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Abstract

Off-policy algorithms, in which a behavior policy differs from the target policy and is used to
gain experience for learning, have proven to be of great practical value in reinforcement learn-
ing. However, even for simple convex problems such as linear value function approximation,
these algorithms are not guaranteed to be stable. To address this, alternative algorithms
that are provably convergent in such cases have been introduced, the most well known being
gradient descent temporal difference (GTD) learning. This algorithm and others like it,
however, tend to converge much more slowly than conventional temporal difference learning.
In this paper we propose gradient descent temporal difference-difference (Gradient-DD)
learning in order to improve GTD2, a GTD algorithm (Sutton et al., [2009b)), by introducing
second-order differences in successive parameter updates. We investigate this algorithm in
the framework of linear value function approximation, theoretically proving its convergence
by applying the theory of stochastic approximation. Studying the model empirically on the
random walk task, the Boyan-chain task, and the Baird’s off-policy counterexample, we find
substantial improvement over GTD2 and, in several cases, better performance even than
conventional TD learning.

1 Introduction

Off-policy algorithms for value function learning enable an agent to use a behavior policy that differs from
the target policy in order to gain experience for learning. However, because off-policy methods learn a value
function for a target policy given data due to a different behavior policy, they are slower to converge than
on-policy methods and may even diverge when applied to problems involving function approximation (Baird),
1995; |Sutton & Barto, [2018)).

Two general approaches have been investigated to address the challenge of developing stable and effective
off-policy temporal-difference algorithms. One approach is to use importance sampling methods to warp the
update distribution so that the expected value is corrected (Precup et al.| [2000; Mahmood et al., [2014). This
approach is useful for the convergence guarantee, but it does not address stability issues. The second main
approach to addressing the challenge of off-policy learning is to develop true gradient descent-based methods
that are guaranteed to be stable regardless of the update distribution. (Sutton et al., 2009ajjb)) proposed
the first off-policy gradient-descent-based temporal difference algorithms (GTD and GTD2, respectively).
These algorithms are guaranteed to be stable, with computational complexity scaling linearly with the size
of the function approximator. Empirically, however, their convergence is much slower than conventional
temporal difference (TD) learning, limiting their practical utility (Ghiassian et al., [2020; [White & Whitel
2016]). Building on this work, extensions to the GTD family of algorithms (see (Ghiassian et al.l [2018)) for
a review) have allowed for incorporating eligibility traces (Maei & Sutton, |2010; |Geist & Scherrer} [2014)),
non-linear function approximation such as with a neural network (Maei, [2011]), and reformulation of the
optimization as a saddle point problem (Liu et al., |2015; Du et al., [2017). However, due to their slow
convergence, none of these stable off-policy methods are commonly used in practice.

In this work, we introduce a new gradient descent algorithm for temporal difference learning with linear
value function approximation. This algorithm, which we call gradient descent temporal difference-difference
(Gradient-DD) learning, is an acceleration technique that employs second-order differences in successive
parameter updates. The basic idea of Gradient-DD is to modify the error objective function by additionally
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considering the prediction error obtained in the last time step, then to derive a gradient-descent algorithm
based on this modified objective function. In addition to exploiting the Bellman equation to get the solution,
this modified error objective function avoids drastic changes in the value function estimate by encouraging
local search around the current estimate. Algorithmically, the Gradient-DD approach only adds an additional
term to the update rule of the GTD2 method, and the extra computational cost is negligible. We prove
its convergence by applying the theory of stochastic approximation. This result is supported by numerical
experiments, which also show that Gradient-DD obtains better convergence in many cases than conventional
TD learning.

1.1 Related Work

In related approaches to ours, some previous studies have attempted to improve Gradient-TD algorithms by
adding regularization terms to the objective function. These approaches have used have used [, regularization
on weights to learn sparse representations of value functions Liu et al.| (2012), or s regularization on weights
Ghiassian et al.| (2020). Our work is different from these approaches in two ways. First, whereas these
previous studies investigated a variant of TD learning with gradient corrections, we take the GTD2 algorithm
as our starting point. Second, unlike these previous approaches, our approach modifies the error objective
function by using a distance constraint rather than a penalty on weights. The distance constraint works by
restricting the search to some region around the evaluation obtained in the most recent time step. With
this modification, our method provides a learning rule that contains second-order differences in successive
parameter updates.

Our approach is similar to trust region policy optimization (Schulman et al., [2015)) or relative entropy policy
search (Peters et al., |2010)), which penalize large changes being learned in policy learning. In these methods,
constrained optimization is used to update the policy by considering the constraint on some measure between
the new policy and the old policy. Here, however, our aim is to find the optimal value function, and the
regularization term uses the previous value function estimate to avoid drastic changes in the updating process.

