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Abstract
Federated learning (FL) is a popular collaborative
learning paradigm, whereby agents with individ-
ual datasets can jointly train an ML model. While
higher data sharing improves model accuracy and
leads to higher payoffs, it also raises costs as-
sociated with data acquisition or loss of privacy,
causing agents to be strategic about their data con-
tribution. This leads to undesirable behavior at
a Nash equilibrium (NE) such as free-riding, re-
sulting in sub-optimal fairness, data sharing, and
welfare. To address this, we design MShap, a
budget-balanced payment mechanism for FL, that
admits Nash equilibria under mild conditions, and
achieves reciprocal fairness: where each agent’s
payoff equals her contribution to the collaboration,
as measured by the Shapley share. In addition to
fairness, we show that the NE underMShap has
desirable guarantees in terms of accuracy, welfare,
and total data collected. We validate our theoret-
ical results through experiments, demonstrating
that MShap outperforms baselines in terms of
fairness and efficiency.

1. Introduction
Federated learning (FL) provides an effective distributed
learning paradigm where a group of agents holding local
data samples can train a joint machine learning model. The
paradigm has extensive applications, including autonomous
vehicles (Elbir et al., 2020) and digital healthcare (Dayan
et al., 2021; Xu et al., 2021a).

The success of federated learning hinges on the availability
of diverse, high-quality data from a variety of agents for
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effective training. However, data sharing is often costly due
to factors such as acquisition costs (Tu et al., 2022), compu-
tational expenses, and privacy concerns (Chen et al., 2020).
As a result, agents may act strategically and reduce their
data contributions, particularly if they bear high data shar-
ing costs. This can lead to undesirable outcomes in terms of
both fairness – where agents receive benefits disproportion-
ate to their data contributions – and efficiency – resulting
in low data sharing, reduced total welfare, and suboptimal
learning outcomes. To address these challenges, it is crucial
to design mechanisms for federated learning that incentivize
participation from strategic agents and also ensure fairness
and efficiency at stable solutions (like a Nash equilibrium).

To this end, (Karimireddy et al., 2022) introduce the data
sharing incentivization framework in FL, where each feder-
ating agent’s net utility can be measured as the difference
between the accuracy gained in the federation and the cost
of data-sharing, and the agents are strategic about data con-
tributions. (Karimireddy et al., 2022) then consider a mech-
anism based on contract theory, where each agent receives
a personalized model whose accuracy is tuned based on
data contribution of the agent to the training (data-share
maximizing mechanism). In a similar spirit, (Murhekar et al.,
2023) study a mechanism in the same framework with pay-
ments, where agents may be charged/rewarded with money,
such that any Nash equilibrium (NE) achieves the maximum
utilitarian welfare possible under the mechanism (welfare
maximizing mechanism). Observe that both the foregoing
guarantees at NE are efficiency guarantees: they ensure max-
imal data gain or maximal welfare gain out of the federation.

In this paper, we investigate mechanisms for FL, which
are fair in addition to being efficient. Our notion of fair-
ness is reciprocity: a mechanism is considered reciprocally
fair if each agent is guaranteed a “reciprocal” final utility
commensurate with her contribution to the learning process.
Naturally, a reciprocal mechanism incentivizes participation
from agents holding valuable data, which is in line with the
goals of a mechanism designer for FL. Empirical evidence
from behavioral economics (Fehr & Schmidt, 2006) further
shows that in contrast to the self-interest hypothesis1, users
seem to trust reciprocal mechanisms, especially in bargain-
ing and co-operative environments (like FL), and this trust

1Only material self-interest motivates all user participation
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can lead to large voluntary participation.

To formalize the foregoing statements in the context of FL,
we define the reciprocity of a mechanism as the minimum
over all Nash equilibria, the minimum over all agents, of the
ratio of the benefit that an agent receives from the mecha-
nism,2 and her contribution to the benefit (accuracy) of all
agents. In our work, we measure an agent’s contribution to
the total accuracy of all agents using the classical notion
of Shapley value (Shapley, 1953) from cooperative game
theory, as done in (Bhaskara et al., 2024; Wang et al., 2019;
Sim et al., 2020; Ghorbani & Zou, 2019; Agarwal et al.,
2019). We note that reciprocity r of any budget-balanced
mechanism lies in [0, 1], with higher r implying better fair-
ness. We observe that the efficiency-focused mechanisms
in (Karimireddy et al., 2022) and (Murhekar et al., 2023) are
not reciprocal (see Example 7 and Section 5), which brings
us to the driving question of the paper:

Are there reciprocal mechanisms that admit a Nash
equilibrium? Do the Nash equilibria also provide effi-
ciency guarantees in terms of total data contributed
(as in (Karimireddy et al., 2022)), and total welfare
achieved (as in (Murhekar et al., 2023))?

Our Contributions. We propose a budget-balanced mech-
anism for federated learning calledMShap, which is recip-
rocally fair and admits efficient Nash equilibria.

• MShap admits Nash equilibria, which can be computed ef-
ficiently through stochastic best response dynamics, under
mild assumptions on agents accuracy and cost functions.

• MShap is cost-agnostic, meaning it does not require
knowledge of each agent’s private data-sharing cost, thus
alleviating the burden of cost-verification for the central
server. Importantly, unlike previous cost-based payment
schemes like (Murhekar et al., 2023) that unfairly reward
agents with high-acquisition-cost and low-quality data,
MShap only rewards agents with high-quality data.

• MShap is fair: it is fully reciprocal, satisfies equal treat-
ment of equals, and is individually rational.

• Surprisingly, MShap admits efficient Nash equilibria
(NE), despite being designed for fairness. In particu-
lar, there is no other mechanism that simultaneously
Pareto-dominates the final data share and total welfare of
MShap. In other words, for every data share s that Pareto-
dominates the data share at an NE of MShap, the total
welfare at s will be strictly lower. Conversely, for every
data share s where the total welfare is greater than that
achieved at a NE ofMShap, there exists at least one agent
whose data share is strictly lower in s. We then define

2Since this is the benefit the mechanism provides, this excludes
the cost which is private to an agent

metrics to measure the efficiency of a mechanism, namely,
data gain and accuracy gain (formally defined in Sec. 3).
For structured payoff and cost functions used in the liter-
ature (Karimireddy et al., 2022; Murhekar et al., 2023),
we establish strong lower bounds (Ω(

√
n)) on the data

gain and accuracy gain ofMShap, which improve as the
number of agents n increases.

• We empirically evaluate our mechanisms on five datasets:
MNIST, FashionMNIST, CIFAR-10, Lumpy Skin Dis-
ease, and a synthetic quadratic regression dataset. We
compare the performance of the Nash equilibria ofMShap

and two baseline mechanisms – the mechanismM0 with-
out payments, and the welfare-maximizing mechanism
(Murhekar et al., 2023). Our mechanism outperforms in
metrics of reciprocity, data gain, accuracy gain, and total
welfare (see Table 1).

• We design a distributed FL protocol FedBR-Shap to
approximately compute the NE ofMShap. Unlike prior
work (Karimireddy et al., 2022; Murhekar et al., 2023),
our protocol relies exclusively on gradient information,
eliminating the need for sharing actual data points and
uses actual model accuracies instead of assuming a closed
form of accuracies, marking a departure from prior work.

Although our theoretical results apply broadly, our proposed
method is especially well suited to cross-silo federated learn-
ing (see (Zeng et al., 2022)), where only a moderate number
of clients participate in collaboration, and thereby Shapley-
value computations remain tractable.

1.1. Related Work

The subject of incentives in federated learning has received
substantial attention (see (Tu et al., 2022) for a detailed
survey) as the federating agents indeed have benefits and
costs (communication and computation (Tu et al., 2022),
privacy loss due to generative adversarial attacks (Chen
et al., 2020)). Several concepts from game theory (Stack-
elberg games (Khan et al., 2020; Pandey et al., 2019), non
co-operative games (Zou et al., 2019; Cheng et al., 2021),
auctions (Roy et al., 2021)) have been adopted for incentiviz-
ing participation in FL. We remark that rewarding agents
according to their contribution levels has been well moti-
vated and studied in FL (Wang et al., 2019; Sim et al., 2020;
Zhang et al., 2020; Yu et al., 2020). However, the crucial
difference is that our focus is to design a mechanism that
incentivizes strategic agents, i.e., agents who strategize their
data contributions based on the rewards they get from the
federation so that desirable fairness and welfare guarantees
are achieved at NE (in line with the works of (Karimireddy
et al., 2022; Murhekar et al., 2023) studying NE proper-
ties, and (Chen et al., 2023; Cai et al., 2014) incentivizing
the supply of high-quality data). In contrast, Chaudhury et
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al. (Chaudhury et al., 2022) assume non-strategic agents
who share their complete datasets, and under this setting
guarantee coalition stability.

The Shapley value (Shapley, 1953) is a well-studied con-
cept from cooperative game theory, used to distribute the
benefit of cooperation among participating agents. In feder-
ated learning, Shapley value has been used to measure the
contribution of participants (Wang et al., 2019; Xu et al.,
2021b), interpret models (Wang, 2019), value data (Wang
et al., 2020), and allocate profit (Song et al., 2019).

Finally, to illustrate practical payment mechanisms in FL,
we highlight blockchain-based approaches that reward par-
ticipants according to their individual contributions. Fed-
Coin (Liu et al., 2020) uses a proof-of-Shapley protocol,
while FedToken (Pandey et al., 2022) distributes tokens
based on performance. Both require an initial budget, unlike
our budget-balanced approach, which penalizes poor data
quality and rewards high-quality data. Also in IoT, BOppCL
(Li et al., 2024) incentivizes vehicles in intelligent trans-
portation systems, rewarding those with more useful data
via cryptocurrency.

