
Bridging the gap between Learning-to-plan, Motion
Primitives and Safe Reinforcement Learning

Piotr Kicki1,2, Davide Tateo3, Puze Liu3, Jonas Guenster3, Jan Peters3, Krzysztof Walas1,2
1IDEAS NCBR, Warsaw, Poland

2Institute of Robotics and Machine Intelligence, Poznan University of Technology, Poland
3Department of Computer Science, Technische Universitat Darmstadt, Germany

piotr.kicki@ideas-ncbr.pl
https://pkicki.github.io/CNP3O/

Abstract: Trajectory planning under kinodynamic constraints is fundamental for
advanced robotics applications that require dexterous, reactive, and rapid skills in
complex environments. These constraints, which may represent task, safety, or
actuator limitations, are essential for ensuring the proper functioning of robotic
platforms and preventing unexpected behaviors. Recent advances in kinodynamic
planning demonstrate that learning-to-plan techniques can generate complex and
reactive motions under intricate constraints. However, these techniques neces-
sitate the analytical modeling of both the robot and the entire task, a limiting as-
sumption when systems are extremely complex or when constructing accurate task
models is prohibitive. This paper addresses this limitation by combining learning-
to-plan methods with reinforcement learning, resulting in a novel integration of
black-box learning of motion primitives and optimization. We evaluate our ap-
proach against state-of-the-art safe reinforcement learning methods, showing that
our technique, particularly when exploiting task structure, outperforms baseline
methods in challenging scenarios such as planning to hit in robot air hockey. This
work demonstrates the potential of our integrated approach to enhance the perfor-
mance and safety of robots operating under complex kinodynamic constraints.

Keywords: safe reinforcement learning, motion planning, motion primitives

1 Introduction

Nowadays, robots are capable of complex dynamic tasks such as table tennis [1, 2], juggling [3, 4] or
diabolo [5], and play sports such as tennis [6] or soccer [7]. Current planning and learning methods
are sufficient for most of these tasks, as the robot’s movement is relatively free in the workspace,
and they are not required to comply with stringent tasks, hardware, and safety constraints. However,
these requirements become fundamental if we want to deal with real robotics tasks in unstructured
environments in the real world. Therefore, the lack of competitive techniques to efficiently plan
trajectories in unknown and unstructured environments under constraints strongly limits the appli-
cability of modern robotics and learning frameworks to tasks beyond the lab setting.

To fix this gap, Altman [8] introduced the Constrained Markov Decision Processes (CMDP) frame-
work, and, based on this setting, researchers in machine learning developed the Safe Reinforcement
Learning (SafeRL) techniques to efficiently solve the CMDP problem without full knowledge of the
environment. However, these methods are not able to scale effectively to complex tasks. Further-
more, since most of these approaches learn black-box approximations, they do not allow effective
exploitation of domain knowledge.

Motion Primitives (MPs) are a technique that enables efficient encoding of domain knowledge in the
policy not fully exploited in the SafeRL context. Interestingly, these approaches plan full trajecto-
ries, allowing the agent to check for the safety of the whole trajectory before executing it, preventing
the agent from reaching states that may heavily violate the constraints. However, given that MPs

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://pkicki.github.io/CNP3O/

allows encoding the safety features in the trajectory, the literature lacks general approaches to deal
with a general set of constraints. Unfortunately, this forces the user to rely heavily on hand-crafting
MPs, possibly resulting in suboptimal solutions.

A valid alternative to the methods above is to exploit learning-to-plan methods that can generate full
trajectories, as in the MP setting, while imposing constraints during the planning time or even in
the learning process. However, learning-to-plan approaches require the full knowledge of the task
being optimized. This assumption is very different from the SafeRL setting, where we assume to
have access only to environment rollouts.

In this paper, we draw connections between these aforementioned fields and we show how to ex-
tend the learning-to-plan methods to exploit the knowledge of the constraints without requiring
full knowledge of the environment. We extend the framework presented in [9] to the Reinforce-
ment Learning (RL) setting, resulting in a hybrid method that shares many common ideas with the
SafeRL, MP, and learning-to-plan approaches. In particular, the contributions of this paper are i. a
novel algorithm to learn how to generate MP-based trajectories under known constraints; ii. an anal-
ysis of different MPs, where we show that the B-splines are particularly useful for learning under
constraints; iii. practical guidelines on how to properly impose domain knowledge on MPs in the
learning-to-plan setting.

We evaluate our approach in two challenging tasks, i.e., moving a heavy vertically-oriented object
with a manipulator and a robotic air hockey hitting task. The first task is challenging as it pushes
the limits of robot actuators, while the second task requires learning a highly dynamic motion under
complicated constraints and sensitive objective functions. Finally, we show that we could deploy
the proposed method in a real robot air hockey setup.

Related work

The literature on safety is quite broad, and there are many different SafeRL approaches that tackle
the CMDP problem [8, 10]. The first and most popular technique to solve this problem is the
lagrangian relaxation approach [8, 11, 12, 13, 14, 15, 16, 17], where the original task objective is
mixed trough a lagrangian multiplier with the constraint cost. Other alternative solutions instead rely
on different ideas from the optimization literature, such as state augmentation [18], the trust region
methods [19, 20] and the interior point approach [21]. An alternative formulation of the problem
is based on more control-theoretic insights. These approaches are based either on Lyapunov func-
tions [22, 23, 24], Control barrier functions [25, 26, 27, 28] or reachability analysis [29, 30, 31, 32].
The last category of solutions to safety problems is shielding techniques that correct potentially dan-
gerous actions to be applied in the system [33, 34, 35, 36, 37, 38, 25, 39, 40, 41]. Some approaches
in these two last categories can guarantee safety at every step of the learning process but require
prior knowledge of system dynamics, backup policies, or unsafe interaction datasets.

A very classical approach to introduce safety into robot actions is motion planning [42]. However,
typically classical planning methods struggle to meet the real-time requirements for complex tasks.
Thus, we observe the growing interest in the motion planning community for exploiting learning to
improve and speed-up planning [9, 43, 44, 45, 46]. Many approaches that apply learning to motion
planning utilize learning to bias the prediction of the next segment of the solution [43, 47, 45]. How-
ever, methods of this type struggle to generate feasible dynamic trajectories for complex problems
with challenging constraints [9]. An interesting alternative to combine planning and learning is so-
called planning-as-inference, an example of which may be the use of diffusion models to optimize
whole trajectories [46] or inferring the whole motion planning problem solutions with a neural net-
work [44, 48]. In this spirit, authors of [9] introduced a machine learning-based method for planning
trajectories that satisfy a variety of constraints to ensure the system safety. However, the approach
introduced in [9] requires the differentiability of the task loss function, which is not the case for
many interesting real-world problems.

A very important aspect of learning how to generate trajectories is their representation. While it
is possible to follow the auto-regressive approach [43, 47], methods that utilize more structured

2

Weights
generator

Motion Primitives Environment

Discounted reward (2) reward

trajectory

Constraintsconstraint

task definition

Constraint metric
adaptation

Trajectory planner

Learning under known contraints

losses

Figure 1: Overview of the proposed constrained trajectory generation method.

trajectory representations seem to offer more benefits, like compactness, reduced planning time
and boundary conditions satisfaction [9, 48, 44, 49, 50]. One of the most common approaches
for trajectory representation in learning-based solutions are MPs [49, 51, 50, 48, 52], as they offer
a very flexible and compact representation. To the most widespread MPs belongs Probabilistic
Movement Primitives (ProMP) [49] and Dynamic Movement Primitives (DMP) [51], which benefits
were recently combined in Probabilistic Dynamic Movement Primitives (ProDMP) [50], allowing
for some simple boundary constraints satisfaction and efficient computation, which is also possible
with the use of MPs presented in [48]. However, by far the most composite and flexible solution was
introduced in [9], where B-splines were used to construct a trajectory. This representation allows for
imposing boundary conditions on the trajectory and its derivatives and introduces great flexibility in
terms of the trajectory timing.

This paper, builds upon the approach introduced in [9]. We show that trajectory representation
from [9] is in fact a MP, and we extend the learning-to-plan method that uses them to RL setting via
a hybrid approach that bridges the gap between learning-to-plan, MPs and SafeRL.

2 Constrained Reinforcement Learning with Motion Primitives

Our problem is to find a sampling distribution π over trajectories τ maximizing the expected cumu-
lative reward while satisfying the safety constraints g, h over the whole trajectory. The performance
objective is defined on a distribution of tasks T parameterized with a task definition T . The resulting
optimization problem is

argmax
π

E
T„T

«

E
τ„π

«

tτ
ÿ

t“0

γtrT pst, apτ ptqqq

ffff

s.t.
gipτ ptq, tq “ 0 @t,@i P t1, . . . , Nu,

hjpτ ptq, tq ď 0 @t,@j P t1, . . . ,Mu,
(1)

where
řtτ
t“0 γ

trT pst, apτ ptqqq is the discounted task reward Jtask. We assume that the action a is
computed by a controller based on the trajectory representation τ ptq and the current time t.

