
Breaking the Frozen Subspace: Importance Sampling
for Low-Rank Optimization in LLM Pretraining

Haochen Zhang1, Junze Yin1, Guanchu Wang2, Zirui Liu3, Lin F. Yang4, Tianyi Zhang1,
Anshumali Shrivastava1, Vladimir Braverman1,5

1Rice University, 2University of North Carolina at Charlotte, 3University of Minnesota Twin Cities,
4University of California, Los Angeles, 5Johns Hopkins University

Abstract

Low-rank optimization has emerged as a promising approach to enabling memory-
efficient training of large language models (LLMs). Existing low-rank optimization
methods typically project gradients onto a low-rank subspace, reducing the memory
cost of storing optimizer states. A key challenge in these methods is selecting
suitable subspaces to ensure an effective optimization trajectory. Most existing
approaches select the dominant subspace to preserve gradient information, as this
intuitively provides the best approximation. However, we find that in practice, the
dominant subspace stops changing during pretraining, thereby constraining weight
updates to similar subspaces. In this paper, we propose importance sampling for
low-rank optimization in LLM pretraining with a provable convergence guarantee,
which the dominant subspace approach does not have. Empirically, we demonstrate
that our method significantly outperforms previous methods in LLM pretraining
tasks.

1 Introduction

Large language models (LLMs), pretrained on next-token prediction tasks, achieve human-level text
generation capabilities and exhibit zero-shot transferability to various downstream tasks [5]. They are
also fine-tuned or aligned with human preferences to be expert in downstream tasks [66, 53]. Over the
past few years, there has been rapid progress in LLM development, characterized by consistent growth
in the number of trainable parameters and the scale of datasets [3, 31, 13, 1]. The parameter count in
language models has increased from 100 million [56] to over a hundred billion [10]. However, despite
their enhanced expressiveness, such large models demand extensive GPU memory for pretraining
[52]. Thus, a critical question arises:

How can we improve the memory efficiency of LLM pretraining?

In LLM pretraining, Adam is commonly used as the optimizer due to its superior optimization
performance. However, a key limitation of Adam is its memory requirement, as it necessitates storing
two optimizer states, each consuming as much memory as the model itself. This poses a significant
challenge, given the substantial memory demands of the model’s parameters. To address this issue,
researchers have explored low-rank optimization, where gradients are projected onto a low-rank
subspace to reduce the memory consumption of optimizer states. These states are then projected
back to their original size when updating the weights. For example, GaLore [79] and Q-GaLore
[77] project gradients onto subspaces defined by the leading singular vectors corresponding to the
largest singular values, a technique referred to as the dominant subspace. FLora [23] and GoLore
[24], on the other hand, utilize unbiased random low-rank projections for gradients, employing the
Johnson–Lindenstrauss transform. Grass [51] introduces sparse low-rank projections, which further

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



reduce the gradient memory footprint as well as the computation and communication costs compared
to dense low-rank projections. Lastly, Fira [7] builds on GaLore by fully leveraging the error in
gradient low-rank approximation to achieve improved performance.

0 10 20 30 40 50
Layer Indices

0.0

0.2

0.4

0.6

0.8

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

Selecting Dominate Subspace
Importance Sampling Subspace Selection

Figure 1: Adjacent subspace overlap of low-
rank optimizer using difference subspace selec-
tion methods. Our importance sampling subspace
selection can lower the overlap between adjacent
subspaces, thus enabling better exploration of more
different subspaces in the optimization trajectory.

These methods are powerful because: 1) the
gradients of LLMs during pretraining exhibit
an intrinsic low-rank structure, making them
well-suited for compression using low-rank ap-
proximation, and 2) low-rank approximation can
be applied not only to Adam but also to other
optimizers that use state information. For in-
stance, Adafactor [58] employs rank-1 factoriza-
tion on the second moment in Adam to reduce
the memory required for storing the second mo-
ment. Adam-mini [76] eliminates over 99% of
the effective learning rate in the second moment
of Adam while achieving performance on par
with—or even better than—Adam. Additionally,
[12] and [35] propose low-precision optimizers
with 8-bit and 4-bit optimizer states. Low-rank
optimization integrates seamlessly with these
Adam variants, further highlighting its impor-
tance and underscoring why it deserves signif-
icant attention.

A central question in low-rank optimization is how to maintain the performance of pretrained LLMs
while using memory-efficient optimizers, as compared to full-rank optimization. One common
paradigm in existing low-rank optimization methods is to update weights within the dominant sub-
space for a certain number of iterations and periodically update this dominant subspace. Nonetheless,
the dominant subspaces of gradients in many layers stabilize almost completely after the early stages
of pretraining [77]. Consequently, the weight updates during different periods predominantly remain
within the same low-rank subspace, resulting in cumulative weight updates that struggle to achieve
high rank. This limitation significantly hampers the language modeling capabilities of pretrained
LLMs. Thus, it is natural to ask:

Is it possible to overcome the low-rank bottleneck of existing low-rank optimization methods with
minimal additional overhead?

In this paper, we provide a positive answer to this question. We propose a novel method for subspace
selection in low-rank optimization by introducing an appropriate degree of randomness in the selection
process. In summary, the contributions of this study are as follows:

• We observe that highly similar adjacent subspaces in existing low-rank optimization methods
diminish the diversity of weight updates, degrading the performance of pretrained LLMs.

• To address frozen dominant subspace phenomenon and the low-rank bottleneck of update
in existing low-rank optimization methods, we propose an Importance SAmpling method
for Low-RAnk optimization (SARA). This method enables low-rank optimizers to explore
a broader range of subspaces in the optimization trajectory. Specifically, the low-rank
subspace is spanned by r singular vectors sampled from m singular vectors for a gradient
G ∈ Rm×n. Figure 1 illustrates how SARA reduces the overlap between adjacent subspaces
during LLM pretraining.

• SARA can be integrated with various low-rank optimization methods, such as GaLore and
Fira. It is robust to second-moment factorization and low-precision optimizer state storage.
On pretraining tasks for the LLaMA model at different sizes, SARA consistently outperforms
dominant subspace selection and reduces the performance gap between low-rank optimizers
and full-rank Adam by up to 46.05%.

• From a theoretical aspect, We prove that SARA achieves a comparable convergence rate as
GoLore [24] (Theorem 3.4, proof details are deferred to Appendix A) whereas delivering
better empirical results (Section 4 and Appendix F).

2



Roadmap. In Section 2, we present the update rules of GaLore-Adam and Fira-Adam. In Section 3,
we describe our methodology for using importance sampling to improve the algorithmic design of low
rank optimizers—GaLore and Fira—and provide the convergence guarantee of SARA. In Section 4,
we present experimental results showing that SARA consistently outperforms dominant subspace
selection. In Section 5, we discuss related work. Finally, in Section 6, we conclude the paper.

2 Preliminaries

In this section, we present the background required for our theoretical analysis and experiments. In
our experiments (Section 4), we apply SARA to two low-rank optimization methods, GaLore and Fira,
both of which can be combined with stateful optimizers (e.g., Adam, Adafactor, and Adam-mini).

To ensure clarity, the update rules for GaLore-Adam and Fira-Adam are briefly explained here. For
more detailed explanations, please refer to the original papers [79, 7]. In presenting these methods,
we show the update rules for the weights of a single layer in the neural network. We assume that the
gradient at the t-th iteration is a matrix G(t) ∈ Rm×n. Without loss of generality, we assume that
m < n and use r to represent the rank of the low-rank subspace.

Update Rules of GaLore-Adam GaLore-Adam [79] requires storing an orthogonal matrix P (t) ∈
Rm×r that satisfies (P (t))⊤P (t) = Ir, which is updated periodically. Similar to full-rank Adam,
GaLore-Adam also stores the first moment M (t) ∈ Rr×n and the second moment V (t) ∈ Rr×n

for each layer’s weights, and updates the weights W (t) as follows: R(t) = (P (t))⊤G(t), M (t) =

β1M
(t−1) + (1 − β1)R

(t), V (t) = β2V
(t−1) + (1 − β2)R

(t) ◦ R(t), N (t) = αP (t) M(t)
√
V (t)+ξ

, and

x(t) = x(t−1) − η ·N (t). Here, β1 and β2 are hyperparameters for the online updates of M (t) and
V (t), as in Adam. The parameter η denotes the learning rate, and ξ is a small positive constant for
numerical stability.

Update Rules of Fira-Adam Similar to GaLore-Adam, Fira also needs to store M (t), V (t), and
P (t). The difference is that Fira-Adam additionally utilizes the low-rank approximation residual to
update W

(t)
l . Let S(t) = (I − P (t)(P (t))T )G(t) and x(t) = x(t−1) − η ·N (t) − η · ϕ(S(t)). where

S(t) represents the low-rank approximation error, ϕ(·) represents a scaling function in Fira [7], and
N (t) = αP (t) M(t)

√
V (t)+ξ

is calculated same as GaLore-Adam above.