Our approach bears similarity to the natural gradient approach widely used in reinforcement learning (Amari,
1998; [Bhatnagar et al., |2009; |Degris et al.| 2012; Dabney & Thomas, 2014} |Thomas et al., [2016)), which
also features a constrained optimization form. However, Gradient-DD is distinct from the natural gradient.
The essential difference is that, unlike the natural gradient, Gradient-DD is a trust region method, which
defines the trust region according to the difference between the current value and the value obtained from the
previous step. From the computational cost viewpoint, unlike natural TD (Dabney & Thomas| |2014), which
needs to update an estimate of the metric tensor, the computational cost of Gradient-DD is essentially the
same as that of GTD2.

2 Gradient descent method for off-policy temporal difference learning

2.1 Problem definition and background

In this section, we formalize the problem of learning the value function for a given policy under the Markov
decision process (MDP) framework. In this framework, the agent interacts with the environment over a
sequence of discrete time steps, t = 1,2,.... At each time step the agent observes a state s; € S and selects
an action a; € A. In response, the environment emits a reward r; € R and transitions the agent to its next
state s;y1 € S. The state and action sets are finite. State transitions are stochastic and dependent on the
immediately preceding state and action. Rewards are stochastic and dependent on the preceding state and
action, as well as on the next state. The process generating the agent’s actions is termed the behavior policy.
In off-policy learning, this behavior policy is in general different from the target policy 7 : S — A. The
objective is to learn an approximation to the state-value function under the target policy in a particular
environment:

V(s) =Eg [ZOO Vs = s (1)

t=1

where « € [0,1) is the discount rate.
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In problems for which the state space is large, it is practical to approximate the value function. In this paper
we consider linear function approximation, where states are mapped to feature vectors with fewer components
than the number of states. Specifically, for each state s € S there is a corresponding feature vector x(s) € R?,
with p < |S], such that the approximate value function is given by

Vi (5) := w ' x(s). (2)

The goal is then to learn the parameters w such that Vi (s) =~ V(s).

2.2 Gradient temporal difference learning

A major breakthrough for the study of the convergence properties of MDP systems came with the introduction
of the GTD and GTD2 learning algorithms (Sutton et al., [2009aib). We begin by briefly recapitulating the
GTD algorithms, which we will then extend in the following sections. To begin, we introduce the Bellman
operator B such that the true value function V € RIS! satisfies the Bellman equation:

V=R ++PV =: BV,

where R is the reward vector with components E(r,|s, = s), and P is a matrix of the state transition
probabilities under the behavior policy. In temporal difference methods, an appropriate objective function
should minimize the difference between the approximate value function and the solution to the Bellman
equation.

Having defined the Bellman operator, we next introduce the projection operator IT, which takes any value
function V and projects it to the nearest value function within the space of approximate value functions of
the form Eqn. . Letting X be the matrix whose rows are x(s), the approximate value function can be
expressed as Vy, = Xw. The projection operator is then given by

IM=X(X"DX)'X'D,
where the matrix D is diagonal, with each diagonal element ds corresponding to the probability of visiting
state s.

The natural measure of how closely the approximation V, satisfies the Bellman equation is the mean-squared
Bellman error:

MSBE(w) = ||V — BVy %, 3)

where the norm is weighted by D, such that |[V||3 = VT DV. However, because the Bellman operator
follows the underlying state dynamics of the Markov chain, irrespective of the structure of the linear function
approximator, BV, will typically not be representable as V,, for any w. An alternative objective function,
therefore, is the mean squared projected Bellman error (MSPBE), which we define as

J(w) = |[Vw - IBV, |3 (4)
Following (Sutton et al., 2009b)), our objective is to minimize this error measure. As usual in stochastic
gradient descent, the weights at each time step are then updated by Aw = —aVJ(w), where a > 0, and
1
—§VJ(W) = —E[(vxn41 — XH)X;][E(XHXI)]flE((San). (5)

For notational simplicity, we have denoted the feature vector associated with s, as x,, = x(s,). We have
also introduced the temporal difference error 6, = r, + (VXp41 — xn)Twn. Let n,, denote the estimate
of [E(x,x,) )] 'E(0,X,) at the time step n. Because the factors in Eqn. can be directly sampled, the
resulting updates in each step are
571 =rp + (’yanrl - Xn)Twn
Nnt+1 =My + 5774 (571 - X’r—Lrnn)Xn

Wn4+1 =Wp — Op (’yanrl - Xn)(x;zr,r’n) (6)

These updates define the GTD2 learning algorithm, which we will build upon in the following section.
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3 Gradient descent temporal difference-difference learning

In this section we modify the objective function by additionally considering the difference between Vy, and
Vw, _,, which denotes the value function estimate at step n — 1 of the optimization. We propose a new
objective Jopp(W|w,,_1), where the notation “w|w,_;" in the parentheses means that the objective is defined
given Vy, _, of the previous time step n — 1. Specifically, we modify Eqn. as follows:

Jepp (WWn—1) = J(W) + || Vw = Vi, _, [IB, (7)

where x > 0 is a parameter of the regularization, and we assume x ~ O(1). We show in Section of the
appendix that minimizing Eqn. @ is equivalent to the following optimization

argmin J(w) s.t. |[Vw — Vi, _, HQD <pu (8)

where 1 > 0 is a parameter which becomes large when « is small, so that the MSPBE objective is recovered
as pu — 00, equivalent to k — 0 in Eqn. .

