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Abstract

Low-rank optimization has emerged as a promising approach to enabling memory-
efficient training of large language models (LLMs). Existing low-rank optimization
methods typically project gradients onto a low-rank subspace, reducing the memory
cost of storing optimizer states. A key challenge in these methods is selecting
suitable subspaces to ensure an effective optimization trajectory. Most existing
approaches select the dominant subspace to preserve gradient information, as this
intuitively provides the best approximation. However, we find that in practice, the
dominant subspace stops changing during pretraining, thereby constraining weight
updates to similar subspaces. In this paper, we propose importance sampling for
low-rank optimization in LLM pretraining with a provable convergence guarantee,
which the dominant subspace approach does not have. Empirically, we demonstrate
that our method significantly outperforms previous methods in LLM pretraining
tasks.

1 Introduction

Large language models (LLMs), pretrained on next-token prediction tasks, achieve human-level text
generation capabilities and exhibit zero-shot transferability to various downstream tasks [5]. They are
also fine-tuned or aligned with human preferences to be expert in downstream tasks [66, 53]. Over the
past few years, there has been rapid progress in LLM development, characterized by consistent growth
in the number of trainable parameters and the scale of datasets [3, 31, 13, 1]. The parameter count in
language models has increased from 100 million [56] to over a hundred billion [10]. However, despite
their enhanced expressiveness, such large models demand extensive GPU memory for pretraining
[52]. Thus, a critical question arises:

How can we improve the memory efficiency of LLM pretraining?

In LLM pretraining, Adam is commonly used as the optimizer due to its superior optimization
performance. However, a key limitation of Adam is its memory requirement, as it necessitates storing
two optimizer states, each consuming as much memory as the model itself. This poses a significant
challenge, given the substantial memory demands of the model’s parameters. To address this issue,
researchers have explored low-rank optimization, where gradients are projected onto a low-rank
subspace to reduce the memory consumption of optimizer states. These states are then projected
back to their original size when updating the weights. For example, GaLore [79] and Q-GaLore
[77] project gradients onto subspaces defined by the leading singular vectors corresponding to the
largest singular values, a technique referred to as the dominant subspace. FLora [23] and GoLore
[24], on the other hand, utilize unbiased random low-rank projections for gradients, employing the
Johnson–Lindenstrauss transform. Grass [51] introduces sparse low-rank projections, which further
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reduce the gradient memory footprint as well as the computation and communication costs compared
to dense low-rank projections. Lastly, Fira [7] builds on GaLore by fully leveraging the error in
gradient low-rank approximation to achieve improved performance.
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Figure 1: Adjacent subspace overlap of low-
rank optimizer using difference subspace selec-
tion methods. Our importance sampling subspace
selection can lower the overlap between adjacent
subspaces, thus enabling better exploration of more
different subspaces in the optimization trajectory.

These methods are powerful because: 1) the
gradients of LLMs during pretraining exhibit
an intrinsic low-rank structure, making them
well-suited for compression using low-rank ap-
proximation, and 2) low-rank approximation can
be applied not only to Adam but also to other
optimizers that use state information. For in-
stance, Adafactor [58] employs rank-1 factoriza-
tion on the second moment in Adam to reduce
the memory required for storing the second mo-
ment. Adam-mini [76] eliminates over 99% of
the effective learning rate in the second moment
of Adam while achieving performance on par
with—or even better than—Adam. Additionally,
[12] and [35] propose low-precision optimizers
with 8-bit and 4-bit optimizer states. Low-rank
optimization integrates seamlessly with these
Adam variants, further highlighting its impor-
tance and underscoring why it deserves signif-
icant attention.

A central question in low-rank optimization is how to maintain the performance of pretrained LLMs
while using memory-efficient optimizers, as compared to full-rank optimization. One common
paradigm in existing low-rank optimization methods is to update weights within the dominant sub-
space for a certain number of iterations and periodically update this dominant subspace. Nonetheless,
the dominant subspaces of gradients in many layers stabilize almost completely after the early stages
of pretraining [77]. Consequently, the weight updates during different periods predominantly remain
within the same low-rank subspace, resulting in cumulative weight updates that struggle to achieve
high rank. This limitation significantly hampers the language modeling capabilities of pretrained
LLMs. Thus, it is natural to ask:

Is it possible to overcome the low-rank bottleneck of existing low-rank optimization methods with
minimal additional overhead?

In this paper, we provide a positive answer to this question. We propose a novel method for subspace
selection in low-rank optimization by introducing an appropriate degree of randomness in the selection
process. In summary, the contributions of this study are as follows:

• We observe that highly similar adjacent subspaces in existing low-rank optimization methods
diminish the diversity of weight updates, degrading the performance of pretrained LLMs.

• To address frozen dominant subspace phenomenon and the low-rank bottleneck of update
in existing low-rank optimization methods, we propose an Importance SAmpling method
for Low-RAnk optimization (SARA). This method enables low-rank optimizers to explore
a broader range of subspaces in the optimization trajectory. Specifically, the low-rank
subspace is spanned by r singular vectors sampled from m singular vectors for a gradient
G ∈ Rm×n. Figure 1 illustrates how SARA reduces the overlap between adjacent subspaces
during LLM pretraining.

• SARA can be integrated with various low-rank optimization methods, such as GaLore and
Fira. It is robust to second-moment factorization and low-precision optimizer state storage.
On pretraining tasks for the LLaMA model at different sizes, SARA consistently outperforms
dominant subspace selection and reduces the performance gap between low-rank optimizers
and full-rank Adam by up to 46.05%.

• From a theoretical aspect, We prove that SARA achieves a comparable convergence rate as
GoLore [24] (Theorem 3.4, proof details are deferred to Appendix A) whereas delivering
better empirical results (Section 4 and Appendix F).
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Roadmap. In Section 2, we present the update rules of GaLore-Adam and Fira-Adam. In Section 3,
we describe our methodology for using importance sampling to improve the algorithmic design of low
rank optimizers—GaLore and Fira—and provide the convergence guarantee of SARA. In Section 4,
we present experimental results showing that SARA consistently outperforms dominant subspace
selection. In Section 5, we discuss related work. Finally, in Section 6, we conclude the paper.