2. Preliminaries
Problem formulation. We study the data-sharing incen-
tivization framework introduced by (Karimireddy et al.,
2022). There is a set N = [n] of n agents who wish to
solve a learning problem by training a joint model, and
a central server that coordinates among them. Agent i
transmits a set Ti ∼ Dsi

i of si i.i.d. data points sampled
from the distribution Di of data samples available to i. Let
Si = [0, τi] denote the set of feasible number of samples
agent i can contribute, and let S :=×j

Sj . For a sample vec-
tor s = (s1, s2, . . . , sn) ∈ S specifying the data contribu-
tions of the agents, the central server returns a model trained
using the data set

⋃
i Ti, which has size ∥s∥1 =

∑
i si.

Every agent receives a payoff or benefit from federation as
well as incurs a cost of sharing data samples. We measure
the payoff to agent i from the jointly trained model using a
payoff function ai : S → R≥0. Generally, we assume the
payoff ai(s) represents the accuracy of the jointly trained
model at the contribution level s on agent i’s learning task.
However, our model allows for more general payoff func-
tions. Moreover, each agent i incurs a cost associated with
data sharing modeled using a cost function ci : Si → R≥0.
Thus, each agent obtains a utility ui(s) at sample vector s
given by the difference between the payoff received and the
cost incurred, i.e.,

ui(s) = ai(s)− ci(si). (1)

We now discuss some canonical examples and properties of
the payoff and cost functions.

2.1. Payoff and cost functions: examples and properties

Payoff functions. We assume that each payoff function ai
is bounded, non-decreasing and concave in the contribution
of all agents. This is a standard assumption in literature
(Blum et al., 2021; Karimireddy et al., 2022; Murhekar
et al., 2023), and captures decreasing marginal returns on
increased data sharing. Below we present canonical exam-
ples of payoff functions in common learning frameworks
that satisfy the above assumptions.
Example 1 (Generalization bounds from general PAC
learning (Mohri et al., 2018)). Consider a general learn-
ing problem of learning a model h from a hypothesis
class H which minimizes the expected error R(h) =
E(x,y)∈De(h(x), y) over a data distribution D, for some
loss function e(·). Given m i.i.d. samples from D, the
empirical risk minimizer (ERM) is the model hm =
argminh∈H

∑
ℓ∈[m] e(h(xℓ), yℓ). (Mohri et al., 2018)

prove that with high probability, the error of hm is bounded:

1−R(hm) ≥ a(m) := a0 −
4 +

√
2k(2 + log(m/k))√

m
,

(2)
where (1−a0) is the accuracy of the optimal model fromH,
and k is a (constant) measure of the difficulty of the learning
problem depending on e(·) andH.

In fact, there are other examples like linear, random discov-
ery, and random coverage based accuracy functions (Blum
et al., 2021) that also satisfy our desired criterion, and they
are discussed in more detail in Appendix B.

Example 2 (Empirical evidence). (Kaplan et al., 2020) and
(Henighan et al., 2020) discuss empirical scaling laws re-
lating to cross-entropy loss on neural and large-language
models for a number of ML tasks relating to language, im-
age, and video. They observe that the loss scales with the
dataset size m as a power law ℓ(m) = α ·m−β , for some
parameters α, β ∈ (0, 1].

The above examples indicate the dependence of the accuracy
a(m) on a learning task given m data points varies as 1−
α ·m−β , both in theory and in practice.

Cost functions. We assume that each cost function ci is
continuous, non-decreasing, and convex in si. This is also a
standard assumption (Blum et al., 2021; Karimireddy et al.,
2022; Murhekar et al., 2023), and captures non-decreasing
marginal costs (Li & Raghunathan, 2014).

2.2. Nash Equilibrium

Recall from Equation (1) that the net utility of agent i is the
difference between the payoff received and the cost incurred,
i.e., ui(s) = ai(s)−ci(si). Since agents are net-utility max-
imizers, the goal of an agent is to strategically decide how
many samples to contribute so that her net utility is max-
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imized. To analyze agent strategic behavior arising in FL,
we use the standard game-theoretic concept of Nash equi-
librium ((Nash, 1951)). Intuitively, the NE is a stable state
of the system where no agent can increase their utility by
unilaterally changing their data contribution level. Formally:

Definition 2.1 (Nash equilibrium (NE)). A sample vector
s ∈ S is a Nash equilibrium if for every i ∈ N , and every
s′i ∈ Si, we have ui(s) ≥ ui(s

′
i, s−i) where (s′i, s−i) =

(s1, . . . , s
′
i, . . . , sn).

The concept of best response provides an alternate, dynamic
view of Nash equilibrium. Facing the sample vector s−i of
agents other than i, the set fi(s−i) of contribution levels
of agent i that maximizes her utility is defined as the best
response set of agent i:

fi(s−i) = argmax
x∈Si

{
ai(x, s−i)− ci(x)

}
⊆ Si.

The best response correspondence f is the set-valued func-
tion given by f : S →×i

2Si , where [f(s)]i = fi(s−i).
Thus, Nash equilibria are fixed points of this correspondence.

Proposition 2.2. A sample vector s ∈ S is a Nash equi-
librium if and only if it is a fixed point of the best response
correspondence, i.e., s ∈ f(s).

(Murhekar et al., 2023) proved that an FL problem admits a
NE with concave payoffs and convex costs, but not without
these assumptions.

2.3. Shapley value

The Shapley value (Shapley, 1953) is a classic solution
concept from cooperative game theory that specifies a fair
way of distributing the surplus generated in a cooperative
game. We adapt this concept in the federated learning con-
text as follows. The total surplus generated at a sample
vector s is the cumulative payoff to all agents given by
A(s) :=

∑n
i=1 ai(s). Let s[X] denote the sample vector

restricted to agents in X , i.e., s[X] is the vector s′ given
by s′i = si for i ∈ X and s′i = 0 for i /∈ X . To mea-
sure the “contribution” of agent i to A(s), we compute for
every coalition X ⊆ N \ {i} of agents the marginal gain
A(s[X ∪ {i}]) − A(s[X]) of adding i to X , and average
it over all ways of forming the coalition. This represents
the Shapley value of federation φA

i (s) at s, and is formally
expressed as:

φA
i (s) =

1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
(
A(s[X∪{i}])−A(s[X])

)
(3)

The following lemma (adapted from the well-known prop-
erties of Shapley values) shows that the Shapley values

distribute the cumulative payoff (see Appendix C).

Lemma 2.3. For any s ∈ S, A(s) =
∑

i∈N φA
i (s).

3. Mechanisms and Metrics for FL
Since NE is an intuitive and well-established solution con-
cept that is guaranteed to exist, it is natural to examine the
properties of a NE in the context of federated learning.

Example 3. Consider two agents with identical payoff func-
tion a(s) = 1 − (∥s∥1 + 1)−1 and linear cost functions
given by c1(s1) = 0.1s1 and c2(s2) = 0.25s2. The only
NE is given by s0 = (2.16, 0).

The above example shows that NE can be quite far from
desirable: at NE, only agent 1 contributes data samples while
agent 2 does not contribute at all and free-rides. Similar
examples illustrate that NE can be far from optimal in terms
of fairness, overall data shared (Blum et al., 2021), and
overall agent welfare (Murhekar et al., 2023), all of which
are part of the desiderata for federated learning solutions.
To address some of these issues, prior works (e.g. (Blum
et al., 2021; Murhekar et al., 2023)) studied mechanisms for
FL that incentivize agents to contribute more data or admit
NE with good welfare. Like (Murhekar et al., 2023), our
work focuses on mechanisms with payments, formalized as
follows.

Definition 3.1 (Mechanisms with payments). A mechanism
M models the interaction between the central server and
the participating agents. First, the server publishes the mech-
anism by specifying a payment scheme p which indicates
the payment pi(s) to each agent i at the sample vector s.
Second, the agents observe the mechanism, decide their data
contribution levels {si}i∈N individually, and transmit the
data to the server. Third, the server computes and returns a
model trained on data contributed by all agents at the sample
vector s, and returns the payment pi(s) to each agent i3.

Thus, under a mechanismM with payment scheme p, the
resulting utility of an agent i ∈ N is given by ui(s) =
ai(s)− ci(si) + pi(s).

A mechanism is said to weakly balance its budget if the total
payment to the agents is not positive. A stronger condition is
budget-balance, which requires that the total payment to the
agents is zero, i.e., the central server operates on no profit
or loss.

Definition 3.2 (Budget-balanced mechanism). A mecha-
nism is said to be weakly budget-balanced if for every s ∈ S ,∑

i∈N pi(s) ≤ 0. If the latter is an equality, then the mech-
anism is budget-balanced.

3Note that if pi(s) < 0, agent i must pay the server. We can
enforce this by transmitting the model only after receiving payment
from the agent. Thus for simplicity, we assume agent i can only
strategize on si.
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We now define some fairness and efficiency metrics to mea-
sure the quality of a mechanismM and its set of NE denoted
by NE(M). Naturally, we are only interested in mechanisms
that admit a NE.

3.1. Metrics to Evaluate FL Mechanisms

Individual rationality. A mechanismM is said to be indi-
vidually rational if every agent gets non-negative utility at
its NE, i.e., for all s ∈ NE(M), for all i, ui(s) ≥ 0. Thus,
no agent can receive a negative utility by participating in an
individually rational mechanism.

Fairness metrics. By participating in the mechanism, each
agent contributes towards the benefit of other agents while
also reaping benefits from others. At a sample vector s, the
contribution of an agent i from the mechanism is ai(s) +
pi(s) while the contribution to the mechanism is φA

i (s). The
following fairness metric, termed Reciprocity, measures the
degree to which the worst NE of a mechanism reciprocates
the contribution of any agent.