A

Figure 1: Schematic diagram of Gradient-DD learning
with w € R?. Rather than updating w directly along
the gradient of the MSPBE (black arrow), the update
rule selects w,, (red arrow) that minimizes the MSPBE
while satisfying the constraint |V — Vi, [|b < u
(shaded ellipse).

Rather than simply minimizing the optimal prediction from the projected Bellman equation, the agent makes
use of the most recent update to look for the solution, choosing a w that minimizes the MSPBE while
following the constraint that the estimated value function should not change too greatly, as illustrated in
Fig.[1l In effect, the regularization term encourages searching around the estimate at previous time step,
especially when the state space is large.

Eqn. shows that the regularized objective is a trust region approach, which seeks a direction that attains
the best improvement possible subject to the distance constraint. The trust region is defined by the value
distance rather than the weight distance, meaning that Gradient-DD also makes use of the natural gradient
of the objective around w,,_; rather than around w,, (see Section of the appendix for details). In this
sense, our approach can be explained as a trust region method that makes use of natural gradient information
to prevent the estimated value function from changing too drastically.

For comparison with related approaches using natural gradients, in Fig. [§] of the appendix we compare the
empirical performance of our algorithm with natural GTD2 and natural TDC |Dabney & Thomas| (2014)
using the random walk task introduced below in Section

With these considerations in mind, the negative gradient of Jgpp(w|w,_1) is

1
- §VJGDD(W|Wn71)

= —E[("Xns1 — Xn)XZ][E(XHXZ)]_lE((Snxn) - “E[(szn - szn—l)xn}- 9)
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Because the terms in Eqn. @ can be directly sampled, the stochastic gradient descent updates are given by

671 =ry + ('YXnJrl - Xn)Twn

MNor1 ="y + ap (671 - XI"?n)Xn

Wil =Wy — Ko (X, Wi — X W 1)%0 — (VX1 — X0) (X, 1,,). (10)
These update equations define the Gradient-DD method, in which the GTD2 update equations @ are
generalized by including a second-order update term in the third update equation, where this term originates
from the squared bias term in the objective @ Since Gradient-DD is not sensitive to the step size of
updating n (see Fig. [7|in the appendix), the updates of Gradient-DD only have a single shared step size a,
rather than two step sizes «y,, 8, as GTD2 and TDC used. It is worth noting that the computational cost of
our algorithm is essentially the same as that of GTD2. In the following sections, we shall analytically and
numerically investigate the convergence and performance of Gradient-DD learning.

4 Convergence Analysis

In this section we establish the convergence of Gradient-DD learning. Denote G, =
T _ T
nn T Xn (Xn = PXnt1) , and H,, = 0 OT . We rewrite the update rules in
_(Xn - ’Yxn—i-l)xn 0 0 XnX,

Eqn. (10) as a single iteration in a combined parameter vector with 2n components, p,, = (n,,w,})T,
and a new reward-related vector with 2n components, g,+1 = (r,x,,0")7, as follows:

Pn+y1 =Pn — ’iaan(pn - pn—l) + an(ann + gn+1)7 (11)

Theorem 1. Consider the update rules with step-size sequences au,. Let the TD fized point be w*, such
that V-« = IIBV . Suppose that (A0) o, € (0,1), Y07 oy = 00, Yoo a2 < 00, (A1) (Xny Ty Xnt1)
is an i.4.d. sequence with uniformly bounded second moments, (A2) E[(x, — YXns1)X, ] and B(x,x,) are
non-singular, (A8) sup,, ||p,41 — Pyl is bounded in probability, (A4) k is a constant such that 0 < k < oc.
Then as n — 00, W, — W* with probability 1.

Proof sketch. Due to the second-order difference term in Eqn. , the analysis framework in (Borkar &
Meynl, [2000) does not directly apply to the Gradient-DD algorithm when (A0) holdes, i.e., step size is tapered.
Likewise, the two-timescale convergence analysis (Bhatnagar et al.l [2009)) is also not directly applicable.
Defining u, 41 = p,, 11 — p,,, We rewrite the iterative process in Eqn. into two parallel processes which
are given by

pn+1 =Py — HOéanlln + an(ann + gn-i-l)a (12)
Unt1 = —kanHpuy, + an(Grpy, + 8nt1)- (13)