To solve this problem, we propose to generate search distribution π “ fθpT q using a function fθ,
parametrized with θ, based on the given task definition T . We formalize this function as a linear
combination of MPs with weights computed with a nonlinear transformation ρ of the samples drawn
from the normal distribution, in which mean and standard deviation are determined by a neural
network. Generated trajectories are evaluated in the environment, and based on the trajectory and
the reward from the environment, we optimize the neural network weights θ to maximize the task
reward and minimize the constraints violations. The overview of the proposed solution is presented
in Figure 1, while we discuss its core components in the next sections.

2.1 Learning under known constraints

This section, describes the proposed solution for solving the constrained optimization problem de-
fined in (1). One of the most common approaches to address this challenge is the method of Lagrange

3

multipliers [8, 16, 17]. Inspired by this approach, we propose to relax the constraints, assuming some
acceptable violation budget, and include them in the objective with learnable scaling factors. In this
paper, the optimization with the extended objective is interleaved with the adaptation of the Lagrange
multipliers associated with specific constraints, which can be interpreted as learning the metric of
the constraint manifold. We exploit the knowledge about the considered system constraints and the
fact that typical robot constraints are differentiable w.r.t. trajectory τ to optimize the neural network
to satisfy them using their analytical gradient. Moreover, we show that it is possible to include a
range of different constraints without aggregating them into a single constraint cost function, which
enables better handling of multiple constraints. In the following, we present the Constrained Neural
motion Planning with PPO (CNP3O) algorithm (see Algorithm 1), and we show how it can be de-
rived by extending the Constrained Neural motion Planning with B-splines (CNP-B) approach [9]
to the RL setting.

First, following [9], we transform both equality gipτ ptq, tq “ 0 and inequality constraints
hjpτ ptq, tq ď 0 into inequality constraints of the form cipτ ptq, tq ď C̄i, where cipτ ptq, tq represents
the i-th constraint violation of the trajectory τ ptq and C̄i is the assumed i-th constraint violation
budget. Then, we need to incorporate these constraints into the task objective. To do so, we rewrite
the objective function from (1) into

J “ E
T„T

«

E
ζ„fθpT q

«

tτ
ÿ

t“0

γtrT pst, apρpζptqqqq

ff

´ cT pρpfµθ pT qq, tqΛcpρpfµθ pT qq, tq

ff

, (2)

where fµθ pT q is the true mean of the distribution induced by the neural network f for a
given task T , ρ is a nonlinear transformation of the samples ζ (for more details see Ap-
pendix C), Λ “ diagpλ1, λ2, . . . , λN`M q is the diagonal matrix of the Lagrange multipliers and
cT pρpfµθ pT qq, tqΛcpρpfµθ pT qq, tq is the manifold loss LΛ. In this way, we decouple learning how
to solve a task from learning how to satisfy the constraints and allow one to optimize the constraint
satisfaction against the neural network weights θ directly, without the need for sampling. By doing
so, we are not penalizing the constraints violation done by the samples of the trajectory distribution
but only its mean. Therefore, to ensure safety in the real robot deployment, we assume that the
mean trajectory will be used, while for learning on the real robot, one may not execute trajectories
that violate the constraints too much. We explicitly allow for imposing multiple constraints in a
decoupled way, such that each of them has its own scaling factor λi. To ensure the positiveness
of these scaling factors, we parameterize each of them with ηi using λi “ exppηiq. These scaling
parameters ηi are updated based on the mean constraints violations observed in the previous set of
episodes, which can be defined by ∆ηi “ α log

´

ci`βC̄i

C̄i

¯

, where α ą 0 is the constraint learning
rate and 0 ă β ă 1 bounds the rate of the ηi decline.

The remaining part of the discounted reward J is related to solving the task. To evaluate the sam-
ple task reward, we first generate the normal distribution N pfµθ pT q, fµσ pT qq using neural network
fθ, which predicts its mean µ and standard deviation σ for a given task T . Then, we sample from
ζ „ N pfµθ pT q, fµσ pT qq, process these samples with the samples transformation function ρpζq, and
evaluate generated trajectories τ in the considered environment. Finally, we use the obtained ac-
cumulated rewards from the simulated episodes to optimize the neural network weights θ, using
an episodic version of the Proximal Policy Optimization (PPO) algorithm [53] due to its simplicity
(details of the episodic PPO are provided in Appendix F).

2.2 Motion Primitives for Safe Reinforcement Learning

One of the most important design decisions in the case of learning how to generate plans is the rep-
resentation of the trajectories that the planner will generate. MPs [48, 50] are very popular, general,
and flexible trajectory representations that can be used for planning. They can be, in general, defined
by qpsq “ Φpsqw, where the robot configuration qpsq P Rnq , for given value of the phase variable
s, is computed as a product of basis functions Φpsq P R1ˆnb , evaluated at s, and the weights vector
w P Rnbˆnq . This formulation may describe diverse MPs, such as ProMP [49], ProDMP [50],
Residual Trajectory Primitives (RTP) [48], just by defining basis functions Φ differently or adding

4

some biases to the weights w. To interpret these MPs as trajectories, we need to transform the
dependency on the phase variable s into dependency on time t. In the literature, it is typical to do
it directly by assuming that s “ t, or by a linear scaling, i.e., s “ t

Ts
, where Ts ą 0 is the time

scaling factor. Each of the aforementioned MPs offers different useful properties from the motion
planning point of view, such as the guarantee of connecting the initial q0 and target qd configura-
tions. However, we argue that much more may be offered by using the B-spline-based MPs. In this
work, we show that the trajectory representation proposed in [9] can be viewed as MP and highlight
its benefits over the existing MPs-based approaches.

First, let us note that any spline function of order n can be represented as a linear combination
of n-th order B-splines, i.e. qpsq “

ř

iwiB
k
i,npsq, where Bk

i,n is the n-th order B-spline basis
function defined between ki and ki`n`1, where k is a vector of knots that define domains of the
B-spline basis functions. In general, the vector of knots k may be an arbitrary non-decreasing
sequence that partitions the domain of the represented function, such that its changes affect the
shape of the MPs, which would have to be then recomputed every time. To avoid this, we propose
fixing the knots vector and limiting it to the range of s P r0; 1s. Thanks to this, we can drop the
dependency on the knot vector k and describe B-splines as MPs qpsq “ Φpsqw, where Φpsq “

rB1psq B2psq ¨ ¨ ¨ Bnpsqs. Moreover, it is possible to precompute all of the basis functions in
advance for a range of the phase variable values t0, 1

ns´1 ,
2

ns´1 , . . . , 1u P Rns and create a tensor
Φ P Rnsˆnb , which allows for computing the movement as a matrix-vector product, similarly like
it can be done for ProMP [49] and ProDMP [50]. Although the choice of knot vector k may be
arbitrary, we propose making subsequent knots equidistant to distribute the basis functions equally
across the domain. Moreover, by fixing the first and last n` 1 knots to 0 and 1, respectively, we can
guarantee that the generated path starts at the point defined by w1 and ends in wnb

.

Finally, we must transform the phase variable s into the time t to generate a trajectory. Therefore,
we introduce another B-spline function rpsq “

`

dt
ds

˘´1
psq, as done in [9]. This flexible time scaling

allows us to flexibly control the derivatives of the resultant trajectory w.r.t. time and the overall tra-
jectory duration, which is not so straightforward for the methods proposed in [49, 50, 48]. Moreover,
this time parameterization allows one to directly impose the boundary constraints on the initial and
target velocities, accelerations, and higher order derivatives up to the d-th derivative by analytically
setting the d`1 boundary weights of the configuration. To the best of our knowledge, this flexibility
in imposing boundary conditions is not present in any existing MP framework.

Imposing boundary conditions is an important feature of the trajectory representations as it allows
for connecting the subsequent trajectories, which is particularly important to concatenate trajectory
segments, enable online replanning, and may be useful in incorporating some prior knowledge into
the designed solution. An example of this feature is a task that features reaching a known goal. Then,
we can easily impose this goal configuration as a prior for the solutions returned by the planner.

Algorithm 1 CNP3O
1: for k Ð 1 to Nepochs do
2: for i Ð 1 to Nepisodes do
3: Sample task T from distribution T
4: Sample ζ from the distribution N pfµθ pT q, fσθ pT qq and compute the sample trajectory τ “ Φρpζq

5: Evaluate τ in the environment to get Jtask.
6: Compute the value function VψpT q of task T
7: Store pζ, Jtask, f

µ
θ pT q, VψpT qq

8: for i Ð 1 to Nfits do
9: for j Ð 1 to Nbatches do

10: Sample a batch of Nepisodes{Nbatches elements from the stored data
11: Compute task loss Ltask based on the ζ, Jtask and V pT q using (8)
12: Compute manifold loss LΛ based on the ρpfµθ pT qq

13: Update the policy network weights θ based on the gradient of Ltask ` LΛ

14: Update the value network weights ψ based on the gradient of pJtask ´ VψpT qq
2

15: Update manifold metric Λ

5

Thanks to the ability to impose boundary conditions also on the derivatives, we can incorporate
strong priors that enable ending the motion with some predefined velocity, useful in tasks that require
hitting, moving, or tossing objects. This is also important for connecting trajectories smoothly,
e.g., making ;qptq continuous we can ensure the smoothness of controls, despite the change of the
trajectory segment. Thanks to this capability, we can generate both single trajectories and smoothly
connected sequences of trajectories passing through the via-points. Further discussion on imposing
prior knowledge on MPs-based trajectories is provided in Appendix D.

