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Abstract

Text-guided image editing, fueled by recent001
advancements in generative AI, is becoming002
increasingly widespread. This trend highlights003
the need for a comprehensive framework to ver-004
ify text-guided edits and assess their quality. To005
address this need, we introduce EditInspector, a006
novel benchmark for evaluation of text-guided007
image edits, based on human annotations col-008
lected using an extensive template for edit veri-009
fication. We leverage EditInspector to evaluate010
the performance of state-of-the-art (SoTA) vi-011
sion and language models in assessing edits012
across various dimensions, including accuracy,013
artifact detection, visual quality, seamless in-014
tegration with the image scene, adherence to015
common sense, and the ability to describe edit-016
induced changes. Our findings indicate that017
current models struggle to evaluate edits com-018
prehensively and frequently hallucinate when019
describing the changes. To address these chal-020
lenges, we propose two novel methods that out-021
perform SoTA models in both artifact detection022
and difference caption generation.023

1 Introduction024

The ability to create and modify images is vital in025

fields such as social media, marketing, and graphic026

design. Recent advancements in generative AI have027

greatly democratized this ability. In particular, nat-028

ural language enables high-quality, customized vi-029

sual content creation with minimal effort.030

Text-guided editing models require a source im-031

age and instruction (Kawar et al., 2023; Zhang032

et al., 2022; Brooks et al., 2023; Wu et al., 2023b;033

Zhang et al., 2024b), sometimes allowing multi-034

turn editing (Sheynin et al., 2023; He et al., 2024;035

Wu et al., 2023a; Cui et al., 2023). For more precise036

spatial control a user might provide the source im-037

age, a mask, and a text prompt specifying changes038

for the masked area (Avrahami et al., 2022; Nichol039

et al., 2022; Couairon et al., 2022; Wang et al.,040

2023; Zhang et al., 2024a). Extensive human evalu- 041

ations showed that mask-based text-guided editing 042

produces superior results compared to mask-free 043

editing (Wang et al., 2023; Zhang et al., 2024a). 044

Despite these advancements, evaluating the qual- 045

ity and accuracy of edits remains challenging, as 046

demonstrated in Figure 1. Current methods often 047

focus on whether the edited object matches the 048

requested attributes (Wang et al., 2023) or use rank- 049

ing scores for accuracy (Zhang et al., 2024a). How- 050

ever, they overlook pain points such as unintended 051

artifacts, misalignment with user expectation, vi- 052

sual quality, and adherence to common sense. For 053

example, in Figure 2, the edit changes teardrops to 054

stars as instructed, but unintentionally adds a line 055

and alters the wall’s appearance. 056

To address these challenges, we propose EditIn- 057

spector, a comprehensive benchmark for assessing 058

evaluators of text-guided image edits (Section 2). 059

EditInspector examines edits across five dimen- 060

sions: (1) whether the edit accurately follows the 061

instructions and aligns with user expectations; (2) 062

introduction of unintended artifacts; (3) technical 063

quality (low resolution, blur, etc.); (4) the accuracy 064

of a description of the main difference; and (5) 065

the accuracy of a detailed listing of the differences 066

between the original and the edited images. 067

We begin by creating a human evaluation frame- 068

work, shown in Figure 2, that assesses edits based 069

on the dimensions outlined above (Section 2.1). 070

Using this framework, we collected human anno- 071

tations as edit inspectors through crowdsourcing, 072

evaluating 783 edits from the MagicBrush (Zhang 073

et al., 2024a) test set of 1,053 edits, to introduce 074

the EditInspector benchmark (Section 2.2). 075

We then evaluate state-of-the-art vision and lan- 076

guage models (VLMs) as edit inspectors on the 077

EditInspector benchmark, comparing their perfor- 078

mance with human annotations, as shown in Fig- 079

ure 1. The results show that all models perform 080

poorly across all tasks, with accuracy hovering 081
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Original

Edited

Are there any artifacts?

1.5

4-Turbo 4 4o

NoYes Yes Yes No Yes

Does the difference caption: The floor on which the boxes are 
placed was changed to wood. accurately describe the difference?

1.5

4-Turbo 4 4o

NoYes No No Yes Yes

Was the edit technically precise?

1.5

4-Turbo 4 4o

NoYes No No Yes Yes

Was the edit contextually consistent?

1.5

4-Turbo 4 4o

NoYes No No Yes No

Was the edit executed accurately?

1.5

4-Turbo 4 4o

NoYes No No Yes Yes

Please describe all the differences between these 
two images

1.5
There are no differences between the images 
provided

4o
The floor has changed from a carpeted 
surface in the first image to a wooden 
surface in the second image

The carpet floor on which the boxes were 
placed was changed to wood. Another door is 
placed beside the original door of the fridge. 
The bottom of the fridge and its door is 
extended along with the yellow box. The text 
on the bottom right of the yellow box is 
missing and the text and image in the center 
is replaced with a different distorted image.

Figure 1: The assessments for the edit “Let the floor be made of wood” vary across different models, with 2–3
models answering each question correctly. Gemini 1.5 failed to detect any differences between the images, while
GPT-4o successfully identified only the main difference. See Appendix A.5 for full-size prompts.