We analyze the parallel processes Eqns. & Eqn. instead of directly analyzing Eqn. . Our
proofs have three steps. First we show sup,, ||p, | is bounded by applying the stability of the stochastic
approximation (Borkar & Meynl 2000)) into the recursion Eqn. . Second, based on this result, we shall
show that u,, goes to 0 in probability by analyzing the recursion Eqn. . At last, along with the result
that u, goes to 0 in probability, by applying the convergence of the stochastic approximation (Borkar &
Meyn! |2000) into the recursion Eqn. , we show that p,, goes to the TD fixed point which is given by the
solution of Gp + g = 0. The details are provided in Section [A-3] of the Appendix. O

Theorem [I] shows that Gradient-DD maintains convergence as GTD2 under some mild conditions. The
assumptions (A0), (Al), and (A2) are standard conditions in the convergence analysis of Gradient TD
learning algorithms (Sutton et all 2009ajb; [Maei, [2011). The assumption (A3) is weak since it means only
that the incremental update in each step is bounded in probability. The assumption (A4) requires that  is a
constant, meaning x = O(1). Given this assumption, the contribution of the term xkH,u,, is controlled by a,,
as n — 00.
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5 Empirical Study

In this section, we assess the practical utility of the Gradient-DD method in numerical experiments. To validate
performance of Gradient-DD learning, we compare Gradient-DD learning with GTD2 learning, TDC learning
(TD with gradient correction (Sutton et all [2009b)), TDRC learning (TDC with regularized correction
(Ghiassian et al., 2020)) and TD learning in both tabular representation and linear representation. We
conducted three tasks: a simple random walk task, the Boyan-chain task, and Baird’s off-policy counterexample.
In each task, we evaluate the performance of a learning algorithm by empirical root mean-squared (RMS)
error: /> s ds(Vaw, (s) — V(s))2. The reason we choose the empirical RMS error rather than root projected
mean-squared error or other measures as |Ghiassian et al.| (2018; 2020) used is because it is a direct measure
of concern in practical performance.

5.1 Random walk task

As a first test of Gradient-DD learning, we conducted a simple random walk task (Sutton & Barto, 2018)).
The random walk task has a linear arrangement of m states plus an absorbing terminal state at each end.
Thus there are m + 2 sequential states, So, 51, ,Sm, Sm+1, where m = 10, 20, or 40. Every walk begins in
the center state. At each step, the walk moves to a neighboring state, either to the right or to the left with
equal probability. If either edge state (Sy or S,,+1) is entered, the walk terminates. A walk’s outcome is
defined to be r = 0 at Sp and r = 1 at Sy, 1. Our aim is to learn the value of each state V(s), where the true
values are (1,---,m)/(m+ 1). In all cases the approximate value function is initialized to the intermediate
value Vp(s) = 0.5. We first consider tabular representation of the value function. We also consider linear
approximation representation and obtain the similar results, which are reported in Fig. [I0] of the appendix.
We consider that the learning rate «, is tapered according to the schedule o, = a(10® + 1)/(10% + n).
We tune a € {10_12/4, 10-1/4 ... 10714, 1}. We also consider the constant step sizes and obtain the
similar results, which are reported in Fig. [0] of the appendix. For GTD2 and TDC, we set 3, = Ca, with
¢ €{1/64,1/16,1/4,1,4}. We set the x = 1. We also investigate the sensitivity to  in Fig. 6| of the appendix,
where we show that kK = 1 is a good and natural choice in the empirical study.

We first compare the methods by plotting the empirical RMS error from averaging the final 100 steps as a
function of step size a in Fig. [2] where 20,000 episodes are used. We also plot the average error of all episodes
during training and report these results in Fig. [5| of the Appendix. From these figures, we can make several
observations. (1) Gradient-DD clearly performs better than the GTD2 and TDC methods. This advantage is
consistent in various settings, and gets bigger as the state space becomes large. (2) Gradient-DD performs
similarly to TDRC and conventional TD learning, with a similar dependence on «, although Gradient-DD
exhibits greater sensitivity to the value of « in the log domain than these other algorithms. In summary,
Gradient-DD exhibits clear advantages over the GTD2 algorithm, and its performance is also as good as
TDRC and conventional TD learning.

Next we look closely at the performance during training in Fig. 2] For each method, we tuned a €
{10*12/4, coe 1074, 1} by minimizing the average error of the last 100 episodes. We also compare the
performance when « is tuned by minimizing the average error of the last 100 episodes and report in Fig. [5] of
the appendix. From these results, we draw several observations. (1) For all conditions tested, Gradient-DD
converges much more rapidly than GTD2 and TDC. The results also indicate that Gradient-DD even converges
as fast as TDRC and conventional TD learning. (2) The advantage of Gradient-DD learning over GTD2
grows as the state space increases in size. (3) Gradient-DD has consistent and good performance under both
the constant step size setting and under the tapered step size setting. In summary, the Gradient-DD learning
curves in this task show improvements over other gradient-based methods and performance that matches
conventional TD learning.