Definition 3.3 (Reciprocity of a mechanism). The reci-
procity of a mechanismM is defined as:

Reciprocity(M) = min
s∈NE(M)

min
i∈N

ai(s) + pi(s)

φA
i (s)

. (4)

Thus, a mechanism M with reciprocity r < 1 has some
NE s ∈ NE(M) that reciprocates some agent i less than
her contribution at s, i.e., is unfair. On the other hand, r >
1 implies that every NE reciprocates every agent strictly
more than they contribute. The following lemma proves
the intuitive fact that such a mechanism must make a total
positive payment to the agents.

Lemma 3.4. Any mechanismM satisfying weak budget-
balance cannot have Reciprocity(M) > 1.

We note that r = 1 implies that every NE of the mechanism
reciprocates an agent exactly as much as their contribution.
We refer to such ‘truly fair’ mechanisms as fully reciprocal
(or just reciprocal for convenience). Lemma 3.4 shows that
reciprocal mechanisms are the best one can aim for in terms
of fairness among weakly budget-balanced mechanisms.

We now define a second fairness notion in the FL setting in-
spired by the fairness principle of equal treatment of equals
(Moulin, 2002).

Definition 3.5 (Equal treatment of equals). MechanismM
satisfies equal treatment of equal contributors if for any
sample vector s and two identical agents i and j, pi(s) =
pj(s).

Efficiency metrics. We define two natural metrics to eval-
uate the efficiency of a mechanism for federated learning.
While fairness is a local property and can be evaluated at

a solution, efficiency is a global property measuring aggre-
gate quantities (like total payoff or data shared) and must
be contrasted against an appropriate baseline. Our metrics
compare the NE of a mechanismM against the NE of the
baseline mechanismM0 in the absence of payments. That
is, pi(s) = 0 for all i ∈ N, s ∈ S for the mechanismM0.

The first metric, called DataGain, compares the total quan-
tity of data shared in the worst NE ofM to the total quantity
of data shared in the best NE of the baselineM0.

Definition 3.6 (Data Gain of a mechanism). The data gain
of a mechanismM is defined as:

DataGain(M) =

min
s∈NE(M)

∥s∥1

max
s0∈NE(M0)

∥s0∥1
. (5)

In a similar spirit, we define a metric AccGain to compare
the cumulative payoff/accuracy of agents in a mechanism
as compared to the baseline.

Definition 3.7 (Accuracy Gain of a mechanism). The accu-
racy gain of a mechanismM is defined as:

AccGain(M) =

min
s∈NE(M)

∑n
i=1 ai(s)

max
s0∈NE(M0)

∑n
i=1 ai(s

0)
. (6)

4.MShap: A Fair and Efficient FL Mechanism
Recall from Example 3 that NE ofM0 in the absence of
payments can force a single agent to contribute data sam-
ples while other agents are free-riding. Therefore, we seek
mechanisms that admit a NE and are both fair and efficient.
Towards this goal, we present a mechanismMShap based
on the Shapley value of FL.

Definition 4.1 (MechanismMShap). MShap is the mecha-
nism with the payment scheme p given by

pi(s) = φA
i (s)− ai(s), for any i ∈ N, s ∈ S. (7)

Note that φA
i (s) is the contribution of agent i towards the

cumulative payoff of the agents, while ai(s) is her payoff at
the sample vector s. Therefore, the above payment scheme
can be interpreted as a fair compensation scheme: if an agent
i contributes more than what she gets as a payoff, then she
is compensated via a subsidy; conversely, if her contribution
is less than her payoff, she is charged via a tax.

Cost-agnostic nature ofMShap. In contrast to the mecha-
nisms in (Karimireddy et al., 2022; Murhekar et al., 2023),
MShap is cost-agnostic since it does not require knowledge
of the agent cost functions. This feature offers a practical
advantage: the central server (or other agents) does not need
knowledge of an agent’s cost function, which can some-
times prove difficult for third-parties to estimate or verify
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in practice. Moreover, since the payment only depends on
the actual contribution of agents to the cumulative payoff,
no agent can gain by misreporting their cost functions, i.e.,
claiming they have a higher data collection cost than actual.

Mechanisms that attempt to compensate agents with high
acquisition costs and low data quality (e.g. the mechanism
of (Murhekar et al., 2023)) may unfairly penalize agents
with high data quality and lower acquisition costs. In con-
trast, our mechanismMShap ensures that high-quality, high-
acquisition-cost data is still incentivized for sharing, as the
agent’s payment will compensate their data sharing costs.
However, MShap will not incentive agents with low data
quality and high acquisition costs to share their data.

By construction, the server operates on a no profit or loss in
our mechanismMShap (proof in Appendix D).

Lemma 4.2. The mechanismMShap is budget-balanced.

4.1. Nash equilibria ofMShap: Existence

We now prove thatMShap admits a Nash equilibrium under
standard assumptions on the utility functions as in Sec. 2.1.

Theorem 4.3. In any federated learning instance where for
every agent i ∈ N the payoff function ai(s) is concave in s,
and cost function ci is non-decreasing and convex in si, the
mechanismMShap admits a Nash equilibrium.

Proof Sketch. The key idea is to prove that for a fixed s−i,
ui(si, s−i) = φA

i (si, s−i) − ci(si) is concave in si. This
uses the concavity of payoffs ai and the convexity of costs
ci. Therefore, the best response set fi(s−i) is a non-empty
interval, and hence that f is convex valued. Lastly, the con-
tinuity of ui in s implies the upper semi-continuity of f .
Then Kakutani’s fixed point theorem implies that f admits a
fixed point, which then corresponds to a NE ofMShap. The
detailed proof can be viewed in Appendix D.

Implications. Theorem 4.3 shows that our mechanism
MShap always admits a NE, i.e., stable-state of data contri-
bution levels, as long as agent payoffs are concave and costs
are convex. These mild assumptions are commonly satis-
fied in practice, e.g. for all our motivating examples from
Section 2.1. In the absence of this assumption, a NE is not
guaranteed to exist even without any payments (Murhekar
et al., 2023).

To illustrate how our mechanism circumvents free-riding
by reciprocally sharing profits of collaboration, we revisit
the setting of Example 3 and examine the NE underMShap.
As shown below, we observe that all agents contribute data
samples in the NE ofMShap as opposed to the NE ofM0.
Example 4. Consider two agents with identical payoff func-
tions a(s) = 1 − (∥s∥1 + 1)−1, and linear costs given by
c1(s1) = 0.1s1 and c2(s2) = 0.25s2. Recall that the NE of
M0 is given by s0 = (2.16, 0) where agent 2 free-rides.

On the other hand, the NE ofMShap is s∗ = (3, 1.17). Thus
both agents contribute at the NE inMShap and in fact s∗

Pareto-dominates s0. Moreover, almost twice the amount of
data is shared in the NE ofMShap as compared toM0.

4.2. Nash equilibria ofMShap: Best-Response Dynamics

We next turn to the question of computing the NE ofMShap.
For FL instances with strongly concave utility functions, it
is known from prior work (Murhekar et al., 2023) that NE
can be computed by following intuitive best-response (BR)
dynamics. The dynamics begins with an initial sample vector
s0. In step t with sample vector st, each agent i updates her
sample contribution proportional to the gradient ∇iui(s

t)
in the direction of increasing utility, while ensuring that the
resulting vector st+1 lies in the feasible region S . Formally,
for a step size δt > 0, the update in step t is:

st+1 = st + δt · g(st,µt), (8)

where g(st,µt) := ∇u(st) + µt for a specific choice of
vector µt which ensures that st+1 ∈ S, given by:

µt
i =


−∇iui(s

t)− sti
δt , if sti + δt · ∇iui(s

t) < 0

−∇iui(s
t) +

τi−sti
δt , if sti + δt · ∇iui(s

t) > τi,

0, otherwise.
(9)

(Murhekar et al., 2023) show that for strongly concave utili-
ties, the above BR dynamics converges to an ε-approximate
NE in O(log

(
ε−1
)
) iterations.

In this section, we prove a stronger result: the convergence
of stochastic best-response dynamics when utility functions
are strongly concave. In stochastic BR, in each step t, we
randomly sample a set Rt of size k and perform BR dy-
namics only for agents in Rt, for some fixed k ∈ [n]. With
g(st,µt) defined as above, we define f(st,µt, Rt) ∈ Rn

as the random vector given by:

f(st,µt, Rt)i =

{
g(st,µt)i if i ∈ Rt,

0, otherwise.
(10)

Then, for a step size δt, the stochastic BR update is:

st+1 = st + δt · f(st,µt, Rt). (11)

Theorem 4.4. For a concave game where agent utility func-
tions are (i) λ-strongly concave: (G+ λ · In×n) is negative
semi-definite, and (ii) L-bounded derivatives: |Gij | ≤ L,
for constants λ, L > 0, stochastic best response dynamics
(11) with step size δt = n−1

k−1 ·
λ

n2L2 converges to an approx-
imate Nash equilibrium sT where ∥g(sT ,µT )∥2 < ε in T
iterations, where:

T =
2n2L2

λ2
log

(
∥g(s0,µ0)∥2

ε

)
.
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The proof is deferred to App. D. Finally, we show that
MShap does satisfy conditions of Theorem 4.4, proving that
its NE can be computed via stochastic BR dynamics.

Lemma 4.5. For a federated learning instance where agent
(i) payoff functions are λ1-strongly concave and cost func-
tions are λ2-strongly concave, and (ii) second derivatives
of payoffs and costs are bounded: | ∂2ai

∂sj∂sk
| ≤ L1 and

| ∂
2ci

∂2si
| ≤ L2, for constants λ1, λ2, L1, L2 > 0, stochas-

tic best response dynamics (11) with step size δt = n−1
k−1 ·

nλ1+λ2

n2(2nL1+L2)2
converges to an approximate Nash equilib-

rium sT where ∥g(sT ,µT )∥2 < ε in T iterations, where:

T =
2n2 · (2nL1 + L2)

2

(nλ1 + λ2)2
log

(
∥g(s0,µ0)∥2

ε

)

Implications of Theorem 4.4 and Lemma 4.5. The above
results show that stochastic BR dynamics convergences
for strongly concave games in O(log

(
ε−1
)
) iterations with

an ε-approximate NE. Indeed, we employ stochastic BR
dynamics to compute NE ofMShap in our experiments (see
Section 5.2). Note that the payoff and cost functions defined
by generalization bounds (Equation (2)) and those observed
in practice (Equation (12)) satisfy the assumptions of results.