3 Methodology

In this section, we first illustrate the adverse effects of a frozen dominant subspace in mini-batch
gradients (Section 3.1). To address this issue, we then propose SARA for low-rank optimization
(Section 3.2). Finally, we present a convergence analysis of low-rank optimization using SARA
(Section 3.3).

3.1 Frozen Dominant Subspace of Mini-batch Gradient

[77] observes that the cosine similarity between adjacent dominant subspaces approaches 1.0 in some
layers after a certain stage of LLM pretraining, indicating that the dominant subspace of the gradient
almost stops evolving. We observe a similar phenomenon in our experiment as well. Figure 2 shows
the average result of dominant subspace overlap in different layers across all blocks at different itera-
tions. We notice that dominant subspace overlaps are low in all layers at the early stage of pretraining,
but they increase drastically as pretraining progresses, eventually becoming stable at different levels.
Among all layers, gate_proj and up_proj exhibit the highest subspace overlaps. Intuitively, a high
overlap between adjacent subspaces is harmful for low-rank optimization. Considering an extreme
case, when the overlap reaches 1.0, the low-rank optimizer can only change the weights within a fixed
low-rank subspace. However, when the low-rank subspace shifts significantly over time, the overall
weight update—formed by summing updates from various low-rank subspaces—can overcome the
constraints of the low-rank bottleneck. For readability, we refer to this phenomenon as the frozen
dominant subspace.

3



Algorithm 1 Low-rank Optimization with SARA

1: Input: The l-th layer weight x(t)
l ∈ Rml×nl , for all l ∈ [N ]. Learning rate η, scale factor α,

decay rates β1, β2, rank r, subspace change frequency τ ∈ Z+, small constant for numerical
stability ξ.

2: Initialize: for all l ∈ [N ] V
(0)
l ,M

(0)
l ∈ Rr×nl ← 0

3: for t = 1→ T do
4: for l = 1→ N do
5: Compute the mini-batch gradient: G(t)

l ∈ Rml×nl

6: P
(t)
l ← SARA(G

(t)
l , τ) ▷ see Algorithm 2

7: S ← {V (t−1)
l ,M

(t−1)
l , x

(t)
l , P

(t)
l , G

(t)
l , β1, β2, ξ, η, α} ▷ input parameters

8: x
(t)
l ← GALORE-ADAM(S) or FIRA-ADAM(S) ▷ see Section 2.

9: end for
10: end for
11: Return x(T ) = (x

(T )
1 , x

(T )
2 , · · · , x(T )

N )

3.2 SARA: Importance SAmpling for Low-RAnk Optimization

Algorithm 2 SARA: Importance sampling subspace selection for low-rank optimization

1: Input: The mini-batch gradient at the iteration t, G(t)
l ∈ Rm×nl , where l ∈ [N ] denotes the

layer. Subspace change frequency τ ∈ Z+.
2: if t mod τ = 0 then
3: U

(t)
l , S

(t)
l , V

(t)
l ← SVD(G

(t)
l )

4: I ← SAMPLE([m],num = r,weight = S
(t)
l )

5: I ← SORT(I)
6: P

(t)
l ← U

(t)
l [:, I]

7: else
8: P

(t)
l ← P

(t−1)
l ▷ Reuse the previous projector

9: end if
10: Return P

(t)
l

0 10000 20000 30000
Update Steps

0.4

0.5

0.6

0.7

Do
m

in
at

e 
Su

bs
pa

ce
 O

ve
rla

p

q_proj
k_proj

v_proj
o_proj

gate_proj
down_proj

up_proj

Figure 2: The average mini-batch gradient dominant sub-
space overlap in different linear layers over 8 blocks in the
LLaMA-60M model during pretraining. We measure the
overlap between adjacent subspaces every 200 iterations.

To overcome the problem of the
frozen dominant subspace problem,
we propose SARA to construct low-
rank subspace. Low-rank optimiza-
tion with SARA is given in Algo-
rithm 1. It can be seen that SARA
does not change the overall structure
of the original low-rank optimization
algorithm but is a plug-and-play sub-
stitute for dominant subspace selec-
tion. Algorithm 2 gives the procedure
of SARA. Line 4 denotes the weighted
sampling without replacement. More
precisely, each of the m left singu-
lar vectors is equipped with a weight
ωi ∈ (0, 1) proportional to its corre-
sponding singular value Si,

ωi =
Si∑m
j=1 Sj

.

For an index set sample I = (I1, · · · , Ir), the sampling probability can be written as

P{(I1, · · · , Ir) = (i1, · · · , ir)} =
r∏

k=1

ωik

1− ωi1 − · · · − ωik−1

4



Line 5 sorts the sampled indices in ascending order so that the newly updated subspace basis vectors
can align with optimizer states well. Line 6 constructs the orthogonal basis of the new subspace.

By using weighted sampling without replacement, we make adjacent subspaces more distinct and
prevent the optimization trajectory from being trapped in overly similar subspaces during training.
Another advantage of SARA is that it introduces negligible additional overhead—for example,
computing an SVD on a 2048× 2048 matrix takes 0.34 seconds, while sampling adds only 0.0005
seconds on average.

3.3 Provable Convergence of SARA

[24] points out that selecting the dominant subspace in low-rank optimization, as done in GaLore,
does not always guarantee convergence to the optimal solution. Although GoLore ensures provable
convergence, it does not significantly close the performance gap between GaLore-Adam and full-rank
Adam in pretraining tasks, as reported in [24]. In this section, we show that SARA achieves provable
convergence, representing a key advantage over GaLore and comparable to GoLore. The empirical
results of SARA are shown in Section 4 and Appendix F, representing a key advantage over GaLore
and GoLore.

We treat an LLM as a neural network with N layers, and each layer has a weight matrix, i.e.,
for all l ∈ [N ], xl ∈ Rm×nl . Without loss of generality, we assume that m ≤ nl. In practice,
most LLMs do not have biases for attention blocks and MLP blocks, and low-rank optimization
is only applied to the weight matrix, but not to biases. Therefore, this abstraction is reasonable.
Mathematically, our objective function is f : Rm×n1 × Rm×n2 × · · · × Rm×nN → R. For all
x = (x1, . . . , xl, . . . , xN ), y = (y1, . . . , yl, . . . , yN ) ∈ dom(f), we denote ∇lf(x) and ∇lf(y) as
∂f
∂xl
∈ Rm×nl and ∂f

∂yl
∈ Rm×nl , respectively. Below, we use the following two assumptions similar

to [24].
Assumption 3.1 (L-smoothness). Let f : Rm×n1 × Rm×n2 × · · · × Rm×nN → R be our objective
function. Let L > 0. For all l ∈ [N ], we let x = (x1, . . . , xl, . . . , xN ), y = (y1, . . . , yl, . . . , yN ) ∈
dom(f) be any arbitrary N -tuples satisfying that if i ∈ [N ] \ {l}, then xi = yi. We assume f is
L-smooth that it satisfies:

∥∇lf(x)−∇lf(y)∥F ≤ L ∥xl − yl∥F .

Assumption 3.2 (Bounded, Centered, and Independent Mini-batch Gradient Noise). Let∇lf(x
(t)) ∈

Rm×nl be the gradient of our objective function for the l-th layer at the t-th iteration, where t ∈ Z+.
Let G(t)

l ∈ Rm×nl be the mini-batch gradient which is the noisy version of ∇lf(x
(t)). For all

l ∈ [N ], we assume there exists a least upper bound σ2
l ∈ R for ∥G(t)

l −∇lf(x
(t))∥2F , namely∥∥∥G(t)

l −∇lf(x
(t))
∥∥∥2
F
≤ σ2

l

and

E
[
G

(t)
l

]
= ∇lf(x

(t)).

Furthermore, we define σ2 :=
∑N

l=1 σ
2
l .

To analyze the convergence of SARA, we characterize the error introduced by projecting gradients
onto the sampled low-rank subspaces. Specifically, we bound the discrepancy between the original
gradient and its projection under the importance sampling scheme of SARA. This projection error
plays a central role in the convergence analysis, as it quantifies how well the sampled subspace
preserves gradient information. Because of the page limit, we defer its proof to Appendix A.
Lemma 3.3 (Error of SARA’s Projection, see Lemma A.2 for proof). Let τ be the update period of
SARA, and r be the rank of low-rank subspace in SARA. For all i ∈ [m], l ∈ [N ], k ∈ N, let p(t)l (i)
denote the probability that the i-th basis vector is selected for the l-th layer at time t = kτ , and
define δ

(t)
l := mini∈[m] p

(t)
l (i), δ := minl∈[m],t≥0 δ

(t)
l . Let P (t)

l ∈ Rm×r denote the orthonormal
projection matrix and let ∇lf(x

(t)) ∈ Rm×nl be the gradient matrix of the l-th layer at time t. Then,
the following inequality holds:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
≤ (1− δ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.

