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Abstract

Crystallization processes at the mesoscopic scale, where faceted, dendritic growth,
and multigrain formation can be observed, are of particular interest within materials
science. These processes are highly nonlinear, stochastic, and sensitive to small
perturbations of system parameters and initial conditions. Traditional numerical
models of these systems are computationally demanding. To address this, we intro-
duce the Crystal Growth Neural Emulator (CGNE), a machine learning emulator
that efficiently models crystallization using autoregressive latent variable models.
For our experiment on ice crystal growth, CGNE improves inference time by a
factor of 11 compared to numerical simulations. To validate simulation quality, we
compare morphological properties of crystals to those from numerical simulations,
and find that CGNE substantially improves simulation fidelity and diversity over
existing probabilistic models.

1 Introduction

(a) Hexagonal repre-
sentation.

(b) Square representation.

(c) Crystal growth simula-
tion (LCA).

(d) Crystal growth simula-
tion (CGNE).

Figure 1: Illustration of CGNE: The hexagonal
domain is converted to a square grid. Exploiting
the crystal’s symmetries, only a quadrant of this
grid is simulated.

Solidification is the process of a substance tran-
sitioning from a liquid or gaseous state to a
solid state, which is evident in various systems,
including the crystallization of metals and the
growth of snow crystals from water vapor, illus-
trated in Figure 1. The interplay of highly sen-
sitive nonequilibrium and nonlinear processes
as well as stochastic effects results in complex
structures emerging during the solidification pro-
cess. As such, studying these processes not only
has significant practical implications in fields
like materials science and metallurgy [15], but
can also help us to understand the mechanisms
behind emergent complexity in general. In par-
ticular, this complexity manifests itself at the
mesoscopic scale: while at the atomic scale one
might see atoms arrange themselves into a well-
organised lattice, and at the macroscopic scale
alloys solidify to an ingot, intricate pattern for-
mations caused by the polycrystalline solidifica-
tion process arise at the mesoscopic scale.
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Numerical simulation is a powerful tool to enhance our understanding of these processes, and various
methods modeling the stochastic growth of complex solidification processes have been proposed.
Front-tracking [36, 22] and phase-field [18, 4, 13, 3] have provided valuable insights into multigrain
and dendritic growth simulations, but occasionally struggle with dynamic and numerical instabilities,
especially in cases with both faceted and dendritic growth, such as in snow crystals [1, 23]. More
recently, local cellular automaton (LCA) based models [10, 29, 11, 23, 12, 19, 33] have advanced
the field, capturing previously unseen morphological features of such growth [24]. However, these
models demand high computational resources due to the fine spatiotemporal resolution required to
uphold simulation accuracy in the sensitive crystallization process.

Recently, scaling numerical simulations with neural networks has gained traction in the scientific
machine learning community, with successful applications in climate science [26, 8, 5], nuclear
fusion [28, 9], and fluid dynamics [14, 21]. Similarly, various neural approaches have been proposed
for crystal growth modeling. One branch focuses on Molecular Dynamics (MD) simulations of
crystallization [37, 17]. While such MD simulations that operate at the microscopic scale have
impressively scaled up to 1 million atoms, a simulation at the mesoscopic scale would require
many orders of magnitude more atoms to be simulated. Other approaches accelerate phase field
simulations directly at the mesoscopic scale [30, 27, 34]. However, these methods are deterministic
and unsuitable for stochastic crystallization processes. More broadly, probabilistic neural simulation
methods have been proposed, but these do not straightforwardly apply to the discrete nature of the
crystal growth problem [7, 35, 2], or fail to reliably capture the sensitive and stochastic relationship
between environmental parameters and crystal morphology [25]. As such, no effective method
exists for efficient probabilistic crystal growth simulation at the mesoscopic scale. In this work,
we introduce a neural simulator model that greatly accelerates the simulation of mesoscopic scale
crystallization processes. Our main contributions are as follows:

• We propose the Crystal Growth Neural Emulator (CGNE)1, an autoregressive probabilistic
model for simulating crystal growth processes at the mesoscopic scale.

• We observe that existing training techniques fail to enable the model to reliably capture the
joint distribution over environmental parameters and crystal morphologies. We diagnose
Latent Variable Neglect (LVN) as the root cause of the problem and introduce a technique,
called samplewise decoder dropout, that systematically prevents LVN.