around random chance (Section 3.3.1). Gemini-1.5082

(Gemini Team, 2024) emerged as the top performer083

for the edit inspector questions, achieving 70.3%084

accuracy in the edit accuracy question. We evaluate085

models’ ability to generate a summary of the main086

change and a detailed list of all differences as an087

upper-bound test of edit accuracy, artifact detection,088

and visual quality. In this task, GPT-4o achieved089

39% accuracy in describing the main difference090

but detected only 12% of all differences, with only091

40% aligning with human annotations, highlighting092

significant hallucinations. (Section 3.3.2).093

We tackle the challenges of artifact detection and094

difference caption generation with two methods.095

First, we developed a zero-shot pipeline using Gem-096

ini as the visual backbone to generate instruction-097

grounded difference captions and metadata (Sec-098

tion 4.1). The pipeline analyzes image captions at099

three zoom levels around the edit area and outputs100

a difference caption, achieving 75% accuracy in101

describing the main difference, compared to 39%102

by the best SoTA model. Second, we introduced a103

novel artifact detection method that achieves 64%104

accuracy by analyzing object segmentation proba-105

bilities around the edited area (Section 4.2).106

Finally, we introduce an end-to-end fine-tuned107

model that rivals much larger models, deliver-108

ing competitive SoTA performance while reduc-109

ing computational costs (Section 5). To train our110

model we use two augmentation methods to gen-111

erate 31,059 training instances. The first method112

creates negative examples with objects closely re-113

sembling the original (Section 5.1), and the second114

reverses the edit direction, e.g., by changing an115

“Add” edit to a “Remove” edit (Section 5.2).116

In summary, our main contributions are: (1) A 117

comprehensive framework for image edit evalua- 118

tion, and the EditInspector benchmark, which we 119

release for future work and future model assess- 120

ment; (2) A thorough evaluation of SoTA VLMs as 121

edit inspectors, showing that, across all aspects, 122

none can effectively assess edits; (3) Two new 123

methods outperforming SoTA models for artifact 124

detection and difference caption generation; and, 125

(4) An end-to-end fine-tuned model that rivals 126

much larger models in performance. 127

2 EditInspector Dataset 128

Our goal is to develop a dataset and framework 129

for image editing verification that offers a compre- 130

hensive evaluation of edits, addressing overlooked 131

pain points like unintended artifacts, instruction 132

inconsistencies, scene misalignment, and technical 133

flaws. To achieve this, we introduced the human 134

evaluation framework in Section 2.1 and annotated 135

783 MagicBrush edits using it to create our bench- 136

mark in Section 2.2. The statistics and analysis of 137

our benchmark are presented in Section 2.3. 138

2.1 Human Evaluation Framework 139

Our motive was to develop a comprehensive frame- 140

work that evaluates multiple aspects of image edit- 141

ing. We tested and refined templates and questions 142

using internal and crowdsourced feedback, result- 143

ing in the framework shown in Figure 2. 144

The evaluation begins with Accuracy Level, 145

where annotators assess whether the edit follows 146

the instruction and meets user expectations. If it 147

fully follows the instruction, annotators select Ac- 148

curate or Accurate, But Unexpected if it deviates 149
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Figure 2: This is an example of our annotation user interface. The edit appears to be accurately executed but includes
unexpected elements, such as differences in the door layers and a tilted star edge. There are mild artifacts, including
a shadow behind the wall and a thick gray line beneath the star cutout. Clicking the tree icons opens decision trees
that help annotators follow the evaluation guidelines (See Appendix A.14).

from expectations. For partial adherence to the150

instruction, they select Inaccurate, Reflects Instruc-151

tion, and for no adherence, Inaccurate.152

For any selection other than Accurate, annotators153

are asked to explain under Contextual Consistency154

how the edit failed to meet expectations or align155

with the instruction, image scene, or common sense.156

Under the Technical Precision question annotators157

comment on pixel-level details like resolution, blur-158

riness, and smoothness.159

For example, in Figure 2 a teardrop cutout was160

changed to a star-shaped hole, but all annotators161

marked it as “Accurate, But Unexpected” due to the162

tilted star edge and the unexpected material appear-163

ance, as seen in Contextual Consistency feedback.164

Next, the Artifacts evaluation involves anno-165

tators identifying any unintended distortions or166

anomalies in the edit. Artifacts are classified into167

two levels: Significant or Mild, based on their sever-168

ity. In example in Figure 2, two Mild artifacts are169

present: an unintended shadow and an extra line170

beneath the star-shaped hole.171

Finally, to collect a difference caption describing172

all differences between the edited images as an173

upper-bound evaluation of the edit, we start with174

an automatically generated one that describes the175

main difference (Section 4.1). Humans then review176

it, either accepting or correcting it, and expand177

it to include additional differences if artifacts are 178

present, as shown in Figure 2. 179

2.2 Human Annotation 180

We employed Amazon Mechanical Turk (AMT) to 181

evaluate image edits using human annotators, as 182

shown in Figure 2, with three annotations per edit. 183

Quality annotators were selected through a paid 184

qualification test, and multiple steps were taken to 185

ensure the instructions were clear and accessible in 186

the UI (See Appendices A.4 and A.15). 187

2.3 Human Evaluation Analysis 188

Full annotation distribution is presented in Table 1. 189

Despite the task’s subjectivity, majority agreement 190

averaged 80% to 86%, compared to random chance 191

of 25% for Accuracy and 33% for Artifacts. Ma- 192

jority agreement hit 96% for Accuracy and 97% 193

for Artifacts. Full agreement among all annotators 194

was achieved for 42% to 57% of edits. In 85% of 195

examples, the edit reflected the instruction (“Accu- 196

rate” or “Accurate, But Unexpected”), while 38% 197

of edits contained significant artifacts. 198

The edit types, derived from metadata in Sec- 199

tion 4.1, were distributed: Add 35.8%, Change At- 200

tribute 21.6%, Remove 7.3%, and Replace 31.3%. 201

Figure 3 shows the percentage of issues re- 202

ported by annotators in the Contextual Consistency 203

and Technical Precision feedback, with resolution 204
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Category Statistics (%)

Accuracy
Level

Accurate: 8%
Accurate
Unexpected: 77%

Inaccurate: 6%
Inaccurate
Reflects: 4%

Artifacts
Level Significant: 38% Mild: 57%

No Artifact: 2%

Technical
Precision Yes: 69% No: 31%

Visual
Consistency Yes: 18% No: 82%

Diff Caption
Accuracy Yes: 60% No: 40%

Table 1: Distribution of annotation values across cat-
egories. In 85% of examples, the edit reflected the
instruction (“Accurate” or “Accurate, But Unexpected”),
while 38% of edits contained significant artifacts.