3 Experimental Evaluation

In this section, we evaluate the performance of our proposed method in two tasks defined in [9],
using 10 seeds. In both environments, the objective is to control a Kuka Iiwa 14 manipulator. Our
experimental evaluation has two objectives. First, we want to evaluate the benefit of our framework
against classical SafeRL approaches. For this reason, we consider following important baselines
in the area, Acting on the TAngent Space of the COnstraint Manifold (ATACOM) [39, 41, 54] –
a model-based approach, model-free methods PPO-Lagrangian (PPO-Lag) and TRPO-Lagrangian
(TRPO-Lag) [55], and a projection based extension of TRPO-Lag – Projection-Based Constrained
Policy Optimization (PCPO) [56]. All of these approaches learn a classical neural policy to control
the robot. However, ATACOM ensures safety by exploiting the model of the robot and the con-
straints, PPO-Lag and TRPO-Lag implement a model-free lagrangian optimization technique, while
PCPO additionally projects the policy on the constraint set. The second objective of the conducted
experiments is to evaluate which MP is more adequate for the learning-to-plan setting. Therefore,
we compare the B-splines [9], ProMP [49] and ProDMP [50].
Heavy object task The first task consists of moving a heavy object with a manipulator from one
block to another while avoiding collision, fulfilling torque limit requirements, and maintaining ver-
tical orientation. In this task, kinodynamic constraints are particularly important due to the heavy
mass mounted on the robot’s end-effector, pushing the required torque commands to the limit.

The results of this experiment are reported in Figure 2ab. The results show that our method out-
performs all other approaches in both settings, independently of the use of prior knowledge. We
could not obtain good learning performance with PPO-Lag, TRPO-Lag and PCPO. We believe
that the combination of kinodynamic constraints and orientation constraints is too strict for both
Lagrangian-style approach and projection-based one. Instead, the approaches using MPs obtain sat-
isfactory learning results. In particular, the B-spline representation (CNP3O) can obtain faster and
more stable learning results than the alternative MPs. We argue that the B-spline representation
allows us to decouple the learning of the geometric path from the controlled execution’s speed and,
consequently, to deal more easily with different constraints with conflicting requirements. Using
MPs is straightforward to introduce prior information into the task, e.g., force the target position for
each planning setting. Exploiting prior information allows us to learn the task faster than relying
on end-to-end methods. The prior information setting widens, even more, the performance gap be-
tween the B-Spline representation and other competing MP parameterizations, presumably due to
the ability to enforce zero joint velocity and acceleration at the end of the motion.

Robot Air Hockey Hitting The second task is to teach a robot manipulator to score goals in the
robot air hockey setting. Here, the constraints are mainly collision constraints preventing the robot

a) Heavy Object w/o Prior Knowledge b) Heavy Object w/ Prior Knowledge c) Air Hockey Hitting

0 1 2 3 4 5 6 7 8 9
Steps 1e6

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9
Steps 1e6

10

15

20

25

30

35

40

0.0 0.5 1.0 1.5 2.0
Steps 1e7

0

20

40

60

80

100

0

20

40

60

80

100
Scoring ratio [%]

0

20

40

60

80

100

120

140 Discounted reward

0

1

2

3

Maximal puck
 velocity [m/s]

0.000

0.005

0.010

0.015

0.020

Maximal joint velocity
 violation [rad/s]

0

5

10

15

20

25

30

Table constraint
 violation [mm]

CNP3O-PK CNP3O CNP3O-ProMP CNP3O-ProDMP ATACOM-SAC TRPOLag PPOLag PCPO

Figure 2: Learning curves (reward w.r.t. number of simulation steps) for the: (a) heavy object task
without prior knowledge, (b) with prior knowledge, and (c) air hockey hitting task.

6

from colliding with the table and the constraint of maintaining the end effector on the table surface.
Notice that the policy must control all the joints of the robot, therefore maintaining the surface is
extremely challenging without prior knowledge.

We can see the performance of the algorithms in Figure 2c. Here, it is clear that our methodology
outperforms all the baselines. In particular, unsurprisingly, the PPO-Lag, TRPO-Lag and PCPO
algorithms cannot achieve good performance. Also, in this case, we argue that this poor perfor-
mance is mainly due to complex constraints that one side cannot be handled effectively without
prior knowledge, and on the other side limit the exploration of the projection-based method. In
turn, ATACOM quickly converges to a suboptimal solution. This approach is much more suited for
learning this task as it exploits prior knowledge. However, ATACOM uses Soft Actor Critic (SAC)
as the underlying learning algorithm: stepwise exploration and automatic entropy tuning allow for
very fast and effective learning; however, it is often prone to premature convergence. In comparison,
our learning method combined with MPs converges to much more performant solutions. We argue
this is due to the trajectory-based exploration in a lower-dimensional representation space, which
allows more meaningful exploration and easy correction of the behaviors. Regarding the trajectory
representation, we also observe in this task that the more flexible B-splines approach allows our
method to reach optimal results faster. Furthermore, by adding prior knowledge, our learning speed
is comparable with ATACOM, allowing us to reach higher values of the task objective, primarily
due to faster-hitting behaviors. We argue that if prior knowledge is fundamental for task safety,
exploiting it to make learning more effective is straightforward, particularly if the framework allows
easy encoding of the task information.

In Figure 3, we present the detailed metrics of the simulated hitting behaviors at the end of the train-
ing. We evaluate the trajectories in terms of success rate, expected discounted return of the mean of
the search distribution, maximum puck velocity, and constraint violations in terms of joint and end-
effector violations. We observe that CNP3O achieves higher performance and less variant results in
all the metrics. In particular, CNP3O with Prior information achieves a scoring ratio close to 100%,
and without prior information, only ATACOM outperforms CNP3O. However, it is worth noting that
the ATACOM hitting is significantly slower. Moreover, none of the remaining SafeRL baselines can
get close to the CNP3O and ATACOM, even they are allowed to make bigger constraints violations
(see table constraint violations for PPO-Lag, TRPO-Lag and PCPO and Appendix A.2 for more
detailed explanation) Regarding constraints violations, all the MP approaches and ATACOM can
maintain the end effector on the table surface quite accurately. The highest joint velocity violations
are achieved by CNP3O-based methods, however, the scale of the violations is relatively small and
it is primarily caused by the very fast motions at the edge of the robot capabilities.

Finally, we test the zero-shot capabilities of our approach in the real-world robot air hockey setting.
We evaluate both the CNP3O and the ATACOM policies for 100 hitting attempts. Looking at the
metrics presented in Figure 4, we observe significant performance loss compared with the simulated
task, particularly regarding success rate. This drop happens since our learning in the simulated
environment does not employ any domain randomization technique. Thus, the big sim-to-real gap
is due to the unmodelled disturbances of the air hockey table, imperfect controllers, and delays in
both perception and command. Nevertheless, the deployed policy can still hit strongly the puck and
score some goals. Compared with ATACOM zero shot deployment, we score fewer goals, however

0

20

40

60

80

100
Scoring ratio [%]

0

25

50

75

100

125

Discounted reward

0

1

2

3

Maximal puck
 velocity [m/s]

0.000

0.005

0.010

0.015

0.020

Maximal joint velocity
 violation [rad/s]

0

5

10

15

20

25

30

Table constraint
 violation [mm]

0

20

40

60

80

100
Scoring ratio [%]

0

20

40

60

80

100

120

140 Discounted reward

0

1

2

3

Maximal puck
 velocity [m/s]

0.000

0.005

0.010

0.015

0.020

Maximal joint velocity
 violation [rad/s]

0

5

10

15

20

25

30

Table constraint
 violation [mm]

CNP3O-PK CNP3O CNP3O-ProMP CNP3O-ProDMP ATACOM-SAC TRPOLag PPOLag PCPO

Figure 3: Statistical analysis of the considered approaches on the simulated Air Hockey hitting task.

7

0

5

10

15

20
Score ratio [%]

0

20

40

Discounted reward

20

40

60

Reward

0

2

4

Maximal puck
 velocity [m/s]

0.000

0.002

0.004

0.006

0.008

Maximal joint velocity
 violation [rad/s]

2

3

4

5

Table constraint
 violation [mm]

Figure 4: Statistical comparison of CNP3O and ATACOM on the Air Hockey hitting with real robot.

CNP3O achieves much higher total reward, mainly due to much faster hitting behaviors, as clearly
shown in the boxplots. It is important to notice that our approach in the real world can obtain lower
z-axis violations. We argue that this unexpected result can be attributed to the sampling of entire
trajectories, instead of single actions at each timestep. Indeed, this makes our approach less sensitive
to the observation noise, which is effectively filtered by the low-level control loop. Another issue for
our method not so present in the behaviors learned by ATACOM, is that the mallet occasionally flips
during trajectory execution. The metrics suggest that fast movements in combination with small
z-axis violations cause this problem.