• We construct a new snow crystal growth dataset that captures the intricate relationships
between environmental parameters and crystal morphology.

• Our evaluations show that CGNE outperforms a state-of-the-art probabilistic neural emula-
tor [25]. Further, we show that decoder dropout significantly enhances simulation diversity
and sample quality by preventing LVN, offering broader implications for neural simulation.

2 Approach
At time t, the system state is denoted as (xt, y), where xt is a time-varying, binary function on a grid
and y is a real-valued vector of static environmental parameters. The system’s evolution is represented
by the sequence (x0:T , y). We aim to fit a simulation model p by maximizing the log-likelihood for
the training set {(x0:T , y)i}

N
i=1

. Given the Markovian nature of LCA-based numerical simulators
and the known distributions of initial conditions and environmental parameters, our task simplifies to
optimizing the autoregressive formulation:

1

N

N∑
i=1

log p ((x0:T , y)i) =
1

N

N∑
i=1

T−1∑
t=0

log p ((xt+1 | xt, y)i) . (1)

After training on Equation 1, we can generate new samples by applying p ((xt+1 | xt, y)i) autore-
gressively.

Model Design. We aim to develop a model capable of producing realistic simulation trajectories
with good sample efficiency. We base our model on the PNS framework [25], which employs a
Conditional Variational Autoencoder (CVAE) structure [32]. The model’s prior is conditioned on the
current state xt, while the posterior considers both the current and next states xt, xt+1. Unlike PNS,
our model also integrates environmental parameters y into both the prior and posterior, resulting in
a conditional prior p(z | xt, y) and a posterior q(z | xt, xt+1, y), as shown in Figure 2. CGNE is

1Source code & dataset: https://github.com/poltimmer/CGNE
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Figure 2: CGNE model overview.
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Figure 3: Overview of CGNE’s decoder, including sample-
wise decoder dropout and frozen-state additive sampling.

0.625 0.625 0.55 0.45 0.375

LCA

PNS

CGNE

Figure 4: Qualitative comparison of sim-
ulated trajectories for different ρ values.

fully convolutional, preserving the data domain’s local translation symmetries. This includes a UNet
decoder [31] and a spatial latent space, detailed in Figure 3. The latent variable z passes through an
embedding network before concatenation with the input of each residual block in the decoder. As we
only consider solidification, as opposed to melting and sublimation, we introduce frozen-state additive
sampling to guarantee monotonic crystal growth. This method preserves the solidified portion from
the previous step and merges it with predictions for only the non-solidified areas of the prior step,
ensuring physical accuracy. An auxiliary classifier p(y | z) reconstructs environmental parameters y
from the latent variable during training, improving their representation in the latent space [16].

Training Strategies. As the decoder is conditioned on the previous simulation state xt, and differ-
ences between consecutive states (xt and xt+1) are incremental, inferring a reasonable estimate for
xt+1 is possible to a large degree without using z. Consequently, gradients flowing through z, which
have a low signal-to-noise ratio, are overshadowed by the gradients flowing through the direct path to
xt. This is amplified by the UNet’s skip connections, causing the model to neglect the latent variables.
Although the one-step-ahead estimates of such a deterministic model might be reasonable, the lack
of accumulation of randomness results in a severe underestimation of sample diversity at the end of
the trajectory. While with posterior collapse the posterior q(z | xt, xt+1, y) collapses to the prior
p(z | xt, y), with LVN the environmental parameter y is also ignored, causing the conditional prior
to be uninformative.

To counteract this, we implement samplewise dropout from xt to the decoder, similar to word
dropout [6]. We anneal the dropout rate linearly from 0.9 to 0.1 during training, reinforcing the
information flow through latent variables, and thereby enriching trajectory diversity. Further, we
incorporate beta annealing [6] and the free bits trick [20] to prevent posterior collapse. Another issue
arises when differences between subsequent states are gradual, in which case the model can struggle
to learn the dynamics and instead tends to resort to the local minimum of an identity function. To
improve simulation efficiency and prevent this failure mode, we downsample the temporal resolution,
increasing the observed differences between subsequent simulation states.