and shape/proportion concerns being particularly205

prominent. See Appendix A.7 for a full overview.206

3 Auto-Evaluation207

Using the EditInspector benchmark, we evaluate208

the ability of SoTA VLMs to serve as edit inspec-209

tors. The evaluation consists of two components:210

the first assesses the models’ ability to verify edit211

accuracy and alignment with user expectations,212

while the second serves as an upper-bound test,213

examining their ability to generate captions that214

describe the main differences and all differences,215

including unintended artifacts (Section 3.3.2).216

3.1 Models217

We evaluate GPT-4, GPT-4o, GPT-4-turbo (Ope-218

nAI, 2024), Gemini-Pro-Vision (Gemini Team,219

2023), and Gemini-Pro-1.5 (Gemini Team, 2024)220

on all tasks using their latest versions as of Au-221

gust 2024 (Section A.10). We prioritized prompts222

that best conveyed user instructions and improved223

overall performance (See Appendix A.5).224

3.2 Auto-Evaluation Setup225

Edit Inspector questions. Preliminary experi-226

ments revealed that models struggled to handle227

multiple categories, especially in detecting mild ar-228

tifacts. To enhance clarity and relevance, we simpli-229

fied the categorization by replacing multiple-choice230

questions with binary outcome questions. For the231

accuracy question, both “Accurate” and “Accurate232

But Unexpected” were grouped under “Accurate,”233

while in the artifacts question, only “Significant234

Artifacts” were counted as artifacts.235
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Figure 3: Frequency of issues identified by human an-
notators in the Contextual Consistency and Technical
Precision textual feedback. Shape/Proportion concerns
being particularly prominent.

Difference Caption Generation. Traditional cap- 236

tion metrics (BLEU, METEOR, ROUGE, CIDEr) 237

rely on N-gram overlaps but fail to distinguish 238

edited objects, penalize stylistic variations, ignore 239

edit sequences, and miss semantic misalignments. 240

As shown in Table 2, these limitations lead to mis- 241

leadingly high scores for incorrect captions. Sec- 242

tion A.1 provides further examples and analysis. 243

To address these limitations, we propose two 244

novel evaluation metrics tailored for all differences 245

caption comparisons: Model Precision (MP) and 246

Hallucination Rate (HR). MP is the percentage 247

of human-annotated differences matching model- 248

detected ones, while HR is the percentage of model- 249

detected differences that do not correspond to any 250

human-annotated differences. 251

We calculate these metrics by generating Dif- 252

ference Triplets (DTs) with the source object, tar- 253

get object, and action type for each change in the 254

model and human captions. The two resulting sets 255

of DTs are then used to compute MP and HR. A 256

match between two DTs is determined if the edit 257

action types are identical, and the source and target 258

objects are similar, as evaluated by GPT-4o. The 259

similarity check between source and target objects 260

is relaxed, allowing matches for objects with differ- 261

ent attributes. A stricter check would have caused 262

models to fail completely. 263

In addition, we introduced MPsoft and HRsoft, 264

which count DT matches also in case of a reversed 265
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Example Metrics

Ground Truth Caption: The main difference is
the first image has a blue vase, and the second
image has a brown vase.
Generated Caption: The main difference is the
first image has a squirrel, and the second image
does not.

MP: 0
BL: 0.68
RO: 0.81
ME: 0.78

Ground Truth Caption: A brown squirrel was
added to the image.
Generated Caption: The difference between the
two images is that the first image has a blue vase.
The second image has a blue vase and a squirrel
next to it.

MP: 1
BL: 0.55
RO: 0.60
ME: 0.57

Ground Truth Caption: In the first image, the
tree was removed, and new flowerbed was added.
Generated Caption: In the first image, the
flowerbed was removed, and new tree was added.

MP: 0
BL: 0.73
RO: 0.79
ME: 0.76

Table 2: Comparison of traditional linguistic metrics
(BLEU, ROUGE, METEOR) against our proposed eval-
uation metric (MP). The first example shows high scores
despite missing the edited object. The second penalizes
correct but longer captions. The third fails to detect
reversed edits, while our metric captures these issues
accurately.