Limitations Our methodology has some limitations compared to standard SafeRL algorithms.
First of all, we require the knowledge of the constraints. However, the algorithm can be easily
adapted to work with samples from the environment. The second limitation is that our approach is
relatively more data-hungry than classical RL approaches as it learns from the entire episodes instead
of individual steps. This can be limited by exploiting recent advances in the episodic RL [57] and
initializing the solution with imitation learning, speeding up the initial learning phases. Furthermore,
our algorithm for MP learning is quite simple and may benefit from modern learning techniques [57]
for MP or better trust-region approaches [58]. Finally, while it is possible to adapt the method to
learn directly in the real world, this comes at the cost of being able to evaluate the full trajectories
beforehand and preventing the execution of trajectories that violate safety constraints too much.
Another alternative is to improve the zero-shot transfer of the policy on the robot. This could be
done by including domain randomization in the training process or by adding replanning as done
in [9]. However, both these approaches require even more samples for the training.

4 Conclusion

In this work, we bridge the gap between the SafeRL, MP, and learning-to-plan. The proposed solu-
tion combines the strengths of these approaches and outperforms state-of-the-art SafeRL algorithms
on two challenging robotic manipulation tasks with a variety of constraints. Our method utilizes the
knowledge of the constraints and robot dynamics to improve learning efficiency but, unlike learning-
to-plan methods, does not require full knowledge of the environment. Moreover, it leverages MPs
to reduce the dimensionality of the action space, facilitate reasonable exploration, and incorporate
prior knowledge in the form of boundary conditions. Finally, the proposed solution learns how
to generate trajectories satisfying a rich collection of constraints thanks to the introduced learning
algorithm inspired by the techniques exploited in SafeRL.

In our experiments, we show that CNP3O allows the robot to perform significantly more dynamic
motions while ensuring only minimal violations of the constraints, comparable to much more con-
servative state-of-the-art approaches. Our real robot evaluation in robot air hockey shows the ability
of the introduced method to maintain a safety level comparable to the one observed in simulation
and transfer to complex real-world robotics tasks in a zero-shot manner. Last but not least, we show
that our proposed MP parametrization is more suitable than existing MPs in case of constrained opti-
mization and also allows the designer to encode more prior knowledge in the learning process, such
as desired configuration, velocity, acceleration, and higher order derivatives. This is particularly
important for smoothly composing sequences of trajectories together to solve even more complex
tasks, which we see as a potential direction for future research.

8

Acknowledgments

This paper is partially supported by Foundation for Polish Science (FNP) and by the German Federal
Ministry of Education and Research (BMBF) within the collaborative KIARA project (grant no.
13N16274). This paper was created with the use of the infrastructure of the Poznan Supercomputing
and Networking Center.

References
[1] K. Mülling, J. Kober, and J. Peters. A biomimetic approach to robot table tennis. Adaptive

Behavior, 19(5):359–376, 2011.

[2] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters. Learning to play
table tennis from scratch using muscular robots. IEEE Transactions on Robotics, 2022.

[3] K. Ploeger, M. Lutter, and J. Peters. High acceleration reinforcement learning for real-world
juggling with binary rewards. In Conference on Robot Learning, pages 642–653. PMLR, 2021.

[4] K. Ploeger and J. Peters. Controlling the cascade: Kinematic planning for n-ball toss juggling.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1139–1144. IEEE, 2022.

[5] F. von Drigalski, D. Joshi, T. Murooka, K. Tanaka, M. Hamaya, and Y. Ijiri. An analytical
diabolo model for robotic learning and control. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 4055–4061. IEEE, 2021.

[6] Z. Zaidi, D. Martin, N. Belles, V. Zakharov, A. Krishna, K. M. Lee, P. Wagstaff, S. Naik,
M. Sklar, S. Choi, et al. Athletic mobile manipulator system for robotic wheelchair tennis.
IEEE Robotics and Automation Letters, 8(4):2245–2252, 2023.

[7] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, J. Humplik, M. Wulfmeier, S. Tun-
yasuvunakool, N. Y. Siegel, R. Hafner, et al. Learning agile soccer skills for a bipedal robot
with deep reinforcement learning. Science Robotics, 9(89):eadi8022, 2024.

[8] E. Altman. Constrained Markov Decision Processes with Total Cost Criteria: Lagrangian
Approach and Dual Linear Program. Mathematical methods of operations research, 48(3):
387–417, 1998.

[9] P. Kicki, P. Liu, D. Tateo, H. Bou-Ammar, K. Walas, P. Skrzypczyński, and J. Peters. Fast kin-
odynamic planning on the constraint manifold with deep neural networks. IEEE Transactions
on Robotics, 2023.

[10] E. Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

[11] C. Tessler, D. J. Mankowitz, and S. Mannor. Reward Constrained Policy Optimization. In
International Conference on Learning Representations (ICLR), 2019.

[12] A. Stooke, J. Achiam, and P. Abbeel. Responsive Safety in Reinforcement Learning by PID
Lagrangian Methods. In International Conference on Machine Learning (ICML), 2020.

[13] S. Gangapurwala, A. Mitchell, and I. Havoutis. Guided constrained policy optimization for
dynamic quadrupedal robot locomotion. IEEE Robotics and Automation Letters, 5(2):3642–
3649, 2020. doi:10.1109/LRA.2020.2979656.

[14] D. Ding, X. Wei, Z. Yang, Z. Wang, and M. R. Jovanovic. Provably Efficient Safe Exploration
via Primal-Dual Policy Optimization. In International Conference on Artificial Intelligence
and Statistics (AISTATS), volume 130, 2021.

[15] V. Borkar and R. Jain. Risk-constrained markov decision processes. IEEE Transactions on
Automatic Control, 59(9):2574–2579, 2014.

9

http://dx.doi.org/10.1109/LRA.2020.2979656

[16] C. Ying, X. Zhou, H. Su, D. Yan, N. Chen, and J. Zhu. Towards safe reinforcement learn-
ing via constraining conditional value-at-risk. In International Joint Conference on Artificial
Intelligence, 2022.

[17] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan. Safety-constrained reinforcement
learning with a distributional safety critic. Machine Learning, 112(3):859–887, 2023.

[18] A. Sootla, A. I. Cowen-Rivers, J. Wang, and H. B. Ammar. Enhancing safe exploration us-
ing safety state augmentation. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[19] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained Policy Optimization. In Interna-
tional Conference on Machine Learning (ICML), 2017.

[20] D. Kim and S. Oh. Efficient off-policy safe reinforcement learning using trust region condi-
tional value at risk. IEEE Robotics and Automation Letters, 7(3):7644–7651, 2022.

[21] Y. Liu, J. Ding, and X. Liu. Ipo: Interior-point policy optimization under constraints. In AAAI
Conference on Artificial Intelligence (AAAI), volume 34(04), pages 4940–4947, 2020.

[22] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A Lyapunov-based Ap-
proach to Safe Reinforcement Learning. In Conference on Neural Information Processing
Systems (NIPS), 2018.

[23] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-based
Safe Policy Optimization for Continuous Control. In Reinforcement Learning for Real Life
(RL4RealLife) Workshop in the 36 th International Conference on Machine Learning, 2019.

[24] H. Sikchi, W. Zhou, and D. Held. Lyapunov barrier policy optimization. arXiv preprint
arXiv:2103.09230, 2021.

[25] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada. Control
barrier functions: Theory and applications. In 2019 18th European control conference (ECC),
pages 3420–3431. IEEE, 2019.

[26] W. Xiao and C. Belta. High-Order Control Barrier Functions. IEEE Transactions on Au-
tomatic Control, 67(7):3655–3662, July 2022. ISSN 1558-2523. Conference Name: IEEE
Transactions on Automatic Control.

[27] A. Taylor, A. Singletary, Y. Yue, and A. Ames. Learning for safety-critical control with control
barrier functions. In Learning for Dynamics and Control, pages 708–717. PMLR, 2020.

[28] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. End-to-End Safe Reinforcement Learn-
ing through Barrier Functions for Safety-Critical Continuous Control Tasks. In AAAI Confer-
ence on Artificial Intelligence, pages 3387–3395. AAAI Press, 2019.

[29] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin. A
general safety framework for learning-based control in uncertain robotic systems. IEEE Trans-
actions on Automatic Control, 64(7):2737–2752, 2018.

[30] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan. Reachability-based trajectory safeguard
(rts): A safe and fast reinforcement learning safety layer for continuous control. IEEE Robotics
and Automation Letters, 6(2):3663–3670, 2021.

[31] M. Selim, A. Alanwar, S. Kousik, G. Gao, M. Pavone, and K. H. Johansson. Safe reinforcement
learning using black-box reachability analysis. IEEE Robotics and Automation Letters, 7(4):
10665–10672, 2022.

10

[32] Y. Zheng, J. Li, D. Yu, Y. Yang, S. E. Li, X. Zhan, and J. Liu. Safe offline reinforcement
learning with feasibility-guided diffusion model. In The Twelfth International Conference on
Learning Representations, 2024.

[33] A. Hans, D. Schneegaß, A. M. Schäfer, and S. Udluft. Safe Exploration for Reinforcement
Learning. In European Symposium on Artificial Neural Networks (ESANN), 2008.

[34] J. Garcia and F. Fernandez. Safe Exploration of State and Action Spaces in Reinforcement
Learning. Journal of Artificial Intelligence Research, 45:515–564, 2012. ISSN 10769757.