4.3. Fairness and Efficiency Properties ofMShap

We now establish desirable properties of our mechanism
MShap, focusing on individual rationality, fairness, and ef-
ficiency. We defer proofs to Appendix D due to space con-
straints and highlight the key implications of our results.

Lemma 4.6. MShap is individually rational.

This shows that no agent will receive a negative utility by
participating in our mechanism. Next, we show thatMShap

satisfies the fairness principles outlined in Def. 3.3 and 3.5.

Theorem 4.7. MShap satisfies Reciprocity(MShap) = 1,
i.e., is fully reciprocal. Moreover, MShap satisfies equal
treatment of equals.

Therefore,MShap ensures that every agent receives as much
from the mechanism as their contribution to other agents.

Having shown thatMShap is reciprocally fair, we next inves-
tigate its efficiency properties in terms of data contributions,
welfare, and accuracy. We first prove a general tradeoff be-
tween the data contribution and overall welfare (i.e., total
accuracy minus costs) at the NE of our mechanismMShap

as compared to any other sample vector.

Theorem 4.8. Let W (s) = A(s) −
∑

i∈[n] ci(si) denote
the total welfare of the agents, and let s∗ ∈ NE(MShap).
Consider any data contribution vector s that weakly Pareto-
dominates s∗, i.e., si ≥ s∗i for all i. Then W (s) < W (s∗).

Implications. Theorem 4.8 allows us to compare any sam-
ple vector s (e.g. the NE of some mechanismM) with the
NE s∗ of our mechanismMShap in terms of data contribu-
tions and utilitarian welfare. In particular:

1. If all agents share equal or strictly higher data in s than
s∗, then the welfare satisfies W (s) < W (s∗). Thus,
there is no mechanismM in whose NE agents contribute
at least as much data as they would in the NE ofMShap,
while also achieving higher welfare.

2. Conversely, if W (s) ≥W (s∗), then s does not weakly
Pareto-dominate s∗. Thus, any mechanismMwhose NE
achieves higher welfare than the NE ofMShap, will nec-
essarily have at least one agent who contributes strictly
less data at the NE ofM than at the NE ofMShap.

Theorem 4.8 thus underscores that our reciprocal mecha-
nismMShap exhibits favorable properties in terms of both
data contribution at equilibrium (in the spirit of the mech-
anism of (Karimireddy et al., 2022)), and welfare (in the
spirit of the mechanism of (Murhekar et al., 2023)).

We further formalize this by explicitly quantifying the data
gain and accuracy gain ofMShap when the accuracy func-
tions are identical and take a tractable form, and costs are
(possibly different, but) linear. Examples 1 and 2 indicate
that the accuracy a(m) on a learning task with m data points
varies as a(m) = 1 − α ·m−β for α, β ∈ (0, 1]. This mo-
tivates us to assume the following canonical form for the
accuracy a(s) of an agent i as a function of the contribution
vector s.

a(s) = 1− α

(∥s∥1 + 1)β
. (12)

Note that the normalization ensures that a(·) is concave, and
a(s) ∈ [0, 1] for all s ∈ S.

Theorem 4.9. Consider any FL instance with n agents
where agents have (i) identical payoff function a(s) = 1−
α · (∥s∥1 + 1)−β for α > 0 and β ∈ (0, 1], and (ii) linear
cost functions ci(si) = γi · si + di for γi, di ≥ 0. Then
MShap satisfies:

(i) DataGain(MShap) ≥ n
1

β+1 , and

(ii) AccGain(MShap) ≥ 1+α
1

β+1 · β
−β
β+1 · (mini γi)

β
β+1 ·(

1− n− β
1+β
)
.

Implications. The above theorem establishes lower bounds
on aggregate quantities (total amount of data shared and
cumulative payoff) in any NE of our mechanism MShap

compared to any NE in the absence of payments. We note
that the gain in total data shared is at least n

1
β+1 , which

is at least
√
n since β ∈ (0, 1]. This establishes that the

gain in data shared increases with the number of agents n

7



You Get What You Give: Reciprocally Fair Federated Learning

joining the federation, which is the natural expectation from
mechanisms for FL. Likewise, we observe that the gain in
cumulative payoff is strictly more than 1, and increases with
an increasing number of agents.

The assumptions of linear costs and identical payoffs with
forms similar to Eq. (12) are standard in prior works (Blum
et al., 2021; Karimireddy et al., 2022; Murhekar et al., 2023).
In our experiments (Sec. 5), we observe thatMShap outper-
forms other mechanisms in terms of data gain, accuracy
gain, and reciprocity, even without making any assumption
on payoff functions taking a particular form, e.g., (12).

5. Empirical Evaluation
In this section, we compare the performance of our mecha-
nismMShap with two baselines M0 andMBG (Murhekar
et al., 2023) tailored to maximize welfare. In Sec 5.1, we
compare the performance of the NEs found by the best
response dynamics of the three mechanisms when the accu-
racy and cost functions are given as closed-form functions.
In Sec 5.2, we provide a practical distributed FL protocol
FedBR-Shap to approximately find an NE.

Datasets and local training. We evaluate the mecha-
nisms on five datasets, including three image-based datasets:
MNIST, FashionMNIST, and CIFAR-10, a healthcare
dataset (Afshari Safavi, 2021), and a synthetic dataset. A
simple CNN network is used for the local training for
MNIST and FashionMNIST, and ResNet-10 (He et al.,
2016) is used for CIFAR-10. We use ResMLP (Touvron
et al., 2022) for local training of the healthcare dataset,
which contains meteorological and geospatial features re-
lated to Lumpy Skin Disease. In addition, we create a syn-
thetic binary classification dataset with 10 input variables
and perform a quadratic regression.

5.1. Performance of Nash Equilibria

In this part, we implement the best response dynamics (as
described in Sec 4.2) for the three mechanisms and compare
the performance of the NE found by best response dynamics.

Setup. We set the number of agents as 30 for the three
image-based datasets (MNIST, FashionMNIST, and CIFAR-
10) and randomly sample 10 agents to update their shares
in each iteration. For the remaining two datasets, we set
the number of agents to two and perform no sampling. We
adopt the statistical heterogeneous setting: the datasets of the
agents are Non-Independent Identically Distributed (Non-
IID) (Ye et al., 2023). We partition all the agents into T
groups. Denote the agents in the t-th group by At. In the
three image-based datasets, the agents are equally parti-
tioned into three groups (i.e., T = 3), each of which con-
tains 10 agents. The images of the three groups are rotated

by particular angles 10◦, 90◦, and 180◦, respectively. For
the other two datasets, we set the dataset of one agent to
consist of 70% positive data points and 30% negative data
points, and the other agent vice versa.

Interpretation of sample vector s. We note that, in our
implementation, unlike the model described in Sec. 2, we do
not ask agents to transmit data to the central server. Instead,
agents perform training locally and only transmit the gra-
dient information to the central server. Hence, the number
of data samples si is interpreted as the number of batches
trained by agent i during each local training.

Closed-form accuracy and cost. We assume the accuracy
function of an agent in the i-th group is in the form of

ai(s) = 1− 1

1 +
∑T

t=1 wi,t ·
∑

j∈At
sj

, i ∈ [T ] .

Before running the best-response dynamics, we randomly
sample a number of data points from each group and per-
form a normal federated training without strategic behaviors.
After collecting a set of accuracy results, we fit the accuracy
functions using the non-linear least squares method. After
that, we assume the central server broadcasts all the param-
eters {wi,t}i,t∈[T ] to all agents. Meanwhile, each agent is
assumed to incur a linear cost: ci(s) = γi · si, where γi is
set randomly in advance.

Based on the closed-form utility function, each agent can
(approximately) compute the derivatives of the Shapley
share at a specific sample vector s. Note that our mech-
anism requires that all agents operate with a synchronized
sample vector. In a cross-silo FL setting, where the number
of participating clients is relatively small, this synchroniza-
tion overhead is practical. For the case of n = 30 agents, the
agents perform the Monte-Carlo approximation by randomly
sampling ⌊n log n⌋ = 102 permutations and computing the
average. In contrast, for two agents, we directly compute
the exact derivative of the Shapley value. We duplicate each
experiment 3 times, and the appropriateness of the number
of sampled permutations is supported by the low standard
deviation of the reported results.

Experimental results. Table 1 reports the performance of
the NEs ofMShap and the two baseline mechanisms. The
tables report the model accuracy, welfare, data gain, and the
reciprocity of the mechanisms. The “Avg Accuracy” column
reports the average accuracy of the final model evaluated
on all agents’ test datasets. It is worth noting that Table 1
reports the actual accuracies of the models trained using the
data contributions at NE. The “Data Share” column shows
the ratio of shared data to total data. For the two columns
“Data Gain” and “Accuracy Gain”, we report the relative
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Table 1. Performance of the NEs of MShap and the two baselines M0 and MBG.