source and target object match, offering a more266

comprehensive analysis of model performance. See267

Section A.2 for mathematical formulations of the268

metrics, and Section A.3 for an intuitive example.269

We evaluate the model’s main difference cap-270

tion by comparing it to the main difference ex-271

tracted from the human-provided difference cap-272

tion, which describes all of the edit’s differences.273

GPT-4 is used to assess whether the main model-274

identified difference matches the human one. Ex-275

tracting the main difference is not complex, as the276

main change is mentioned first in 95% of cases.277

3.3 Auto-Evaluation Results278

3.3.1 Edit Inspector Questions Results The279

results for the Yes/No questions are presented in Ta-280

ble 3. Gemini-1.5 achieved the highest score on all281

questions except ‘Contextual Consistency’, where282

all models performed poorly. Below, we summa-283

rize our main observations from these results.284

Struggling with Inaccurate Edits and Artifact285

Classification. Detection of inaccurate edits was286

challenging, with most models correctly classifying287

only 0-25%, except GPT-4o (47%). All models mis-288

takenly predicted edits as visually consistent, with289

precision scores between 0-22.3%. Differentiating290

artifacts from non-artifacts was also challenging.291

While GPT-4o had the highest accuracy (65.7%)292

it missed many artifacts with low recall (52.7%).293

All models frequently misclassified non-artifacts294

(18–30%), with Gemini misclassify 72%. 295

Assessing the accuracy of inconsistent edits 296

is challenging. There is a strong conditional de- 297

pendency between the edit accuracy and contextual 298

consistency questions. A discrepancy up to 40% 299

was observed in the accuracy question when edits 300

lacked contextual consistency. Conversely, mod- 301

els had difficulty with the contextual consistency 302

question in accurate edits, with a 23% drop in per- 303

formance. This dependency was also present (up to 304

12%) between the caption accuracy and contextual 305

consistency questions. 306

Remove edits are challenging for all models, 307

except GPT-4o. While Gemini 1.5, GPT-4, and 308

GPT-4-turbo struggled with ‘Remove’ edits, show- 309

ing accuracy gaps of 36-65% in both edit and cap- 310

tion accuracy, GPT-4o excelled with 91% accuracy, 311

making it the only model to handle these edits well. 312

Alongside Yes/No questions, we assessed mod- 313

els’ feedback on Contextual Consistency and Tech- 314

nical Precision, finding it misaligned with human 315

feedback in most cases (see Appendix A.6). 316

3.3.2 Difference Caption Generation Results 317

Main Differences Captions: Table 3 shows the 318

percentage of instances where the model-identified 319

main difference matched the human-reported one, 320

with GPT-4o leading at 39% accuracy. Across all 321

models, performance improved by up to 98% when 322

the edit was accurate, a trend also seen in generat- 323

ing complete difference captions. ‘Remove’ edits 324

had the lowest performance, with accuracy drop- 325

ping by up to 50% compared to the best-performing 326

‘Replace’ edits. 327

All Differences Captions: Table 3 shows that 328

GPT-4o achieves the highest Model Precision (MP) 329

at 12% and the lowest Hallucination Rate (HR) 330

at 60%, along with notable improvements in soft 331

metrics, suggesting confusion between source and 332

target objects. Overall performance remains sub- 333

optimal, as model predictions often misalign with 334

human annotations. On average, models describe 335

1-2.5 differences per image, whereas human anno- 336

tators identified six differences on average. This 337

gap highlights models’ difficulty in capturing subtle 338

differences and their tendency to overlook details 339

or introduce hallucinated changes. 340

Additionally, we observed that models tend to 341

hallucinate less where the edits are accurately per- 342

formed, leading to a 22% improvement in HR and 343

a threefold increase in MP across all models. 344

Models vary significantly in predicting no dif- 345
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Gemini Gemini-1.5 GPT-4 GPT-4o GPT-4 Turbo LLaVA LLaVA
(Supervied)

Edit Inspectors Questions

Accuracy 49.9% 70.3% 67.3% 67.8% 66.9% 58.9% 67.2%
Contextual Consistency 50.4% 51.1% 50.4% 55.7% 48.2% 52.0% -
Technical Precision 49.9% 53.7% 46.3% 45% 50.7% 49.9% -
Artifacts 49.4% 58.5% 50.7% 65.7% 52.8% 47.6% 51.7%
Difference Caption Accuracy 53.9% 66.3% 63.9% 64.3% 64% 50.0% 54.5%

Differences Caption Generation

Main Difference 31% 31% 27% 39.0% 24% 8% 10%
MP - 8% 8% 12% 8% - -
MPsoft - 9% 10% 14% 9% - -
HR - 67% 78% 60% 75% - -
HRsoft - 65% 75% 56% 72% - -

Avg. Diff - 1 2.5 1.8 1.5 - -
No Diffs - 24% 0.7% 0.3% 6% - -

Table 3: Combined performance on Edit Inspectors questions, and the Difference Caption Generation task. Gemini-
1.5 model demonstrates the best performance in Edit Inspectors questions, achieving the highest or second-highest
scores across all questions. GPT-4o achieves the highest precision in predicting differences, with the lowest
hallucination rate and a relatively high average number of detected differences. Avg. Diff indicates the average
number of differences detected per edit, while No Diffs represents the percentage of edits where no differences were
predicted. Human annotators identified an average of 6 differences per edit. The main difference row reports the
percentage of predicted main difference captions correctly describing the main difference. The LLaVA (Supervised)
column presents the performance of the finetuned model; see Section 5.3 for further analysis.

ferences between images. For example, Gemini-346

1.5 predicts no differences in 24% of the examples,347

compared to only 0.3% for GPT-4o. Gemini-1.5’s348

higher rate of “no difference” predictions lowers349

its HR but causes it to identify fewer differences350

than GPT-4o, which detects 80% more differences351

while keeping a lower HR. When the edit is con-352

textually consistent, models predict no differences353

2 to 3 times more often, suggesting they are more354

sensitive to semantic flaws then pixel-level ones.355

Models struggle with Remove edits while ex-356

celling in Add edits. All models perform best on357

Add edits and worst on Remove edits, with Model358

Precision (MP) differing by up to 2.7x. The Hallu-359

cination Rate (HR) for Remove edits is significantly360

worse, increased by 50% compared to Add edits.361

Models are sensitive to scene complexity (i.e.,362

the number of objects). Figure 6 in the Appendix363

shows that as the number of objects increases, all364

models exhibit declining precision and rising hallu-365

cination rates. GPT-4 and GPT-4-turbo, in partic-366

ular, struggle more with complex scenes, showing367

sharp increases in hallucinations. While Gemini-368

1.5 and GPT-4o also degrade, their decline is less369

steep. This trend was not observed in the Edit In-370

spector questions (Yes/No questions).371

4 New Methods 372

To tackle the challenges models face in gen- 373

erating accurate difference captions and detect- 374

ing unintended artifacts, we developed a zero- 375

shot pipeline for producing detailed, instruction- 376

grounded captions (Section 4.1) and an artifact de- 377

tection method using segmentation model proba- 378

bilities (Section 4.2). Our methods are competitive 379

with the best models, and in the main difference 380

generation task outperform them by 36% margin. 381

4.1 Difference Caption Pipeline 382

Our pipeline generates detailed, instruction- 383

grounded difference captions and rich metadata by 384

selecting image captions of the edited object area 385

that align with the edit instructions. It achieves 386

75% accuracy in describing the main edit, sur- 387

passing GPT-4o’s 39% accuracy. 388

The pipeline process involves extracting image 389

captions at three zoom levels around the edit area 390

for both the source and target images. We then 391

select the captions that best match the edit instruc- 392

tions, measured by the number of shared nouns or 393

their synonyms using WordNet (Fellbaum, 1998). 394

Using these grounded captions and the edit instruc- 395

tion, we employ a one-shot prompt with GPT-4 396

(OpenAI, 2024) to generate a detailed difference 397

caption with metadata, as shown in Figure 4. 398
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Figure 4: Example of our pipeline generating an instruction-grounded difference caption with rich metadata. Edit
images are split into three zoom levels, with Gemini extracting and prioritizing captions to generate the metadata.