2 Preliminaries

In this section, we present the background required for our theoretical analysis and experiments. In
our experiments (Section 4), we apply SARA to two low-rank optimization methods, GaLore and Fira,
both of which can be combined with stateful optimizers (e.g., Adam, Adafactor, and Adam-mini).

To ensure clarity, the update rules for GaLore-Adam and Fira-Adam are briefly explained here. For
more detailed explanations, please refer to the original papers [79, 7]. In presenting these methods,
we show the update rules for the weights of a single layer in the neural network. We assume that the
gradient at the t-th iteration is a matrix G(t) ∈ Rm×n. Without loss of generality, we assume that
m < n and use r to represent the rank of the low-rank subspace.

Update Rules of GaLore-Adam GaLore-Adam [79] requires storing an orthogonal matrix P (t) ∈
Rm×r that satisfies (P (t))⊤P (t) = Ir, which is updated periodically. Similar to full-rank Adam,
GaLore-Adam also stores the first moment M (t) ∈ Rr×n and the second moment V (t) ∈ Rr×n

for each layer’s weights, and updates the weights W (t) as follows: R(t) = (P (t))⊤G(t), M (t) =

β1M
(t−1) + (1 − β1)R

(t), V (t) = β2V
(t−1) + (1 − β2)R

(t) ◦ R(t), N (t) = αP (t) M(t)
√
V (t)+ξ

, and

x(t) = x(t−1) − η ·N (t). Here, β1 and β2 are hyperparameters for the online updates of M (t) and
V (t), as in Adam. The parameter η denotes the learning rate, and ξ is a small positive constant for
numerical stability.

Update Rules of Fira-Adam Similar to GaLore-Adam, Fira also needs to store M (t), V (t), and
P (t). The difference is that Fira-Adam additionally utilizes the low-rank approximation residual to
update W

(t)
l . Let S(t) = (I − P (t)(P (t))T )G(t) and x(t) = x(t−1) − η ·N (t) − η · ϕ(S(t)). where

S(t) represents the low-rank approximation error, ϕ(·) represents a scaling function in Fira [7], and
N (t) = αP (t) M(t)

√
V (t)+ξ

is calculated same as GaLore-Adam above.

3 Methodology

In this section, we first illustrate the adverse effects of a frozen dominant subspace in mini-batch
gradients (Section 3.1). To address this issue, we then propose SARA for low-rank optimization
(Section 3.2). Finally, we present a convergence analysis of low-rank optimization using SARA
(Section 3.3).

3.1 Frozen Dominant Subspace of Mini-batch Gradient

[77] observes that the cosine similarity between adjacent dominant subspaces approaches 1.0 in some
layers after a certain stage of LLM pretraining, indicating that the dominant subspace of the gradient
almost stops evolving. We observe a similar phenomenon in our experiment as well. Figure 2 shows
the average result of dominant subspace overlap in different layers across all blocks at different itera-
tions. We notice that dominant subspace overlaps are low in all layers at the early stage of pretraining,
but they increase drastically as pretraining progresses, eventually becoming stable at different levels.
Among all layers, gate_proj and up_proj exhibit the highest subspace overlaps. Intuitively, a high
overlap between adjacent subspaces is harmful for low-rank optimization. Considering an extreme
case, when the overlap reaches 1.0, the low-rank optimizer can only change the weights within a fixed
low-rank subspace. However, when the low-rank subspace shifts significantly over time, the overall
weight update—formed by summing updates from various low-rank subspaces—can overcome the
constraints of the low-rank bottleneck. For readability, we refer to this phenomenon as the frozen
dominant subspace.
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Algorithm 1 Low-rank Optimization with SARA

1: Input: The l-th layer weight x(t)
l ∈ Rml×nl , for all l ∈ [N ]. Learning rate η, scale factor α,

decay rates β1, β2, rank r, subspace change frequency τ ∈ Z+, small constant for numerical
stability ξ.

2: Initialize: for all l ∈ [N ] V
(0)
l ,M

(0)
l ∈ Rr×nl ← 0

3: for t = 1→ T do
4: for l = 1→ N do
5: Compute the mini-batch gradient: G(t)

l ∈ Rml×nl

6: P
(t)
l ← SARA(G

(t)
l , τ) ▷ see Algorithm 2

7: S ← {V (t−1)
l ,M

(t−1)
l , x

(t)
l , P

(t)
l , G

(t)
l , β1, β2, ξ, η, α} ▷ input parameters

8: x
(t)
l ← GALORE-ADAM(S) or FIRA-ADAM(S) ▷ see Section 2.

9: end for
10: end for
11: Return x(T ) = (x

(T )
1 , x

(T )
2 , · · · , x(T )

N )

3.2 SARA: Importance SAmpling for Low-RAnk Optimization

Algorithm 2 SARA: Importance sampling subspace selection for low-rank optimization

1: Input: The mini-batch gradient at the iteration t, G(t)
l ∈ Rm×nl , where l ∈ [N ] denotes the

layer. Subspace change frequency τ ∈ Z+.
2: if t mod τ = 0 then
3: U

(t)
l , S

(t)
l , V

(t)
l ← SVD(G

(t)
l )

4: I ← SAMPLE([m],num = r,weight = S
(t)
l )

5: I ← SORT(I)
6: P

(t)
l ← U

(t)
l [:, I]

7: else
8: P

(t)
l ← P

(t−1)
l ▷ Reuse the previous projector

9: end if
10: Return P

(t)
l
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Figure 2: The average mini-batch gradient dominant sub-
space overlap in different linear layers over 8 blocks in the
LLaMA-60M model during pretraining. We measure the
overlap between adjacent subspaces every 200 iterations.

