
Potential-based reward shaping
for learning to play text-based adventure games

Anonymous ACL submission

Abstract

Text-based games are an optimal testbed for001
language-based reinforcement learning (RL).002
In previous work, deep Q-learning is commonly003
used as the learning agent. Q-learning algo-004
rithms are challenging to apply to complex005
real-world domains due to, for example, their006
instability in training. Therefore, in this pa-007
per, we adapt the soft-actor-critic (SAC) algo-008
rithm to the text-based environment. To deal009
with sparse extrinsic rewards from the envi-010
ronment, we propose a potential-based reward011
shaping technique to provide more informa-012
tive (dense) reward signals to the RL agent.013
We apply our method to play difficult text-014
based games. Our SAC method achieves higher015
scores than the Q-learning methods on many016
games with only half the number of training017
steps. This shows that it is well-suited for text-018
based games. Moreover, we show that the re-019
ward shaping technique helps the agent to learn020
the policy faster and achieve higher scores.021

1 Introduction022

Language-based interactions are an integral part of023

our everyday life. Reinforcement learning (RL)024

is a promising technique for developing agents025

that acting in real-life scenarios such as dialog sys-026

tems. However, training these agents is difficult027

due to missing feedback or reward signals. Be-028

cause of this, text-based adventure games are an029

ideal benchmark for developing language-based030

agents (Hausknecht et al., 2020). In games, the031

players receive automatic rewards from the game032

environment and we can use the final game score033

for comparing performances of different agents.034

Figure 1 illustrates the problem setup for this pa-035

per. One main difference between text-based adven-036

ture games and other RL scenarios is the large and037

discrete action space. In contrast to other games038

(e.g., ATARI games), each action is characterized039

by a sentence or word (e.g., climb tree). Also,040

the action space is not fixed. For example, if the041

agent is in front of the house, the action “open door” 042

is available, whereas if the agent is in the forest, 043

other actions are possible, e.g. “climb tree”, but 044

not “open tree”. Therefore, in addition to the action 045

space, there is the space of valid actions in the cur- 046

rent state (see Figure 1 for an example of gameplay 047

in the game zork3). This space is much smaller 048

than the space of all actions but can be significantly 049

different in each step. In general, this space of 050

valid actions is unknown to the agent, but a com- 051

mon simplification is to let the agent have the list 052

of valid actions as input. A number of prior works 053

in this domain focused on the above-mentioned 054

challenges (Yao et al., 2020; Ammanabrolu and 055

Hausknecht, 2020; Ammanabrolu et al., 2020; Guo 056

et al., 2020; Xu et al., 2020). Most of those works 057

used deep Q-learning as a learning agent. 058

Deep Q-learning has several drawbacks. As an 059

off-policy algorithm, it suffers from high variance, 060

and the performance can be unstable (Sutton and 061

Barto, 2018). Other online, policy-based learn- 062

ing algorithms are also unsuitable for our scenario 063

since the agent needs to reuse experiences from the 064

training history. Therefore, in this paper, we de- 065

velop a learning agent based on the soft actor critic 066

(SAC) algorithm (Haarnoja et al., 2018), which 067

combines both value-based and policy-based learn- 068

ing. Additionally, the maximum entropy technique 069

encourages stability and exploration. SAC was 070

originally designed for continuous action spaces; 071

however, with slight modifications, it is applicable 072

for discrete action spaces (Christodoulou, 2019). 073

Nevertheless, it has never been applied to text- 074

based adventure games before. 075

A problem that text-based adventure games have 076

in common with many other RL problems is the 077

sparseness of rewards. Especially at the begin- 078

ning of training, the agent needs to perform many 079

actions before receiving feedback. In text-based 080

adventure games, this problem is even more severe 081

due to the large and context-dependent action space. 082
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Figure 1: This figure shows an example of gameplay for the game Zork3. The RL agent receives the valid action
space, state information, reward, and score from the Jericho environment. The agent then needs to predict the action
and move to the next state.