We found this method most effective for gen-399

erating a main difference caption. Other meth-400

ods, such as asking object-specific questions or401

requesting long image descriptions, often resulted402

in significant hallucinations and incorrect or biased403

descriptions. This issue persisted with different404

visual backbones, such as GPT-4 (OpenAI, 2024),405

LLAVA 1.5 (Liu et al., 2024), etc. Integrating hu-406

man instructions with edited area descriptions al-407

lows for information as seen in Figures 16, 22.408

4.2 Artifact Detection409

We developed two artifact detection methods using410

the extracted metadata from our pipeline. The first411

method uses the Detic model (Zhou et al., 2022)412

to analyze the segmentation probability of each413

object intersected by the edit mask. A drop of the414

probability score by more than 4% as a result of415

the edit is considered an artifact.416

The second method identifies elements that inter-417

sect with the mask area, have disappeared from the418

image, and do not overlap with the edited object’s419

bounding box. This often occurs when the mask is420

large, but the edited object is small.421

Combined, our methods achieve 64% bal-422

anced accuracy in detecting “Significant” ar-423

tifacts, competitive only with GPT-4o scoring424

65.7%. Figure 5 shows the first artifact detection425

method. If the small car intersecting with the in-426

painting area had been unintentionally removed, it427

would illustrate the second method.428

An oracle that combines the optimal predictions429

from GPT-4o and our artifact detection method430

reaches a score of 86.8% with 100% precision.431

This indicates that our artifact method and GPT-432

4o correctly classify different sets of examples.433

434

5 Model Supervision 435

We introduce an end-to-end fine-tuned LLaVA 436

(Language-Vision Alignment) model that rivals 437

much larger models in performance. It offers 438

edit evaluation abilities equivalent to SoTA models 439

while significantly reducing computational costs, 440

providing an efficient solution for AI-generated 441

image edit evaluation. 442

We trained the model using the MagicBrush 443

dataset which consists of 8,808 edits. A bal- 444

anced set of 5,422 edits was used for artifact detec- 445

tion, while the full set was used for edit accuracy 446

and caption generation. Two augmentation meth- 447

ods described below, produced 31,059 training in- 448

stances per task. Further details are provided in 449

Appendix A.9. 450

5.1 Negative Edit Augmentation 451

This method generates negative edits by selecting a 452

deceptive target object and producing correspond- 453

ing metadata, including instructions and difference 454

captions. In Figure 7, a similarly sized scene object 455

(an umbrella) was chosen as the deceptive target, 456

and new metadata was generated using GPT-3.5 457

with few-shot prompting. For Add and Replace ed- 458

its, the deceptive object is a visually similar absent 459

object, like a cactus instead of a potted plant. For 460

Change Attribute edits, attributes are modified, like 461

altering a coat’s color from blue to red. 462

5.2 Reverse Edit Augmentation 463

This augmentation focuses on reversing the edit 464

using few-shot prompts with GPT-3.5. Add edits 465

are changed to Remove edits, Replace edits involve 466

7



Figure 5: The first method for detecting artifacts using the Detic model for the edit “turn the stop sign to a lollipop”.
Comparing Detic probabilities for objects intersecting the turquoise in-painting mask between the pre-edit (left) and
post-edit (right) images reveals two artifacts, the truck and small car, whose probability drops exceeds our threshold.

switching the source and target objects, and Change467

Attribute edits reverse the attribute modification.468

For example, in Figure 7, the edit “Remove one469

potted plant” is reversed to “Add one potted plant.”470

Applied on top of the negative augmentation, this471

process expands the dataset fourfold, providing472

comprehensive training data for our model.473

5.3 Supervision Results474

Our model demonstrates competitive perfor-475

mance against SoTA VLMs. As shown in Table 3,476

it outperforms Gemini, GPT-4, and GPT-4-turbo477

in artifact detection, with only Gemini-1.5 (58.5%)478

and GPT-4o (65.7%) performing better. For Edit479

Accuracy, it achieves 67.2%, surpassing Gemini480

(49.9%) and GPT-4 Turbo. It also maintain com-481

petitive performance in the Difference Caption Ac-482

curacy (54.5%), surpassing Gemini model (53.9%).483

These results validate our augmentation methods484

and highlight the value of our training data.485

6 Related Work486

Recent advances in text-guided image editing en-487

able modifications via natural language (Sheynin488

et al., 2023; He et al., 2024; Wu et al., 2023a; Cui489

et al., 2023), with some models supporting multi-490

turn refinement. Others use spatial masks for pre-491

cise, localized edits (Avrahami et al., 2022; Nichol492

et al., 2022; Wang et al., 2023), which offer better493

control than text-only methods (Wang et al., 2023;494

Zhang et al., 2024a).495

Edit quality is often measured using pixel-level496

similarity (L1/L2 norms) and CLIP-based cosine497

similarity (Radford et al., 2021). However, these498

metrics poorly align with human judgment (Basu 499

et al., 2023), offering only quantitative scores with- 500

out qualitative insights. 501

Image editing benchmarks like EditBench 502

(Wang et al., 2023) and EditVal (Basu et al., 2023) 503

assess editing models through automatic and hu- 504

man evaluations, focusing on instruction adherence 505

and object or scene preservation. In contrast, our 506

work evaluates models as edit inspectors on over- 507

looked edit aspects such as scene integration, pixel- 508

level issues, and artifact detection. We also intro- 509

duce the category “Accurate, But Unexpected” to 510

capture technically correct edits that deviate from 511

user expectations and collect textual feedback and 512

detailed difference captions to provide deeper in- 513

sights into edit quality. 514

7 Conclusion and Future Work 515

In this work, we introduce EditInspector, a public 516

benchmark for evaluating text-guided image edits 517

using a comprehensive annotation framework. We 518

also propose a zero-shot pipeline for instruction- 519

grounded difference captions, a novel artifact detec- 520

tion method leveraging segmentation probabilities, 521

and two augmentation techniques to generate syn- 522

thetic training data for edit verification models. Fu- 523

ture work can refine difference caption generation 524

and explore new approaches to address existing 525

model limitations. 526

We hope our benchmark and proposed methods 527

for artifact detection, captioning, and augmentation 528

drive advancements in edit evaluation and inspire 529

further research in this domain. 530

8



8 Limitations531

Our benchmark is based exclusively on the Mag-532

icBrush dataset for evaluating edits, which, while533

covering diverse scenarios, is limited to natural im-534

ages and mask-guided edits. Recent studies have535

shown promising results with free-text methods536

(Sheynin et al., 2023) and growing interest in edit-537

ing of synthetic images. Additionally, the distribu-538

tion of edit types in the test set reflects the natural539

distribution of human edits from the MagicBrush540

dataset, as determined by a human study. While541

this mirrors real-world editing trends, it may not542

equally represent all edit types. These limitations543

highlight distinct research directions that could be544

explored independently of our current work.545
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A Appendix639

