140

160

180

200

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 100002000030000400005000060000700008000090000100000
Iteration

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 100002000030000400005000060000700008000090000100000
Iteration

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

pong

Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 100002000030000400005000060000700008000090000100000
Iteration

160

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 100002000030000400005000060000700008000090000100000
Iteration

100

120

140

160

180

200

220

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 100002000030000400005000060000700008000090000100000
Iteration

160

180

200

220

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 100002000030000400005000060000700008000090000100000
Iteration

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 100002000030000400005000060000700008000090000100000
Iteration

170

180

190

200

210

220

230

240

Ra
nk

 o
f a

dv
an

ta
ge

_h
id

de
n

up_n_down

Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

Figure 6: Rank of the output from the penultimate layer of the advantage head, measured every
10,000 steps and averaged across 10 different runs for every game.

17

0 20000 40000 60000 80000 100000
Iteration

5

10

15

20

25

30

35

40

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Krull
Barlow
Average: 4398.6, Std: 795.1
VICReg
Average: 4509.0, Std: 770.9
Zero Jump
Average: 4244.1, Std: 471.6

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Private_eye
Barlow
Average: 69.2, Std: 62.4
VICReg
Average: 92.0, Std: 24.1
Zero Jump
Average: 90.0, Std: 30.0

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Asterix
Barlow
Average: 950.1, Std: 129.5
VICReg
Average: 947.6, Std: 102.0
Zero Jump
Average: 1008.3, Std: 159.2

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Bank_heist
Barlow
Average: 68.7, Std: 39.7
VICReg
Average: 121.1, Std: 199.1
Zero Jump
Average: 105.7, Std: 198.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Alien
Barlow
Average: 831.2, Std: 113.2
VICReg
Average: 882.0, Std: 201.8
Zero Jump
Average: 820.6, Std: 109.7

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Chopper_command
Barlow
Average: 940.4, Std: 511.5
VICReg
Average: 891.5, Std: 274.7
Zero Jump
Average: 866.8, Std: 329.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Freeway
Barlow
Average: 23.4, Std: 11.8
VICReg
Average: 25.1, Std: 8.9
Zero Jump
Average: 21.4, Std: 11.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Pong
Barlow
Average: -8.8, Std: 6.8
VICReg
Average: -9.4, Std: 6.0
Zero Jump
Average: -9.4, Std: 8.9

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Jamesbond
Barlow
Average: 379.8, Std: 59.9
VICReg
Average: 399.5, Std: 65.0
Zero Jump
Average: 304.9, Std: 101.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Kung_fu_master
Barlow
Average: 18698.2, Std: 7081.0
VICReg
Average: 14043.7, Std: 9806.8
Zero Jump
Average: 16677.6, Std: 7550.8

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

70

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Ms_pacman
Barlow
Average: 1342.5, Std: 250.6
VICReg
Average: 1419.4, Std: 330.4
Zero Jump
Average: 1204.9, Std: 289.1

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

55

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Breakout
Barlow
Average: 15.5, Std: 1.9
VICReg
Average: 15.6, Std: 2.3
Zero Jump
Average: 14.6, Std: 1.8

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

55

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Road_runner
Barlow
Average: 14276.6, Std: 5956.2
VICReg
Average: 10199.4, Std: 5160.0
Zero Jump
Average: 8521.0, Std: 4528.5

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Qbert
Barlow
Average: 675.2, Std: 134.3
VICReg
Average: 712.5, Std: 169.7
Zero Jump
Average: 421.4, Std: 58.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50
Do

rm
an

t N
eu

ro
n

Fr
ac

tio
n

wi
th

 =

 0
.1

Assault
Barlow
Average: 589.2, Std: 51.5
VICReg
Average: 569.3, Std: 52.6
Zero Jump
Average: 524.7, Std: 39.3

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Battle_zone
Barlow
Average: 17418.0, Std: 4583.7
VICReg
Average: 12015.0, Std: 5475.1
Zero Jump
Average: 16640.0, Std: 7522.4

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Demon_attack
Barlow
Average: 575.9, Std: 127.2
VICReg
Average: 508.2, Std: 90.6
Zero Jump
Average: 334.2, Std: 96.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Frostbite
Barlow
Average: 1396.7, Std: 1330.4
VICReg
Average: 1282.4, Std: 1264.5
Zero Jump
Average: 700.0, Std: 705.4

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Up_n_down
Barlow
Average: 6119.3, Std: 2016.4
VICReg
Average: 12139.8, Std: 10935.1
Zero Jump
Average: 7648.4, Std: 5323.4

0 20000 40000 60000 80000 100000
Iteration

20

25

30

35

40

45

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Gopher
Barlow
Average: 925.3, Std: 312.3
VICReg
Average: 672.1, Std: 235.0
Zero Jump
Average: 735.1, Std: 154.7

0 20000 40000 60000 80000 100000
Iteration

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Boxing
Barlow
Average: 35.5, Std: 11.2
VICReg
Average: 34.3, Std: 14.1
Zero Jump
Average: 36.3, Std: 15.1

0 20000 40000 60000 80000 100000
Iteration

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Kangaroo
Barlow
Average: 2189.9, Std: 2907.2
VICReg
Average: 3275.6, Std: 3691.0
Zero Jump
Average: 1565.6, Std: 2297.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Hero
Barlow
Average: 5569.3, Std: 1993.8
VICReg
Average: 4767.8, Std: 1925.7
Zero Jump
Average: 4425.7, Std: 1988.8

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Crazy_climber
Barlow
Average: 28373.7, Std: 10570.7
VICReg
Average: 25722.1, Std: 3676.2
Zero Jump
Average: 27010.9, Std: 4121.1

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Seaquest
Barlow
Average: 693.4, Std: 192.4
VICReg
Average: 619.3, Std: 184.9
Zero Jump
Average: 555.1, Std: 171.3

0 20000 40000 60000 80000 100000
Iteration

10

20

30

40

50

60

Do
rm

an
t N

eu
ro

n
Fr

ac
tio

n
wi

th

 =
 0

.1

Amidar
Barlow
Average: 178.0, Std: 58.9
VICReg
Average: 148.7, Std: 39.9
Zero Jump
Average: 134.7, Std: 33.0

Figure 7: Fraction of dormant neurons averaged across 10 different runs for every game.

18

	Introduction
	Analysis
	Atari 100k
	DMControl

	Conclusion
	Acknowledgements
	Background
	Barlow Twins
	VICReg
	SPR

	SPR-*
	Related Work
	Data Efficient RL in Atari 100k
	Representation Learning in Atari 100k

	Evaluation Setup
	Atari 100k
	Deep Mind Control Suite
	Benchmarking: Rliable Framework

	Full Results on Atari 100k
	Full Results on DMControl 100k
	Rank and Dormant Neuron
	Experimental Details