5



With the projection error bounded in Lemma 3.3, we are now equipped to analyze the convergence
behavior of SARA-based low-rank optimization. The theoretical result below demonstrates that
SARA achieves provable convergence at a rate comparable to prior work, while the experimental
results in the following section show improved empirical performance.
Theorem 3.4 (Convergence complexity of Low-rank MSGD with SARA, see Corollary A.6 for proof).
By Assumption 3.1-3.2, if T ≥ 2+128/(3δ)+ (128σ)2/(9

√
δL∆) for ∆ = f(x(0))− infx f(x), we

choose β1 =

(
1 +

√
δ3/2σ2T

L∆

)−1

, τ =
⌈

64
3δβ1

⌉
, and η =

(
4L+

√
80L2

3δβ2
1
+ 80τ2L2

3δ +
√

16τL2

3β1

)−1

,

low-rank MSGD-SARA with momentum re-projection converges as

1

T

T−1∑
t=0

E
[
∥∇f(x(t))∥22

]
= O

(
L∆

δ2.5T
+

√
L∆σ2

δ3.5T

)
.

Comparing with [24], we adopt the same hyperparameters used in their study in Theorem 3.4. When
examining the convergence rate, we note that the primary distinction lies in our convergence rate
depends on δ (Theorem 3.4), whereas GoLore depends on δ = r

m (Theorem 3.5).
Theorem 3.5 (Convergence of MSGD with GoLore, Corollary 3 of [24]). Under Assumption 3.1-3.2,
let every notation be defined as in Theorem 3.4, and using the same hyperparameters β1, τ , η, Let
δ = r

m . Then, MSGD-GoLore with momentum re-projection converges as

1

T

T−1∑
t=0

E
[∥∥∥∇f(x(t))

∥∥∥2
F

]
= O

(
L∆

δ2.5T
+

√
L∆σ2

δ3.5T

)
,

Because SARA adopts importance sampling, we have δ < δ. Thus, the convergence rate of MSGD-
SARA is slower than MSGD-GoLore up to a constant factor. Compared to MSGD-GaLore (using
dominant subspace), which does not have a provable convergence guarantee, SARA has the advantage
in the theoretical convergence rate.

4 Experimental Results

In Section 4.1, we describe our experimental setup. In Section 4.2, we evaluate the efficacy of
SARA when combined with various low-rank Adam optimizers. In Section 4.3, we show that SARA
promotes subspace exploration and enables higher-rank updates. In Section 4.4, we further evaluate
SARA on additional baselines and datasets.

4.1 Experiment Setting

In this section, we describe our experimental setup. We present the C4 dataset [57], architecture, and
hyperparameters.

Pre-training on C4 Dataset. C4 [57], short for Colossal Clean Crawled Corpus, is a large-scale,
open-source text dataset widely used in practice for pretraining transformer models such as BERT
[55], T5 [68], and GPT models. C4 is also commonly used in the memory-efficient optimization
community to evaluate the performance of memory-efficient optimizers [23, 79, 77, 24]. In our
experiments, we pretrain LLaMA models of different sizes on the C4 dataset without data repetition,
using a sufficiently large amount of data [25].

Architecture and Hyperparameters We evaluate the performance of different optimizers on
LLaMA models with 60 million, 130 million, 350 million, and 1.1 billion parameters, using the
same architecture as in [79]. For full-rank Adam, we use β1 = 0.9, β2 = 0.999, and a learning
rate of 0.001, except for the LLaMA-60M model, where the learning rate is set to 0.0025. More
detailed hyperparameters for our re-implementation are provided in Appendix B. All experiments are
conducted using one GPU node with 8 Nvidia A40 GPUs.

4.2 Efficacy of SARA with Low-Rank Adam Optimizers

In this section, we evaluate the efficacy of SARA with different low-rank Adam optimizers across
multiple model sizes.

6



Table 1: Validation perplexity (PPL) of LLaMA models pretrained on the C4 dataset with 60M,
130M, and 350M parameters, comparing various low-rank optimizers with and without SARA. SARA
consistently reduces the PPL gap relative to full-rank Adam, demonstrating its effectiveness across
different optimizer variants and model scales.

60M 130M 350M
Full-Rank Adam 27.71 23.27 18.21

GaLore-SARA-Adam 30.47 24.21 19.16
GaLore-Adam 31.50 24.88 19.68
PPL gap reduction 27.17% 41.61% 35.37%

Fira-SARA-Adam 28.12 22.22 17.25
Fira-Adam 28.42 22.37 17.35
PPL gap reduction 42.25% — —

GaLore-SARA-Adafactor 30.06 24.09 18.88
GaLore-Adafactor 31.13 24.79 19.45
PPL gap reduction 31.28% 46.05% 45.96%

GaLore-SARA-Adam-mini 31.66 24.87 19.41
GaLore-Adam-mini 32.08 25.46 19.89
PPL gap reduction 9.61% 26.94% 28.57%

GaLore-SARA-Adam (8bit) 30.55 24.67 18.16
GaLore-Adam (8bit) 31.62 25.35 18.63
PPL gap reduction 27.36% 32.69% —
r/dmodel 128/256 256/768 256/1024
Tokens 1.5B 2.2B 6B

Efficacy of SARA with different low-rank Adam optimizers First, we evaluate the efficacy
of SARA when combined with various low-rank Adam optimizers. Table 1 shows that SARA
consistently outperforms dominant subspace selection. In cases where full-rank Adam achieves the
lowest PPL, we also report the percentage reduction in the PPL gap achieved by SARA compared
to the dominant subspace baseline. As shown in Table 1, SARA reduces the PPL gap by up to
46.05%. In scenarios where full-rank Adam does not achieve the lowest PPL, SARA still improves
performance over leading singular vector selection. SARA proves effective not only with low-rank
Adam variants such as GaLore-Adam and Fira-Adam, but also with optimizers that approximate
second moments, e.g., GaLore-Adafactor and GaLore-Adam-mini. Results with the 8-bit optimizer
further highlight the robustness of SARA under low-precision optimizer state storage.

Scale Up to Llama-1.1B We also evaluate the efficacy of SARA on the pretraining of LLaMA-1.1B.
Due to limited computational resources, we conduct experiments using only GaLore-Adam. As
shown in Table 2, SARA remains effective on LLaMA-1.1B.

Table 2: PPL on LLaMA-1.1B pretrained with full-rank Adam, GaLore-Adam, and GaLore-SARA-
Adam on the C4 dataset. Despite the larger model size, SARA continues to outperform dominant
subspace selection, confirming its scalability and robustness.

Full GaLore-SARA-Adam GaLore-Adam

1.1B 15.90 15.36 15.47
r/dmodel 512/2048 512/2048 512/2048
Tokens 13.4B 13.4B 13.4B

4.3 SARA Encourages Subspace Exploration and Higher-Rank Updates

In this section, we empirically show that SARA encourages subspace exploration and enables
higher-rank updates.

7



2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7
Ad

ja
ce

nt
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

Figure 3: a). The left figure shows the overlap between adjacent subspaces in GaLore-Adam and
GaLore-SARA-Adam during pretraining on the LLaMA-60M model between 2200-th and 4000-th
iteration. b). The right figure takes the low-rank subspace at the 2000-th iteration as the anchor
subspace, and shows the overlap between subspaces in later iterations and the anchor subspace.

SARA encourages subspace exploration [77] provides an interesting observation that the similar-
ity between adjacent subspaces in some layers gradually becomes very high during pretraining, we
observe a similar phenomenon shown in Figure 2. We adopt a metric to measure overlap between
two subspaces from [21]. Given two orthonormal matrices U, V ∈ Rm×r, we have

UTU = V TV = Ir,

the overlap between two subspaces spanned by U and V are defined as

overlap(U, V ) =
1

r

r∑
i=1

∥UTV:,i∥22,

where V:,i denotes the i-th column of V . We adopt the above metric to show that the observation in
[77] is not because of using cosine similarity as the measure, but the frozen subspace phenomenon
also exists when using other metrics to measure subspace overlap (or subspace similarity).

0 100 200 300 400 500
Singular Value Indices

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

Average result across all layers

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

Figure 4: The average result of normalized singular
values of the weight difference between the 28k-
step checkpoint and 30k-step checkpoint across all
layers in LLaMA-60M during pretraining.

An interesting fact is that the overlap between
adjacent subspaces in GaLore-SARA-Adam is
much lower than GaLore-Adam, as shown in
Figure 3 (a). In Figure 3 (b), we chose the sub-
space at the 2000-th iteration as the anchor sub-
space and examined the overlap between sub-
spaces from later iterations, specifically between
the 2200-th and 4000-th iterations. We observe
that the overlap between the anchor subspace
and later subspaces of GaLore-SARA-Adam is
lower than that of GaLore-Adam. This indi-
cates that SARA encourages the optimization
trajectory to explore more different subspaces
compared to using the dominant subspace.