To overcome the problem of the
frozen dominant subspace problem,
we propose SARA to construct low-
rank subspace. Low-rank optimiza-
tion with SARA is given in Algo-
rithm 1. It can be seen that SARA
does not change the overall structure
of the original low-rank optimization
algorithm but is a plug-and-play sub-
stitute for dominant subspace selec-
tion. Algorithm 2 gives the procedure
of SARA. Line 4 denotes the weighted
sampling without replacement. More
precisely, each of the m left singu-
lar vectors is equipped with a weight
ωi ∈ (0, 1) proportional to its corre-
sponding singular value Si,

ωi =
Si∑m
j=1 Sj

.

For an index set sample I = (I1, · · · , Ir), the sampling probability can be written as

P{(I1, · · · , Ir) = (i1, · · · , ir)} =
r∏

k=1

ωik

1− ωi1 − · · · − ωik−1
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Line 5 sorts the sampled indices in ascending order so that the newly updated subspace basis vectors
can align with optimizer states well. Line 6 constructs the orthogonal basis of the new subspace.

By using weighted sampling without replacement, we make adjacent subspaces more distinct and
prevent the optimization trajectory from being trapped in overly similar subspaces during training.
Another advantage of SARA is that it introduces negligible additional overhead—for example,
computing an SVD on a 2048× 2048 matrix takes 0.34 seconds, while sampling adds only 0.0005
seconds on average.

3.3 Provable Convergence of SARA

[24] points out that selecting the dominant subspace in low-rank optimization, as done in GaLore,
does not always guarantee convergence to the optimal solution. Although GoLore ensures provable
convergence, it does not significantly close the performance gap between GaLore-Adam and full-rank
Adam in pretraining tasks, as reported in [24]. In this section, we show that SARA achieves provable
convergence, representing a key advantage over GaLore and comparable to GoLore. The empirical
results of SARA are shown in Section 4 and Appendix F, representing a key advantage over GaLore
and GoLore.

We treat an LLM as a neural network with N layers, and each layer has a weight matrix, i.e.,
for all l ∈ [N ], xl ∈ Rm×nl . Without loss of generality, we assume that m ≤ nl. In practice,
most LLMs do not have biases for attention blocks and MLP blocks, and low-rank optimization
is only applied to the weight matrix, but not to biases. Therefore, this abstraction is reasonable.
Mathematically, our objective function is f : Rm×n1 × Rm×n2 × · · · × Rm×nN → R. For all
x = (x1, . . . , xl, . . . , xN ), y = (y1, . . . , yl, . . . , yN ) ∈ dom(f), we denote ∇lf(x) and ∇lf(y) as
∂f
∂xl
∈ Rm×nl and ∂f

∂yl
∈ Rm×nl , respectively. Below, we use the following two assumptions similar

to [24].
Assumption 3.1 (L-smoothness). Let f : Rm×n1 × Rm×n2 × · · · × Rm×nN → R be our objective
function. Let L > 0. For all l ∈ [N ], we let x = (x1, . . . , xl, . . . , xN ), y = (y1, . . . , yl, . . . , yN ) ∈
dom(f) be any arbitrary N -tuples satisfying that if i ∈ [N ] \ {l}, then xi = yi. We assume f is
L-smooth that it satisfies:

∥∇lf(x)−∇lf(y)∥F ≤ L ∥xl − yl∥F .

Assumption 3.2 (Bounded, Centered, and Independent Mini-batch Gradient Noise). Let∇lf(x
(t)) ∈

Rm×nl be the gradient of our objective function for the l-th layer at the t-th iteration, where t ∈ Z+.
Let G(t)

l ∈ Rm×nl be the mini-batch gradient which is the noisy version of ∇lf(x
(t)). For all

l ∈ [N ], we assume there exists a least upper bound σ2
l ∈ R for ∥G(t)

l −∇lf(x
(t))∥2F , namely∥∥∥G(t)

l −∇lf(x
(t))
∥∥∥2
F
≤ σ2

l

and

E
[
G

(t)
l

]
= ∇lf(x

(t)).

Furthermore, we define σ2 :=
∑N

l=1 σ
2
l .

To analyze the convergence of SARA, we characterize the error introduced by projecting gradients
onto the sampled low-rank subspaces. Specifically, we bound the discrepancy between the original
gradient and its projection under the importance sampling scheme of SARA. This projection error
plays a central role in the convergence analysis, as it quantifies how well the sampled subspace
preserves gradient information. Because of the page limit, we defer its proof to Appendix A.
Lemma 3.3 (Error of SARA’s Projection, see Lemma A.2 for proof). Let τ be the update period of
SARA, and r be the rank of low-rank subspace in SARA. For all i ∈ [m], l ∈ [N ], k ∈ N, let p(t)l (i)
denote the probability that the i-th basis vector is selected for the l-th layer at time t = kτ , and
define δ

(t)
l := mini∈[m] p

(t)
l (i), δ := minl∈[m],t≥0 δ

(t)
l . Let P (t)

l ∈ Rm×r denote the orthonormal
projection matrix and let ∇lf(x

(t)) ∈ Rm×nl be the gradient matrix of the l-th layer at time t. Then,
the following inequality holds:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
≤ (1− δ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.
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With the projection error bounded in Lemma 3.3, we are now equipped to analyze the convergence
behavior of SARA-based low-rank optimization. The theoretical result below demonstrates that
SARA achieves provable convergence at a rate comparable to prior work, while the experimental
results in the following section show improved empirical performance.
Theorem 3.4 (Convergence complexity of Low-rank MSGD with SARA, see Corollary A.6 for proof).
By Assumption 3.1-3.2, if T ≥ 2+128/(3δ)+ (128σ)2/(9

√
δL∆) for ∆ = f(x(0))− infx f(x), we

choose β1 =

(
1 +

√
δ3/2σ2T

L∆

)−1

, τ =
⌈

64
3δβ1

⌉
, and η =

(
4L+

√
80L2

3δβ2
1
+ 80τ2L2

3δ +
√

16τL2

3β1

)−1

,

low-rank MSGD-SARA with momentum re-projection converges as

1

T

T−1∑
t=0

E
[
∥∇f(x(t))∥22

]
= O

(
L∆

δ2.5T
+

√
L∆σ2

δ3.5T

)
.