A.1 Common Caption Comparison Metrics640

Common metrics for comparing image captions,641

such as BLEU, METEOR, and ROUGE, rely on642

N-gram overlaps between generated and reference643

texts. However, they fall short of our core require-644

ment to ensure accurate alignment between the645

edited objects and actions described in the cap-646

tions. As shown in Table 4, while these metrics647

suggest that GPT-4 generates captions most sim-648

ilar to the ground truth, in practice, it is the least649

accurate model, exhibiting the highest hallucina-650

tion rate and the largest number of average changes651

detected. Below, we provide a brief explanation652

of these metrics, followed by several scenarios il-653

lustrating their limitations in effectively evaluating654

difference captions.655

• BLEU: Computes the number of matches in656

unigrams, bigrams, trigrams, and 4-grams be-657

tween generated and reference text. Includes a658

brevity penalty to discourage shorter outputs.659

• ROUGE: ROUGE-1 calculates the F1 score660

for unigrams. ROUGE-2 calculates the F1661

score for bigrams.662

• METEOR: Incorporates features such as stem-663

ming, synonym matching, and paraphrase664

recognition. Computes the unigram F1 score.665

• CIDEr: Measures the similarity between gen-666

erated and reference captions using TF-IDF667

weighted n-grams (unigrams to 4-grams). Em-668

phasizes consensus between generated cap-669

tions and multiple human references while670

penalizing overuse of common n-grams.671

Although these metrics are widely used in image672

captioning, they have severe limitations when eval-673

uating difference captions for image edits.674

Miss Weighting the Edited Objects and Actions.675

These metrics struggle to differentiate between crit-676

ical objects and less significant words in the con-677

text of difference captions. For instance, consider678

the ground truth caption: "The main difference679

between the two images is the first image has a680

blue vase and the second image a brown vase."681

If the generated caption states, "The main differ- 682

ence between the two images is the first image 683

has a squirrel and the second image does not," lin- 684

guistic metrics might still assign relatively high 685

scores (e.g., BLEU: 0.68, ROUGE-1 Recall: 0.81, 686

METEOR: 0.78) due to superficial word overlaps. 687

However, these scores fail to reflect the semantic 688

misalignment between the captions. In contrast, 689

our proposed metric assigns a score of 0, accu- 690

rately reflecting the discrepancy in the identified 691

edited object and action. 692

Accounting for Unchanged Objects, Varying 693

Length, and Stylistic Differences. Conventional 694

metrics often penalize captions that include men- 695

tions of unchanged objects, vary in length, or differ 696

stylistically, even when accurately describing the 697

detected changes. For instance, consider the gen- 698

erated caption: "The difference between the two 699

images is that the first image has a blue vase. The 700

second image has a blue vase and a squirrel next to 701

it." Our metric would assign this caption a perfect 702

score of 1, as it correctly identifies the key differ- 703

ence (the addition of the squirrel) in alignment with 704

the ground truth caption: "A brown squirrel was 705

added to the image." In contrast, linguistic met- 706

rics would score close to 0 due to the inclusion of 707

details about the unchanged "blue vase" and penal- 708

ties for variations in length and phrasing. This 709

demonstrates the robustness of our metric in han- 710

dling linguistic variability while focusing on the 711

accuracy of detected changes. 712

Capturing the Order of Edits. The above men- 713

tioned metrics overlook the importance of edit se- 714

quence order. For instance, consider the ground 715

truth captions: "In the first image, the tree was re- 716

moved, and a new flowerbed was added" and the 717

generated caption "In the first image, the flowerbed 718

was removed, and a new tree was added." Although 719

both captions involve the same objects (tree and 720

flowerbed) and actions (added and removed), the 721

sequence of edits conveys entirely different mean- 722

ings. The n-gram based metrics would assign high 723

scores to these captions because they mention the 724

same words (objects and actions), regardless of 725

their order, failing to penalize semantic misalign- 726

ment. In contrast, our metric explicitly evaluates 727

the edit sequence order, ensuring that generated 728

captions accurately reflect the correct sequence of 729

changes. 730
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Gemini-1.5 GPT-4 GPT-4o GPT-4 Turbo

Differences Caption Generation

Main Difference 31% 27% 39.0% 24%
MP 8% 8% 12% 8%
HR 67% 78% 60% 75%

METEOR 0.11 0.22 0.19 0.19
ROUGE-1 0.15 0.36 0.29 0.30
ROUGE-2 0.04 0.09 0.08 0.07
BLEU 0.01 0.02 0.03 0.02

Table 4: Comparison of models on the Difference Caption Generation task. GPT-4 achieves the best results on
METEOR, ROUGE-1, and ROUGE-2 metrics, while GPT-4o ranks highest in BLEU.