SARA Enables Higher-rank Update Fig-
ure 4 shows that the update produced by SARA
in the weight matrix exhibits more evenly dis-
tributed singular values compared to the update
using the dominant subspace. This suggests that SARA helps overcome the low-rank bottleneck asso-
ciated with the dominant subspace approach. We observe both this higher-rank update and improved
subspace exploration occurring simultaneously. We believe these two phenomena are correlated. One
possible explanation is that better exploration of diverse subspaces leads to a higher-rank update.

8



4.4 Additional Baselines and Datasets

In this section, we present additional baselines (GoLore [24] and online PCA [42]) and a dataset
(SlimPajama).

More Baselines for Pretraining on C4 To provide a more comprehensive evaluation of SARA,
we conduct extensive pretraining experiments on the C4 dataset with additional baseline methods.
Beyond the comparisons shown in our main results, we include two particularly relevant baselines:
GoLore [24] and the online PCA approach from [42]. These baselines were selected because they are
also competitive alternatives to our method. The results, presented in Table 3, reveal several important
insights. First, we observe that GoLore-Adam performs reasonably well, achieving validation
perplexity of 31.61 and 24.01 for the 60M and 130M parameter models respectively. However, SARA
consistently outperforms GoLore by significant margins (1.14 and 0.93 perplexity points for the two
model sizes), demonstrating the effectiveness of our approach in learning more efficient low-rank
representations. The comparison with [42]’s online PCA method is particularly illuminating. Their
approach, while computationally efficient, shows substantially higher perplexity (33.69 and 30.62)
compared to both GoLore and SARA. This is mainly due to the unstable training loss curve during
the online PCA method pretraining.

Table 3: Validation perplexity comparison on the C4 dataset for LLaMA models with 60M and 130M
parameters using additional baselines.

C4 Dataset (validation perplexity) 60M (1.5B tokens) 130M (3B tokens)
GoLore-Adam 31.61 24.01
[42] with Adam 33.69 30.62
GaLore-SARA-Adam 30.47 23.08
Full rank Adam 27.71 22.19

Pretraining Results on More Datasets To demonstrate the generalizability of SARA beyond the
C4 dataset, we conduct additional pretraining experiments on the SlimPajama dataset, a carefully
filtered and deduplicated subset of the Pile corpus. The results in Table 4 confirm that our method’s
advantages are not dataset-specific. Several interesting patterns emerge from the SlimPajama results.
First, the performance gaps between methods are slightly smaller on SlimPajama compared to C4. For
the 130M parameter model, SARA improves upon standard GaLore-Adam by 0.57 perplexity points
(25.23 vs 25.80), while trailing full-rank Adam by only 0.23 points. This suggests that our method
may be particularly effective on higher-quality, deduplicated datasets like SlimPajama. We also note
that the absolute perplexity values are slightly lower on SlimPajama than on C4 for comparable model
sizes, which may reflect the dataset’s more careful curation. This makes the strong performance of
SARA even more noteworthy, as it demonstrates effectiveness across different difficulty levels.

Table 4: Validation perplexity on the SlimPajama dataset for LLaMA models with 60M and 130M
parameters.

SlimPajama (validation perplexity) 60M 130M
Full rank Adam 27.79 25.00
GaLore-Adam 31.76 25.80
GaLore-SARA-Adam 30.79 25.23

Additional experiments on high-rank updates, anchor similarity, and adjacent overlap can be found in
Appendix F.1, F.2, and F.3, respectively.

5 Related Work

Memory Efficient Parametrization. LoRA [26] can be seen as a memory-efficient parametrization
of weights in LLMs and is widely used in fine-tuning. LoRA’s bottleneck lies in its low-rank structure,
which impedes its expressiveness. COLA [67], Delta-LoRA [81], and PLoRA [47] propose to

9



increase the rank and improve the performance of LoRA. ReLoRA [40] and SLTrain [22] extend
LoRA to pre-training tasks by merging and resetting adapters, and adopting low-rank plus sparse
parameterization, respectively. MoRA [32] alleviates the shortcoming of the low-rank disadvantage
of LoRA by sharing the same trainable parameters to achieve a higher-rank update. Additionally,
[45] analyzes the sparsity-based parameter-efficient fine-tuning (SPEFT) for LLMs, which is an
alternative method of LoRA. [54] designs a novel method for memory-efficient fine-tuning for LLMs.
It has been shown that it can outperform LoRA and full-parameter training in many cases. Similarly,
[28] proposes another novel fine-tuning method called Half Fine-Tuning (HFT), which can mitigate
“catastrophic forgetting” in LLMs during sequential training and instruction tuning. Finally, [36] also
proposes a novel memory-efficient fine-tuning method by strategically selecting layers to update
based on outlier statistics. Our paper also considers the memory and convergence behavior, but the
difference is that we mainly focus on the LLM pretraining instead of fine-tuning.

Memory Efficient Optimizer. One way to achieve memory-efficient optimization is by using
memory-efficient optimizers, which primarily aim to reduce the memory cost of optimizer states in
Adam [33]. A series of works [58, 76, 46, 80] factorize the second moment in Adam. Quantizing
optimizer states and storing them in low-precision formats has also proven successful [35, 12].
Another line of work focuses on gradient compression methods. GaLore [79] and Q-GaLore [77] use
SVD to apply dense low-rank projections to gradients. FLora [23] and GoLore [24] adopt random
projection, while Grass [51] employs sparse low-rank projection to gradients.

Subspace Learning. Existing studies provide sophisticated analyses of various subspace learning
algorithms [11, 34, 29]. [21] claims that gradient descent primarily occurs in the dominant subspace,
which is spanned by the top eigenvectors of the Hessian. In contrast, [60] argues that, due to noise in
SGD, the alignment between the gradient and the dominant subspace is spurious, and learning does
not occur in the dominant subspace but rather in its orthogonal complement, i.e., the bulk subspace.
Intuitively, our findings align with those of [60], suggesting that selecting basis vectors based on
specific sampling probabilities can enhance the performance of LLMs during pre-training.

6 Conclusion

In this paper, we propose SARA for low-rank optimization in LLM pretraining. The motivation is
to find an effective subspace selection method to overcome the low-rank bottleneck caused by the
frozen dominant subspace in low-rank optimization. SARA samples singular vectors of mini-batch
gradients with probabilities proportional to their singular values, this enables optimization trajectory
to explore more different subspaces. Theoretically, in Theorem 3.4, we show that GaLore-SARA-

MSGD achieves comparison convergence rate as GoLore-MSGD, which is O
(

L∆
δ2.5T +

√
L∆σ2

δ3.5T

)
.

Empirically, we find that SARA improves the language modeling capability of pretrained models
compared to using the dominant subspace, as verified by experiments involving SARA and dominant
subspace selection with multiple low-rank optimizers.

Acknowledgment

Lin F. Yang is supported in part by NSF Grant 2221871 and an Amazon Faculty Award. Vladimir
Braverman is supported in part by NSF Grant CNS 2528780.

References
[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen

Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

[2] Nikhil Abhyankar, Vivek Gupta, Dan Roth, and Chandan K. Reddy. H-star: Llm-driven hybrid
sql-text adaptive reasoning on tables, 2025.

10



[3] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[4] Maryam Aliakbarpour, Vladimir Braverman, Junze Yin, and Haochen Zhang. Support basis:
Fast attention beyond bounded entries. arXiv preprint arXiv:2510.01643, 2025.

[5] Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[6] Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
Tempo: Prompt-based generative pre-trained transformer for time series forecasting. arXiv
preprint arXiv:2310.04948, 2023.

[7] Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
Fira: Can we achieve full-rank training of llms under low-rank constraint? arXiv preprint
arXiv:2410.01623, 2024.

[8] Yifang Chen, Jiayan Huo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Fast gradient
computation for rope attention in almost linear time. arXiv preprint arXiv:2412.17316, 2024.

[9] Yifang Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. The computational
limits of state-space models and mamba via the lens of circuit complexity. arXiv preprint
arXiv:2412.06148, 2024.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–
113, 2023.

[11] Romain Cosson, Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh, and Devavrat Shah.
Low-rank gradient descent. IEEE Open Journal of Control Systems, 2023.

[12] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[14] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and
trpo. In International conference on learning representations, 2019.

[15] Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulat-
ing single layer attention in LLM based on tensor and SVM trick, and solving it in matrix
multiplication time. In The 41st Conference on Uncertainty in Artificial Intelligence, 2025.

[16] Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from
single softmax regression to multiple softmax regression via a tensor trick. arXiv preprint
arXiv:2307.02419, 2023.

[17] Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023.

[18] Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. In International Conference on Artificial Intelligence and Statistics, 2025.

[19] Yuzhou Gu, Zhao Song, and Junze Yin. Binary hypothesis testing for softmax models and
leverage score models. In Forty-second International Conference on Machine Learning, 2025.

[20] Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. In The Twelfth International Conference on
Learning Representations, 2024.

11



[21] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
arXiv preprint arXiv:1812.04754, 2018.