To speed up the convergence, it is therefore desir-083

able to have a denser reward function. A popular084

way to achieve this is through reward shaping.085

Finding a good reward function is difficult and086

requires significant manual effort, background in-087

formation, or expert knowledge. A well-known088

reward shaping technique, circumventing the need089

for external knowledge, is potential-based reward090

shaping (Ng et al., 1999) which has strong theoret-091

ical guarantees. This enables faster convergence092

at the beginning of training which we show for093

several of the difficult games.094

To sum up, our contributions are as follows:095

1. We propose to use SAC as an alternative096

to deep Q-learning for text-based adventure097

games.098

2. We propose a variant of potential-based re-099

ward shaping for discrete action spaces that is100

effective for text-based adventure games.101

3. We compare our method on a range of dif-102

ficult games and show that we can achieve103

better scores than deep Q-learning with fewer104

training episodes on many of the games.105

4. Additionally, we show that convergence is106

faster with reward shaping.107

2 Related work 108

Text-based adventure games In general, for text- 109

based adventure games, there are choice-based 110

agents and parser-based agents (Hausknecht et al., 111

2020). Other related work focuses not on the 112

RL agent but on action generation (Ammanabrolu 113

and Hausknecht, 2020; Yao et al., 2020; Am- 114

manabrolu et al., 2020; Xu et al., 2020; Guo et al., 115

2020). Parser-based agents (Narasimhan et al., 116

2015) generate actions using verb-object combi- 117

nations, whereas choice-based agents choose an 118

action from a pre-generated list of actions. In this 119

work, we follow the line of choice-based agents 120

which is a simplification that allows us to concen- 121

trate on the RL part of our method. 122

Deep reinforcement relevance network (DRRN) 123

(He et al., 2016) is one main choice-based method. 124

The basic idea behind DRRN is encoding the ac- 125

tions and states into embedding vectors separately, 126

and then the state and its corresponding actions 127

embed vectors as inputs into a neural network to 128

approximate the Q values of all possible actions 129

Q(st, ait). The action at each time step is selected 130

by at = argmaxait(Q(st, ait)). 131

Hausknecht et al. (2020) built the Jericho In- 132

teractive Fiction environment which includes 57 133

different games that are categorized into possible, 134
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difficult, and extreme games. In this work, we fo-135

cus on the difficult games that were compared by136

Hausknecht et al. (2020) because they tend to have137

sparser rewards than the possible games. The dif-138

ficult games still include several games where no139

method has been able to achieve a score higher than140

a random agent to date.141

NAIL (Hausknecht et al., 2019) is an agent,142

which is not choice-based, that is trained to play143

any unseen text-based game without training or144

repeated interaction and without receiving a list145

of valid actions. We compare both DRRN (and146

variants) and NAIL in our experiments, but only147

DRRN has the exact same experimental setup and148

handicaps as our agent. NAIL serves as a baseline149

of scores possible without any simplifications of150

gameplay.151

Yao et al. (2021) investigate whether the RL152

agent can make a decision without any semantic153

understanding. They evaluate three variants based154

on DRRN: a) only location information is avail-155

able as observation b) observations and actions are156

hashed instead of using the pure text c) inverse dy-157

namic loss based vector representations are used.158

Their results show that the RL agent can achieve159

high scores in some cases, even without language160

semantics. We compare to the best results of the161

three variants.162

Soft-actor-critic (Haarnoja et al., 2018) com-163

bines both advantages of value-based and policy-164

based learning. The drawback of value-based learn-165

ing like deep Q learning is the instability of the166

performance because the policy can have high vari-167

ance (Sutton and Barto, 2018). The SAC algorithm168

includes three elements. The first is separate pre-169

dict and critic neural networks, the second is that170

offline learning can reuse the past collections via171

replay buffer, which is the same as deep Q learning,172

and the third is that the entropy of the policy is173

maximized to encourage exploration. The optimal174

policy aims to find the highest expected rewards175

and maximize the entropy:176

⇡? = argmax
⇡

TX

t=0

E(st,at)⇠⇢⇡ [�
t(r(st, at)+

↵H(⇡(.|st)))]