Comparing with [24], we adopt the same hyperparameters used in their study in Theorem 3.4. When
examining the convergence rate, we note that the primary distinction lies in our convergence rate
depends on δ (Theorem 3.4), whereas GoLore depends on δ = r

m (Theorem 3.5).
Theorem 3.5 (Convergence of MSGD with GoLore, Corollary 3 of [24]). Under Assumption 3.1-3.2,
let every notation be defined as in Theorem 3.4, and using the same hyperparameters β1, τ , η, Let
δ = r

m . Then, MSGD-GoLore with momentum re-projection converges as

1

T

T−1∑
t=0

E
[∥∥∥∇f(x(t))

∥∥∥2
F

]
= O

(
L∆

δ2.5T
+

√
L∆σ2

δ3.5T

)
,

Because SARA adopts importance sampling, we have δ < δ. Thus, the convergence rate of MSGD-
SARA is slower than MSGD-GoLore up to a constant factor. Compared to MSGD-GaLore (using
dominant subspace), which does not have a provable convergence guarantee, SARA has the advantage
in the theoretical convergence rate.

4 Experimental Results

In Section 4.1, we describe our experimental setup. In Section 4.2, we evaluate the efficacy of
SARA when combined with various low-rank Adam optimizers. In Section 4.3, we show that SARA
promotes subspace exploration and enables higher-rank updates. In Section 4.4, we further evaluate
SARA on additional baselines and datasets.

4.1 Experiment Setting

In this section, we describe our experimental setup. We present the C4 dataset [57], architecture, and
hyperparameters.

Pre-training on C4 Dataset. C4 [57], short for Colossal Clean Crawled Corpus, is a large-scale,
open-source text dataset widely used in practice for pretraining transformer models such as BERT
[55], T5 [68], and GPT models. C4 is also commonly used in the memory-efficient optimization
community to evaluate the performance of memory-efficient optimizers [23, 79, 77, 24]. In our
experiments, we pretrain LLaMA models of different sizes on the C4 dataset without data repetition,
using a sufficiently large amount of data [25].

Architecture and Hyperparameters We evaluate the performance of different optimizers on
LLaMA models with 60 million, 130 million, 350 million, and 1.1 billion parameters, using the
same architecture as in [79]. For full-rank Adam, we use β1 = 0.9, β2 = 0.999, and a learning
rate of 0.001, except for the LLaMA-60M model, where the learning rate is set to 0.0025. More
detailed hyperparameters for our re-implementation are provided in Appendix B. All experiments are
conducted using one GPU node with 8 Nvidia A40 GPUs.

4.2 Efficacy of SARA with Low-Rank Adam Optimizers

In this section, we evaluate the efficacy of SARA with different low-rank Adam optimizers across
multiple model sizes.
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Table 1: Validation perplexity (PPL) of LLaMA models pretrained on the C4 dataset with 60M,
130M, and 350M parameters, comparing various low-rank optimizers with and without SARA. SARA
consistently reduces the PPL gap relative to full-rank Adam, demonstrating its effectiveness across
different optimizer variants and model scales.

60M 130M 350M
Full-Rank Adam 27.71 23.27 18.21

GaLore-SARA-Adam 30.47 24.21 19.16
GaLore-Adam 31.50 24.88 19.68
PPL gap reduction 27.17% 41.61% 35.37%

Fira-SARA-Adam 28.12 22.22 17.25
Fira-Adam 28.42 22.37 17.35
PPL gap reduction 42.25% — —

GaLore-SARA-Adafactor 30.06 24.09 18.88
GaLore-Adafactor 31.13 24.79 19.45
PPL gap reduction 31.28% 46.05% 45.96%

GaLore-SARA-Adam-mini 31.66 24.87 19.41
GaLore-Adam-mini 32.08 25.46 19.89
PPL gap reduction 9.61% 26.94% 28.57%

GaLore-SARA-Adam (8bit) 30.55 24.67 18.16
GaLore-Adam (8bit) 31.62 25.35 18.63
PPL gap reduction 27.36% 32.69% —
r/dmodel 128/256 256/768 256/1024
Tokens 1.5B 2.2B 6B

Efficacy of SARA with different low-rank Adam optimizers First, we evaluate the efficacy
of SARA when combined with various low-rank Adam optimizers. Table 1 shows that SARA
consistently outperforms dominant subspace selection. In cases where full-rank Adam achieves the
lowest PPL, we also report the percentage reduction in the PPL gap achieved by SARA compared
to the dominant subspace baseline. As shown in Table 1, SARA reduces the PPL gap by up to
46.05%. In scenarios where full-rank Adam does not achieve the lowest PPL, SARA still improves
performance over leading singular vector selection. SARA proves effective not only with low-rank
Adam variants such as GaLore-Adam and Fira-Adam, but also with optimizers that approximate
second moments, e.g., GaLore-Adafactor and GaLore-Adam-mini. Results with the 8-bit optimizer
further highlight the robustness of SARA under low-precision optimizer state storage.

Scale Up to Llama-1.1B We also evaluate the efficacy of SARA on the pretraining of LLaMA-1.1B.
Due to limited computational resources, we conduct experiments using only GaLore-Adam. As
shown in Table 2, SARA remains effective on LLaMA-1.1B.

Table 2: PPL on LLaMA-1.1B pretrained with full-rank Adam, GaLore-Adam, and GaLore-SARA-
Adam on the C4 dataset. Despite the larger model size, SARA continues to outperform dominant
subspace selection, confirming its scalability and robustness.

Full GaLore-SARA-Adam GaLore-Adam

1.1B 15.90 15.36 15.47
r/dmodel 512/2048 512/2048 512/2048
Tokens 13.4B 13.4B 13.4B

4.3 SARA Encourages Subspace Exploration and Higher-Rank Updates

In this section, we empirically show that SARA encourages subspace exploration and enables
higher-rank updates.
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Figure 3: a). The left figure shows the overlap between adjacent subspaces in GaLore-Adam and
GaLore-SARA-Adam during pretraining on the LLaMA-60M model between 2200-th and 4000-th
iteration. b). The right figure takes the low-rank subspace at the 2000-th iteration as the anchor
subspace, and shows the overlap between subspaces in later iterations and the anchor subspace.