[22] Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and
Bamdev Mishra. Sltrain: a sparse plus low-rank approach for parameter and memory efficient
pretraining. arXiv preprint arXiv:2406.02214, 2024.

[23] Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

[24] Yutong He, Pengrui Li, Yipeng Hu, Chuyan Chen, and Kun Yuan. Subspace optimization for
large language models with convergence guarantees. arXiv preprint arXiv:2410.11289, 2024.

[25] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
An empirical analysis of compute-optimal large language model training. Advances in Neural
Information Processing Systems, 35:30016–30030, 2022.

[26] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[27] Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu Shen, Yong Xu, Chaoyun Zhang, and
Yuzhong Qu. Queryagent: A reliable and efficient reasoning framework with environmental
feedback-based self-correction, 2024.

[28] Tingfeng Hui, Zhenyu Zhang, Shuohuan Wang, Weiran Xu, Yu Sun, and Hua Wu. HFT: Half
fine-tuning for large language models. In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2025.

[29] Ali Jadbabaie, Anuran Makur, and Amirhossein Reisizadeh. Adaptive low-rank gradient descent.
In 2023 62nd IEEE Conference on Decision and Control (CDC), pages 3315–3320. IEEE, 2023.

[30] Deyi Ji, Lanyun Zhu, Siqi Gao, Peng Xu, Hongtao Lu, Jieping Ye, and Feng Zhao. Tree-of-table:
Unleashing the power of llms for enhanced large-scale table understanding, 2024.

[31] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[32] Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-
efficient fine-tuning. arXiv preprint arXiv:2405.12130, 2024.

[33] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[34] David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. Stochastic subspace descent.
arXiv preprint arXiv:1904.01145, 2019.

[35] Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances
in Neural Information Processing Systems, 36, 2024.

[36] Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu. Outlier-weighed layerwise sampling for
llm fine-tuning. In Findings of the Association for Computational Linguistics: ACL 2025, pages
19460–19473, 2025.

[37] Yunfan Li, Yiran Wang, Yu Cheng, and Lin Yang. Low-switching policy gradient with explo-
ration via online sensitivity sampling. In International Conference on Machine Learning, pages
19995–20034. PMLR, 2023.

[38] Yunfan Li and Lin Yang. On the model-misspecification in reinforcement learning. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 2764–2772. PMLR,
2024.

12



[39] Zhihang Li, Zhao Song, Zifan Wang, and Junze Yin. Local convergence of approximate newton
method for two layer nonlinear regression. arXiv preprint arXiv:2311.15390, 2023.

[40] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

[41] Jiehao Liang, Zhao Song, Zhaozhuo Xu, Junze Yin, and Danyang Zhuo. Dynamic maintenance
of kernel density estimation data structure: from practice to theory. In Proceedings of the
Forty-First Conference on Uncertainty in Artificial Intelligence, 2025.

[42] Kaizhao Liang, Bo Liu, Lizhang Chen, and qiang liu. Memory-efficient LLM training with
online subspace descent. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[43] Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024.

[44] Junyan Liu, Yunfan Li, Ruosong Wang, and Lin Yang. Uniform last-iterate guarantee for bandits
and reinforcement learning. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[45] Xinxin Liu, Aaron Thomas, Cheng Zhang, Jianyi Cheng, Yiren Zhao, and Xitong Gao. Refining
salience-aware sparse fine-tuning strategies for language models. In Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2025.

[46] Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came:
Confidence-guided adaptive memory efficient optimization. arXiv preprint arXiv:2307.02047,
2023.

[47] Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi
Wang, Qingxiu Dong, Liang Chen, and Zhifang Sui. Periodiclora: Breaking the low-rank
bottleneck in lora optimization. arXiv preprint arXiv:2402.16141, 2024.

[48] Amirreza Neshaei Moghaddam and Bahman Gharesifard. Gradient flow approximations in
temporal difference learning. IEEE Control Systems Letters, 2024.

[49] Amirreza Neshaei Moghaddam, Alex Olshevsky, and Bahman Gharesifard. Sample complexity
of linear quadratic regulator without initial stability. arXiv preprint arXiv:2502.14210, 2025.

[50] Amirreza Neshaei Moghaddam, Alex Olshevsky, and Bahman Gharesifard. Sample complexity
of the linear quadratic regulator: A reinforcement learning lens. Journal of Machine Learning
Research, 26(151):1–50, 2025.

[51] Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Com-
pute efficient low-memory llm training with structured sparse gradients. arXiv preprint
arXiv:2406.17660, 2024.

[52] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
et al. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2021.

[53] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[54] Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Lay-
erwise importance sampling for memory-efficient large language model fine-tuning. Advances
in Neural Information Processing Systems, 37:57018–57049, 2024.

13



[55] Jacob Portes, Alexander Trott, Sam Havens, Daniel King, Abhinav Venigalla, Moin Nadeem,
Nikhil Sardana, Daya Khudia, and Jonathan Frankle. Mosaicbert: A bidirectional encoder
optimized for fast pretraining. Advances in Neural Information Processing Systems, 36:3106–
3130, 2023.

[56] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. OpenAI, 2018.

[57] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[58] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[59] Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balancing the trade-
off between creativity and reality in large language models. arXiv preprint arXiv:2306.02295,
2023.

[60] Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does sgd really happen in tiny subspaces?
arXiv preprint arXiv:2405.16002, 2024.

[61] Zhao Song, Chongxi Wang, Guangyi Xu, and Junze Yin. The expressibility of polynomial
based attention scheme. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V.2, 2025.

[62] Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv
preprint arXiv:2309.13482, 2023.

[63] Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. Efficient alternating minimization with
applications to weighted low rank approximation. In The Thirteenth International Conference
on Learning Representations, 2025.

[64] Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via
pre-conditioner. In International Conference on Artificial Intelligence and Statistics, pages
208–216. PMLR, 2024.

[65] Songyuan Sui, Hongyi Liu, Serena Liu, Li Li, Soo-Hyun Choi, Rui Chen, and Xia Hu. Chain-
of-query: Unleashing the power of llms in sql-aided table understanding via multi-agent
collaboration, 2025.

[66] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[67] Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

[68] L Xue. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934, 2020.

[69] Wen Ye, Jinbo Liu, Defu Cao, Wei Yang, and Yan Liu. When llm meets time series: Can llms
perform multi-step time series reasoning and inference. arXiv preprint arXiv:2509.01822, 2025.

[70] Anton Zakharenkov and Ilya Makarov. Deep reinforcement learning with dqn vs. ppo in
vizdoom. In 2021 IEEE 21st international symposium on computational intelligence and
informatics (CINTI), pages 000131–000136. IEEE, 2021.

[71] Haochen Zhang, Xi Chen, and Lin F Yang. Adaptive liquidity provision in uniswap v3 with
deep reinforcement learning. arXiv preprint arXiv:2309.10129, 2023.

[72] Haochen Zhang, Zhiyun Peng, Junjie Tang, Ming Dong, Ke Wang, and Wenyuan Li. A
multi-layer extreme learning machine refined by sparrow search algorithm and weighted mean
filter for short-term multi-step wind speed forecasting. Sustainable Energy Technologies and
Assessments, 50:101698, 2022.

14



[73] Haochen Zhang, Tianyi Zhang, Junze Yin, Oren Gal, Anshumali Shrivastava, and Vladimir
Braverman. CoVE: Compressed vocabulary expansion makes better LLM-based recommender
systems. In Findings of the Association for Computational Linguistics: ACL 2025, 2025.

[74] Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient reinforce-
ment learning with reinforce. In Proceedings of the AAAI conference on artificial intelligence,
2021.

[75] Mumin Zhang, Yuzhi Wang, Haochen Zhang, Zhiyun Peng, and Junjie Tang. A novel and robust
wind speed prediction method based on spatial features of wind farm cluster. Mathematics,
11(3):499, 2023.

[76] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan
Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint
arXiv:2406.16793, 2024.

[77] Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024.

[78] Zhi Zhang, Chris Chow, Yasi Zhang, Yanchao Sun, Haochen Zhang, Eric Hanchen Jiang, Han
Liu, Furong Huang, Yuchen Cui, and Oscar Hernan Madrid Padilla. Statistical guarantees for
lifelong reinforcement learning using pac-bayesian theory. arXiv preprint arXiv:2411.00401,
2024.

[79] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

[80] Pengxiang Zhao, Ping Li, Yingjie Gu, Yi Zheng, Stephan Ludger Kölker, Zhefeng Wang, and
Xiaoming Yuan. Adapprox: Adaptive approximation in adam optimization via randomized
low-rank matrices. arXiv preprint arXiv:2403.14958, 2024.

[81] Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411, 2023.