177

The original SAC is evaluated on several continu-178

ous control benchmarks. Since we are dealing with179

discrete text data, we base our method on the frame-180

work for discrete action spaces by Christodoulou181

(2019). The key difference between continuous182

and discrete action spaces is the computation of the 183

action distribution. For discrete action spaces, it is 184

necessary to compute the probability of each action 185

in the action space. The actor policy is changed 186

from ⇡�(at|st), a distribution over the continuous 187

action space, to ⇡�(st), a discrete distribution over 188

the discrete action space. In other words, the ac- 189

tor policy is changed from a Gaussian policy to a 190

categorical policy. 191

Potential-based reward shaping Introduced in 192

the seminal work of Ng et al. (1999), potential- 193

based reward shaping (PBRS) is one of the most 194

well-studied reward design techniques. The shaped 195

reward function is obtained by modifying the re- 196

ward using a state-dependent potential function. 197

The technique preserves a strong invariance prop- 198

erty: a policy ⇡ is optimal under shaped reward 199

iff it is optimal under extrinsic reward. Further- 200

more, when using the optimal value function V ⇤ 201

under the original reward function as the potential 202

function, the shaped rewards achieve the maximum 203

possible informativeness. In a large number of 204

prior studies interested in PBRS, Wiewiora et al. 205

(2003) proposes the state-action potential advice 206

methods, which not only can estimate a good or 207

bad state, but also can advise action. Grześ and 208

Kudenko (2010) evaluates the ideas of using the 209

online learned value function as a potential func- 210

tion. Moreover, Harutyunyan et al. (2015) intro- 211

duced an arbitrary reward function by learning a 212

secondary Q-function. They consider the differ- 213

ence between sampled next state-action value and 214

the expected next state-action value as dynamic 215

advice. Based on Harutyunyan et al. (2015) reward 216

shaping technique, Brys et al. (2015) developed the 217

policy transfer to learn the policy from a source 218

task. Devidze et al. (2021) proposed a reward de- 219

sign framework, EXPRD, which interprets two key 220

criteria of a reward function: informativeness and 221

sparseness. 222

Reward in NLP based RL agent One of the 223

challenges of using RL to solve natural language 224

processing (NLP) tasks is the difficulty of design- 225

ing reward functions. There could be more than 226

one factor that affects the rewards, such as seman- 227

tic understanding and grammatical correction. Li 228

et al. (2016) define reward considering three factors: 229

ease of answering, information flow, and semantic 230

coherence for dialogue generation tasks. Reward 231

shaping techniques have also been used in other 232

NLP-based RL tasks, for example, Lin et al. (2018) 233
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used knowledge-based reward shaping for a multi-234

hop knowledge graph reasoning task. The agent235

receives a reward of 1 if the prediction is the cor-236

rect answer. Otherwise, the agent receives a score237

computed by the pre-trained knowledge graph em-238

bedding f(es.rq, eT ). The core difference to our239

model is that we do not pre-define any function or240

knowledge as a reward signal, instead shaping the241

rewards automatically.242

3 Problem setting and background243

The experiment agent An environment is de-244

fined as a Markov Decision Process (MDP) M :=245

(S,A, T, �, R), where the set of states and ac-246

tions are denoted by S and A respectively. T :247

S⇥S⇥A! [0, 1] captures the state transition dy-248

namics, i.e., T (s0 | s, a) denotes the probability of249

landing in state s0. the reward R and terminal signal250

d from the game environment, and � is the discount251

factor. The stochastic policy ⇡ : S ! �(A) as252

a mapping from a state to a probability distribu-253

tion over actions, i.e.,
P

a ⇡(a|s) = 1 by a neural254

network.255

Notice that the valid action space size is256

changeable after each time step. And following257

Hausknecht et al. (2020), we differentiate between258

game state s and observation o, where the obser-259

vation refers only to the text that is output by the260

game whereas the state corresponds to the loca-261

tions of players, items, monsters, etc. Our agent262

has knowledge of the observations and not of the263

complete game state.264

3.1 SAC for discrete action spaces265

The SAC algorithm has a separate predictor (actor)266

and critic. In the following, we first describe the267

two crucial equations for updating the critic and268

then the actor policy update.269

In the critic part, following the original SAC270

definition (Haarnoja et al., 2018) and adaptation to271

the discrete setting by Christodoulou (2019), the272

targets for the Q-functions are computed by:273

y(r, s0, d) =r + �(1� d)
✓✓

min
i=1,2

⇣
Q✓̂i

(s0)
⌘
� ↵ log

�
⇡(s0t)

