
Neurocomputing 459 (2021) 383–394
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Structural relational inference actor-critic for multi-agent reinforcement
learning
https://doi.org/10.1016/j.neucom.2021.07.014
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: yuliu@dlut.edu.cn (Y. Liu).
Xianjie Zhang a, Yu Liu a,⇑, Xiujuan Xu a, Qiong Huang b, Hangyu Mao c, Anil Carie d

aKey Laboratory for Ubiquitous Network and Service Software of Liaoning Province, School of Software, Dalian University of Technology, Dalian 116620, China
bOkinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
cHuawei Noah’s Ark Lab, No. 3 Xinxi Road, Haidian District, Beijing 100085, China
d School of Computer Science, VIT-AP, Amaravathi 522237, India

a r t i c l e i n f o a b s t r a c t
Article history:
Received 8 September 2020
Revised 20 April 2021
Accepted 4 July 2021
Available online 7 July 2021
Communicated by Zidong Wang

Keywords:
Multi-agent systems
Deep reinforcement learning
Variational autoencoder
Actor-critic
Graph neural network
Multi-agent reinforcement learning (MARL) is essential for a wide range of high-dimensional scenarios
and complicated tasks with multiple agents. Many attempts have been made for agents with prior
domain knowledge and predefined structure. However, the interaction relationship between agents in
a multi-agent system (MAS) in general is usually unknown, and previous methods could not tackle
dynamical activities in an ever-changing environment. Here we propose a multi-agent Actor-Critic algo-
rithm called Structural Relational Inference Actor-Critic (SRI-AC), which is based on the framework of
centralized training and decentralized execution. SRI-AC utilizes the latent codes in variational autoen-
coder (VAE) to represent interactions between paired agents, and the reconstruction error is based on
Graph Neural Network (GNN). With this framework, we test whether the reinforcement learning learners
could form an interpretable structure while achieving better performance in both cooperative and com-
petitive scenarios. The results indicate that SRI-AC could be applied to complex dynamic environments to
find an interpretable structure while obtaining better performance compared to baseline algorithms.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Inference of relations, as one of the most ordinary things to
human beings, is a core competence of human cognition [1]. This
cognitive ability enables human beings to establish a partnership
with others or realize the potential relationship between objects
according to certain laws [2]. It can provide a strong inductive bias
to describe the world [3] in a structured way. In multi-agent set-
tings, agents can also take advantage of potential relations to form
a cooperative structure and achieve better performance.

Recently, reinforcement learning (RL) has shown exciting suc-
cess in solving cooperative multi-agent problems. The develop-
ment of deep learning has promoted the application of RL in
many fields, such as games [4,5] and robotics [6]. Applying deep
RL technologies into the multi-agent application has become a
popular trend. Multi-agent reinforcement learning (MARL) has
recently drawn attention to various complex tasks, including traffic
light control [7], autonomous driving [8], and network packet
delivery [9–11].
The multi-agent systems can be similar to our human activities.
When facing a task, human beings first establish a cognitive model
of the task, then, determine which partners are needed to interact
with the current situation. This kind of collaborative relationship
usually changes with time and task status. Earlier work mainly
establishes fixed coordination graphs (CGs) and value decomposi-
tion approach to increase the payoff of the overall system
[12,13]. However, CG-based approaches can only be applied to
tasks for which there is an existing cooperative structure between
agents. Recent work uses manually defined topologies to establish
relationships between multiple agents [14–16]. In particular, NCC-
MARL [17], which is also based on the existing relationships
between agents, uses graph convolutional networks (GCN) and
VAE models to make the agent and neighbors have consistent cog-
nition. These pre-defined topologies cannot be applied to special
scenarios that need agent interaction. Therefore, the multi-agent
system needs a dynamic reasoning mechanism to infer the rela-
tionship between agents in an automatic way.

There have also been some attention-based methods to infer
the relationship between agents. The first one is MAAC [18], which
uses a multi-headed attention to learn a centralized critic. AHAC
[19] improves the MAAC, and allows the agent to have different
attention weights for teammates and enemies through hierarchical

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.07.014&domain=pdf
https://doi.org/10.1016/j.neucom.2021.07.014
mailto:yuliu@dlut.edu.cn
https://doi.org/10.1016/j.neucom.2021.07.014
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
attention. However, the invisible observations of enemies are fed
into critic network in AHAC, where it is impossible to see the
enemy’s observations in the real competitive environments.
DAACMP [20] is using the attention to explicitly model the
dynamic joint policy of teammates in an adaptive manner, but
agents designed in the algorithm do not execute in a decentralized
way. These attention-based methods learn the importance distri-
bution of other agents for each agent. However, these methods
cannot learn the real relationship between agents, and cannot
ignore irrelevant agents to simplify policy learning.