15



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have explicitly presented our main claims in our abstract and introduction
(see Section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have detailedly discussed the limitations of our paper in Section D.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

16



Justification: The assumptions we have can be found at Assumption 3.1 and Assumption 3.2.
The proof of Theorem 3.4 can be found in Appendix A. The proof of Lemma 3.3 can be
found in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the pseudocode for our algorithms—SARA (Algorithm 2)
— as well as details on the LLaMA models, datasets, and evaluation metrics. The hyper-
parameters is included in Appendix B. The GitHub Repo will be open to public after the
review session.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The datasets we used are public and can be accessed by everyone. Also, we
will release our code after the review session.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training and test details, hyperparameters, experiment settings,
etc (see Section 4.1 and Appendix B). Once the review session is done, we will provide the
code of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not have error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide this information in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors have reviewed the NeurIPS Code of Ethics and confirm that the
research presented in this paper fully complies with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the positive and negative societal impact in Section E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the previous papers that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

20



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We only use LLM to check our grammar.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


Appendix

A Proof Details for SARA

Lemma A.1 (Gradient connections, Lemma 2 in [24]). Let ∇ℓf(x) denote the gradient with respect
to the ℓ-th layer parameters at point x, and suppose x(t) denotes the parameters at iteration t. Then
for any integers t ≥ 0 and τ > 0, we have

Then, for all t, τ > 0, we have

∥∇ℓf(x
(t))∥2F ≤

2

τ

τ−1∑
r=0

∥∇ℓf(x
(t+r))∥2F + (τ − 1)

τ−2∑
r=0

∥∥∥∇ℓf(x
(t+r+1))−∇ℓf(x

(t+r))
∥∥∥2
F
.

Lemma A.2 (Error of SARA’s Projection). Let τ be the update period of SARA, and r be the rank of
low-rank subspace in SARA. For all i ∈ [m], l ∈ [N ], k ∈ N, let p(t)l (i) denote the probability that
the i-th basis vector is selected for the l-th layer at time t = kτ , and define

δ
(t)
l := min

i∈[m]
p
(t)
l (i), δ := min

l∈[m],t≥0
δ
(t)
l

Let P (t)
l ∈ Rm×r denote the orthonormal projection matrix and let ∇lf(x

(t)) ∈ Rm×nl be the
gradient matrix of the l-th layer at time t. Then, the following inequality holds:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
≤ (1− δ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.

Proof. We analyze the expected projection residual:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
= E∇lf(x(t))

[
E
P

(t)
l

[∥∥∥(I − P
(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

∣∣∣∣∇lf(x
(t))

]]
= E∇lf(x(t))

[
tr

(
E
P

(t)
l

[(
I − P

(t)
l (P

(t)
l )⊤

)2]
· ∇lf(x

(t))∇lf(x
(t))⊤

)]
.

Let {Uj}mj=1 be a fixed orthonormal basis for Rm, and define the indicator variable 1{j} to denote
whether Uj is selected. Then,

E
P

(t)
l

[
I − P

(t)
l (P

(t)
l )⊤

]
=

m∑
j=1

(1− E[1{j}])UjU
⊤
j .

Therefore,

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
= E

tr
 m∑

j=1

(1− E[1{j}])UjU
⊤
j · ∇lf(x

(t))∇lf(x
(t))⊤


=

m∑
j=1

(1− E[1{j}]) · E
[∥∥∥U⊤

j ∇lf(x
(t))
∥∥∥2
2

]

≤ (1−min
j

E[1{j}]) · E
[∥∥∥∇lf(x

(t))
∥∥∥2
F

]
= (1− δ

(t)
l ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
≤ (1− δ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.

Lemma A.3 (Momentum Contraction of SARA). For SARA with momentum re-projection, for all
l ∈ [N ], we have the inequalities below hold.

23



• Part 1 (t = 0).

E
[∥∥∥M̃ (0)

l −∇lf(x
(0))
∥∥∥2
F

]
≤
(
1− (2β1 − β2

1)δ
)
E
[∥∥∥∇lf(x

(0))
∥∥∥2
F

]
+ β2

1σ
2
l .

• Part 2 (t = kτ , k ∈ N).

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
−
(
1−

(
1− δ

4

)
β1

)
E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t−1))

∥∥∥2
F

]
≤ 2(1− δ)

τ

τ−1∑
r=0

E
[∥∥∥∇lf(x

(kτ+r))
∥∥∥2
F

]
+

5(1− β1)

β1δ
E
[∥∥∥∇lf(x

(t))−∇lf(x
(t−1))

∥∥∥2
F

]

+ (τ − 1)(1− δ)

τ−2∑
r=0

E
[∥∥∥∇lf(x

(kτ+r+1))−∇lf(x
(kτ+r))

∥∥∥2
F

]
+ β2

1σ
2
l .

• Part 3 (t = kτ + r, 1 ≤ r ≤ τ − 1).

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
−
(
1−

(
1− δ

4

)
β1

)
E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t−1))

∥∥∥2
F

]
≤
(
1− δ

2

)
β1E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
+

5(1− β1)

β1δ
E
[∥∥∥∇lf(x

(t))−∇lf(x
(t−1))

∥∥∥2
F

]
+

10rβ1

δ

r∑
i=1

E
[∥∥∥∇lf(x

(kτ+i))−∇lf(x
(kτ+i−1))

∥∥∥2
F

]
+ β2

1σ
2
l .

Proof. Proof of Part 1.

Suppose t = 0. By definition of the momentum estimator M̃ (0)
l = β1P

(0)
l (P

(0)
l )⊤G

(0)
l , we decom-

pose the error as:

E
[∥∥∥M̃ (0)

l −∇lf(x
(0))
∥∥∥2
F

]
= E

[∥∥∥β1P
(0)
l (P

(0)
l )⊤

(
G

(0)
l −∇lf(x

(0))
)∥∥∥2

F

]
+ E

[∥∥∥(β1P
(0)
l (P

(0)
l )⊤ − I

)
∇lf(x

(0))
∥∥∥2
F

]
.

The first term is bounded using the assumption that G(0)
l is an unbiased estimator with variance σ2

l :

E
[∥∥∥β1P

(0)
l (P

(0)
l )⊤

(
G

(0)
l −∇lf(x

(0))
)∥∥∥2

F

]
≤ β2

1σ
2
l .

For the second term, we apply Lemma A.2:

E
[∥∥∥(I − β1P

(0)
l (P

(0)
l )⊤

)
∇lf(x

(0))
∥∥∥2
F

]
≤
(
1− (2β1 − β2

1)δ
)
E
[∥∥∥∇lf(x

(0))
∥∥∥2
F

]
.

Combining both bounds:

E
[∥∥∥M̃ (0)

l −∇lf(x
(0))
∥∥∥2
F

]
≤
(
1− (2β1 − β2

1)δ
)
E
[∥∥∥∇lf(x

(0))
∥∥∥2
F

]
+ β2

1σ
2
l .

Proof of Part 2.

Suppose t = kτ . At the projection step, we have the update rule:

M̃
(t)
l = P

(t)
l (P

(t)
l )⊤

(
(1− β1)M̃

(t−1)
l + β1G

(t)
l

)
.

Then:

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
= E

[∥∥∥P (t)
l (P

(t)
l )⊤

(
(1− β1)M̃

(t−1)
l + β1G

(t)
l −∇lf(x

(t))
)

(1)

24



−
(
I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
(2)

= E
[∥∥∥P (t)

l (P
(t)
l )⊤

(
(1− β1)M̃

(t−1)
l + β1G

(t)
l −∇lf(x

(t))
)∥∥∥2

F

]
+ E

[∥∥∥(I − P
(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
. (3)

The second equality is because of the Pythagorean Theorem.

Applying Lemma A.2 to the second term:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
≤ (1− δ)E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.

The first term is bounded as below:

E
[∥∥∥P (t)

l (P
(t)
l )⊤

(
(1− β1)M̃

(t−1)
l + β1G

(t)
l −∇lf(x

(t))
)∥∥∥2

F

]
≤ E

[∥∥∥(1− β1)M̃
(t−1)
l + β1G

(t)
l −∇lf(x

(t))
∥∥∥2
F

]
= E

[∥∥∥(1− β1)(M̃
(t−1)
l −∇lf(x

(t))) + β1(G
(t)
l −∇lf(x

(t)))
∥∥∥2
F

]
≤ (1− β1)E

[∥∥∥M̃ (t−1)
l −∇lf(x

(t))
∥∥∥2
F

]
+ β1E

[∥∥∥G(t)
l −∇lf(x

(t))
∥∥∥2
F

]
≤ (1− β1)E

[∥∥∥M̃ (t−1)
l −∇lf(x

(t))
∥∥∥2
F

]
+ β1σ

2
l , (4)

where the first inequality is because of
∥∥∥P (t)

l (P
(t)
l )T

∥∥∥
2
= 1, the second inequality is because of

the independent noise of mini-batch gradient, the third inequality is because of the bounded noise
assumption.

To bound E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t))
∥∥∥2
F

]
, we apply Young’s inequality:

E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t))
∥∥∥2
F

]
≤
(
1 +

δβ1

4

)
E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t−1))

∥∥∥2
F

]
+

(
1 +

4

δβ1

)
E
[∥∥∥∇lf(x

(t))−∇lf(x
(t−1))

∥∥∥2
F

]
(5)

So far, we can have the upper bound for the first term in Eq. (4). By applying Eq. (5), Eq. (4), and
Lemma A.1 which naturally holds in our problem setting, we have shown Part 2.