�◆◆

(1)

274

where in our scenario the target Q-values and the275

policy distribution range over the set of valid ac-276

tions Avalid(s0) (Hausknecht et al., 2020). As was277

proposed by Haarnoja et al. (2018), we use two278

Q-functions and two Q target functions, and i is 279

the index of the Q-function. � is a discount factor 280

and d 2 {0, 1} is 1 if the terminal state has been 281

reached. 282

The critic optimization is the same as in the orig- 283

inal SAC algorithm, learning to minimize the dis- 284

tance between the target soft Q-function and the Q 285

approximation with stochastic gradients: 286

rJQ(✓) =

rEa⇠⇡(s),s⇠D

�
Q�i(s)� y(r, s0, d)

�2
,

(2) 287

where D is the replay buffer and i 2 {1, 2}. If 288

using double Q-functions, the agent should learn 289

the loss functions of both Q-neural networks. 290

As proposed by Christodoulou (2019) the update 291

of the actor policy is given by: 292

rJ⇡(�) =

rEs⇠D
⇥
⇡t(s)

T [↵ log ⇡�(s)�Q✓(s)]
⇤
.

(3) 293

where Q✓(s) denotes the actor value by the Q- 294

function (critic policy), log ⇡�(s) and ⇡t(s) are 295

the expected entropy and probability estimate by 296

the actor policy. 297

As shown in Algorithm 1 in lines 10 and 11, 298

equations 2 and 3 constitute the basic SAC algo- 299

rithm without reward shaping, where critic and 300

actor are updated in turn. In the next section, we 301

will explain the reward shaping in lines 2–9 of the 302

algorithm. 303

4 Method 304

The whole algorithm is given by Algorithm 1. We 305

start by reward shaping in line 2. The shaping 306

reward function F : S ⇥ A ⇥ S ! R (Ng et al., 307

1999) is given by 308

F (s, a, s0) = ��(s0)� �(s), (4) 309

where s0 is the target state and s refers to the source 310

state. As defined in Section 2, when using the opti- 311

mal value-function V ⇤ under original reward as the 312

potential function, i.e., �(s) = V ⇤(s) , the shaped 313

rewards achieve the maximum possible informa- 314

tiveness. 315

Dynamic reward shaping 316

Since we do not have access to the optimal value 317

function V ⇤, we use the idea of dynamic reward 318

shaping. In particular, Grześ and Kudenko (2010) 319

generalized the form in Equation 4 to dynamic po- 320

tentials, and empirically showed an advantage in 321
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Algorithm 1 SAC with potential-based reward shaping

Require: policy ⇡; Q-functions ✓1, ✓2, ✓̂1, ✓̂2; replay buffer D; roll-out N
1: for step = 1 . . . max step do

. Update the critic:
2: if Reward Shaping is True then
3: Vstep(s) ⇡(s)T

h
(Q✓̂i

(s)� ↵ log(⇡(s))
⌘
] (Equation 7) . Compute soft state value

4: for i = 1 . . . N do:
5: Vstep(s) (1� ↵)Vstep(s) + ↵(r + �0Vstep(s0)) (Equation 8) . Update value function
6: end for
7: Fstep(s, a, s0) �Vstep(s0)� Vstep(s) (Equation 5) . Compute shaping function
8: R̂(s, a) R(s, a) + Fstep(s, a, s0) (Equation 6) . Compute reshaped reward
9: end if

10: Update Q-function (Equation 2)
. Update the actor:

11: Update policy (Equation 3)
12: end for

helping the agent. The idea is that the RL agent322

uses the current approximation of the value func-323

tion as a potential function. More precisely, the324

shaped function Fl at learning time step l can be325

represented as follows (Algorithm 1, line 7):326

Fl(s, a, s
0) = �Vl(s

0)� Vl(s), (5)327

where �(s) from Equation 5 is given by Vl(s) and328

superscript l denotes the learning time step. Hence,329

the new shaped reward R̂ : A⇥S ! R at learning330

time step l is defined as331

R̂(s, a) := R(s, a) + Fl(s, a, s
0), (6)332

where R(s, a) is the original extrinsic reward from333

the environment (Algorithm 1, line 8).334

To shape reward signals, we use the soft state335

value function instead of the plain value function.336

This allows us to use reward shaping without a sep-337

arate neural network for the reward function. Ex-338

perimentally, we found this also to perform similar339

to using a plain value function approximated us-340

ing a neural network (see Section 5.3.2). Haarnoja341

et al. (2018) also mention that it is in principle not342

necessary to add a separate approximator for the343

state value although they find it to stabilize results344

in practice. More precisely, we directly utilize the345

original form of the soft value function as given346

in the SAC algorithm for discrete action spaces347

(Christodoulou, 2019):348

V (s) = ⇡(s)T
h
(Q✓̂i

(s)� ↵ log(⇡(s))
⌘
], (7)349

where Q denotes the target Q-functions. The soft350

value has two terms, the expected Q value at the351

given state and the entropy regularized probability 352

of all possible actions. The Q function aims to 353

update the policy to maximize the expected reward. 354

The maximum entropy policy brings the agent into 355

the states with less knowledge while still satisfying 356

the side information (Ziebart et al., 2010). 357

Using Equation 7, the value function V (s) is 358

updated inspired by the batch RL idea (Sutton and 359

Barto, 2018; Lange et al., 2012) and the N-steps 360

Q iteration algorithm (Ernst et al., 2005). Instead 361

of using the sample once to learn the TD, we can 362

repeat the sample N times to estimate the TD value 363

(see Algorithm 1, lines 4–6). 364

V (s) = (1� ↵)V (s) + ↵(r + �0V (s0)) (8) 365

Now, we can rewrite the target Equation 1 by 366

incorporating Equation 5: 367

y(r, s0, d) =

[r + (�V (s0)� V (s))] + �(1� d)V (s0)
(9) 368

This concludes the description of our reward shap- 369

ing algorithm which relies on the soft value func- 370

tion and utilizes an N-step update. 371

5 Experimental results 372

5.1 Datasets 373

The experiments are run on the Jericho environ- 374

ment (Hausknecht et al., 2020)1, which categorizes 375

the games into three groups: possible games, diffi- 376

cult games, and extreme games. In the following 377

1https://github.com/microsoft/jericho

5



(Hausknecht et al., 2020) (Yao et al., 2021) Ours
Game Max RAND DRRN NAIL SAC SAC+RS
advent 350 36 36 36 - 36.00±0.00 36.00±0.00
balances 51 10 10 10 10 10.00±0.00 9.98±0.01
deephome 300 1 1 13.3 - 28.95 ±0.25 22.09 ±0.23
gold 0 0 4.1 3 - 5.98±1.16 7.74 ± 0.79
jewel 90 0 1.6 1.6 - 5.89 ±1.64 7.70±1.99
karn 170 0 2.1 1.2 - 0.01±0.01 0.01±0.01
ludicorp 150 13.2 13.8 8.4 14.8 14.89±0.40 15.73 ±0.09
yomomma 35 0 0.4 0 - 0.16 ±0.02 0.13 ±0.06
zenon 20 0 0 0 - 0.00±0.00 0.00±0.00
zork1 350 0 32.6 10.3 43.1 30.74 ±5.57 32.72 ±7.33
zork3 7 0.2 0.5 1.8 0.4 2.69±0.05 2.72±0.04

Table 1: The average score of the last 100 episodes is shown for three repetitions of each game with standard
deviation. The maximum number of training steps is 50,000. RAND, DRRN, and NAIL results are by Hausknecht
et al. (2020). This table only shows the best scores of the four variants in Yao et al. (2021)’s paper.