In this paper, we propose a MARL framework Structural Rela-
tional Inference Actor-Critic (SRI-AC) framework, which can auto-
matically infer the pairwise interaction between agents and learn
a state representation. We compare the SRI-AC algorithm with
the existing multi-agent algorithms based on global information.
These algoritms include centralized training and decentralized
execution [21,22], and obtain other agent information through
communication [23–27]. Our model can identify the agents that
need to interact in advance, and then feed the most relevant agent
observation information to the critic network. There are three cru-
cial components in our model.

(1) Centralized critic and decentralized actor framework [21]. In
SRI-AC, each agent has a critic which uses information that
conditioned on the joint action and relevant observational
information during training. To avoid the agent laziness
problem, we share the parameters among all critics.

(2) Variational autoencoder (VAE) model. To process relational
learning, we use a variational autoencoder (VAE) model to
infer the pairwise interaction, as well as to learn a state rep-
resentation from observed data. The latent code represents
the pairwise interaction, while the reconstruction is based
on graph neural networks (GNN).

(3) Graph attention network (GAT) model. More importantly,
we utilize the learned relationship to form the adjacency
matrix between our agents, and our critic network uses a
graph attention network (GAT) [28] to integrate the infor-
mation from neighbor agents.

We evaluate our methods by four challenging tasks, three of
which are based on the multi-agent particle environment (MPE)
[29], and the other is a fully cooperative football game [30]. Exper-
iments show that our algorithm can form an effective interactive
network, leading to a higher reward compared to the baseline
algorithms.

The remainder of this paper is organized as follows. Section 2
introduces the background about RL and structured models. In Sec-
tion 3, we list related work including policy-based and value-based
MARL algorithms. Section 4 presents the proposed method, where
we outlined our approach in Section 4.1. The details of the VAE
model and the GAT model are presented in Section 4.2 and Sec-
tion 4.3, respectively. The examples and results are presented in
Section 5. The conclusion and future work are given in Section 6.
2. Background

We consider a cooperative multi-agent setting that can be for-
mulated as the Decentralized Partially Observable Markov Decision
Process (DEC-POMDP) [31]. It is defined by a tuple
S;O;U;R; P; c;Nh i. We assume each agent holds a partially
observable state, oi 2 O, which contains partial information from
the global state, s 2 S. Action set for N agents is U ¼ A1 � � � � � AN ,
at which every time step agent i chooses an action, ai 2 Ai.
State transition function from state s to s0 is followed by:
P s0js; a1; . . . ; aNð Þ : S� U � S! 0;1½ �. R ¼ r1; . . . ; rNh i :
384
S� A1 � . . .� AN ! RN is the joint reward function. After taking
joint action a ¼ ai; . . . ; aNh i, the agents receive a joint reward R,
and transform the state s to s0. The agents aim to learn a policy
pi aijoið Þ that maximizes their expected discounted return
Ea1�p1 ;...;aN�pN ;s�P

P1
t¼0ctri;t st ; a1;t ; . . . ; aN;tð Þ� �

, where agent i can only
observe its state oi, and c! 0;1½ � is the discount factor.

2.1. Reinforcement Learning (RL)

Deep Q-network (DQN). A well-understood value-based RL algo-
rithm for single agent learning is Q-learning [32,33]. In practice,
the Q-value (or, action-value) function is defined as
Q s; að Þ ¼ E GjS ¼ s;A ¼ a½ �, which can be recursively rewritten as
Q s; að Þ ¼ Es0 r s; að Þ þ cEa0 Q s0; a0ð Þ½ �½ �. The Q-learning updates the
state-action value using value iteration. To apply it to high-
dimensional state, Deep Q-Network (DQN) [5] combines reinforce-
ment learning and deep neural networks. The DQN can be written
as Q s; a;wð Þ, wherew is network parameters. The parametersw are
updated by minimizing the loss: L wð Þ ¼ Es;a;r;s0 y0 � Q s; a;wð Þ½ �,
where y0 is computed by a target network y0 ¼ rþ
cmax

a0
Q s0; a0; �wð Þ. �w is a target network parameter updated by

copying w.
Policy Gradient (PG). Different from value-based algorithms, pol-

icy gradient methods’ primary purpose is to directly adjust the pol-
icy network h to maximize the agent’s expected return J phð Þ. In the
classical algorithm REINFORCE [34], the gradient can be written as:
rhJ phð Þ ¼