Proof of Part 3.

Suppose t = kτ + r, 1 ≤ r ≤ τ − 1). In this case, P (t)
l = P

(kτ)
l is reused. The update becomes:

M̃
(t)
l = (1− β1)M̃

(t−1)
l + β1P

(t)
l (P

(t)
l )⊤G

(t)
l .

Using the standard decomposition:

M̃
(t)
l −∇lf(x

(t)) = (1− β1)(M̃
(t−1)
l −∇lf(x

(t))) + β1(P
(t)
l (P

(t)
l )⊤ − I)∇lf(x

(t))

+ β1P
(t)
l (P

(t)
l )⊤(G

(t)
l −∇lf(x

(t))).

By unbiasedness, we have

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]

25



= E
[∥∥∥(1− β1)(M̃

(t−1)
l −∇lf(x

(t))) + β1(P
(t)
l (P

(t)
l )⊤ − I)∇lf(x

(t))
∥∥∥2
F

]
+ E

[∥∥∥β1P
(t)
l (P

(t)
l )⊤(G

(t)
l −∇lf(x

(t)))
∥∥∥2
F

]
.

Recall that by
∥∥∥P (t)

l (P
(t)
l )T

∥∥∥
2
= 1 and the noise assumption, so we have

E
[∥∥∥β1P

(t)
l (P

(t)
l )⊤(G

(t)
l −∇lf(x

(t)))
∥∥∥2
F

]
≤ β2

1σ
2
l .

By applying Jensen’s inequality, we have

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
≤ (1− β1)E

[∥∥∥M̃ (t−1)
l −∇lf(x

(t))
∥∥∥2
F

]
+ β1E

[∥∥∥(P (t)
l (P

(t)
l )⊤ − I)∇lf(x

(t))
∥∥∥2
F

]
+ β2

1σ
2
l .

We now bound the projection error using Lemma A.2:

E
[∥∥∥(P (t)

l (P
(t)
l )⊤ − I)∇lf(x

(t))
∥∥∥2
F

]
≤
(
1 +

δ

4

)
E
[∥∥∥(P (t)

l (P
(t)
l )⊤ − I)∇lf(x

(kτ))
∥∥∥2
F

]
+

(
1 +

4

δ

)
E
[∥∥∥∇lf(x

(t))−∇lf(x
(kτ))

∥∥∥2
F

]
≤
(
1− 3δ

4

)
E
[∥∥∥∇lf(x

(kτ))
∥∥∥2
F

]
+

(
1 +

4

δ

)
E
[∥∥∥∇lf(x

(t))−∇lf(x
(kτ))

∥∥∥2
F

]
.

The first equality is because of Young’s inequality, the second inequality is because of Lemma A.2.

This concludes the bound. The final contraction inequality is then followed by applying this bound
and collecting terms.

For Part 3 of Lemma A.3, we get exactly the same bound for our SARA compared with their GoLore.

Though our Momentum Contraction result is a little worse than the one in [24], we can still get the
same result for Momentum Error Bound, as shown in Lemma A.4.
Lemma A.4 (Momentum Error Bound of MSGD with SARA). Define

σ2 =
∑
l∈[N ]

σ2
l

Then we have
Kτ−1∑
t=0

E
[∥∥∥M̃ (t) −∇f(x(t))

∥∥∥2
F

]

≤
(

5(1− β1)

(1− δ/4)δβ2
1

+
5τ(1− τ)

(1− δ/4)δ
+

τ − 1

(1− δ/4)β

)
L2

Kτ−2∑
t=0

E
[∥∥∥x(t+1) − x(t)

∥∥∥2
F

]

+

(
1− δ/2

1− δ/4
+

2

(1− δ/4)τβ1

)Kτ−2∑
t=0

E
[∥∥∥∇f(x(t))

∥∥∥2
F

]
+

Kτβ1σ
2

1− δ/4

Proof. First we apply summation to Part 3 of Lemma A.3 as follows:

(k+1)τ−1∑
t=kτ+1

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
−
(
1− (1− δ

4
)β1

) (k+1)τ−1∑
t=kτ+1

E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t−1))

∥∥∥2
F

]

26



≤
(
1− δ

2

)
β1

(k+1)τ−1∑
t=kτ+1

E
[∥∥∥∇lf(x

(t))
∥∥∥2
F

]

+
5(1− β1)

β1δ

(k+1)τ−1∑
t=kτ+1

E
[∥∥∥∇lf(x

(t))−∇lf(x
(t−1))

∥∥∥2
F

]

+
10β1

δ

τ−1∑
r=1

r

r∑
i=1

E
[∥∥∥∇lf(x

(kτ+i))−∇lf(x
(kτ+i−1))

∥∥∥2
F

]
+ β2

1σ
2
l (τ − 1)

≤
(
1− δ

2

)
β1

(k+1)τ−1∑
t=kτ+1

E
[∥∥∥∇lf(x

(t))
∥∥∥2
F

]

+

[
5(1− β1)

β1δ
+

5β1τ(τ − 1)

δ

] (k+1)τ−2∑
t=kτ

E
[∥∥∥∇lf(x

(t+1))−∇lf(x
(t))
∥∥∥2
F

]
+ β2

1σ
2
l (τ − 1) (6)

Then add Eq. (6) and Part 2 of Lemma A.3 together, we have
(k+1)τ−1∑

t=kτ

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
−
(
1− (1− δ

4
)β1

) (k+1)τ−1∑
t=kτ

E
[∥∥∥M̃ (t−1)

l −∇lf(x
(t−1))

∥∥∥2
F

]

≤
[(

1− δ

2

)
β1 +

2(1− δ)

τ

] (k+1)τ−1∑
t=kτ

E
[∥∥∥∇lf(x

(t))
∥∥∥2
F

]

+

[
5(1− β1)

β1δ
+

5β1τ(τ − 1)

δ
+ (τ − 1)(1− δ)

] (k+1)τ−2∑
t=kτ

E
[∥∥∥∇lf(x

(t+1))−∇lf(x
(t))
∥∥∥2
F

]
+ β2

1σ
2
l τ

(7)
Then applying summation over k from 0 to K and summation over all l ∈ [N ] gives us the desired
result.

So far, we have the comparable result of upper bound of momentum error, in the next step, apply the
same proof procedure as in [24] give us the convergence of low-rank MSGD with SARA.
Theorem A.5. Under Assumptions 1–3, if hyperparameters

0 < β1 ≤ 1, τ ≥ 64

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

16τL2

}
,

MSGD-SARA with momentum re-projection converges as

1

Kτ

Kτ−1∑
t=0

E
[
∥∇f(x(t))∥22

]
≤ 16∆

δηKτ
+

32β1σ
2

3δ

for any K ≥ 1, where ∆ = f(x(0))− infx f(x).
Corollary A.6 (Convergence complexity of Low-rank MSGD with SARA). Under Assumption 3.1-
3.2, if T ≥ 2 + 128/(3δ) + (128σ)2/(9

√
δL∆) and we choose

β1 =

(
1 +

√
δ3/2σ2T

L∆

)−1

, τ =

⌈
64

3δβ1

⌉
, η =

(
4L+

√
80L2

3δβ2
1

+
80τ2L2

3δ
+

√
16τL2

3β1

)−1

,

low-rank MSGD-SARA with momentum re-projection converges as

1

T

T−1∑
t=0

E
[
∥∇f(x(t))∥22

]
= O

(
L∆

δ2.5T
+

√
L∆σ2

δ3.5T

)
,

where ∆ = f(x(0))− infx f(x).

27



B Experiment Implementation

To enable re-implementation, we provide hyperparameters herein. For fair comparison, we adopt the
same hyperparameters for dominant subspace selection and SARA. Hyperparameters for GaLore
with dominant subspace selection and SARA are shown in Table 5. Hyperparameters for Fira with
dominant subspace selection and SARA are shown in Table 6.