SARA encourages subspace exploration [77] provides an interesting observation that the similar-
ity between adjacent subspaces in some layers gradually becomes very high during pretraining, we
observe a similar phenomenon shown in Figure 2. We adopt a metric to measure overlap between
two subspaces from [21]. Given two orthonormal matrices U, V ∈ Rm×r, we have

UTU = V TV = Ir,

the overlap between two subspaces spanned by U and V are defined as

overlap(U, V ) =
1

r

r∑
i=1

∥UTV:,i∥22,

where V:,i denotes the i-th column of V . We adopt the above metric to show that the observation in
[77] is not because of using cosine similarity as the measure, but the frozen subspace phenomenon
also exists when using other metrics to measure subspace overlap (or subspace similarity).
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Figure 4: The average result of normalized singular
values of the weight difference between the 28k-
step checkpoint and 30k-step checkpoint across all
layers in LLaMA-60M during pretraining.

An interesting fact is that the overlap between
adjacent subspaces in GaLore-SARA-Adam is
much lower than GaLore-Adam, as shown in
Figure 3 (a). In Figure 3 (b), we chose the sub-
space at the 2000-th iteration as the anchor sub-
space and examined the overlap between sub-
spaces from later iterations, specifically between
the 2200-th and 4000-th iterations. We observe
that the overlap between the anchor subspace
and later subspaces of GaLore-SARA-Adam is
lower than that of GaLore-Adam. This indi-
cates that SARA encourages the optimization
trajectory to explore more different subspaces
compared to using the dominant subspace.

SARA Enables Higher-rank Update Fig-
ure 4 shows that the update produced by SARA
in the weight matrix exhibits more evenly dis-
tributed singular values compared to the update
using the dominant subspace. This suggests that SARA helps overcome the low-rank bottleneck asso-
ciated with the dominant subspace approach. We observe both this higher-rank update and improved
subspace exploration occurring simultaneously. We believe these two phenomena are correlated. One
possible explanation is that better exploration of diverse subspaces leads to a higher-rank update.
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4.4 Additional Baselines and Datasets

In this section, we present additional baselines (GoLore [24] and online PCA [42]) and a dataset
(SlimPajama).

More Baselines for Pretraining on C4 To provide a more comprehensive evaluation of SARA,
we conduct extensive pretraining experiments on the C4 dataset with additional baseline methods.
Beyond the comparisons shown in our main results, we include two particularly relevant baselines:
GoLore [24] and the online PCA approach from [42]. These baselines were selected because they are
also competitive alternatives to our method. The results, presented in Table 3, reveal several important
insights. First, we observe that GoLore-Adam performs reasonably well, achieving validation
perplexity of 31.61 and 24.01 for the 60M and 130M parameter models respectively. However, SARA
consistently outperforms GoLore by significant margins (1.14 and 0.93 perplexity points for the two
model sizes), demonstrating the effectiveness of our approach in learning more efficient low-rank
representations. The comparison with [42]’s online PCA method is particularly illuminating. Their
approach, while computationally efficient, shows substantially higher perplexity (33.69 and 30.62)
compared to both GoLore and SARA. This is mainly due to the unstable training loss curve during
the online PCA method pretraining.

Table 3: Validation perplexity comparison on the C4 dataset for LLaMA models with 60M and 130M
parameters using additional baselines.

C4 Dataset (validation perplexity) 60M (1.5B tokens) 130M (3B tokens)
GoLore-Adam 31.61 24.01
[42] with Adam 33.69 30.62
GaLore-SARA-Adam 30.47 23.08
Full rank Adam 27.71 22.19

Pretraining Results on More Datasets To demonstrate the generalizability of SARA beyond the
C4 dataset, we conduct additional pretraining experiments on the SlimPajama dataset, a carefully
filtered and deduplicated subset of the Pile corpus. The results in Table 4 confirm that our method’s
advantages are not dataset-specific. Several interesting patterns emerge from the SlimPajama results.
First, the performance gaps between methods are slightly smaller on SlimPajama compared to C4. For
the 130M parameter model, SARA improves upon standard GaLore-Adam by 0.57 perplexity points
(25.23 vs 25.80), while trailing full-rank Adam by only 0.23 points. This suggests that our method
may be particularly effective on higher-quality, deduplicated datasets like SlimPajama. We also note
that the absolute perplexity values are slightly lower on SlimPajama than on C4 for comparable model
sizes, which may reflect the dataset’s more careful curation. This makes the strong performance of
SARA even more noteworthy, as it demonstrates effectiveness across different difficulty levels.

Table 4: Validation perplexity on the SlimPajama dataset for LLaMA models with 60M and 130M
parameters.

SlimPajama (validation perplexity) 60M 130M
Full rank Adam 27.79 25.00
GaLore-Adam 31.76 25.80
GaLore-SARA-Adam 30.79 25.23

Additional experiments on high-rank updates, anchor similarity, and adjacent overlap can be found in
Appendix F.1, F.2, and F.3, respectively.

5 Related Work

Memory Efficient Parametrization. LoRA [26] can be seen as a memory-efficient parametrization
of weights in LLMs and is widely used in fine-tuning. LoRA’s bottleneck lies in its low-rank structure,
which impedes its expressiveness. COLA [67], Delta-LoRA [81], and PLoRA [47] propose to
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increase the rank and improve the performance of LoRA. ReLoRA [40] and SLTrain [22] extend
LoRA to pre-training tasks by merging and resetting adapters, and adopting low-rank plus sparse
parameterization, respectively. MoRA [32] alleviates the shortcoming of the low-rank disadvantage
of LoRA by sharing the same trainable parameters to achieve a higher-rank update. Additionally,
[45] analyzes the sparsity-based parameter-efficient fine-tuning (SPEFT) for LLMs, which is an
alternative method of LoRA. [54] designs a novel method for memory-efficient fine-tuning for LLMs.
It has been shown that it can outperform LoRA and full-parameter training in many cases. Similarly,
[28] proposes another novel fine-tuning method called Half Fine-Tuning (HFT), which can mitigate
“catastrophic forgetting” in LLMs during sequential training and instruction tuning. Finally, [36] also
proposes a novel memory-efficient fine-tuning method by strategically selecting layers to update
based on outlier statistics. Our paper also considers the memory and convergence behavior, but the
difference is that we mainly focus on the LLM pretraining instead of fine-tuning.