Dataset Avg. Accuracy (%) Data Share (%) Data Gain Accuracy Gain Reciprocity
M0 MBG MShap M0 MBG MShap M0 MBG MShap M0 MBG MShap M0 MBG MShap

MNIST 88.3 87.6 90.4 5.8 7.6 54.9 1.00 1.32 9.51 1.00 0.99 1.02 0.61 0.70 1.00
FashionMNIST 60.9 61.5 63.3 4.1 6.2 54.8 1.00 1.51 13.43 1.00 1.02 1.05 0.47 0.75 1.00
CIFAR-10 43.6 44.7 48.5 25.6 28.9 99.6 1.00 1.13 3.89 1.00 1.02 1.11 0.50 0.57 1.00
Lumpy-Skin-Disease 94.2 94.0 95.2 46.7 46.7 81.3 1.00 1.00 1.73 1.00 0.98 1.01 0.92 0.02 1.00
Quadratic 67.2 65.8 90.8 3.3 4.0 99.6 1.00 1.25 31.18 1.00 0.98 1.36 0.93 0.95 1.00

values of data share and accuracy compared to the baseline
mechanismM0.

Our results demonstrate that our mechanismMShap outper-
forms baselines in terms of both fairness and efficiency.

• MShap significantly incentivizes agents to contribute
more data compared to both baselines, as evidenced by
a 9.51× data gain for MNIST, a 13.43× data gain for
FashionMNIST, and a 3.89× data gain for the CIFAR-
10. FedBR-Shap also outperforms baselines in terms of
accuracy, reporting an accuracy gain of 1.02× to 1.11×
for the three image-based datasets. The accuracy gain is
extremely high (1.36×) in the synthetic dataset.

• We observe that the reciprocity of the baselines is strictly
lower than 1, indicating that they force some agents to
contribute more to the federation than what they receive.
MShap is fairer as it is always fully reciprocal.

• Our mechanismMShap guarantees reciprocal fairness in
more practically meaningful scenarios. In the skin disease
prediction task, the first agent possesses a large number of
positive (i.e., disease-present) patient samples, which are
expected to be more informative for the prediction task.
The fitted accuracy functions in Sec E also reflect this.

Observe that, in the NEs of the two baselines, agent 1
even needs to share more data than the second agent (who
possesses lower-quality data): the NEs inM0 andMBG

are respectively (30.5%, 18.1%) and (30.6%, 18.1%). In
contrast, inMShap, the NE is (38.1%, 55.4%), indicating
that agent 2 should contribute more than agent 1 in the
NE. The finding also highlights the reciprocal fairness
ensured byMShap.

5.2. FedBR-Shap: FL Protocol forMShap

Note that the above computation of NE relies on known
closed-form accuracy functions. Unfortunately, a closed-
form accuracy function may not always be possible, espe-
cially when the information about the agents’ dataset is
inaccessible. Moreover, another restriction of the above im-
plementation is assuming agents are always training on fixed
number of batches throughout the learning process. How-
ever, an agent may not always follow a static strategy in real
training and can adjust it strategically based on the current

model. For example, an agent may skip local training if the
current model is already good enough for her.

To address the limitations mentioned above, we design a
distributed FL protocol, FedBR-Shap, which implements
MShap in practice and approximately computes NE in more
realistic scenarios. FedBR-Shap computes NE while si-
multaneously training a global model for the underlying FL
task. FedBR-Shap runs for T iterations. In each iteration,
the central server updates the global model, and a set of
agents updates their sample vectors according to the transi-
tion relation (Equation (8)) of best response dynamics. The
update differs from the previous approaches as follows:

• The central server gives payments to the agents at the
end of every iteration. Each agent i is allowed to change
the number of samples si during the training. The pay-
ment followsMShap according to their contribution to the
accuracy improvement for the current iteration.

• There are no publicly known closed-form accuracy func-
tions. Instead, at iteration t, each agent i ∈ [n] locally
trains two models Ti and T ϵ

i using sti and sti + ϵ batches
of its local dataset. The central server updates its global
model θt−1 to θt using all the Ti. In addition, it aggregates
a set of intermediate models using subsets of Ti and T ϵ

i .
The central server then distributes the intermediate mod-
els to the agents, which enables them to approximately
estimate the derivative of the utility function and update
their samples correspondingly.

We emphasize that FedBR-Shap is a truly distributed pro-
tocol for FL, as it does not involve actual data sharing, only
relies on the gradients of each agent’s local datasets, and
does not make any assumptions about accuracy functions
obeying a closed-form expression. This is unlike prior im-
plementations of mechanisms for FL (e.g., Sec. 5.1, (Karim-
ireddy et al., 2022; Murhekar et al., 2023)). Moreover,
FedBR-Shap does not merely calculate a single NE. We
take an observation window size W and treat the sample
vector collected over every W iterations as the NE for that
stage. We defer the complete description and pseudo-codes
of FedBR-Shap to Appendix F.
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A. Discussion and Conclusion
Our goal in this work is to address issues of fairness, efficiency, and data-sharing incentives faced by agents participating in
federated learning who incur data-sharing costs. We propose a budget-balanced, reciprocally fair mechanism for federated
learning, in which agents are incentivized via payments that reflect their ‘contribution’ to the federation. We defined natural
metrics called data gain and accuracy gain to measure the efficiency of mechanisms for FL. We proved that our mechanism
achieves significant gains for specialized forms of utility functions and substantiated this empirically.

Our work leaves several directions for future work. The first direction is establishing theoretical lower bounds on the
data gain for a wider class of utility functions. Another direction is to further explore the trade-off between fairness and
efficiency, by designing r-reciprocal mechanisms for r < 1 that achieve provably higher data gain. Lastly, investigating
other profit-sharing methods instead of the Shapley share is another direction towards fair mechanism design for FL.

B. Examples
Example 5 (Linear or Random discovery (Blum et al., 2021)). Consider a setting where each agent has a sampling probability
distribution qi over a given instance space X and gets a reward equalling qix whenever the instance x is sampled by any
agent. Then the expected payoff to agent i is ai(s) = (QQTs)i, where Q is a matrix given by Q[i, x] = qix for i ∈ N and
x ∈ X . Here W = QQT is a symmetric PSD matrix with an all-one diagonal. Thus in this model, the payoff is linear in the
sample vector and is given by ai(s) = (Ws)i for a matrix W .

Example 6 (Random coverage (Blum et al., 2021)). Consider a modification of the setting in Example 5 where agent i
obtains the reward qix only once if x is sampled. Thus in this model, the payoff given by expected accuracy takes the form:

ai(s) = 1− 1

2

∑
x∈X

qix

n∏
j=1

(1− qjx)
sj ∈ [0, 1]. (13)

Example 7. Consider two agents with identical payoff functions a(s) = 1− (∥s∥1 + 1)−1, and linear cost functions given
by c1(s1) = 0.1s1 and c2(s2) = 0.25s2. Independently, the optimal contributions of the agents are s01 = 2.16 and s02 = 1
respectively.

According to the mechanism of (Karimireddy et al., 2022), the NE contribution (s1, s2) satisfies:

1− 1

s1 + s2 + 1
= 1− 1

s01 + 1
+ (0.1 + ε) · (s1 − s01),

1− 1

s1 + s2 + 1
= 1− 1

s02 + 1
+ (0.25 + ε) · (s2 − s02),

where ε → 0. This leads to an NE given by s = (3.98, 2.46). At s, the Shapley shares are φA
1 (s) = 0.9538 and

φA
2 (s) = 0.7772, while the payoff is a(s) = 0.8656. This the reciprocity of the mechanism is 0.8656

0.9538 = 0.9 < 1, i.e., the
mechanism forces agent 1 to contribute more than she gets from the mechanism.

C. Proofs from Section 2
Lemma 2.3. For any s ∈ S, A(s) =

∑
i∈N φA

i (s).

Proof. Consider the summation of φA
i (s). For each subset X ⊆ [n], if X is non-empty and X ̸= [n], A(s[X]) occurs in the

first terms of all the ϕA
i (s) for |X| times. Besides, it occurs in the second terms of all the ϕA

i (s) for n− |X| times. Hence,
the coefficient of A(s[X]) is given by

1

n
·

(
|X| ·

(
n− 1

|X| − 1

)−1

− (n− |X|) ·
(
n− 1

|X|

)−1
)
,

which is equal to zero. Besides, when X = [n], it only occurs at the second terms of φA
i (s). The coefficient of A(s[[n]]) =

A(s) is given by 1
n · n ·

(
n−1
n−1

)−1
= 1. Additionally, since A(s[∅]) = 0, the summation of φA

i (s) is equal to A(s).
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D. Proofs from Section 4
Theorem 4.3. In any federated learning instance where for every agent i ∈ N the payoff function ai(s) is concave in s,
and cost function ci is non-decreasing and convex in si, the mechanismMShap admits a Nash equilibrium.

Proof. We consider the best response correspondence f of agents under the mechanismMShap. Thus, f is the correspon-
dence given by:

fi(s−i) = argmax
x∈Si

{ai(x, s−i)− ci(x) + pi(s)} = argmax
x∈Si

{φA(x, s−i)− ci(x)},

for all i ∈ N , where the last equality used the payment rule ofMShap given by (7). Using Proposition 2.2, we prove the
existence of a Nash equilibrium by showing that f has a fixed point.

To this end, we first note that f is defined over a compact, convex domain S . Further, the continuity of ai and ci in s implies
that ui(s) := φA

i (s)− ci(si) is continuous in s for each agent i. We now show that for fixed s−i, ui(si, s−i) is concave in
si. Observe that:

∂2ui

∂s2i
=

∂2φA
i (s)

∂s2i
− ∂2ci

∂s2i

=
1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
(∂2A(s[X ∪ {i}])

∂s2i
− ∂2A(s[X])

∂s2i

)
− ∂2ci

∂s2i

=
1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
(∂2A(s[X ∪ {i}])

∂s2i

)
− ∂2ci

∂s2i
(since i /∈ X)

< 0,

where the last step used the fact that A =
∑

i ai is concave in si and ci is convex in si. Since ∂2ui

∂s2i
< 0, we conclude that ui

is concave in si for any fixed s−i. This implies that the best response set fi(s−i) is a non-empty interval, and hence that f
is convex valued. Lastly, the continuity of ui in s implies that f is upper semi-continuous.