Experiments. We validate our model on snow crystal growth, a complex crystallization process
stemming from the combined effects of faceted and dendritic growth, using a dataset we generated via
Janko Gravner and David Griffeath’s stochastic LCA algorithm [11]. This algorithm simulates growth
from a single seed crystal under seven tuneable environmental parameters. We fix six parameters and
vary ρ, the ambient vapor saturation parameter sampled from a uniform distribution between 0.35
and 0.65, which significantly influences crystal morphology.
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Figure 5: Joint distributions over morphological crystal properties and environmental parameters for
PNS and CGNE, compared with the actual joint distribution produced by LCA.

Due to the stochastic nature of growth, crystals from the same parameters can vary drastically at the
pixel level. Low ρ values produce thin crystals with few side branches, whereas high values yield
thicker crystals with numerous branches; however, the branch attachment points can differ even with
consistent ρ. This variability makes pixel-wise accuracy an inadequate metric for validation. Instead,
we assess whether the distribution of morphological properties of snowflakes generated by CGNE
matches that of the LCA simulator. Our primary evaluation metric is the expected value of the type-2
Wasserstein distance (Equation 2), between the joint distributions of snowflake area (a) and boundary
length (b), conditioned on ρ, of the model (p(a, b | ρ)) and the LCA simulator (pLCA(a, b | ρ)):

EWD = Eρ∼p(ρ) [W2 (p(a, b | ρ), pLCA(a, b | ρ))] . (2)

EWD values are smaller when model distributions closely match the ground-truth distributions.
Additionally, we use the Evidence Lower Bound (ELBO) as a secondary metric to gauge model
fit against held-out test data. As a baseline, we take PNS [25], a recent state-of-the-art model for
probabilistic simulation of dynamical systems.

3 Results
Figure 4 shows simulated snowflakes for five ρ values using CGNE, LCA, and PNS. LCA produces
thinner, less voluminous snowflakes as ρ decreases, reflecting lower water vapor saturation. Notably,
LCA can yield diverse snowflake morphologies for the same ρ, highlighting the stochastic nature
of the ground truth process. PNS struggles to capture this diversity, and generates very similar
snowflakes for the same ρ, evident at ρ = 0.625. This indicates a tendency towards a deterministic
model, caused by the lack of samplewise decoder dropout leading to LVN. PNS also struggles with
forming thin branches and finer details, often resulting in snowflakes lacking thin side branches
and containing physically impossible floating crystal pieces for lower ρ values. Conversely, CGNE
produces complete and realistic snowflakes across all ρ values, maintaining finer details without
distortions.

Table 1: Quantitative re-
sults: Expected Wasser-
stein Distance and the Ev-
idence Lower Bound.

Method EWD ↓ ELBO ↑
PNS 202.8 -0.0670
CGNE 43.8 -0.0428

Figure 5 compares the joint distributions over ρ, crystal area, and bound-
ary length of PNS, CGNE, and LCA. CGNE’s distributions align closely
with LCA, capturing all relevant modes and the overall correlation (Fig-
ure 5b and Figure 5d). In contrast, PNS’s distributions fail to show correct
correlations and modes, particularly at low ρ values (Figure 5a and Fig-
ure 5c), where PNS struggles with branch formation. Quantitatively,
CGNE shows a significantly better expected Wasserstein distance and
ELBO compared to PNS (Table 1), indicating a more accurate probability
distribution fit. CGNE also enhances inference efficiency, being 11x faster
than our GPU-accelerated LCA model on average. While LCA takes a median of 4.11s per simulation
trajectory, CGNE completes in just 0.36s. This speed advantage is flexible and inversely proportional
to temporal resolution, and thus can be even more significant depending on the application.

4 Conclusions and Future Work
We introduce the CGNE architecture, significantly enhancing the speed and accuracy of probabilistic
simulations for crystallization at the mesoscopic scale. We address Latent Variable Neglect, a
common issue in such models, using samplewise decoder dropout, which markedly improves both the
accuracy and diversity of simulations compared to PNS, a recent state-of-the-art model. For future
research we consider implementing mechanisms to prevent floating crystal pieces, and expanding
CGNE’s application to datasets of other crystallization processes, such as in metallurgy.
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