[35] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause. Safe Model-based Reinforce-
ment Learning with Stability Guarantees. In Conference on Neural Information Processing
Systems (NIPS), 2017.

[36] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin. Bridging hamilton-
jacobi safety analysis and reinforcement learning. In 2019 International Conference on
Robotics and Automation (ICRA), pages 8550–8556. IEEE, 2019.

[37] T.-H. Pham, G. De Magistris, and R. Tachibana. Optlayer-practical constrained optimization
for deep reinforcement learning in the real world. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6236–6243. IEEE, 2018.

[38] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe Exploration in
Continuous Action Spaces. arXiv preprint arXiv:1801.08757, 2018.

[39] P. Liu, D. Tateo, H. B. Ammar, and J. Peters. Robot Reinforcement Learning on the Constraint
Manifold. In Conference on Robot Learning, pages 1357–1366. PMLR, 2022.

[40] Y. Emam, G. Notomista, P. Glotfelter, Z. Kira, and M. Egerstedt. Safe reinforcement learning
using robust control barrier functions. IEEE Robotics and Automation Letters, 2022.

[41] P. Liu, K. Zhang, D. Tateo, S. Jauhri, Z. Hu, J. Peters, and G. Chalvatzaki. Safe Reinforcement
Learning of Dynamic High-Dimensional Robotic Tasks: Navigation, Manipulation, Interac-
tion. In Proceedings of the IEEE International Conference on Robotics and Automation. IEEE,
2023.

[42] S. M. LaValle. Planning Algorithms. Cambridge University Press, USA, 2006. ISBN
0521862051.

[43] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip. Motion planning networks: Bridging the
gap between learning-based and classical motion planners. IEEE Transactions on Robotics,
pages 1–9, 2020.

[44] P. Kicki and P. Skrzypczyński. Speeding up deep neural network-based planning of local
car maneuvers via efficient b-spline path construction. In 2022 International Conference on
Robotics and Automation (ICRA), pages 4422–4428, 2022.

[45] J. J. Johnson, A. H. Qureshi, and M. C. Yip. Learning sampling dictionaries for efficient
and generalizable robot motion planning with transformers. IEEE Robotics and Automation
Letters, 8(12):7946–7953, 2023.

[46] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters. Motion planning diffusion: Learn-
ing and planning of robot motions with diffusion models. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1916–1923, 2023.

[47] P. Kicki, T. Gawron, K. Ćwian, M. Ozay, and P. Skrzypczyński. Learning from experience for
rapid generation of local car maneuvers. Engineering Applications of Artificial Intelligence,
105:104399, 2021. ISSN 0952-1976.

11

[48] T. Osa. Motion planning by learning the solution manifold in trajectory optimization. The
International Journal of Robotics Research, 41(3):281–311, 2022.

[49] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives.
In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[50] G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann. Prodmp: A unified perspective
on dynamic and probabilistic movement primitives. IEEE Robotics and Automation Letters, 8
(4):2325–2332, 2023.

[51] M. Saveriano, F. J. Abu-Dakka, A. Kramberger, and L. Peternel. Dynamic movement primi-
tives in robotics: A tutorial survey. The International Journal of Robotics Research, 42(13):
1133–1184, 2023.

[52] B. Lee, Y. Lee, S. Kim, M. Son, and F. C. Park. Equivariant motion manifold primitives. In
7th Annual Conference on Robot Learning, 2023.

[53] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

[54] P. Liu, H. Bou-Ammar, J. Peters, and D. Tateo. Safe reinforcement learning on the constraint
manifold: Theory and applications. arXiv preprint arXiv:2404.09080, 2024.

[55] J. Achiam and D. Amodei. Benchmarking safe exploration in deep reinforcement learning,
2019.

[56] T. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge. Projection-based constrained policy
optimization. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.

net/forum?id=rke3TJrtPS.

[57] G. Li, H. Zhou, D. Roth, S. Thilges, F. Otto, R. Lioutikov, and G. Neumann. Open the black
box: Step-based policy updates for temporally-correlated episodic reinforcement learning. In
The Twelfth International Conference on Learning Representations, 2024.

[58] F. Otto, P. Becker, V. A. Ngo, H. C. M. Ziesche, and G. Neumann. Differentiable trust region
layers for deep reinforcement learning. In International Conference on Learning Representa-
tions, 2021.

[59] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033, 2012.

[60] P. Liu, J. Guenster, and D. Tateo. Air hockey challenge.
https://github.com/AirHockeyChallenge/air hockey challenge/tree/tournament, 2023.

[61] M. Drolet, S. Stepputtis, S. Kailas, A. Jain, J. Peters, S. Schaal, and H. Ben Amor. A compari-
son of imitation learning algorithms for bimanual manipulation. IEEE Robotics and Automa-
tion Letters (RA-L), 2024.

[62] P. Liu, D. Tateo, H. Bou-Ammar, and J. Peters. Efficient and reactive planning for high speed
robot air hockey. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 586–593. IEEE, 2021.

[63] K. Muelling, J. Kober, and J. Peters. Learning table tennis with a mixture of motor primitives.
In 2010 10th IEEE-RAS international conference on humanoid robots, pages 411–416. IEEE,
2010.

12

http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=rke3TJrtPS
https://openreview.net/forum?id=rke3TJrtPS

[64] G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters, and G. Neumann. Learning
interaction for collaborative tasks with probabilistic movement primitives. In 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 527–534. IEEE, 2014.

[65] S. Parisi, H. Abdulsamad, A. Paraschos, C. Daniel, and J. Peters. Reinforcement learning vs
human programming in tetherball robot games. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6428–6434. IEEE, 2015.

[66] O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann. Specializing versatile skill libraries
using local mixture of experts. In Conference on Robot Learning, pages 1423–1433. PMLR,
2022.

[67] F. Otto, O. Celik, H. Zhou, H. Ziesche, V. A. Ngo, and G. Neumann. Deep black-box reinforce-
ment learning with movement primitives. In Conference on Robot Learning, pages 1244–1265.
PMLR, 2023.

[68] M. Drolet, J. Campbell, and H. B. Amor. Learning and blending robot hugging behaviors in
time and space. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 12071–12077. IEEE, 2023.

[69] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters. Mushroomrl: Simplifying
reinforcement learning research. Journal of Machine Learning Research, 22(131):1–5, 2021.

[70] R. Akrour, J. Pajarinen, J. Peters, and G. Neumann. Projections for approximate policy it-
eration algorithms. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pages 181–190. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.

press/v97/akrour19a.html.

13

https://proceedings.mlr.press/v97/akrour19a.html
https://proceedings.mlr.press/v97/akrour19a.html

Appendix

A Environments

In this section, we would like to introduce the details of the environments used to evaluate the
method introduced in the paper and the baselines. Both of the considered simulation environments
were implemented using the MuJoCo physics simulator [59].

A.1 Heavy Object

The Heavy Object environment is heavily inspired by the motion planning task of moving a heavy
vertically oriented object introduced in [9]. In this task, the objective is to control a Kuka Iiwa 14
manipulator holding a heavy box weighing 12kg, such that the box, which is initially placed on
one pedestal, is moved to some position on the second pedestal. The main difficulty of this task
stems from the fact that the box is pushing the manipulator to its payload limit, which may result
in exceeding the maximal torque that can be applied to the robot’s joints. We make this task even
more challenging by (i) adding constraints on the vertical orientation of the handled object, (ii)
preferring faster motions due to the discount factor γ “ 0.99, and (iii) minimizing the sum of the
torques applied. Finally, we require both the robot and the object to not collide with the pedestals.
A visualization of this task is presented in Figure 5.

A single episode is defined by the initial joint configuration of the robot, which is computed by the
inverse kinematics based on the randomly drawn initial position of the handled object placed on top
of the first pedestal, and the desired end position of the object placed on top of the second pedestal.
The episode horizon is set to 100 steps, each consisting of 20 intermediate 1ms-long steps, which
gives 2 s for the entire episode.

In this task, the reward function is meant to encourage minimizing the distance to the goal pose,
stopping the robot after reaching the goal, and not using too much energy. To achieve this we
proposed the following reward function:

R “
1

10d ` 1
` Ipd ă 0.01q

0.01

} 9q} ` 0.01
´ 10´6}m}2, (3)

where d is the Euclidean distance between the current and desired position of the heavy object, I is
an indicator function that is 1 if the argument is true and 0 otherwise, while m is the vector of joint
torques.

Besides the reward function, we also defined several constraints, which are presented in Table 1. The
vertical orientation constraint is defined by the element p2, 2q of the handled object rotation matrix
Ro. In turn, the collision loss is the sum of the collision between all considered collision bodies.
We consider collisions between the robot body and pedestals, as well as, the handled heavy object
and pedestals. For simplicity, we approximate the robot body by a sequence of 14cm radius balls

Initial state End state

Figure 5: Visualization of the task of moving a heavy object.

14

located along the kinematic chain, no further than 10cm apart from each other. The value of the
collisionpi, jq is the analytically computed depth of the penetration. Moreover, there is an implicit
constraint imposed on the maximal torques implemented by saturation of the control signals that are
possible to be applied to the environment.