Kakutani’s fixed-point theorem states (Kakutani, 1941) that every upper semi-continuous non-empty and convex valued
correspondence defined over a compact, convex domain admits a fixed point. Since we argued above that f satisfies the
conditions of Kakutani’s fixed point theorem, we conclude that f admits a fixed point, and hence thatMShap admits a Nash
equilibrium.

Lemma 4.2. The mechanismMShap is budget-balanced.

Proof. At any sample vector s,
∑

i pi(s) =
∑

i φ
A
i (s)−

∑
i ai(s) = 0, using Lemma 2.3.

Theorem 4.4. For a concave game where agent utility functions are (i) λ-strongly concave: (G + λ · In×n) is negative
semi-definite, and (ii) L-bounded derivatives: |Gij | ≤ L, for constants λ, L > 0, stochastic best response dynamics (11)
with step size δt = n−1

k−1 ·
λ

n2L2 converges to an approximate Nash equilibrium sT where ∥g(sT ,µT )∥2 < ε in T iterations,
where:

T =
2n2L2

λ2
log

(
∥g(s0,µ0)∥2

ε

)
.

Proof. Our goal is to compare ∥g(st+1,µt+1)∥2 and ∥g(st,µt)∥2. To do this, we first observe that by the definition of
µt+1 from (9), we have for every i ∈ [n], |g(st+1,µt+1)i| ≤ |g(st+1,µt)i|. This implies:

∥g(st+1,µt+1)∥2 ≤ ∥g(s
t+1,µt)∥2 (14)

Next, we compare ∥g(st+1,µt)∥2 and ∥g(st,µt)∥2. Observe that:

g(st+1,µt)− g(st,µt) = (∇u(st+1) + µt)− (∇u(st) + µt)

= (∇u(st+1)−∇u(st)).
(15)
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Using Taylor’s expansion, we have:

∇u(st+1)−∇u(st) = G(s′) · (st+1 − st),

where s′ = st + α(st+1 − st) for some α ∈ [0, 1] and G is the Jacobian of∇u. Using Equation (15), we get:

g(st+1,µt) = g(st,µt) +G(s′) · (st+1 − st). (16)

To bound the ∥g(st+1,µt)∥2 in terms of ∥g(st,µt)∥2 using the above equation, we will use the stochastic BR dynamics
update rule Equation (11) and relate g(st,µt) with f(st,µt, Rt).

To this end, let D denote the uniform distribution over all subsets of size k drawn from the set of agents. By the definition of
Equation (10), we have:

E
Rt∼D

[f(st,µt, Rt)] =
k

n
· g(st,µt). (17)

Using Equation (14), we have ∥f(st+1,µt+1, Rt+1)∥2 ≤ ∥f(st+1,µt, Rt+1)∥2 for all Rt+1. This implies:

E
Rt+1∼D

[∥f(st+1,µt+1, Rt+1)∥2] ≤ E
Rt+1∼D

[∥f(st+1,µt, Rt+1)∥2]

= E
Rt∼D

[∥f(st+1,µt, Rt)∥2],
(18)

where the equality used the fact that the sets Rt and Rt+1 are sampled from the same distribution D.

We now relate f(st+1,µt, Rt) and f(st,µt, Rt) using (16):

f(st+1,µt, Rt) = f(st,µt, Rt) + IRt ·G(s′) · (st+1 − st),

where IRt ∈ {0, 1}n×n is the diagonal matrix with IRt [i, i] = 1 iff i ∈ Rt. Using the update equation (11), we have:

f(st+1,µt, Rt) = f(st,µt, Rt) + δt · IRt ·G(s′) · f(st,µt, Rt). (19)

Let us next evaluate the expected value of the rightmost term. Fix i ∈ [n].

E[(IRt ·G(s′)·f(st,µt, Rt))i] =
∑
j

(IRt ·G(s′))[i, j] · f(st,µt, Rt)j

= Pr
[
i ∈ Rt

]
·
∑
j

Pr
[
j ∈ Rt | i ∈ Rt

]
·G(s′)[i, j] · g(st,µt)j

=
k

n
· k − 1

n− 1

∑
j

G(s′)[i, j] · g(st,µt)j

=
k

n
· k − 1

n− 1
· (G(s′) · g(st, µt))i.

(20)

Taking the expectation of (19) and using the above equality, we get:

E
Rt∼D

[f(st+1,µt, Rt)] = E
Rt∼D

[f(st,µt, Rt)] + δt · k
n
· k − 1

n− 1
· (G(s′) · g(st, µt))

Using (17) in the above, we get:

g(st+1,µt) = (In×n + δt · k − 1

n− 1
·G(s′)) · g(st,µt).

With ηt = δt ·
(

k−1
n−1

)
, we get g(st+1,µt) = (In×n + ηt ·G(s′)) · g(st,µt).

15
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Taking the L2 norm, we get:

∥g(st+1,µt)∥22 = ∥g(st,µt)∥22 + (ηt)2 · ∥G(s′)g(st,µt)∥22 + 2ηtg(st,µt)TG(s′)g(st,µt), (21)

By the strong concavity assumption, for a constant λ > 0, G+λ ·In×n is negative semi-definite, i.e., vT (G+λ ·In×n)v ≤ 0
for any v ∈ Rn. With v = g(st,µt), we have:

g(st,µt)TG(s′)g(st,µt) ≤ −λ · ∥g(st,µt)∥22. (22)

Next we use the fact that the L2 norm ∥A∥2 of an n× n matrix A is bounded by its Frobenius norm ∥A∥F :

∥A∥2 := sup
x ̸=0

∥Ax∥2
∥x∥2

≤ ∥A∥F :=

√∑
i

∑
j

|Aij |2

By the bounded derivatives assumption, we have |G(s′)ij | ≤ L, which implies that ∥G(s′)∥F =
√∑

i

∑
j L

2 = nL. This
gives:

∥G(s′)g(st,µt)∥2 ≤ nL∥g(st,µt)∥2. (23)

Using (22) and (23) in (21), we get:

∥g(st+1,µt)∥22 ≤ (1 + η2t · n2L2 − 2ηtλ) · ∥g(st,µt)∥22. (24)

The definition δt = n−1
k−1 ·

λ
n2L2 implies that ηt = λ

n2L2 . Equation (24) together with Equation (14) gives:

∥g(st+1,µt+1)∥22 ≤
(
1− λ2

n2L2

)
· ∥g(st,µt)∥22.

Using the above inequality recursively, and using the inequality (1− x)r ≤ e−xr, we obtain:

∥g(st,µt)∥2 ≤ e−
λ2

2n2L2 ·t · ∥g(s0,µ0)∥2.

Thus in T = 2n2L2

λ2 log
(∥g(s0,µ0)∥2

ε

)
iterations, we have ∥g(sT ,µT )∥2 ≤ ε, as claimed.

Lemma 4.5. For a federated learning instance where agent (i) payoff functions are λ1-strongly concave and cost functions
are λ2-strongly concave, and (ii) second derivatives of payoffs and costs are bounded: | ∂2ai

∂sj∂sk
| ≤ L1 and | ∂

2ci
∂2si
| ≤ L2, for

constants λ1, λ2, L1, L2 > 0, stochastic best response dynamics (11) with step size δt = n−1
k−1 ·

nλ1+λ2

n2(2nL1+L2)2
converges to

an approximate Nash equilibrium sT where ∥g(sT ,µT )∥2 < ε in T iterations, where:

T =
2n2 · (2nL1 + L2)

2

(nλ1 + λ2)2
log

(
∥g(s0,µ0)∥2

ε

)

Proof. We first show that each agent’s utility function ui(s) is (nλ1 + λ2)-strongly concave as follows: for any i ∈ N ,

∂2ui

∂s2i
+ nλ1 + λ2 =

1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
(∂2A(s[X ∪ {i}])

∂s2i

)
− ∂2ci

∂s2i
+ nλ1 + λ2 (By Eqn 7)

<
1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

· n(−λ1)− λ2 + nλ1 + λ2 (By Assumption (i) and (ii))

≤ −λ1 · n− λ2 + n · λ1 + λ2 = 0,

16
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which concludes the fact. Next, we show that the second derivatives of ui are bounded. Observe that:∣∣∣∣ ∂2ui

∂sj∂sk

∣∣∣∣ = ∣∣∣∣∂2φA
i (s)

∂sj∂sk
− ∂2ci

∂sj∂sk

∣∣∣∣
≤ 1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
∣∣∣∣(∂2A(s[X ∪ {i}])

∂sj∂sk
− ∂2A(s[X])

∂sj∂sk

)∣∣∣∣+ ∣∣∣∣ ∂2ci
∂sj∂sk

∣∣∣∣
≤ 1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

· 2nL1 + L2 (By Assumption (ii) and A =
∑
i

ai)

≤ 1

n
· n · 2nL1 + L2 = 2nL1 + L2 .

With Theorem 4.4 and the above two inequalities, Lemma 4.5 follows.

Lemma 4.6. MShap is individually rational.

Proof. Let s∗ ∈ NE(MShap). Since s∗ is a NE, each agent i does not benefit from deviating unilaterally. Therefore,
ui(s

∗) ≥ ui(s
′), where s′i = 0 and s′j = s∗j for all j ̸= i. This shows ui(s

∗) ≥ ai(s
′)− ci(s

′
i) = ai(s

′) ≥ 0. Thus,MShap

is individually rational.

Theorem 4.7. MShap satisfies Reciprocity(MShap) = 1, i.e., is fully reciprocal. Moreover,MShap satisfies equal treatment
of equals.