Like TDRC, the updates of Gradient-DD only have a single shared step size a,,, i.e., 8, = a,, rather than
two independent step sizes «,, and 3, as in the GTD2 and TDC algorithms. A possible concern is that the
performance gains in our second-order algorithm could just as easily be obtained with existing methods by
adopting this two-timescale approach, where the value function weights are updated with a smaller step
size than the second set of weights. Hence, in addition to investigating the effects of the learning rate, size
of the state space, and magnitude of the regularization parameter, we also investigate the effect of using
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Figure 2: The random walk task with tabular representation and tapering step size a,, = a(103+1)/(10% +n).
Upper: Performance as a function of «; Lower: performance over episodes. In each row, state space size 10
(left), 20 (middle), or 40 (right). The curves are averaged over 50 runs, with error bars denoting the standard
error of the mean, though most are vanishingly small.

distinct values for the two learning rates, a,, and 3,, although we set 3, = (a,, with ( = 1. To do this, we
set B, = Cay, for GDD, with ¢ € {1/64,1/16,1/4,1,4}, and report the results in Fig. [7] of the appendix. The
results show that comparably good performance of Gradient-DD is obtained under these various (, providing
evidence that the second-order difference term in our approach provides an improvement beyond what can be
obtained with previous gradient-based methods using the two time scale approach.

5.2 Boyan-chain task

We next investigate Gradient-DD learning on the Boyan-chain problem, which is a standard task for testing
linear value-function approximation (Boyan, [2002). In this task we allow for 4p — 3 states, each of which is
represented by a p-dimensional feature vector, with p = 20, 50, or 100. The p-dimensional representation for

every fourth state from the start is [1,0,--- , 0] for state s1, [0,1,0,---,0] for s5, ---, and [0,0,---,0,1] for
the terminal state s4p,_3. The representations for the remaining states are obtained by linearly interpolating
between these. The optimal coefficients of the feature vector are (—4(p — 1), —4(p — 2),---,0)/5. In each

state, except for the last one before the end, there are two possible actions: move forward one step or
move forward two steps, where each action occurs with probability 0.5. Both actions lead to reward -
0.3. The last state before the end just has one action of moving forward to the terminal with reward
-0.2. We tune a € {1072,10-%5,10~,1073/%,10- /2,10~ /4,10~1/8,1,10%/8,10'/*} for each method by
minimizing the average error of the final 100 episodes. The step size is tapered according to the schedule
an, = a2 x10% +1)/(2 x 103 +n). For GTD2 and TDC, we set 3, = Ca, with ¢ € {1/64,1/16,1/4,1,4}. In
this task, we set v = 1. As in the random-walk task, we set kK = 1.
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We report the performance as a function of o and the performance over episodes in Fig. [3] where we tune a by
the performance based on the average error of the last 100 episodes. We also compare the performance based
on the average error of all episodes during training and report the results in Fig. [11] of the appendix. These
figures lead to conclusions similar to those already drawn in the random walk task. (1) Gradient-DD has
much faster convergence than GTD2 and TDC, and generally converges to better values. (2) Gradient-DD
is competitive with TDRC and conventional TD learning despite being somewhat slower at the beginning
episodes. (3) The improvement over GTD2 or TDC grows as the state space becomes larger. (4) Comparing
the performance with constant step size versus that with tapered step size, the Gradient-DD method performs
better with tapered step size than it does with constant step size.
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Figure 3: The Boyan Chain task with linear approximation and tapering step size o, = a/(2 x 10% +1)/(2 x
10% +n). Upper: Performance as a function of o; Lower: performance over episodes. In each row, the feature
size is 20 (left), 50 (middle), or 100 (right). The curves are averaged over 50 runs, with error bars denoting
the standard error of the mean, though most are vanishingly small across runs.

5.3 Baird’s off-policy counterexample

We also verify the performance of Gradient-DD on Baird’s off-policy counterexample (Baird, 1995} |Sutton &
Bartol, [2018)), illustrated schematically in Fig. 4l for which TD learning famously diverges. We show results
from Baird’s counterexample with N = 7,20 states. The reward is always zero, and the agent learns a linear
value approximation with N + 1 weights wq,--- ,wny41: the estimated value of the j-th state is 2w; + wy41
for < N — 1 and that of the N-th state is wy 4+ 2wx41. In the task, the importance sampling ratio for
the dashed action is (N — 1)/N, while the ratio for the solid action is N. Thus, comparing different state
sizes illustrates the impact of importance sampling ratios in these algorithms. The initial weight values
are (1,---,1,10,1)T. Constant « is used in this task. We set v = 0.99. For TDC and GTD2, thus we
tune ¢ € {472,471,1,42 4%}. Meanwhile we tune o for TDC in a wider region. For Gradient-DD, we tune
k € {471, 1,4}. We tune « separately for each algorithm by minimizing the average error from the final 100
episodes.
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Fig. [ demonstrates that Gradient-DD works better on this counterexample than GTD2, TDC, and TDRC. It
is worthwhile to observe that when the state size is 20, TDRC become unstable, meaning serious unbalance of
importance sampling ratios may cause TDRC unstable. We also note that, because the linear approximation
leaves a residual error in the value estimation due to the projection error, the RMS errors of GTD2, TDC,
and TDRC in this task do not go to zero. In contrast to other algorithms, the errors from our Gradient-DD

converge to zero.
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Figure 4: Baird’s off-policy counterexample. Upper in (b): Performance as a function of a; Lower in (b):
performance over episodes. From left to right in (b): 7-state and 20-state.