experiments, we focused on the difficult games,378

which have sparser rewards and require a higher379

level of long-term decision-making strategies than380

the possible games.381

5.2 Experimental settings382

We built a choice-based agent. The agent predicts383

one of the possible actions from the action space384

distribution based on the observation of the cur-385

rent time step and the previous action from the last386

time step. The agent receives the valid action space387

using the same handicaps as the DRRN method388

from the Jericho game environments identified by389

the world-change detection. As shown in Table 1,390

we ran the main experiments in two variants. In391

Figure 3 we compare two additional variants: a)392

SAC: This is the basic RL agent using the SAC393

algorithm. b) SAC+RS: Here we use the reward394

shaping technique in combination with SAC. This395

is our main algorithm as given in Algorithm 1. c)396

SAC+1S_RS: This variant is the same as SAC+RS397

except that N = 1 instead of N = 32. This means398

reward shaping is done without the N-step repeti-399

tion of the TD update. d) SAC+NN_RS: In this400

variant we replace line 3 of Algorithm 1 with a neu-401

ral network that estimates the plain value function.402

In appendix A, we show the details of the architec-403

tures and parameters for the neural networks and404

the RL agent.405

Input representation Following Hausknecht406

et al. (2020), the state s includes three elements:407

(observation, inventory, look) at the current time408

step. The representation of the elements in the state409

and the action are tokenized by a SentencePiece410

(Kudo and Richardson, 2018) model and then used 411

seperately GRUs to learn the embeddings. The 412

embedding size is 128. During training, the agent 413

randomly samples the data from the replay buffer. 414

5.3 Results 415

We compare our results with the previous choice- 416

based agents using deep Q-learning in Section 417

5.3.1. The effect of reward shaping and variants 418

thereof is discussed in Section 5.3.2. 419

5.3.1 Comparison to Q-learning methods 420

Table 1 shows the game score of the SAC-based 421

learning agent and SAC with reward shaping 422

(SAC+RS). In comparison with DRRN and Yao 423

et al. (2021), which are deep-Q learning-based RL 424

agents, five of the SAC agent-based games can 425

achieve notably higher scores. Three games got 426

the same scores, and zork1 achieves similar results 427

to DRRN (which is the closest baseline) but only 428

uses half of the training steps. Only the scores 429

of Yomomma and Karn are lower than those us- 430

ing the Deep-Q-learning agent. Same as for the 431

baselines, we compute the average of the last 100 432

episodes for each run of the game. Each game is 433

run three times and the mean and standard devia- 434

tion are shown. For each run of one game, eight 435

environments are run in parallel and the average 436

score is computed. The results of the baselines 437

are taken directly from the respective papers. The 438

training progress is shown in Figure 2 where the 439

game score is plotted over training episodes. We 440

can see that the method converges well except for 441

two games, karn and yomomma, where the agent 442
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(a) balances (b) deephome (c) gold

(d) jewel (e) karn (f) ludicorp

(g) yomomma (h) zork1 (i) zork3

Figure 2: This figure shows the development of the game scores over training episodes where shaded areas
correspond to standard deviations. Compared is the SAC agent with and without reward shaping. You can see that
reward shaping leads to faster convergence at the beginning of training for b) deephome, d) jewel, f) ludicorp and i)
zork3. The end score is higher with reward shaping for five of the nine games. Shown are only the games where the
agents learn something (advent and zenon are excluded).

is not able to learn. Overall, the results indicate443

that SAC is a well-suited learning agent to solve444

text-based games.445

5.3.2 Reward shaping446

Overall, the final score of SAC with reward shap-447

ing is higher or the same for eight of the eleven448

games as shown in Table 1. Only for one game,449

deephome, does reward shaping reduces the score.450

We leave the investigation of this issue to future451

work. Another observation is that in many cases the452

standard deviation is lower when reward shaping is453

used than when reward shaping is not used.454

Figure 2 shows the game score over training455

episodes. We can see that shaping the original re-456

wards (SAC+RS) leads to faster convergence than457

without reward shaping (SAC). As mentioned in458

Section 4, the soft state value can achieve a similar 459

performance as the state value while using fewer 460

parameters. To experimentally prove this point, 461

we run an additional variate of our method fol- 462

lowing Grześ and Kudenko (2010) to reshape the 463

reward using the state value. The state values are 464

approximated by a multi-layer neural network. The 465

input of the neural network is the state. The tar- 466

get value is estimated by Gt = rt + �V (St+1), 467

and the neural network updates by minimizing the 468

MSE loss function of TD error at each time step: 469

L = MSE(Gt � V (St)). We show the results 470

in Figure 3. As we expected, the neural network- 471

based value approximation (SAC+NN_RS) can get 472

similar performance as directly using the soft state 473

value from the critic policy. It is necessary to run 474
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(a) deephome (b) ludicorp