Proof. Consider any NE s ∈ NE(MShap). By definition of the payment rule ofMShap given by Equation (7), ai(s)+pi(s) =
φA
i (s) for every i ∈ N . Thus Reciprocity(MShap) = 1.

To see whyMShap satisfies equal treatment of equals (Definition 3.5), consider two identical agents i and j, i.e., ai(·) = aj(·),
ci(·) = cj(·), and si = sj . Then, at a NE s ∈ NE(MShap), we have:

pi(s) = φA
i (s)− ci(si) =

1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
(
A(s[X ∪ {i}])−A(s[X])

)
− ci(si)

=
1

n
·

∑
X⊆N\{j}

(
n− 1

|X|

)−1

·
(
A(s[X ∪ {j}])−A(s[X])

)
− cj(sj)

= φA
j (s)− cj(sj) = pj(s),

where we replaced i with j in the penultimate step as they are identical agents.

Theorem 4.8. Let W (s) = A(s)−
∑

i∈[n] ci(si) denote the total welfare of the agents, and let s∗ ∈ NE(MShap). Consider
any data contribution vector s that weakly Pareto-dominates s∗, i.e., si ≥ s∗i for all i. Then W (s) < W (s∗).

Proof. We first prove a useful Lemma.

Lemma D.1. For any sample vector s ∈ S and agent i ∈ N , ∂A(s)
∂si

≤ ∂φA
i (s)
∂si

.

Proof. We use the definition of the Shapley value of federation as follows to prove the lemma.

∂φA
i (s)

∂si
=

1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

·
(∂A(s[X ∪ {i}])

∂si
− ∂A(s[X])

∂si

)

=
1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

· ∂A(s[X ∪ {i}])
∂si

(since i /∈ X)
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≥ 1

n
·
∑

X⊆N\{i}

(
n− 1

|X|

)−1

· ∂A(s[N ])

∂si
(using concavity of A)

=
∂A(s[N ])

∂si
.

Since W (s) is strictly concave, we have:

W (s) < W (s∗) +∇W (s∗)T (s− s∗)

= W (s∗) + ⟨
(∂(A(s)− c1(s1))

∂s1
,
∂(A(s)− c2(s2))

∂s2
, . . . ,

∂(A(s)− cn(sn))

∂sn

)∣∣∣∣∣
s=s∗

, s− s∗⟩

Since si − s∗i ≥ 0 for all i ∈ [n], using Lemma D.1, we have:

W (s) < W (s∗) + ⟨
(∂(φA

1 (s)− c1(s1))

∂s1
,
∂(φA

2 (s)− c2(s2))

∂s2
, . . . ,

∂(φA
n (s)− cn(sn))

∂sn

)∣∣∣∣∣
s=s∗

, s− s∗⟩

= W (s∗)

where the last inequality follows from the fact that s∗ is an NE.

Theorem 4.9. Consider any FL instance with n agents where agents have (i) identical payoff function a(s) = 1 − α ·
(∥s∥1 + 1)−β for α > 0 and β ∈ (0, 1], and (ii) linear cost functions ci(si) = γi · si + di for γi, di ≥ 0. ThenMShap

satisfies:

(i) DataGain(MShap) ≥ n
1

β+1 , and

(ii) AccGain(MShap) ≥ 1 + α
1

β+1 · β
−β
β+1 · (mini γi)

β
β+1 ·

(
1− n− β

1+β
)
.

Proof. We first show part (i). Let K = argmini∈N γi be the set of agents with the least marginal cost denoted by
γk = mini∈N γi. Consider a NE s0 of the mechanismM0 without payments. At the NE, no agent has any incentive to
change their contribution, i.e., ∂ai(s)

∂si
= ∂ci(si)

∂si
. Using this condition, we observe that α·β

(∥s0∥1+1)β+1 = γi = γk for all i ∈ K.
Moreover, s0i = 0 for all i /∈ K, since an agent i /∈ K has no incentive to contribute any data points. Thus, an NE s0 ofM0

satisfies:

∥s0∥1 + 1 =

(
αβ

γk

) 1
β+1

. (25)

Let us now consider any NE s∗ ofMShap. By definition of NE, we have that ∂φA
i (s∗)
∂si

= ∂ci(s
∗)

∂si
for all i ∈ N . Using

linearity of costs and Lemma D.1, we note that ∂A(s∗)
∂si

≤ γi for all i. Explicitly computing the derivative gives us:

n · α · β
(∥s∗∥1 + 1)β+1

≤ min
i

γi = γk.

In turn, this implies that ∥s∗∥1 + 1 ≥
(
n·α·β
γk

) 1
β+1 = n

1
β+1 ·

(
α·β
γk

) 1
β+1 = n

1
β+1 · (∥s0∥1 + 1), using (25). Since n ≥ 1, this

implies ∥s∗∥1 ≥ ∥s0∥1. Therefore:

DataGain(MShap) =
∥s∗∥1
∥s0∥1

≥
∥s∗∥1 + 1

∥s0∥1 + 1
≥ n

1
β+1 , (26)

thus proving part (i).

For part (ii), using the fact that agents have identical payoff functions, the accuracy gain is given by:

AccGain(MShap) =
A(s∗)

A(s0)
=

a(s∗)

a(s0)
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=
1− α · (∥s∗∥1 + 1)−β

1− α · (∥s0∥1 + 1)−β

= 1 + α ·
(∥s0∥1 + 1)−β − (∥s∗∥1 + 1)−β

1− α · (∥s0∥1 + 1)−β

≥ 1 +
α

(∥s0∥1 + 1)β
·
(
1−

(∥s0∥1 + 1)β

(∥s∗∥1 + 1)β

)
≥ 1 +

α

(∥s0∥1 + 1)β
·
(
1− n− β

β+1

)
(By Equation (26))

≥ 1 +
α

(αβγk
)

β
β+1

·
(
1− n− β

β+1

)
(by Equation (25))

≥ 1 + α
1

β+1 · β
−β
β+1 · γ

β
β+1

k ·
(
1− n− β

β+1

)
,

thus proving the theorem.

E. More Details of Best Response Dynamics
We set the number of clients as 30 for the three image-based datasets. Each client a) in MNIST has 175-191 batches of
training data and 17-18 batches of testing data; b) in FashionMNIST has 173-192 batches of training data and 17-18 batches
of testing data; c) in CIFAR has 27 batches of training data and 6 batches of testing data.

We use a simple CNN network with two 5 × 5 convolution layers followed by two fully connected layers with ReLU
activation for MNIST/FashionMNIST and the ResNet-18 (He et al., 2016) for CIFAR-10. We use ResMLP (Touvron et al.,
2022) for local training of the healthcare dataset and a simple quadratic regression for the synthetic dataset.

Fitting the accuracy functions. As described in Section 5.1, we perform a preprocessing training step to fit the accuracy
functions in advance. Specifically, we first conduct a lightweight standard FL training without strategic sharing, using 0 and
200 batches from each group, respectively. We run the training for 100 epochs and fit the closed-form accuracy functions
using the collected results. For the four non-synthetic datasets, the parameters of the closed-form accuracy functions are as
follows:

• MNIST: w11 w12 w13

w21 w22 w23

w31 w32 w33

 =

3.1× 10−3 4.7× 10−4 4.4× 10−4

6.7× 10−4 1.9× 10−3 6.5× 10−4

9.3× 10−4 8.3× 10−4 2.1× 10−3


• FashionMNIST: w11 w12 w13

w21 w22 w23

w31 w32 w33

 =

1.3× 10−3 3.1× 10−4 5.7× 10−4

1.0× 10−4 1.5× 10−3 2.6× 10−4

4.9× 10−4 4.4× 10−4 1.6× 10−3


• CIFAR-10: w11 w12 w13

w21 w22 w23

w31 w32 w33

 =

5.8× 10−3 1.4× 10−3 7.9× 10−4

2.5× 10−3 6.1× 10−3 7.4× 10−4

4.2× 10−3 3.0× 10−3 1.8× 10−3


• Lumpy-Skin-Disease: [

w11 w12

w21 w22

]
=

[
1.2× 10−2 9.1× 10−3

1.4× 10−2 1.6× 10−2

]

The cost of adding one training data patch γi is chosen uniformly at random from [0, 0.001] for MNIST, FashionMNIST,
and CIFAR-10. We run the best response dynamics for all three mechanisms for 1000 iterations. We set the step size δ of
best response dynamics to be 10, and the learning rate α is set as 0.1 for the local training.
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System configuration. Our experiments were conducted on the Illinois Campus Cluster configured with one node with 16
cores, Fedora@9.4 operating system, and one A100 GPU.

Approximation of Shapley value. We adopt a simple Monte Carlo estimate for the Shapley value by uniformly sampling
a set of permutations of clients Π (Mann & Shapley, 1960; Maleki, 2015; Jia et al., 2019; Zhang et al., 2023). Let Pσ

i be the
set of clients located in front of i in the permutation σ. The approximate Shapley value of client i is given by:

φ̂A
i (s) =

1

|Π|
∑
σ∈Π

(A(s[Pσ
i ∪ {i}]−A(s[Pσ

i ])) . (27)

Theoretically, for n agents, m = 2n
ϵ2 ln 2n

δ samples ensure an error of ϵ and confidence of 1 − δ. However, in the imple-
mentation, we adopt a more ambitious setting by sampling only ⌊n · log n⌋ = 102 permutations for the three image-base
datasets, as mentioned in Sec 5.1 of the first three image-base datasets. To justify the soundness of the setting, we report the
standard deviation in Tables 2 to 4. It can be observed that all the statistics ofMShap has a standard deviation of no more
than 0.1, which demonstrates the sufficiency of the current number of samples.