6 Conclusion and discussion

In this work, we have proposed Gradient-DD learning, a new gradient descent-based TD learning algorithm.
The algorithm is based on a modification of the projected Bellman error objective function for value function
approximation by introducing a second-order difference term. The algorithm significantly improves upon
existing methods for gradient-based TD learning, obtaining better convergence performance than conventional
linear TD learning.

Since GTD learning was originally proposed, the Gradient-TD family of algorithms has been extended to
incorporate eligibility traces and learning optimal policies (Maei & Sutton, 2010; |Geist & Scherrer} [2014)), as
well as for application to neural networks (Maei, |2011)). Additionally, many variants of the vanilla Gradient-TD
methods have been proposed, including HTD (Hackman| 2012)) and Proximal Gradient-TD (Liu et al., 2016).
Because Gradient-DD just modifies the objective error of GTD2 by considering an additional squared-bias
term, it may be extended and combined with these other methods, potentially broadening its utility for more
complicated tasks.

One potential limitation of our method is that it introduces an additional hyperparameter relative to similar

gradient-based algorithms, which increases the computational requirements for hyperparameter optimization.
This is somewhat mitigated by our finding that the algorithm’s performance is not particularly sensitive to
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values of k, and that k ~ 1 was found to be a good choice for the range of environments that we considered.
Another potential limitation is that we have focused on value function prediction in the two simple cases of
tabular representations and linear approximation, which has enabled us to provide convergence guarantees,
but not yet for the case of nonlinear function approximation. An especially interesting direction for future
study will be the application of Gradient-DD learning to tasks requiring more complex representations,
including neural network implementations. Such approaches are especially useful in cases where state spaces
are large, and indeed we have found in our results that Gradient-DD seems to confer the greatest advantage
over other methods in such cases. Intuitively, we expect that this is because the difference between the
optimal update direction and that chosen by gradient descent becomes greater in higher-dimensional spaces
(cf. Fig. . This performance benefit in large state spaces suggests that Gradient-DD may be of practical
use for these more challenging cases.
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A Appendix

A.1 On the equivalence of Eqns. & (8)
The Karush-Kuhn-Tucker conditions of Eqn. are the following system of equations

%J(W) + H%(HVW —Vw,..1 ||]23 —p)=0;
K(IVw = Vi, _, ”]2) — ) = 0;

||Vw —Vw,, ||2D < 1

k> 0.

These equations are equivalent to

%J(W) + KJ%”VW —~Vw, .5 =0and x>0,
if [V = Vw,_, b =mw
L J(w)=0and k=0, if [V — Vu, [} < .

Thus, for any p > 0, there exists a £ > 0 such that %J(w) + ILL%”VW ~Vw, .3 =0.

A.2 The relation to natural gradients

In this section, we shall show that Gradient-DD is related to, but distinct from, the natural gradient. We
thank a reviewer for pointing out the connection between Gradient-DD and the natural gradient.

Following |Amari (1998) or Thomas| (2014)), the natural gradient of J(w) is the direction obtained by solving
the following optimization:

lir% arg mAin J(w+€eA) s.t. ATXTDXA < p. (A1)
e—
We can note that this corresponds to the ordinary gradient in the case where the metric tensor X ' DX is
proportional to the identity matrix.
Now we rewrite Eqn. as

Vw =V, 1B = (W = wi,1) "X TDX(W — Wy, 1).

Denote eA = w — w,,_1, where € is the radius of the circle of w around w,,_; and A is a unit vector. Thus,
we have

IVw = Ve, b = ATXTDXA.
For the MSPBE objective, we have
Jw)=J(Wp_1+wW—wp_1) = J(Wp_1 + €A).
Minimizing Eqn. is equivalent to the following optimization
arg mAin J(Wn_1+€A) st. eATXTDXA < p. (A.2)

In the limit as € — 0, the above optimization is equivalent to

arg mAin ATV I(wy_ 1) st. EATXTDXA < p.

Thus, given the metric tensor G = X DX, ~G~'V.J(w,_1) is the direction of steepest descent, i.e. the
natural gradient, of J(w,_1). The natural gradient of J(w), on the other hand, is the direction of steepest
descent at w, rather than at w,,_;.

Therefore, our Gradient-DD approach makes use of the natural gradient of the objective around w,_1 rather
than around w,, in Eqn. (A.1]). This explains the distinction of the updates of our Gradient-DD approach
from the updates of directly applying the natural gradient of the objective w.