A.2 Mathematical Explanation of Metrics731

We evaluate model performance on all differences732

captions using two metrics: Model Precision733

(MP) and Hallucination Rate (HR). These are734

computed based on Difference Triplets (DTs), de-735

fined as:736

DT = (source object, target object, action type),737

where source object is the original object affected738

by the edit, target object is the resulted object of the739

edit, and action type is the type of edit (e.g., "add,"740

"remove," "replace"). Model Precision (MP):741

Measures the percentage of human-annotated DTs742

(H) matched by model-detected DTs (M):743

MP =
|H ∩M|

|H|
× 100,744

where |H ∩ M| is the number of matched DTs,745

and |H| is the total human-annotated DTs. Hallu-746

cination Rate (HR): Measures the percentage of747

model-detected DTs (M) not matching any human-748

annotated DTs (H):749

HR =
|M \ H|
|M|

× 100,750

where |M \ H| is the number of hallucinated DTs,751

and |M| is the total model-detected DTs. Soft752

Metrics: MPsoft and HRsoft allow matches when753

source and target objects in DTs are reversed:754

MPsoft =
|Hsoft ∩M|

|H|
× 100,755

756

HRsoft =
|M \ Hsoft|

|M|
× 100.757

Matching Criteria: A DT match requires iden-758

tical action type and similar source/target objects759

(assessed by GPT-4). Relaxed matching (Hsoft)760

accounts for reversed source and target objects.761

A.3 Metrics Example 762

We calculate the MP and HR metrics using Figure 1 763

GPT-4o and the human-annotated difference cap- 764

tion. The ground truth lists the following human- 765

annotated differences (H): 766

(carpet floor,wooden floor,Replace),

(None, door,Add),

(fridge bottom, extended fridge bottom,Change),

(yellow box, extended yellow box,Change),

(yellow box text,None,Remove),

(text, image,Replace)

767

GPT-4o detects only one difference: 768

M = {(carpet floor,wooden floor,Replace)}. 769

Model Precision (MP): Model Precision (MP) 770

measures the percentage of human-annotated DTs 771

(H) matched by model-detected DTs (M): 772

MP =
|H ∩M|

|H|
× 100. 773

The only match between H and M is: 774

(carpet floor,wooden floor,Replace) 775

Therefore: 776

|H ∩M| = 1, |H| = 6, 777

778

MP =
1

6
× 100 ≈ 16.67%. 779

Hallucination Rate (HR): Hallucination Rate 780

(HR) measures the percentage of model-detected 781

DTs (M) that do not match any human-annotated 782

DTs (H): 783

HR =
|M \ H|
|M|

× 100. 784
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Here, all model-detected DTs match human-785

annotated DTs, so:786

M\H = ∅, |M| = 1,787

788

HR =
0

1
× 100 = 0%.789

790
MP = 16.67%, HR = 0%.791

A.4 Additional Annotation Information792

Each image edit was annotated by three annotators,793

with annotations conducted in batches of 27-54794

edits. Annotators were paid at a rate of $0.70 per795

sample, resulting in an average hourly wage of $18.796

To ensure the quality of annotations, we imple-797

mented a qualification test to select quality annota-798

tors. We provided detailed instructions, including799

decision trees that visually guide the answering pro-800

cess. These decision trees were accessible via the801

user interface (“tree icon”), allowing annotators to802

follow the guidelines while annotating image edits.803

Additionally, a settings window was available,804

enabling annotators to customize the UI, including805

font size, width, and padding, to suit their personal806

preferences (See Appendix A.14).807

A.5 Tasks Prompts808

Model performance varied greatly with different809

prompts, suggesting that models may struggle to810

fully understand the task. We selected prompts that811

conveyed the user instructions and improved the812

overall performance.813

• Difference Caption Accuracy Task (Yes/No)814

You are provided with before and after images815

of an image edit for the edit instruction "{}".816

Does the difference caption "{}" describe the817

difference between the two images (Answer818

only Yes/No)?819

• Visual Consistency Task (Yes/No) You are820

provided with before and after images of an821

image edit for the edit instruction "{}". Is the822

edited object or its area (in remove/replace823

actions) consistent with the edit instruction824

and the image scene in terms of shape, size,825

brightness, shadows, texture, color, etc. (An-826

swer only Yes/No)?827

• Is Accurate Task828

You are provided with before and after images829

of an image edit for the edit instruction "{}".830

Was the edit instruction "{}" accurately exe- 831

cuted and does it reflect the intended change 832

(Answer only Yes/No)? 833

• Artifacts Task 834

You are provided with before and after images 835

of an image edit for the edit instruction "{}". 836

Are there any artifacts or alterations in the 837

image not intended to be affected by the edit 838

"{}" (Answer only Yes/No)? 839

• Technical Precision Task (Yes/No) 840

You are provided with before and after im- 841

ages of an image edit for the edit instruction 842

"{}". Does the edited object or its area (in 843

remove/replace actions) maintain the image 844

resolution, exhibit blur, show any smoothness, 845

etc. (Answer only Yes/No)? 846

• Generate all differences caption You are pro- 847

vided with before and after images of an im- 848

age edit. Please describe all the differences 849

between these two images. Focus only on 850

the differences; do not include any irrelevant 851

information. Ignore any style differences be- 852

tween the images, such as changes in artistic 853

style, color grading, or filters. 854

• Generate main differences caption Please 855

describe the main difference between the two 856

images. 857

A.6 Textual Feedback 858

We compared the predicted feedback from the mod- 859

els with human annotations by using a zero-shot 860

prompt with GPT-4o that determines whether two 861

pieces of feedback share any common points (yield- 862

ing a simple Yes or No). The models’ feedback 863

matched human feedback only in a very small per- 864

centage of cases. The contextual consistency feed- 865

back shared common points with human feedback 866

in 7%-28% of cases, while technical precision feed- 867

back did so in 4%-46% of instances. 868

A.7 Categories of Feedback Issues 869

• Shape/Proportion: Captures distortions in 870

the shape, size, or proportions of objects. 871

– Keywords: shape, proportion, size, dis- 872

torted, too big, too small 873

– Example: "The bird has an odd shape 874

and is also yellow." 875
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• Blur/Fuzziness: Deals with visual issues re-876