Method DataShare(%) Accuracy(%) Reciprocity DataGain AccGain
Avg. Med. σ Avg. Med. σ Avg. Med. σ Avg. Med. σ Avg. Med. σ

M0 5.8 5.6 0.002 88.3 88.5 0.004 0.609 0.630 0.041 1.000 1.000 0.000 1.000 1.000 0.000
MBG 7.6 7.6 0.002 87.6 87.6 0.018 0.702 0.706 0.012 1.324 1.349 0.043 0.992 0.990 0.024
MShap 54.9 54.9 0.000 90.4 90.5 0.006 1.000 1.000 0.000 9.514 9.719 0.354 1.024 1.022 0.004

Table 2. Standard deviation of MNIST

Method DataShare(%) Accuracy(%) Reciprocity DataGain AccGain
Avg. Med. σ Avg. Med. σ Avg. Med. σ Avg. Med. σ Avg. Med. σ

M0 4.1 3.9 0.003 60.9 61.3 0.017 0.466 0.467 0.030 1.000 1.000 0.000 1.000 1.000 0.000
MBG 6.2 6.2 0.001 61.5 61.1 0.011 0.752 0.759 0.020 1.513 1.558 0.078 1.023 1.023 0.012
MShap 54.8 54.8 0.000 63.3 63.4 0.016 1.000 1.000 0.000 13.436 13.895 0.795 1.054 1.069 0.055

Table 3. Standard deviation of FashionMNIST

Method DataShare(%) Accuracy(%) Reciprocity DataGain AccGain
Avg. Med. σ Avg. Med. σ Avg. Med. σ Avg. Med. σ Avg. Med. σ

M0 25.6 25.7 0.005 43.6 43.9 0.009 0.504 0.505 0.007 1.000 1.000 0.000 1.000 1.000 0.000
MBG 28.9 28.9 0.001 44.7 44.6 0.003 0.566 0.569 0.016 1.131 1.125 0.018 1.025 1.023 0.017
MShap 99.6 99.6 0.001 48.5 48.7 0.011 1.000 1.000 0.000 3.894 3.870 0.078 1.114 1.112 0.007

Table 4. Standard deviation of CIFAR-10

F. FedBR-Shap Protocol
F.1. Motivation of FedBR-Shap

Still, in this section, we interpret si as the number of batches of the local training of client i. As discussed before, the
computation of NE in Section 5.1 relies on static closed-form accuracy functions of s and forces every client to use a fixed
si throughout the training. However, the influence of data sharing on the accuracy can differ across stages: data sharing can
be quite beneficial in the initial phases, but may become less effective as the model converges. As a result, a data client may
also exhibit strategic behaviors at different stages of the training, e.g., reducing the number of batches of local training when
the model turns to converge. In addition, the aforementioned mechanisms only make payments at the end of the training,
which makes it hard to evaluate a client’s contribution to the training over various stages of the training.

Motivated by the above aspects, we propose the protocol FedBR-Shap, which is a truly distributed FL protocol.
FedBR-Shap allows clients to adjust the value of si and also provide (budget-feasible) payments in different stages

20



You Get What You Give: Reciprocally Fair Federated Learning

of the training. The payment to agent i at iteration t depends on the contribution of agent i’s data sharing towards the
accuracy improvement at that iteration. We make the following assumption for the learning rate:

Assumption F.1. Assume the learning rate of model updating is set as small enough such that, within any window of W
iterations, the improvement of the accuracy between two consecutive iterations, ai(θt)− ai(θ

t−1) can be approximated by
some identical function αi(s

t) that only depends on the sample vector at iteration t.

F.2. Description of FedBR-Shap

FedBR-Shap computes the NEs ofMShap following best response dynamics (Sec 4.2). In each iteration t, the algorithm
computes a global model θt, and maintains copies of local models Ti trained only on agent i’s dataset of size sti, starting
from the global model from the previous iteration, θt−1. The central server then updates its global model, and the agents
update their data shares according to their current gradients of the utility functions. As motivated in Appendix F.1, the
growth of accuracy varies during the training process. For this reason, we divide the entire training into a series of stages
and decide the payments at the end of each stage. Below, we first define our payment mechanism, which essentially adopts
the same idea ofMShap. Thereafter, we provide the implementation of FedBR-Shap using best response dynamics.

Payments. A stage is defined as a sequence of W iterations. The central server distributes payments at every stage according
to everyone’s contribution to accuracy improvement at that stage. Denote the accuracy of a model θ for agent i by ai(θ) and
the model after the t-th iteration by θt. The total accuracy increase at stage h is given by

∑n
i=1 ai(θ

t)−
∑n

i=1 ai(θ
t−W ),

where t = W · h. The central server then gives the payment

phi = φh
i (s

t
i, s

t
−i)− (ai(θ

t)− ai(θ
t−W ))

to agent i, where φh
i (s

t
i, s

t
−i) denotes the Shapley value of agent i towards the total accuracy increase at stage h, which is

given by
∑

i∈[n] ai(θ
t)− ai(θ

t−W ) .

Best response dynamics. We follow the best response dynamics within every stage to compute an NE of agents’
strategies for the current training stage. If the clients take sample vector s, by Assumption F.1, the total accuracy increase∑n

i=1 ai(θ
t)− ai(θ

t−W ) is given by W ·
∑n

i=1 αi(s). Denote by α(·) the sum of αi(·). Then the utility of client i is

uh
i (s) = W · φα

i (si, s−i)− γi · si .

Based on the utility function, FedBR-Shap performs W rounds of best response dynamics to update s. Each agent i
updates to sti by computing the gradient of the current utility function,∇iu

h
i (s

t), and hence the gradient of its Shapley share
∇iφ

α
i (s

t). This is estimated by the server as a difference of Shapley shares, as

∇iφ
α
i (s

t) ≈ 1

ε
· (φα

i (s
t
i + ε, st−i)− φα

i (s
t
i, s

t
−i)) .

Approximation of Shapley share. Now consider an agent i, for which the goal is to compute the ∇iφ
α
i (s

t). By
Assumption F.1, we have α(s) ≈

∑n
j=1 aj(θ

t+1)− aj(θ
t). Denote by θtX the model after aggregating the local models

of clients from a set X starting from the global model θt. Therefore, the Shapley value of stage h can be approximated as
follows:

φα
i (s

t
i, s

t
−i) ≈

n∑
j=1

φ
aj(θ

t+1)−aj(θ
t)

i (sti, s
t
−i)

=
1

2n−1

∑
X⊆[n]\{i}

n∑
j=1

(
aj(θ

t
X∪{i} − aj(θ

t
X)
)

To compute the derivative, beginning with the current global model θt, each agent i ∈ [n] updates its local model Ti using
sti batches of its dataset. Moreover, each agent i trains an extra model of T ε

i on sti + ε batches of its local dataset, starting
with θt−1. All these models are transmitted to the server. For each subset X ⊆ [n] where i /∈ X , the server computes a
single model: θtX = 1

|X|
∑

j∈X Tj by averaging the model parameters from the agents in X . For each subset X ⊆ [n]

where i ∈ X , the server computes two models: θtX = 1
|X|
∑

j∈X Tj , and θ̂tX = 1
|X| (T

ε
i +

∑
j∈X\{i} Tj). The server then

distributes these models to all agents, who report back with their accuracies.
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With this information, the server computes φα
i (s

t) and φα
i (s

t
i + ϵ, st−i) using Eq. (3). Note that for a subset X ⊆ [n] where

i ∈ X , the cumulative accuracy from θtX is used for computing φα
i (s

t
i, s

t
−i), while the cumulative accuracy from θ̂tX is

used for computing φα
i (s

t
i + ε, st−i). For each subset X ⊆ [n] where i /∈ X , the cumulative accuracy of θtX is used in the

computation of both φα
i (s

t
i, s

t
−i) and φα

i (s
t
i + ε, st−i). Since agents are aware of their costs, each agent computes∇iui(s

t)

and updates its data share to st+1
i using (11).

Algorithm 1 FedBR-Shap protocol
1: Input: number of iterations N , observation size W , learning rate α, step size δ, ε ∈ (0, 1), n agents;
2: Output: Model weights θt and individual contributions {sh}Hh=1;
3: s1 ← (1, . . . , 1), initialize θ0 as a zero-model and set t← 1;
4: Each agent i ∈ [n] transmits its local model parameters Ti to the server after training on s1i batches of data, initialized

from the current global model θ0;
5: H ← ⌈N/W ⌉;
6: while h ≤ H do
7: ▷ Best response dynamics
8: for t = W · (h− 1) to W ·H do
9: Each agent i ∈ [n] transmits its local model parameters Ti to the server after training on sti batches of data,

initialized from the current global model θt−1 along with model parameters T ϵ
i to the server, trained on ϵ more

batches of data;
10: The central server updates the global model as θt ←

∑
i∈Rt Ti/n;

11: for i ∈ [n] do
12: The central server computes ∂φh

i (s
t
i,s

t
−i)

∂si
=

φh
i (s

t
i+ε,st

−i)−φh
i (s

t
i,s

t
−i)

ε as described in Section 5.2, and sends it
along the new global model θt to agent i;

13: Agent i computes ∂ui

∂si
← ∂φh

i (s
t
i,s

t
−i)

∂si
− ∂ci

∂si
;

14: if sti + δ · ∂ui

∂si
< 0 then

15: st+1
i ← 0;

16: else if sti + δ · ∂ui

∂si
> τi then

17: st+1
i ← τi;

18: else
19: st+1

i ← sti + δ · ∂ui

∂si
;

20: end if
21: t← t+ 1;
22: end for
23: end for
24: ▷ Payment according to the contribution of accuracy improvement
25: Central server computes the Shapley share of each agent i, φh

i (s
t
i, s

t
−i);

26: Each agent i is paid phi = φh
i (s

t
i, s

t
−i)− (ai(θ

t)− ai(θ
t−W ));

27: end while
28: return the model weights θt and {sh}Hh=1;
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