Task definition. As explained in the main paper, in our setting we assume to have access to a task
definition vector T . To fully describe this manipulation task, the task description vector contains the
initial position and velocity of the robot and the desired pose of the handled object. Notice that this
information is the minimal required set to perform the desired motion in a multitask setting.

Table 1: Definition of the constraints in the Heavy Object task.

No. Name Definition
1-7 Joint positions |q| ď r2.97, 2.09, 2.97, 2.09, 2.97, 2.09, 3.05s

8-14 Joint velocities | 9q| ď r1.48, 1.48, 1.75, 1.31, 2.27, 2.36, 2.36s

15 Vertical orientation 1 ´ Rho2,2
16 Collisions

ř

i,j collisionpi, jq

A.2 Air Hockey Hitting

In this environment, the main objective is to hit the air hockey puck located on the air hockey table
in such a way that it reaches the opponent’s goal. The main difficulty of this task comes from the
use of a general-purpose 7DoF manipulator (Kuka Iiwa 14) with a long end-effector ending with a
mallet. This is particularly challenging due to the constraints that are put on the end-effector, i.e.
remaining on the table plane throughout the whole movement, and the requirement to hit as fast as
possible and, at the same time, very accurate. The considered setup is presented in Figure 6.

The considered Air Hockey Hitting environment is a slightly adjusted version of the environment
AirHockeyHit introduced in the Air Hockey Challenge [60]. We kept the original environment in
an unchanged form, except for the slightly bigger set of puck initial positions (r´0.65,´0.25s ˆ

r´0.4, 0.4s Ñ r´0.7,´0.2s ˆ r´0.35, 0.35s), smaller initial puck velocities range (r0, 0.5s Ñ

r0, 0.3s), initial robot configuration fixed to a single one (q0 “ r0, 0.697, 0,´0.505, 0, 1.929, 0s)
and shorter episode horizon (500 Ñ 150 steps). Also, the reward function is the same as in the
AirHockeyHit environment. For non-absorbing states it gives a reward of 1.5 clipp 9xp, 0, 3q, where
9xp is the puck velocity in x axis, if the puck is in the opponents half of the table. It also encourages
the robot’s end-effector to get closer to the puck, by rewarding decrease of the distance between
them multiplied by a factor of 10, if they were never that close before. Moreover, depending on
the type of the absorbing state a different reward, scaled by the 1´γh

1´γ , where h is the environment
horizon, is given. In case of scoring the goal a reward r “ 1.5 ´ 5 clipp|yp|, 0, 0.1q is awarded, for
reaching the opponent band r “ 2p1 ´ 2 clipp|yp| ´ 1, 0, 0.35qq, and in case of hitting the left or
right band (from the player perspective) r “ 0.3 ´ 0.3 clippl ´ xp, 0, 1q, where pxp, ypq is the puck
position and l is the length of the table.

Also in the case of this task, we require the satisfaction of both joint position and joint velocities
limits and impose the torque constraints by restricting the actuation range. Besides them, we intro-
duce constraints that stem from the table geometry, i.e. avoiding hitting left, right, and robot’s own
band (the opponent’s band is not reachable) and remaining on the table surface. The exact definition
of all of these constraints is provided in Table 2, where pxee, yee, zeeq is the end-effector position,
xab, ylb, yrb are the x and y coordinates of the robot’s, left and right bands respectively, and zt is the
z coordinate of the table plane. To facilitate the exploration in the case of the PPO-Lag, TRPO-Lag
and PCPO baselines we loosened the table height constraint to be a pair of inequality constraints
that covers the range of ˘2 cm around the original equality constraint. We also experimented with
scaling up the entropy bonus to encourage exploration, however, it had no positive effect on the
achieved performance.

15

Figure 6: Visualization of the simulated and real-world Air Hockey Hitting task.

Task definition. In the air hockey setting the task definition vector T is built using the initial
observation of the environment. This vector contains the robot joint positions, joint velocities, puck
position, puck orientation, and puck velocities. In this task, this task vector allows us to fully identify
the desired trajectory, as the goal state is fixed, i.e., drive the puck into the goal area on the other
side of the field.

A.3 Air Hockey real robot deployment

As in the simulated setup, the real Air Hockey environment is composed of a Kuka Iiwa 14 robot
arm (see Figure 6). The robot is equipped with an end effector composed of a metal rod, a gas spring,
a passive universal joint, and a mallet. The mallet is composed of a movable attachment flange and
the mallet itself. The flange is supported by a foam core, allowing for an additional compression of
the end effector. This compression is particularly useful to avoid damage in case of small constraint
violations and allows the robot to compress slightly the mallet on the table, reducing the probability
of flipping. Furthermore, we have another Mitsubishi PA10 robot equipped with a suction cup, that
is used to reset the puck position on the table.

The Kuka robot is controlled by an Active Rejection Disturbance Controller with a linear trajectory
interpolator. The trajectory controller takes the desired position, velocity, and acceleration as input.
The interpolator interpolates them linearly into a 1000 Hz command while the learned agent gener-
ates the command at 50 Hz. While this interpolation scheme does not produce realizable trajectories,
the control frequency of 1000 Hz provides a smoothened command and avoids spikes in the inter-
polation, which are often problematic for high-order interpolation. A small safety layer is applied
to the system to ensure that no wrong commands are applied to the system and that no command is
skipped, causing a sudden stop of the commanded trajectory. This is to prevent damage to the robot,
but cannot impose any of the safety constraints considered in this paper.

We use the Optitrack motion tracking system to track the puck at 120Hz. Different from the simu-
lated environment, we block the goal areas to allow the PA10 arm to easily and automatically reset
the puck after each hit attempt. We reset the puck in a predefined grid of positions. However, the air-
flow of the air hockey table causes the puck to drift randomly. This makes it impossible to evaluate
exactly specific hitting positions with the automatic reset setup.

Table 2: Definition of the constraints in Air Hockey Hitting task.

No. Name Definition
1-7 Joint positions |q| ď r2.97, 2.09, 2.97, 2.09, 2.97, 2.09, 3.05s

8-14 Joint velocities | 9q| ď r1.48, 1.48, 1.75, 1.31, 2.27, 2.36, 2.36s

15 Robot’s band collision xee ą xab ` rm
16 Left band collision yee ă ylb ´ rm
17 Right band collision yee ą yrb ` rm
18 Table height zee “ zt

16

B Bimanual manipulation task

In the main paper we presented an application of the proposed method in complex single-arm manip-
ulation tasks. However, CNP3O is more general and may be successfully applied to wider ranges of
tasks. To showcase this, we evaluated our solution in a different yet still complex task, i.e. bimanual
manipulation.

B.1 Task description

The Bimanual manipulation task is an adapted version of the task of moving an object handled by
two UR5 manipulators and placing it in predefined position introduced in [61], where it was used as
a benchmark for imitation learning. This task is implemented in simulation using MuJoCo and in
Figure 7 we present its visualization. The main difficulties of this task is to move arms synchronously
to do not drop or damage the object and place it very precisely such that pegs located in the desired
position will fit the holes of the manipulated object. We make this task even more challenging by
adding a preference to faster motions by setting the discount factor γ “ 0.997.

A single episode is defined by the initial joint configuration of both arms and the orientation of the
common base, which is computed using inverse kinematics based on the randomly drawn position of
the manipulated object, such that both robots hold the object by handles. We fixed the set of possible
initial positions to cover a relatively large space around the rack, i.e. px, y, zq P r´0.5, 0.5s ˆ

r0.2, 0.8s ˆ r0.2, 0.6s, and we sample it uniformly. In turn, the desired pose of the object is fixed
and is located 2.5cm centimeters above the stand, so that the pegs of the stand are in the holes of the
object. The episode horizon is set to 400 3ms-long steps , which gives 1.2s for the entire episode.

In this task, the reward function is meant to encourage placing the handled object in the desired
position, while avoiding dropping it. To achieve this we proposed the following reward function:

R “
1

100 d
dinit

` 1
´ 0.01, (4)

where d is a weighted sum of the euclidean distance between the actual and desired position, and
the angular rotation between the actual and desired orientation, with weights equal to 2 and 1 re-
spectively. Similarly, dinit represents the value of this distance at the beginning of the episode to
normalize the rewards from different episodes. Moreover, to motivate reaching the goal while dis-
couraging dropping the plate, which may easily happen especially when the holes do not fit the pegs
on the rack correctly, we multiply the reward R by 0 if the object is no longer handled by robots, and
if object is successfully placed then we multiply it by 100. In both cases, we terminate the episode
and to account for the remaining duration of the episode, we multiply the last reward by 1´γh

1´γ , where
h is the remaining duration of the episode. We assume that the goal pose of the object is reached,
when its weighted distance to the goal configuration is smaller than 0.015, which corresponds to
the situation in which perfectly oriented object is already bedded in the pegs. In turn, dropping the
object is defined as the gripper moving away from the gripping point by 1.5cm.

Moreover, also in this task, we identified safety and feasibility constraints, i.e. limited joint velocities
and accelerations, as well as end-effector constraint, which ensures that the distance between the
end-effectors is constant. This last constraint is needed to avoid squeezing and stretching of the
object held. The exact definition of all of these constraints is provided in Table 3.

Task definition. In the bimanual setting the task definition vector T is built using the initial state
of the robots. As we always start from zero velocities, this vector consists of only initial robot joint
configuration, which fully describes the given task, as the desired position of the manipualted object
is constant.