lated to blurred or unclear edges, lack of sharp-877

ness, and fuzziness.878

– Keywords: blurry, fuzzy, smudged,879

blurred edges, not clear880

– Example: "The cat’s fur is smoothened881

and texture is changed."882

• Texture: Focuses on objects with unrealistic883

or unnatural textures, often described as too884

smooth or grainy.885

– Keywords: texture, smooth, grainy,886

patchy, unnatural887

– Example: "The building texture is unnat-888

ural."889

• Lighting/Brightness: Involves issues where890

shadows are inconsistent or missing, or where891

lighting is overexposed or underexposed.892

– Keywords: shadows, lighting, brightness,893

overexposed, underexposed894

– Example: "The white bright part on the895

pan gives it an unrealistic look."896

• Color: Captures cases where colors are over-897

saturated, under-saturated, or do not align898

with the scene.899

– Keywords: color, too bright, saturated,900

unnatural color901

– Example: "The fox is bright and incon-902

sistent with the rest of the image."903

• Unreal/Artificial Look: Describes objects904

that appear cartoonish, toy-like, or overly ar-905

tificial, failing to blend with the rest of the906

scene.907

– Keywords: cartoon, toy, artificial, fake,908

graphical909

– Example: "The helicopter’s texture re-910

sembles a toy."911

• Placement: Refers to objects that are mis-912

aligned or incorrectly oriented in the scene.913

– Keywords: placement, misaligned, incor-914

rect angle, orientation915

– Example: "The curtain is hanging in the916

air instead of the bar."917

• Missing/Extra Objects: Captures cases918

where objects are unexpectedly added or re-919

moved, causing inconsistencies.920

– Keywords: missing, removed, added, ex- 921

tra, inconsistent 922

– Example: "The man’s face was removed 923

and replaced by a mask." 924

• Edges: Focuses on issues related to sharp, 925

uneven, or poorly blended edges. 926

– Keywords: edges, sharp, uneven, jagged 927

– Example: "The edges of the pizza are not 928

even." 929

• Resolution: Refers to cases where the visual 930

clarity or quality of the image is degraded, 931

often appearing pixelated or with visual noise. 932

– Keywords: resolution, clarity, pixelated, 933

low quality 934

– Example: "The image of the bird looks 935

pixelated and low in resolution." 936

A.8 Analysis Methodology 937

Our categorization process followed these steps: 938

1. Examining the Workers’ Feedback: We re- 939

viewed detailed textual feedback from work- 940

ers who evaluated the instruction-based edits. 941

Each piece of feedback was carefully analyzed 942

to identify recurring issues. 943

2. Identifying Categories: We identified com- 944

mon themes in the feedback and organized 945

them into meaningful categories representing 946

distinct visual and technical issues. 947

3. Extracting Keywords for Categories: For 948

each category, we identified specific keywords 949

and phrases that workers frequently used to 950

describe the issues. These keywords were 951

used to group similar feedback together. 952

4. Generating Statistics: We quantified the fre- 953

quency of each category across the entire 954

dataset to understand which types of issues 955

were most prevalent. This analysis provided 956

insights to guide future improvements in the 957

edits. 958

A.9 Supervision Details 959

The model was fine-tuned for 1 epoch using 960

AdamW with a 2 × 10−4 learning rate. Since it 961

accepts a single image input, we concatenated the 962

before-and-after images. 963
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A.10 Model Versions964

• GPT Models:965

– GPT-4o (2024-08-06)966

– GPT-4 Turbo (2024-04-09)967

– GPT-4 (0613)968

• Gemini Models:969

– Gemini 1.5 Pro (001)970

– Gemini 1.0 Pro (001)971

A.11 Additional Experiments972

Figure 6 presents the precision and hallucination973

rates as a function of the number of objects in the974

edited images. There is a performance drop in975

all models as the number of objects in the images976

increases, highlighting a trend where more complex977

scenes contribute to higher hallucination rates and978

lower precision.979

A.12 Augmentation methods980

A.13 Licenses981

All use of scientific artifacts is consistent with their982

intended use. This work focuses on evaluating983

existing models in the English language using im-984

ages from the MagicBrush dataset and does not985

introduce new models, generate new images, or986

employ technologies that could pose ethical, soci-987

etal, or safety risks. We collected anonymous hu-988

man annotations using Amazon Mechanical Turk989

crowdsourcing platform. The images are used in990

accordance with the MagicBrush license, and the991

evaluation code and dataset are released under the992

CC-BY-4.0 license.993

A.14 Annotation UI994

A.15 Annotation Examples995
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Figure 6: Comparison of model precision and hallucination rates as a function of the number of objects in the edited
images. The performance of all models decreases as the number of objects in the images increases, highlighting a
trend where more complex scenes contribute to higher hallucination rates and lower precision.

Figure 7: Illustration of our augmentation methods for a remove edit. The pre-edit image (left) shows a potted
plant, while the post-edit image (right) depicts the scene with the plant removed. In the first augmentation method,
the instruction and difference caption is modified by replacing the “potted plant” with an object of similar size
(umbrella). In the second augmentation, we reverse the edit by switching the order of the images, changing the
instruction and difference caption from “remove potted plant” to “add potted plant,” and introducing a negative
instruction for a visually similar object (e.g., cactus plant), which is absent in the post-edit image.
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Figure 8: The accuracy scheme tree that was provided to annotators to guide the answering process.

Figure 9: The contextual consistency scheme tree that was provided to annotators to guide the answering process.
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Figure 10: The technical precision scheme tree that was provided to annotators to guide the answering process.

Figure 11: The artifacts scheme tree that was provided to annotators to guide the answering process.

Figure 12: The difference caption instructions provided to annotators to guide the answering process.
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Figure 13: The setting menu for customizing the form font size, width etc.

Figure 14: Example of image edit verification sample - before image (Add a wild pig).
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Figure 15: Example of image edit verification sample - after image (Add a wild pig).

Figure 16: Example of image edit verification sample - before image (Cake on the plate).
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Figure 17: Example of image edit verification sample - after image (Cake on the plate).

Figure 18: Example of image edit verification sample - before image (Delete the table).
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Figure 19: Example of image edit verification sample - after image (Delete the table).

Figure 20: Example of image edit verification sample - before image (Empty the table).

Figure 21: Example of image edit verification sample - after image (Empty the table).
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Figure 22: Example of image edit verification sample - before image (Cut a pineapple).

Figure 23: Example of image edit verification sample - after image (Cut a pineapple).
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