12
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A.3 Proof of Theorem Il

We introduce an ODE result on stochastic approximation in the following lemma, then show the convergence
of our GDD approach in Theorem [1| by applying this result.

Lemma 1. (Theorems 2.1 € 2.2 of (Borkar & Meyn|,|2000)) Consider the stochastic approzimation algorithm
described by the d-dimensional recursion

Yn+i1 =Yn + an[f(Yn) + Mn—i—l]-

Suppose the following conditions hold: (c1) The sequence {cy,} satisfies 0 < o, < 1, Y. oy = 00,
Son_ja2 < oo. (c2) The function f is Lipschitz, and there ezists a function foo such that lim,_, f,(y) =
Joo(y), where the scaled function f, : R? — R is given by f.(y) = f(ry)/r. (c3) The sequence {M,,, Fy}, with
Fn=0(yi, M,;,i <n), is a martingale difference sequence. (c4) For some ¢y < oo and any initial condition
Yo, B(|[M11]1?|Fn) < co(1 + [|ynll?). (¢5) The ODE y = fo(y) has the origin as a globally asymptotically
stable equilibrium. (c6) The ODE y(t) = f(y(t)) has a unique globally asymptotically stable equilibrium y*.
Then (1) under the assumptions (c1-c5), sup, y» < 0o in probability. (2) under the assumptions (c1-c6), as
n — 00, y, converges to y* with probability 1 .

Now we investigate the stochastic gradient descent updates in Eqn. , which is recalled as follows:

Pni1 = Pp — ko Hy(p, — p, 1) + an(Grp, + gni1)- (A.3)

The iterative process in Eqn. (A.3]) can be rewritten as

(pn+1 - pn) = 7I€Oéan(pn - pnfl) + an(ann + gn+l)~ (A4)

Defining
Un+1 = Ppt+1 — Pn-

Eqn. (A.4) becomes
Up4+1 = */{aanun + an(ann + gn+l)-
Thus, the iterative process in Eqn. (A.3) is rewritten as two parallel processes that are given by

pn+1 = Pn — Kaanun + an(ann + gn+1), (A5)
W11 =~k Hpuy, + an(Grp, + 8nt1)- (A.6)

Our proofs have three steps. First we shall show sup,, ||p,,|| is bounded by applying the ordinary differential
equation approach of the stochastic approximation (the 1st result of Lemma (1)) into the recursion Eqn. .
Second, based on this result, we shall show that u, goes to 0 in probability by analyzing the recursion
Eqn. (A.6). At last, along with the result that u, goes to 0 in probability, by applying the 2nd result of
Lemma [1f into the recursion Eqn. , we show that p,, goes to the TD fixed point, which is given by the
solution of Gp + g = 0.

First, we shall show sup,, ||p,,|| is bounded. Eqn. (A.5) is rewritten as

anrl = Py + an(f(pn) + Mn+1)a (A7)

where f(p,,) = (Gp,, + &) — kHu,, and M,,11 = ((G,, — G)p,, + 8nt+1 — &) — k(H, — H)u,. Let F, =
o(ug, pg, Mo, u1, p1, My, -+ ,u,, p,, M,,) be o-fields generated by the quantities u;, p,, M;, i < n.

Now we verify the conditions (c1-¢5) of Lemma [I} Condition (c1) is satisfied under the assumption of the
step sizes. Clearly, f(u) is Lipschitz and f.(p) = Gp, meaning Condition (c2) is satisfied. Condition (c3) is
satisfied by noting that (M,,, F,,) is a martingale difference sequence, i.e., E(M,,41|F,) = 0.

We next investigate E(||M,,11]/?|F,). From the triangle inequality, we have that

M 1l* < 20(Gr = Gl + 2]l (L, — H)|? [, 2. (A.8)

13
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From Assumption A3 in Theorem [I| that ||u,|| is bounded and the Assumption Al that (X, 7, Xp4+1) is an
ii.d. sequence with uniformly bounded second moments, there exists some constant ¢y such that

IGn = GII* < co/2, and [|s(H, — H)|[*|Ju,|* < co/2.
Thus, Condition (c4) is satisfied.

Note that G is defined here with opposite sign relative to G in (Maei, 2011). From (Sutton et al. |2009a) and
(Maeil, [2011)), the eigenvalues of the matrix —G are strictly negative under the Assumption A2. Therefore,
Condition (c5) is satisfied. Thus, applying the 1st part of Lemma (I shows that sup, ||p,|| is bounded in
probability.