B.2 Experimental evaluation

In the considered task, we compared the performance of different motion primitives using CNP3O.
We compared ProMP, ProDMP and two versions of the B-spline primitives. In all cases, we biased

17

Figure 7: Visualization of the sim-
ulated bimanual manipulation task.
The goal is to move white object to fit
pegs of the black rack into its holes.

0 200 400 600 800 1000 1200
Episodes

0

500

1000

1500

2000

CNP3O-PK CNP3O CNP3O-ProMP CNP3O-ProDMP

Figure 8: Learning curves (reward w.r.t. number of
episodes) for the simulated bimanual manipulation task.

the end configuration of the arms to the solution found by inverse kinematics and end joint velocity
to 0. However, this approach may be suboptimal, as at the end of the movement we want to achieve
the velocity of the end-effectors and the object to move it down along the pegs. Therefore, in case
of CNP3O-PK we enforced the end velocity to 0.2m{s and end acceleration to 6m{s2, such that we
achieve relatively fast but also safe insertion (if acceleration mentioned above will be maintained,
then the object stops after 33ms covering a distance of 3.3mm in this time).

In Figure 8 we present the learning curves for the considered motion primitives. One can see that
by far the best results are achieved by the B-splines with prior knowledge about end velocity and
acceleration, which showcase how important is the ability to impose boundary constraints in com-
plex manipulation tasks. Among the remaining solutions, the best results are achieved by ProDMP.
This confirms the usefulness of this motion primitive in the case of pick and place tasks. A similar
but worse performance is achieved with B-splines, which offer greater flexibility along the whole
trajectory hoever, due to this are not that effective in learning the ‘go to‘ movements. In turn, the
inability to enforce the end velocity of ProMP makes them struggle to learn efficient policy.

C Samples transformation function

To maintain the common scale of the standard deviations computed with fσθ pT q and to put bounds
on the sampled values, we introduced a transformation ρpζq of samples ζ.

Let’s observe, that we may have several different ways to interpret the the MP weights. In the most
common setting, they are just the weights of the configuration MPs. However, they may also be used
to parameterize the time scaling factor Ts, control points of the time B-spline rpsq or some boundary
parameters, like desired position qd, velocity 9qd or acceleration :qd. In this case, we may not want
to have the same level of exploration noise for all of them. Moreover, we may impose some bounds
on the predicted values, such that for example sampled velocity does not exceed the maximal one.
To achieve this, we formulate the ρ function for time-related samples by

ρtpζq “ exppaζq, (5)

Table 3: Definition of the constraints in Bimanual manipulation task.

No. Name Definition
1-13 Joint velocities | 9qi| ď π

14-26 Joint accelerations |:qi| ď 14
27 End effector distance }EEleft ´EEright } “ 0.5

18

where a is a sample scaling factor. In the case of the weights related to configuration and its deriva-
tives we transform the samples with

ρqpζq “ Ξ tanhpaζq, (6)

where Ξ is the desired bound put on the sampled values.

In particular, in our experiments we have the following scaling factors: (i) for weights related to time
at “ 1, (ii) for configuration weights aq “ 0.02, (iii) for end configuration aqd “ 0.02 in case of
no prior knowledge, and aqd “ 0.007 with prior knowledge, while a 9qd “ 0.02 and a:qd “ 1. Values
of these scaling factors were chosen heuristically to achieve reasonable levels of initial exploration.
In turn, the bounds Ξ for the configuration-related weights are set to π rad for the air hockey hitting
task, and to 2π for the heavy object task. When weights are used to parameterize the desired velocity
adjustment, then we use 2 9qmax to allow for completely reversing the velocity bias, while in case of
desired accelerations, we set them to :qmax.

D Imposing prior knowledge on the trajectory representation

One of the big benefits of using MPs for the trajectory representation is the possibility to impose
boundary constraints. In the most general formulation, we can impose the knowledge about the
initial configuration on any type of MP. Let’s note that if we have the trajectory defined by a MP,
we can determine the first element of the weight vector w1, by solving a simple equation

w1 “
Φ:,2:p0qw2:

Φ1p0q
, (7)

where index 2 : means that we skip the first element. In the case of the basis functions with support
equal to r0; 1s, like ProMP this is theoretically all we can do. However, in practice, if the first
basis function is very close to 0 for s “ 1, then we can similarly compute the last weight, making
only a very small error. To have this error equal to 0 one needs to have the support of at least one
basis function to not contain 0, like in the ProDMP case. However, the most comfortable situation
from the boundary conditions point of view is when the supports of the basis functions cover only
some overlapping proper subsets of the domain, like for B-splines. In that case, we can fairly
easily identify the subsequent boundary weights based on the boundary configurations and their
derivatives. Then, if we can find the values of the next derivatives of the phase variable w.r.t. time,
we can compute boundary configuration MP weights. Thus, we can impose the boundary conditions
not only on the configuration but also on velocities, accelerations, and higher-order derivatives. For
more details about computing them in the case of the B-spline trajectory representation, we refer the
reader to [9].

In the next points we discuss what kind of prior knowledge about the task can be applied to different
MPs, illustrating the usefulness of this feature and explaining in detail the structure of the models
used for comparison in Figures 2, 3 and 10.

D.1 Heavy Object Manipulation

Heavy object manipulation is an example of a task in which one of the main goals is to reach a
certain pose of the manipulated object and maintain it till the end of the episode. In this type of task,
typically many possible robot configurations satisfy the task objective. However, one may achieve
significantly better results when biasing the end configuration with the one computed with inverse
kinematics. We show this phenomenon in Figure 2 and 10, where all methods that utilize the prior
knowledge outperformed their uninformed versions. In the considered task, the goal is not only to
reach the target pose but also to stop the robot at that point. This kind of requirement cannot be
directly imposed by both ProMP and ProDMP. However, the proposed B-spline MP allows one to
set three last configuration MP weights in such a way that the last point of the trajectory reaches the
goal with zero velocity and acceleration, which ensures smooth stopping.

19

D.2 Air Hockey Hitting

In the air hockey hitting task, imposing the boundary conditions plays also a very important role.
While in this case, it is not so obvious how to choose the desired final acceleration, we can provide
a good initialization by setting a good hitting configuration and velocity. Using this technique,
we can achieve significantly shorter training and obtain the highest rewards. In the experiments
performed, we did this for the proposed CNP3O method, by biasing the end velocity and the hitting
configuration with the values obtained with the optimization procedure proposed in [62]. Moreover,
to compensate for the moving puck, we first computed the time B-spline to know the trajectory
duration, and only then, using this duration for predicting the puck pose, we imposed the adjusted
boundary conditions achieving decent hitting abilities from the very first episode. It is worth noting
that incorporating the velocity level boundary conditions is not so straightforward in the case of
ProMP and ProDMP. Therefore, the use of the B-spline-based MPs seems to be a better choice for
tasks that require dynamic nonprehensile manipulation, like hitting the puck or tossing objects.

It is worth noting that the very important part of the air hockey hitting task, especially in terms of
constraint satisfaction, is the stopping phase. After hitting the puck with a very high velocity robot
needs to slow down its motion and at the same time still satisfy the table plane constraint, while
potentially being in the state space areas of reduced manipulability. To handle this phenomenon, we
leveraged the possibility of smoothly composing multiple trajectories. Instead of generating only
the hitting motion we generate at the same time both hitting and stopping motion, which connects
near to the hitting point with continuous accelerations.

D.3 Choice of scaling factors

One of the key parameters of the black box policy optimization algorithm is the sample scaling
factors, that take into account the desired level of the initial exploration.

While in general, this parameter can be set arbitrarily, in robotics settings these parameters are
quite easy to tune. Indeed, the initial exploration in the task space should match the scale of the
used robots and considered tasks. Therefore, given the initial values of the variance of the normal
distribution generated by the neural network, we decided on the scaling factor for the MP weights.
In the experiments for this paper, the desired end effector variance is in the order of decimeters.

However, some of the elements of the action space may have special meanings, like end configu-
ration, velocity, or end acceleration. For these parameters, we may want to assign them different
scaling factors keeping in mind that they represent different quantities, such as velocity and ac-
celeration. These quantities may require different levels of exploration. For this reason, in our
experiments, we decided to set a relatively high value for the acceleration— as we are very uncer-
tain about its initial bias and the scale of the accelerations is much bigger than configurations —and
a relatively low value for velocities— as we believe that the desired end velocity is very accurately
given by the knowledge about the task. Similar reasoning was conducted also for the scaling factors
associated with the time-scaling B-spline control points, but in this case, we focused on the desired
level of exploration in terms of trajectory duration, which we wanted to be about 10% of the mean
initial trajectory duration.

Thanks to the used parametrization, especially the B-spline-based one, the process of setting these
parameters is quite intuitive due to the physical meaning of the considered quantities. Moreover,
one can easily control the level of exploration by simulating a batch of random trajectories with the
considered scaling factors and visually observing if the initial exploration matches the expectations.

E Motion primitives flexibility

One of the goals of this paper was to bridge the gap between the SafeRL and MPs. Therefore, it
is worth considering whether and to what extent we limited the generality of the classical CMDP
framework by establishing a coupling with MPs.