(c) zork1 (d) zork3

Figure 3: This figure compares the SAC agent with and without reward shaping (RS), N-step repetition (1S_RS),
and state-value-based RS (NN_RS). We can see that NN_RS can perform similarly as directly using soft-value as
reward signals, and 1S_RS results in higher variances.The shaded areas correspond to standard deviations.

more experiments for the neural network-based475

function to find appropriate parameters. We some-476

times even get better performance using the soft477

value function.478

We also empirically investigate the effect of the N-479

step update described in Section 4 and Algorithm480

1, lines 4–6. In Figure 3 we compare the update481

with N = 32 steps (SAC+RS) to the update with482

only one step (SAC+1S_RS). As the figure shows,483

the method converges to a similar final score, but484

exhibits much higher variance. In the case of zork3,485

the convergence is also slower. Therefore, we can486

conclude that the N-step update is beneficial for487

stabilizing training.488

6 Conclusion and limitations489

We propose a SAC-based RL agent to play text-490

based adventure games. The results show that491

the SAC-based agent can get significantly higher492

scores than deep-Q learning for some difficult493

games while using only half the number of training 494

steps. Furthermore, we use a reward-shaping tech- 495

nique to deal with sparse rewards. This allows us to 496

learn intermediate rewards, which speeds up learn- 497

ing at the beginning of training for some games and 498

leads to higher scores than without reward shap- 499

ing for many games. We compare this method to 500

several state-of-the-art baselines based on deep Q- 501

learning and show that we achieve higher scores 502

with fewer training steps in many cases. 503

While we focused on the RL algorithm in this 504

work, the limitations are, e.g., the knowledge repre- 505

sentation and learning of the valid action space. In 506

future work, we plan to adapt our method to play 507

without the valid action handicap. We will apply 508

the SAC agent and potential-based reward shaping 509

technique to the action space generation task. 510
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A Appendix645

Experimental settings:646

Neural networks and parameters The policy647

neural network includes three linear layers with two648

hidden dimensions D1 = 512 and D2 = 128, each649

hidden layer connects with the ReLU activation650

function, and the categorical distribution is on top651

to ensure that the sum of action probabilities is one.652

The Q-function neural network has also three linear653

layers with ReLU activation functions. Both policy654

and Q-function update at each step, and the target Q655

functions update the weights from the Q-function656

every two steps.657

The RL agent parameters were set as follows:658

the batch size is 32, and the learning rate of both659

policy and Q-function neural networks is 0.0003.660

Epsilon-Greedy action selection and a fixed entropy661

regularization coefficient were used in all of the ex-662

periments. For each game, we ran 8 environments663

in parallel to get the average score of the last 100664

episodes, and each model ran three times to com-665

pute the average scores. The maximum number of666

training steps per episode is 100.667

Since the RL agent interacts with the game envi-668

ronments, the training time depends on the game669

implementation in the Jericho framework. For ex-670

ample, zork1, and zork3 are comparably fast to671

train, whereas Gold takes an extremely long time672

compared to the rest of the games. Because of this,673

we only trained gold for 4,000 steps, yomomma674

for 10,000 steps, and karn for 10,000 steps. Our675

comparison methods also use varying step sizes676

for these games (but they use more training steps 677

than we do). Most of the previous work trained the 678

agent in a maximum of 100,000 steps, whereas the 679

maximum number of training steps for our method 680

is only 50,000 in all experiments. 681

Computing infrastructure We ran the exper- 682

iments on Intel(R) Xeon(R) Gold 6154 CPU @ 683

3.00GHz and the Nvidia GPUs (can be one of 684

GeForce RTX 2080 or Tesla V100). 685

B supplementary material 686

Our experiments are based on the publicly accessi- 687

ble Jericho environment (Hausknecht et al., 2020) 688

that provides the environment for playing all games 689

in our experiments. Our code is attached as a sup- 690

plement. 691
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