Table 5: Hyperparameters for experiments with GaLore
Name Values

Batch Size 512
Maximum Sequence Length 512

Warmup Steps 1000 for 60m, 2000 for 130m, 6000 for 350m, 10000 for 1.1B
Rank 128 for 60m, 256 for 130m, 256 for 350m, 512 for 1.1B

Weight Decay 0
Learning Rate 0.01

Scheduler Cosine
Optimizer Specific Parameters Adam: β1 = 0.9, β2 = 0.999

Adafactor: β1 = 0.9, β2(t) = 1− t−0.8

Adam-mini: β1 = 0.9, β2 = 0.95

Table 6: Hyperparameters for experiments with Fira
Name Values

batch Size 512
Maximum sequence length 512

Warmup Steps 1000 for 60m, 2000 for 130m, 6000 for 350m
rank 128 for 60m, 256 for 130m, 256 for 350m

Weight Decay 0
Learning Rate 0.01

Scheduler Cosine
optimizer specific parameters Adam: β1 = 0.9, β2 = 0.999

C More Related Work

Large language models Many works study the LLM from other aspects. For example, low rank
approximation [20, 63] can also be applied to improve the computational complexity of (masked)
attention approximation [43, 8]. Gaussian kernel density estimation is closely related to attention op-
timization, and similar to our work, [41] uses importance sampling to study the dynamic maintenance
of KDE data structures. [16, 59, 62, 15, 18, 64, 39] analyze the attention regression problems. [9]
study the computational limits of Mamba. [61] investigates the expressibility of polynomial attention.
[17] applies the sketching technique to develop the decentralized large language model. [4] studies
the attention optimization without requiring strict assumptions. [73] focuses on efficiently aligning
LLMs with recommendation tasks. [19] studies the binary hypothesis testing for softmax models.

Reinforcement Learning In reinforcement learning (RL) [37, 38, 44, 78, 71, 48, 50, 49], an agent
learns to make sequential decisions by interacting with an environment to maximize a cumulative
reward. RL algorithms, especially policy gradient methods (e.g., REINForCE, PPO, TRPO) [74,
70, 14], often rely on stochastic gradient descent (SGD) or Adam for optimization. Our low-rank
optimization techniques for Adam, which could, in theory, be applied to RL training to make policy
optimization more memory-efficient.

Broader Application of Large Language Models The application of large transformers with
long-context capabilities is not limited to language processing; broader domains such as time-series
prediction [75, 72, 6, 69] are also of practical importance. Another line of work applies LLM for

28



structured data understanding [27, 30, 2, 65]. Extending and validating our method to preserve the
accuracy of LLMs on these tasks is, therefore, a worthwhile direction for future work.

D Limitations

Our work does not have any noteworthy limitations, as we directly address the key limitation of
dominant subspace selection in prior work without requiring extra assumptions. In our paper, we
provide a theoretical analysis of the convergence rate, though it still relies on the assumptions of
L-smoothness (Assumption 3.1) and bounded, centered mini-batch gradient noise (Assumption 3.2).

However, we note that these assumptions are standard in the optimization literature.

E Societal Impact

Regarding the positive societal impact, by reducing memory requirements for training, our SARA
method enables more organizations—including those with limited compute budgets—to train or
fine-tune competitive LLMs.

To the best of our knowledge, we do not anticipate any negative societal impacts.

F More experimental results

F.1 High-Rank Updates

Now, we provide more experimental results for high-rank updates.

29



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.0.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 5: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 0 of LLaMA-60M model during pretraining.

30



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.1.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 6: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 1 of LLaMA-60M model during pretraining.

31



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.2.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 7: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 2 of LLaMA-60M model during pretraining.

32



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.3.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 8: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 3 of LLaMA-60M model during pretraining.

33



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.mlp.up_proj.weight

GaLore-I3S-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.4.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 9: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 4 of LLaMA-60M model during pretraining.

34



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.5.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 10: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 5 of LLaMA-60M model during pretraining.

35



0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.6.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 11: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 6 of LLaMA-60M model during pretraining.

36



0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.mlp.down_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(a) Normalized singular values
of mlp.down_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.mlp.gate_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(b) Normalized singular values
of mlp.gate_proj.

0 100 200 300 400 500
Update Steps

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.mlp.up_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(c) Normalized singular values
of mlp.up_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.self_attn.k_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(d) Normalized singular values
of self_attn.k_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.self_attn.o_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(e) Normalized singular values
of self_attn.o_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.self_attn.q_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(f) Normalized singular values
of self_attn.q_proj.

0 100 200 300 400 500
Update Steps

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Si

ng
ul

ar
 V

al
ue

s

module.model.layers.7.self_attn.v_proj.weight

GaLore-SARA-Adam
GaLore-Adam
Full-rank Adam

(g) Normalized singular values
of self_attn.v_proj.

Figure 12: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 7 of LLaMA-60M model during pretraining.

F.2 Anchor Similarity

Now, we provide more experimental results for anchor similarity.

37



2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.4

0.6

0.8

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.4

0.6

0.8

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.0.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 13: The low-rank subspace of different layers in Block 0 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 0 in later iterations and the anchor subspace.

38



2500 3000 3500 4000
Update Steps

0.40

0.45

0.50

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.40

0.45

0.50

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.45

0.50

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.1.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 14: The low-rank subspace of different layers in Block 1 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 1 in later iterations and the anchor subspace.

39



2500 3000 3500 4000
Update Steps

0.40

0.45

0.50

0.55

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.40

0.45

0.50

0.55

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.40

0.45

0.50

0.55

0.60

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.2.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 15: The low-rank subspace of different layers in Block 2 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 2 in later iterations and the anchor subspace.

40



2500 3000 3500 4000
Update Steps

0.40

0.45

0.50

0.55

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.3.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 16: The low-rank subspace of different layers in Block 3 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 3 in later iterations and the anchor subspace.

41



2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.4.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 17: The low-rank subspace of different layers in Block 4 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 4 in later iterations and the anchor subspace.

42



2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.5.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 18: The low-rank subspace of different layers in Block 5 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 5 in later iterations and the anchor subspace.

43



2500 3000 3500 4000
Update Steps

0.4

0.5

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.6.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 19: The low-rank subspace of different layers in Block 6 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 6 in later iterations and the anchor subspace.

44



2500 3000 3500 4000
Update Steps

0.4

0.5

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Anchor subspace overlap of
attn.k_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Anchor subspace overlap of
attn.o_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Anchor subspace overlap of
attn.q_proj.

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Anchor subspace overlap of
attn.v_proj.

2500 3000 3500 4000
Update Steps

0.30

0.35

0.40

0.45

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Anchor subspace overlap of
mlp.down_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Anchor subspace overlap of
mlp.gate_proj.

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

An
ch

or
 S

ub
sp

ac
e 

Ov
er

la
p

model.layers.7.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Anchor subspace overlap of
mlp.up_proj.

Figure 20: The low-rank subspace of different layers in Block 7 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 7 in later iterations and the anchor subspace.

45



F.3 Adjacent Overlap

2500 3000 3500 4000
Update Steps

0.30

0.35

0.40

0.45

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.30

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.325

0.350

0.375

0.400

0.425

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.0.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 21: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 0 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

46



2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.4

0.6

0.8

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.4

0.6

0.8

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.1.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 22: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 1 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

47



2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.4

0.6

0.8

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.4

0.6

0.8

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.2.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 23: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 2 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

48



2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.3.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 24: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 3 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

49



2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.4.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 25: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 4 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

50



2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

0.7

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.5.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 26: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 5 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

51



2500 3000 3500 4000
Update Steps

0.30

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.6.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 27: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 6 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

52



2500 3000 3500 4000
Update Steps

0.30

0.35

0.40

0.45

0.50

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.mlp.down_proj

GaLore-SARA-Adam
GaLore-Adam

(a) Adjacent subspace overlap of
mlp.down_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.mlp.gate_proj

GaLore-SARA-Adam
GaLore-Adam

(b) Adjacent subspace overlap of
mlp.gate_proj

2500 3000 3500 4000
Update Steps

0.3

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.mlp.up_proj

GaLore-SARA-Adam
GaLore-Adam

(c) Adjacent subspace overlap of
mlp.up_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.self_attn.k_proj

GaLore-SARA-Adam
GaLore-Adam

(d) Adjacent subspace overlap of
self_attn.k_proj

2500 3000 3500 4000
Update Steps

0.4

0.5

0.6

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.self_attn.o_proj

GaLore-SARA-Adam
GaLore-Adam

(e) Adjacent subspace overlap of
self_attn.o_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.self_attn.q_proj

GaLore-SARA-Adam
GaLore-Adam

(f) Adjacent subspace overlap of
self_attn.q_proj

2500 3000 3500 4000
Update Steps

0.35

0.40

0.45

0.50

0.55

Ad
ja

ce
nt

 S
ub

sp
ac

e 
Ov

er
la

p

model.layers.7.self_attn.v_proj

GaLore-SARA-Adam
GaLore-Adam

(g) Adjacent subspace overlap of
self_attn.v_proj

Figure 28: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 7 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration

53


	Introduction
	Preliminaries
	Methodology
	Frozen Dominant Subspace of Mini-batch Gradient
	SARA: Importance SAmpling for Low-RAnk Optimization
	Provable Convergence of SARA

	Experimental Results
	Experiment Setting
	Efficacy of SARA with Low-Rank Adam Optimizers
	SARA Encourages Subspace Exploration and Higher-Rank Updates
	Additional Baselines and Datasets 

	Related Work
	Conclusion
	Proof Details for SARA
	Experiment Implementation
	More Related Work
	Limitations
	Societal Impact
	More experimental results
	High-Rank Updates
	Anchor Similarity
	Adjacent Overlap