Second, we investigate the recursion Eqn. (A.6)). Let y,11 = (Gpp,, + 8nr1). Then

Up4+1 = an[_KJHnun + yn—i-l]
= O0nYn+1 + ananfl(_HHn)yn + ananflan72(_"€Hn)(_Kanl)ynfl

n—1 n
+ -t a, H ap(—kHg41)y1 + H ap(—xkHyg)ug. (A.9)
k=0 k=0

Note that |H,| < 1/k due to ||x,|| < 1/k and that there exists a constant ¢ such that ||p,,|| < ¢ due to the
above result that sup, ||p, || < oo in probability. Without loss of generality, we assume that ||x,| < 1/k.
Eqn. (A.9) implies that

n n
Hun+1|| <c <a7z + an0p_1 + Q102 + -+ H OZk) + H O(k”llo” (AIO)
k=0 k=0

Under Assumption A0, «,, — 0 as n — 0. Based on this, Lemma [2[ (given in the following section) tells us
that a, + anan—1 + anop_10n—2+ -+ [[1_yax — 0 as n — 0. Thus, Eqn. (A.10) implies that u,, — 0 in
probability.

Finally, for applying the 2nd part of Lemma [1} we just need to verify Condition (c¢6). Because u,, goes to 0
with probability 1, Eqn. (A.7)) tells us that the associated ODE corresponds to

Gp+g=0.
Thus, Condition (c6) is satisfied. The theorem is proved.
A4 A Lemma

Lemma 2. Denote €, = ay, + appn_1+ -+ apap_1---ag. If a, = 0 as n — oo, then €, — 0 as n — oo.

Proof. Because a,, — 0 as n — 00, there exists a € (0,1) and some integer N such that a,, < o < 1 when
n > N. Define a sequence ¢, such that

en=1+ae,_1 forn>N+1;

EN = €EN.
Obviously,
€n < Ep,Vn > N. (A.11)
Now we investigate the sequence ¢,,.
en=1+ae, 1 =1+a(l4+ag, o)=-=1+a+ - +a"" NV 1qa" Ney
(o)
< k n—N — 1 1 _ n—N .
_Zkzoa +a" Vey=1/1-a)+a" ey
Thus, we have that
sup &, < 00. (A.12)

n>N

14
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From Eqns. (A.11) & (A.12), we have

sup €, < Q.
n>0

From the definition of €,,, we have that €, = a,, + ay,€6,_1. It follows that

From the assumption a,, — 0 as n — oo and Eqn. (A.13)), we have ¢, — 0 as n — oo.

A.5 Additional empirical results

B © ] T
Oc --- TD|
=i S --- oL
I M N -—- TDRC
N« | AN TD2
S o] L -- oD
Y
x© | \‘ }\\ i E
© ~ \ [
O3S \ AN
= \\.\ : :
m Ny
3 \ NS
2 e e eet
o T T T T T T T
0.001 0.010 0.100 1.000
a
= — ™
g 7 —— TDC
o < — TDRC
. GTD2
g © — GDD
T
© N
L o
=
=
Uo | s
o H T T T T
0 5000 15000
episode

o727

0.6

0.4

0.2

Empirical RMS error

0.0

0.001

0.4

Empirical RMS error
0.2

0.0

€n €n

= > .
1+e—1 7 1+supgsgex

0.010 0.100
a

1.000

0 5000 15000
episode

(A.13)
O]
56 © T
5 T |
= ° 2:\:'=‘*"~.. !
o 4™ Se |
R R
N« \ \ AN
2 o \\ \! *‘\
x | \ \ i
— X Vo
© \ \ |
QLo k ¥ !
= \\ % |
o A \ N
£ o
TR e
o T T T T T T T
0.001 0.010 0.100 1.000
a
’é i
O <
0o
=
o i
© N
L o]
=
S
T B S .
o T T T

0 5000 15000
episode

Figure 5: The random walk task with tabular representation. The setting is similar to Fig. [2| but the
performance is evaluated by the average error of all episodes, and « is tuned by minimizing the average error
of all episodes. Upper: Performance as a function of «; Lower: performance over episodes. From left to right:
state space size 10 (left), 20 (middle), or 40 (right).
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tuned for each algorithm by minimizing the average error of the last 100 episodes. Results are averaged over
50 runs, with error bars denoting standard error of the mean.
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m = 40. In each case « is tuned by by minimizing the average error of the last 100 episodes according to the
their performance of corresponding algorithms. Results are averaged over 50 runs, with error bars denoting
standard error of the mean.
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The state size is m = 20. Each state is represented by a p-dimensional feature vector with p = 5, corresponding

to m-state with m = 20. The p-dimensional representation for every fourth state from the start is [1,0,--- , 0]
for state s1, [0,1,0,---,0] for s5, ---, and [0,0,---,0,1] for state sspt1. The representations for the
intermediate states are obtained by linearly interpolating between these. The sequential states, Sy,---,Sn

are obtained by using the first m states above. Left: Performance as «; Right: performance over episodes.
The curves are averaged over 50 runs.
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Figure 11: The Boyan Chain task with linear approximation. The setting is similar to Fig. [3} but we evaluate
the performance the average error of all episodes, and « is tuned by minimizing the average error of all
episodes. Upper: Performance as a function of «; Lower: performance over episodes.
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