Memory Efficient Optimizer. One way to achieve memory-efficient optimization is by using
memory-efficient optimizers, which primarily aim to reduce the memory cost of optimizer states in
Adam [33]. A series of works [58, 76, 46, 80] factorize the second moment in Adam. Quantizing
optimizer states and storing them in low-precision formats has also proven successful [35, 12].
Another line of work focuses on gradient compression methods. GaLore [79] and Q-GaLore [77] use
SVD to apply dense low-rank projections to gradients. FLora [23] and GoLore [24] adopt random
projection, while Grass [51] employs sparse low-rank projection to gradients.

Subspace Learning. Existing studies provide sophisticated analyses of various subspace learning
algorithms [11, 34, 29]. [21] claims that gradient descent primarily occurs in the dominant subspace,
which is spanned by the top eigenvectors of the Hessian. In contrast, [60] argues that, due to noise in
SGD, the alignment between the gradient and the dominant subspace is spurious, and learning does
not occur in the dominant subspace but rather in its orthogonal complement, i.e., the bulk subspace.
Intuitively, our findings align with those of [60], suggesting that selecting basis vectors based on
specific sampling probabilities can enhance the performance of LLMs during pre-training.

6 Conclusion

In this paper, we propose SARA for low-rank optimization in LLM pretraining. The motivation is
to find an effective subspace selection method to overcome the low-rank bottleneck caused by the
frozen dominant subspace in low-rank optimization. SARA samples singular vectors of mini-batch
gradients with probabilities proportional to their singular values, this enables optimization trajectory
to explore more different subspaces. Theoretically, in Theorem 3.4, we show that GaLore-SARA-

MSGD achieves comparison convergence rate as GoLore-MSGD, which is O
(

L∆
δ2.5T +

√
L∆σ2

δ3.5T

)
.

Empirically, we find that SARA improves the language modeling capability of pretrained models
compared to using the dominant subspace, as verified by experiments involving SARA and dominant
subspace selection with multiple low-rank optimizers.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Justification: We only use LLM to check our grammar.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proof Details for SARA

Lemma A.1 (Gradient connections, Lemma 2 in [24]). Let ∇ℓf(x) denote the gradient with respect
to the ℓ-th layer parameters at point x, and suppose x(t) denotes the parameters at iteration t. Then
for any integers t ≥ 0 and τ > 0, we have

Then, for all t, τ > 0, we have

∥∇ℓf(x
(t))∥2F ≤

2

τ

τ−1∑
r=0

∥∇ℓf(x
(t+r))∥2F + (τ − 1)

τ−2∑
r=0

∥∥∥∇ℓf(x
(t+r+1))−∇ℓf(x

(t+r))
∥∥∥2
F
.

Lemma A.2 (Error of SARA’s Projection). Let τ be the update period of SARA, and r be the rank of
low-rank subspace in SARA. For all i ∈ [m], l ∈ [N ], k ∈ N, let p(t)l (i) denote the probability that
the i-th basis vector is selected for the l-th layer at time t = kτ , and define

δ
(t)
l := min

i∈[m]
p
(t)
l (i), δ := min

l∈[m],t≥0
δ
(t)
l

Let P (t)
l ∈ Rm×r denote the orthonormal projection matrix and let ∇lf(x

(t)) ∈ Rm×nl be the
gradient matrix of the l-th layer at time t. Then, the following inequality holds:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
≤ (1− δ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.

Proof. We analyze the expected projection residual:

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
= E∇lf(x(t))

[
E
P

(t)
l

[∥∥∥(I − P
(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

∣∣∣∣∇lf(x
(t))

]]
= E∇lf(x(t))

[
tr

(
E
P

(t)
l

[(
I − P

(t)
l (P

(t)
l )⊤

)2]
· ∇lf(x

(t))∇lf(x
(t))⊤

)]
.

Let {Uj}mj=1 be a fixed orthonormal basis for Rm, and define the indicator variable 1{j} to denote
whether Uj is selected. Then,

E
P

(t)
l

[
I − P

(t)
l (P

(t)
l )⊤

]
=

m∑
j=1

(1− E[1{j}])UjU
⊤
j .

Therefore,

E
[∥∥∥(I − P

(t)
l (P

(t)
l )⊤

)
∇lf(x

(t))
∥∥∥2
F

]
= E

tr
 m∑

j=1

(1− E[1{j}])UjU
⊤
j · ∇lf(x

(t))∇lf(x
(t))⊤


=

m∑
j=1

(1− E[1{j}]) · E
[∥∥∥U⊤

j ∇lf(x
(t))
∥∥∥2
2

]

≤ (1−min
j

E[1{j}]) · E
[∥∥∥∇lf(x

(t))
∥∥∥2
F

]
= (1− δ

(t)
l ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
≤ (1− δ) · E

[∥∥∥∇lf(x
(t))
∥∥∥2
F

]
.

Lemma A.3 (Momentum Contraction of SARA). For SARA with momentum re-projection, for all
l ∈ [N ], we have the inequalities below hold.
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• Part 1 (t = 0).

E
[∥∥∥M̃ (0)

l −∇lf(x
(0))
∥∥∥2
F

]
≤
(
1− (2β1 − β2

1)δ
)
E
[∥∥∥∇lf(x

(0))
∥∥∥2
F

]
+ β2

1σ
2
l .