20

We argue that the use of motion primitives does not introduce excessive limitations into the CMDP
framework but rather limits the space of learnable policies and allows for an easy introduction of
inductive biases. Nevertheless, there is an important difference w.r.t. classical CMDP methods,
which is the trajectory-level (MPs requires black box learning) vs step-based exploration (classi-
cal CMDP). However, in general, there is no difference in terms of behavior we can achieve with
black-box optimization (excluding the above-mentioned inductive biases) and classical CMDP for-
mulation. The key difference is that step-based exploration exploits local information (possibly
allowing faster learning) and black box exploration allows us to explore better, which is particularly
useful in settings with sparse reward and complex constraints as the tasks presented in this paper,
where classical CMDP methods are struggling. Finally, it is also possible to learn with MPs with
classical CMDP methods, by adding Gaussian noise at the trajectory level, but this comes at the cost
of the smoothness of the trajectory.

The main limitation that MPs, in general, introduces is the reduction in the space of learnable poli-
cies. Fortunately, this seems to not be very restrictive as in the literature we can see a broad range of
applications in which MPs provided sufficient flexibility [3, 50, 63, 64, 65, 66, 67, 68]. In fact, the
flexibility of every MP can be controlled by the number of basis functions used. However, the shape
and distribution of the basis functions along the phase variable axis may affect the expressiveness
of the particular MP. For example, ProDMP seems to be very effective in tasks where the final pose
of the end-effector is particularly important, given the distribution of the basis functions and their
unbalanced scale. Instead, the B-spline-based representation is characterized by flexibility along the
entire trajectory and shines when we have complex constraints to impose due to the decoupling of
the geometric path and the temporal path.

F Experimental details

While the general description of the performed experiments is included in the main text, we provide
the details about them here to increase the reproducibility of our research.

First, as we mentioned in Section 2, CNP3O is meant to generate the trajectories, so it requires
a controller to generate actions. In this paper, we used the proportional-derivative controller with
feed-forward implemented in the Air Hockey Challenge repository [60] with default gains. The
same controller is used by default by the ATACOM baseline. In turn, for the PPO-Lag, TRPO-Lag
and PCPO we used the inverse dynamics algorithm from MuJoCo to transform the accelerations
predicted by the policy into the torques.

The proposed method CNP3O utilize an episodic version of the PPO algorithm [53]. It is a direct
analogue of the original algorithm, however, instead of adapting the policy based on the step rewards,
it uses the rewards accumulated throughout the whole episode. Similarly, the value function estimate
is computed only based on the task definition T . In practice, the computation of the task loss Ltask
(see line 11 of Algorithm 1) for the given task T , sampled ζ and obtained discounted reward Jtask is
defined by

Ltask “ ´min

ˆ

fθnew
pζ|T q

fθoldpζ|T q
Au, clip

ˆ

fθnew
pζ|T q

fθoldpζ|T q
, 1 ´ ϵPPO, 1 ` ϵPPO

˙

Au

˙

, (8)

where θnew is the current value of θ, while θold is the value of θ computed before current learn-
ing iteration, and Au “ A ´ Aold is a standarized advantage, where A “ Jtask ´ Vψnew pT q and
Aold “ 1

Nepisodes

řNepisodes
i“1 pJtaski ´ Vψold pTiqq. Note, that Au is a constant through which we do not

backpropagate the gradient.

Besides abovementioned differences we use the PPO implementation from MushroomRL li-
brary [69], however, instead of using the entropy bonus we utilized the entropy projection [70].
The entropy lower bound value was set to decrease linearly between the initial entropy lower bound
ν0 and desired entropy lower bound νd, which is meant to be achieved after Eν epochs. After Eν-th
epoch the entropy lower bound is to a constant value of νd.

21

In Table 4, we present the architectures of all the neural networks used in the experiments, except
the one used by CNP3O, as it is slightly more complex than a sequence of fully connected (FC)
layers. In this case, the input is processed first by 3 FC layers, and then the resultant representation
is used by two heads: (i) configuration head with 2 FC layers, and (ii) time head with a single layer.
Each layer, except the output ones, consists of 256 neurons and a tanh activation function.

Table 4: Neural network architectures.

Method Hidden layers Activation
Value network of CNP3O (all variants) 4 ˆ 256 tanh

Policy network of CNP3O-ProMP/ProDMP 4 ˆ 256 tanh
Actor network of ATACOM 3 ˆ 128 SELU
Critic network of ATACOM 3 ˆ 128 SELU
Actor network of PPO-Lag 2 ˆ 256 tanh
Critic network of PPO-Lag 2 ˆ 256 tanh

Actor network of TRPO-Lag 2 ˆ 256 tanh
Critic network of TRPO-Lag 2 ˆ 256 tanh

Actor network of PCPO 2 ˆ 256 tanh
Critic network of PCPO 2 ˆ 256 tanh

Many of the chosen learning hyperparameters are common for both heavy object and air hockey
hitting tasks, as well as for the considered methods. We list them in Table 5. However, some of the
parameters are specific to the given algorithm, thus, we list them in Tables 6, 8, and 7.

Table 5: Common hyperparameters for all experiments

Hyperparameter Value
Number of episodes per epoch 64

Number of fits per epoch 32
Number of batches per fit 1

Batch size 64
Number of evaluation episodes 25

γ 0.99
εPPO 0.05

Table 6: CNP3O hyperparameters

Hyperparameter Value
Number of configuration weights 11

Number of time weights 10
Initial standard deviation 1
Constraint learning rate α 0.01

Manifold metric decline bound β 0.1
Policy learning rate (CNP3O all variants) 5 ¨ 10´5

Value function approximator learning rate 5 ¨ 10´4

Initial entropy lower bound ν0 nb ¨ nq
Desired entropy lower bound νd ´nb ¨ nq

Entropy lower bound decline duration Eν (air hockey) 1000
Entropy lower bound decline duration Eν (heavy object) 200

Entropy lower bound decline duration Eν (bimanual) 500

F.1 Learning duration

In the paper we presented the learning curves w.r.t. number of environment steps to visualize the
sample efficiency of the compared approaches. However, it may also be worth to note how much
time on average each of the method needed to complete an epoch of learning. We evaluated these
times using a single core of Intel Core i5-12500H CPU and reported in Figure 9. The longest epoch
duration is observed for ATACOM, as it performs policy updates much more often than the rest of
the algorithms, the learning times of which are comparable.

22

Table 7: PPO-Lag, TRPO-Lag and PCPO hyperparameters

Hyperparameter Value
Actor learning rate 5 ¨ 10´4

Critic learning rate 5 ¨ 10´4

Lagrangian multiplier learning rate 0.01
Cost limit (heavy object) 10
Cost limit (air hockey) 0.01

λGAE 0.95
Entropy bonus 0

Table 8: ATACOM+SAC hyperparameters

Hyperparameter Value
Actor learning rate 3 ¨ 10´4

Critic learning rate 3 ¨ 10´4

Replay buffer size 2 ¨ 105

Soft updates coefficient 0.001
Warmup transitions 104

Learning rate of αSAC 5 ¨ 10´5

Target entropy -2
Number of fits per step 1

480

490

500

CNP3O

CNP3O-PK

CNP3O-ProMP

CNP3O-ProDMP
PCPO

TRPOLag
PPOLag

ATACOM-SAC
0

10

20

30

40

50

M
ea

n
ep

oc
h

du
ra

tio
n

[s
]

Figure 9: Mean learning epoch duration [s] in the Air Hockey task.

23

G Additional results on the heavy object task

In this section, we present further analysis of the heavy object task, by looking at the metrics at the
end of learning. We present in Figure 10 the boxplot showing the distribution of metrics of 100
episodes for each seed. Our results show that, in the setting with prior knowledge, the best param-
eterization for the motion primitives is the B-splines, achieving better performance and, in general,
lower constraint violations than any other method. Adding prior knowledge is always an advan-
tage for learning performance on all metrics, with the notable exception of B-Splines for collision
penalty. However, it is worth noting that the collision penalty is extremely low compared to the other
metrics, and most approaches can avoid collision robustly. Without prior knowledge, the B-spline
parametrization obtains slightly worse constraint violations but also achieves slightly better perfor-
mance. However, we remark that the B-splines can learn faster than the other motion primitives in
this setting.

10

20

30

40

Discounted reward

10 7

10 5

10 3

10 1

Vertical orientation
 violation

10 5

10 3

10 1

101

Maximal joint velocity
 violation [rad/s]

10 7

10 6

10 5

10 4

Collision

Figure 10: Statistical analysis of the considered approaches on the heavy object task

24

	Introduction
	Constrained Reinforcement Learning with Motion Primitives
	Learning under known constraints
	Motion Primitives for Safe Reinforcement Learning

	Experimental Evaluation
	Conclusion
	Environments
	Heavy Object
	Air Hockey Hitting
	Air Hockey real robot deployment

	Bimanual manipulation task
	Task description
	Experimental evaluation

	Samples transformation function
	Imposing prior knowledge on the trajectory representation
	Heavy Object Manipulation
	Air Hockey Hitting
	Choice of scaling factors

	Motion primitives flexibility
	Experimental details
	Learning duration

	Additional results on the heavy object task