• Part 2 (t = kτ , k ∈ N).

E
[∥∥∥M̃ (t)
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(t))
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F

]
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(
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(
1− δ

4

)
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]
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2
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• Part 3 (t = kτ + r, 1 ≤ r ≤ τ − 1).

E
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F
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Proof. Proof of Part 1.

Suppose t = 0. By definition of the momentum estimator M̃ (0)
l = β1P

(0)
l (P

(0)
l )⊤G

(0)
l , we decom-

pose the error as:
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The first term is bounded using the assumption that G(0)
l is an unbiased estimator with variance σ2

l :
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For the second term, we apply Lemma A.2:
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Combining both bounds:
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Proof of Part 2.

Suppose t = kτ . At the projection step, we have the update rule:

M̃
(t)
l = P

(t)
l (P

(t)
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(
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.

Then:
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−
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The second equality is because of the Pythagorean Theorem.

Applying Lemma A.2 to the second term:
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.

The first term is bounded as below:
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where the first inequality is because of
∥∥∥P (t)

l (P
(t)
l )T

∥∥∥
2
= 1, the second inequality is because of

the independent noise of mini-batch gradient, the third inequality is because of the bounded noise
assumption.

To bound E
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]
, we apply Young’s inequality:
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So far, we can have the upper bound for the first term in Eq. (4). By applying Eq. (5), Eq. (4), and
Lemma A.1 which naturally holds in our problem setting, we have shown Part 2.

Proof of Part 3.

Suppose t = kτ + r, 1 ≤ r ≤ τ − 1). In this case, P (t)
l = P

(kτ)
l is reused. The update becomes:

M̃
(t)
l = (1− β1)M̃

(t−1)
l + β1P

(t)
l (P

(t)
l )⊤G

(t)
l .

Using the standard decomposition:

M̃
(t)
l −∇lf(x

(t)) = (1− β1)(M̃
(t−1)
l −∇lf(x

(t))) + β1(P
(t)
l (P

(t)
l )⊤ − I)∇lf(x

(t))

+ β1P
(t)
l (P

(t)
l )⊤(G

(t)
l −∇lf(x

(t))).

By unbiasedness, we have

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
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= E
[∥∥∥(1− β1)(M̃

(t−1)
l −∇lf(x

(t))) + β1(P
(t)
l (P

(t)
l )⊤ − I)∇lf(x

(t))
∥∥∥2
F

]
+ E

[∥∥∥β1P
(t)
l (P

(t)
l )⊤(G

(t)
l −∇lf(x

(t)))
∥∥∥2
F

]
.

Recall that by
∥∥∥P (t)

l (P
(t)
l )T

∥∥∥
2
= 1 and the noise assumption, so we have

E
[∥∥∥β1P

(t)
l (P

(t)
l )⊤(G

(t)
l −∇lf(x

(t)))
∥∥∥2
F

]
≤ β2

1σ
2
l .

By applying Jensen’s inequality, we have

E
[∥∥∥M̃ (t)

l −∇lf(x
(t))
∥∥∥2
F

]
≤ (1− β1)E

[∥∥∥M̃ (t−1)
l −∇lf(x

(t))
∥∥∥2
F

]
+ β1E

[∥∥∥(P (t)
l (P

(t)
l )⊤ − I)∇lf(x

(t))
∥∥∥2
F

]
+ β2

1σ
2
l .

We now bound the projection error using Lemma A.2:

E
[∥∥∥(P (t)

l (P
(t)
l )⊤ − I)∇lf(x

(t))
∥∥∥2
F

]
≤
(
1 +

δ

4

)
E
[∥∥∥(P (t)

l (P
(t)
l )⊤ − I)∇lf(x

(kτ))
∥∥∥2
F

]
+

(
1 +

4

δ

)
E
[∥∥∥∇lf(x

(t))−∇lf(x
(kτ))

∥∥∥2
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]
≤
(
1− 3δ

4

)
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∥∥∥2
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]
.

The first equality is because of Young’s inequality, the second inequality is because of Lemma A.2.

This concludes the bound. The final contraction inequality is then followed by applying this bound
and collecting terms.

For Part 3 of Lemma A.3, we get exactly the same bound for our SARA compared with their GoLore.

Though our Momentum Contraction result is a little worse than the one in [24], we can still get the
same result for Momentum Error Bound, as shown in Lemma A.4.
Lemma A.4 (Momentum Error Bound of MSGD with SARA). Define

σ2 =
∑
l∈[N ]

σ2
l

Then we have
Kτ−1∑
t=0

E
[∥∥∥M̃ (t) −∇f(x(t))
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L2
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+

Kτβ1σ
2

1− δ/4

Proof. First we apply summation to Part 3 of Lemma A.3 as follows:

(k+1)τ−1∑
t=kτ+1
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]
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Then add Eq. (6) and Part 2 of Lemma A.3 together, we have
(k+1)τ−1∑

t=kτ
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]
−
(
1− (1− δ

4
)β1
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(7)
Then applying summation over k from 0 to K and summation over all l ∈ [N ] gives us the desired
result.

So far, we have the comparable result of upper bound of momentum error, in the next step, apply the
same proof procedure as in [24] give us the convergence of low-rank MSGD with SARA.
Theorem A.5. Under Assumptions 1–3, if hyperparameters

0 < β1 ≤ 1, τ ≥ 64

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

16τL2

}
,

MSGD-SARA with momentum re-projection converges as

1

Kτ

Kτ−1∑
t=0

E
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∥∇f(x(t))∥22

]
≤ 16∆

δηKτ
+

32β1σ
2

3δ

for any K ≥ 1, where ∆ = f(x(0))− infx f(x).
Corollary A.6 (Convergence complexity of Low-rank MSGD with SARA). Under Assumption 3.1-
3.2, if T ≥ 2 + 128/(3δ) + (128σ)2/(9

√
δL∆) and we choose
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√
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,

low-rank MSGD-SARA with momentum re-projection converges as

1

T
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E
[
∥∇f(x(t))∥22

]
= O

(
L∆

δ2.5T
+

√
L∆σ2

δ3.5T

)
,

where ∆ = f(x(0))− infx f(x).
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B Experiment Implementation

To enable re-implementation, we provide hyperparameters herein. For fair comparison, we adopt the
same hyperparameters for dominant subspace selection and SARA. Hyperparameters for GaLore
with dominant subspace selection and SARA are shown in Table 5. Hyperparameters for Fira with
dominant subspace selection and SARA are shown in Table 6.

Table 5: Hyperparameters for experiments with GaLore
Name Values

Batch Size 512
Maximum Sequence Length 512

Warmup Steps 1000 for 60m, 2000 for 130m, 6000 for 350m, 10000 for 1.1B
Rank 128 for 60m, 256 for 130m, 256 for 350m, 512 for 1.1B

Weight Decay 0
Learning Rate 0.01

Scheduler Cosine
Optimizer Specific Parameters Adam: β1 = 0.9, β2 = 0.999

Adafactor: β1 = 0.9, β2(t) = 1− t−0.8

Adam-mini: β1 = 0.9, β2 = 0.95

Table 6: Hyperparameters for experiments with Fira
Name Values

batch Size 512
Maximum sequence length 512

Warmup Steps 1000 for 60m, 2000 for 130m, 6000 for 350m
rank 128 for 60m, 256 for 130m, 256 for 350m

Weight Decay 0
Learning Rate 0.01

Scheduler Cosine
optimizer specific parameters Adam: β1 = 0.9, β2 = 0.999

C More Related Work

Large language models Many works study the LLM from other aspects. For example, low rank
approximation [20, 63] can also be applied to improve the computational complexity of (masked)
attention approximation [43, 8]. Gaussian kernel density estimation is closely related to attention op-
timization, and similar to our work, [41] uses importance sampling to study the dynamic maintenance
of KDE data structures. [16, 59, 62, 15, 18, 64, 39] analyze the attention regression problems. [9]
study the computational limits of Mamba. [61] investigates the expressibility of polynomial attention.
[17] applies the sketching technique to develop the decentralized large language model. [4] studies
the attention optimization without requiring strict assumptions. [73] focuses on efficiently aligning
LLMs with recommendation tasks. [19] studies the binary hypothesis testing for softmax models.

Reinforcement Learning In reinforcement learning (RL) [37, 38, 44, 78, 71, 48, 50, 49], an agent
learns to make sequential decisions by interacting with an environment to maximize a cumulative
reward. RL algorithms, especially policy gradient methods (e.g., REINForCE, PPO, TRPO) [74,
70, 14], often rely on stochastic gradient descent (SGD) or Adam for optimization. Our low-rank
optimization techniques for Adam, which could, in theory, be applied to RL training to make policy
optimization more memory-efficient.

Broader Application of Large Language Models The application of large transformers with
long-context capabilities is not limited to language processing; broader domains such as time-series
prediction [75, 72, 6, 69] are also of practical importance. Another line of work applies LLM for
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structured data understanding [27, 30, 2, 65]. Extending and validating our method to preserve the
accuracy of LLMs on these tasks is, therefore, a worthwhile direction for future work.

D Limitations

Our work does not have any noteworthy limitations, as we directly address the key limitation of
dominant subspace selection in prior work without requiring extra assumptions. In our paper, we
provide a theoretical analysis of the convergence rate, though it still relies on the assumptions of
L-smoothness (Assumption 3.1) and bounded, centered mini-batch gradient noise (Assumption 3.2).

However, we note that these assumptions are standard in the optimization literature.

E Societal Impact

Regarding the positive societal impact, by reducing memory requirements for training, our SARA
method enables more organizations—including those with limited compute budgets—to train or
fine-tune competitive LLMs.

To the best of our knowledge, we do not anticipate any negative societal impacts.

F More experimental results

F.1 High-Rank Updates

Now, we provide more experimental results for high-rank updates.
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Figure 5: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 0 of LLaMA-60M model during pretraining.
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Figure 6: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 1 of LLaMA-60M model during pretraining.
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Figure 7: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 2 of LLaMA-60M model during pretraining.
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Figure 8: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 3 of LLaMA-60M model during pretraining.
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Figure 9: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 4 of LLaMA-60M model during pretraining.
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Figure 10: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 5 of LLaMA-60M model during pretraining.
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Figure 11: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 6 of LLaMA-60M model during pretraining.
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Figure 12: Normalized singular values of the weight difference between the 28k-step checkpoint and
30k-step checkpoint in different layers of Block 7 of LLaMA-60M model during pretraining.

F.2 Anchor Similarity

Now, we provide more experimental results for anchor similarity.
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Figure 13: The low-rank subspace of different layers in Block 0 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 0 in later iterations and the anchor subspace.
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Figure 14: The low-rank subspace of different layers in Block 1 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 1 in later iterations and the anchor subspace.
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Figure 15: The low-rank subspace of different layers in Block 2 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 2 in later iterations and the anchor subspace.
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Figure 16: The low-rank subspace of different layers in Block 3 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 3 in later iterations and the anchor subspace.
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Figure 17: The low-rank subspace of different layers in Block 4 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 4 in later iterations and the anchor subspace.
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Figure 18: The low-rank subspace of different layers in Block 5 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 5 in later iterations and the anchor subspace.
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Figure 19: The low-rank subspace of different layers in Block 6 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 6 in later iterations and the anchor subspace.
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Figure 20: The low-rank subspace of different layers in Block 7 at the 2000-th iteration is taken as
the anchor subspace. The figure shows the overlap between subspaces of the corresponding layer in
Block 7 in later iterations and the anchor subspace.
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Figure 21: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 0 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 22: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 1 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 23: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 2 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 24: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 3 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 25: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 4 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 26: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 5 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 27: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 6 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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Figure 28: The overlap between adjacent subspaces of optimization trajectory of different layers in
Block 7 in GaLore-Adam and GaLore-SARA-Adam during pretraining on the LLaMA-60M model
between 2200-th and 4000-th iteration
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