P
t0ctrt0 st0 ; at0ð Þrh log ph at jstð Þð . This algorithm has a prob-

lem of high variance, which is caused by the cumulative reward
term

P
t0ctrt0 st0 ; at0ð Þ. Actor-Critc [35] replaces the return term with

an approximate Qw st ; atð Þ ¼ E
P

t0ctrt0 st0 ; at0ð Þ� �
,

rhJ phð Þ ¼ rh log ph at jstð Þð ÞQw st; atð Þ ð1Þ
This formula is updated in the same way as Q-learning, i.e., by min-
imizing the temporal-difference loss: L wð Þ ¼ Es;a;r;s0 y0 � Qw s; a;wð Þ½ �,
where y0 ¼ r þ cEa0�p s0ð Þ Q s0; a0; �wð Þ½ �. Deterministic Policy Gradient
(DPG) [36] extends Actor-Critic to deterministic policies a ¼ lh sð Þ.
Here we optimize the actor network in the direction of the gradient
of Q to maximize the action-value function. For state s, the param-
eters h are updated along the gradient direction rhQ

l s;lh sð Þ� �
. The

objective takes the average over the state distribution

rhJ hð Þ ¼ Es;a;r;s0 rhlh sð ÞraQ
l s; að Þja¼lh sð Þ

h i
. To ensure the existence

of gradient of the action-value with respect to actions, the action
needs to be continuous. Based on DPG, Deep Deterministic Policy
Gradient (DDPG) is proposed by Lillicrap et al. [37], using deep neu-
ral networks to approximate the actor lh sð Þ and the critic Q s; a;wð Þ.
It updates the actor and the critic network by:

Critic :
L wð Þ ¼ Es;a;r;s0 y0 � Q s; a;wð Þ½ �

y0 ¼ r þ cEa0�l s0ð Þ Q s0; a0; �wð Þja0¼l�h s0ð Þ
h i

Actor :
rhJ hð Þ ¼ Es;a;r;s0 rhlh sð ÞraQ

l s; a;wð Þja¼lh sð Þ
h i

ð2Þ
2.2. Structured models

The modeling structure of interacting multi-object or multi-
agent systems can achieve higher predictive accuracy by consider-
ing the structured nature of such systems [38,2,39]. Jaques et al.
[40] proposed a model based on the encoder-decoder architecture.
Based on this architecture, this paper extracts the position and
speeds of each object from the image, using a differentiable physics
engine to calculate the position change of the object. This architec-

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
ture also can be applied to the three-body problem and the spring
problem. C-SWMs [39] uses a graph neural network to find pair-
wise interaction relations between object states, and discover
objects from raw pixels. There are also many previous works about
state representation learning through Variational Autoencoder
(VAE). For example, World Model [3] uses a standard VAE to calcu-
late the latent space of the image and utilize this latent space to
abstract our compressed state.
3. Related work

MARL has been extensively studied in a limited state and action
space [41,42]. Independent Q-learning [43] uses an independent
controller for each agent, which ignores the non-stationarity
caused by the actions of other agents. Based on coordinate graphs,
Guestrin et al. [12] proposed a variable elimination (VE) algorithm
utilizing conditional independence properties between agents, in
order to achieve maximization joint payoffs. Max-plus [13] also
uses coordination graphs to find an approximately maximizing
joint action by payoff propagation. However, these methods must
be based on the prior knowledge of known graph structure. Com-
pared with these traditional methods, SRI-AC can learn a collabora-
tive graph in a dynamic environment.

Recent work on learning skills in high-dimensional complex
environments in the Actor-Critic framework is more relevant. Lowe
et al. [21] and Foerster et al. [22] proposed methods using central-
ized critic and decentralized actors for continuous actions and dis-
crete actions, respectively. The core idea of MADDPG is to learn a
centralized critic with global information and take the policy with
only local observation. Foerster et al. [22] proposed COMA for solv-
ing the credit assignment problem by letting each agent know its
relative contribution to the team with counterfactual reward.
MAAC [18] also applies centralized critics with attention mecha-
nism to handle a non-stationary environment. Another way to
decentralized agents is to use factored value function. Examples
are VDN [44], QMIX [45], and QTRAN [46]. VDN uses a simple
mix Q-network which is the sum of independent utility functions.
QMIX ensures that each independent Q increases monotonically
for the overall effect by feeding global state in mix-network. How-
ever, these methods do not consider the structural information
between agents. DCG [16] combines a static coordination graph
and deep learning, factoring the joint value function into payoffs
between pairs of agents. In DCG, the static coordination graph is
Fig. 1. The network structure of SRI-AC. Note that V is the adjacency matrix
composed of pairs of relations zij .

385
manually defined. None of these methods explicitly learn the coop-
erative relationship between agents, so the coordination they can
achieve is limited.
4. Methods

In this section, we implement Actor-Critic for multi-agent
games with centralized critic, which can infer the interaction rela-
tionship between agents. To learn the relationship, we model all
agents into the graph structure G ¼ V;Eð Þ, where the node i 2V

represents one agent in G, and the edge zij 2 z indicates the rela-
tionship between agent i and j. To begin with, we assume that
the agents can get the cognition of the world model through local
observation. We build a variational autoencoder (VAE) [47,48]
model to predict the interactions z with agents’ partial observation
information. In the end, our centralized critic takes advantage of
Graph Attention Network (GAT) [28], getting extra information
based on a dynamic graph, composed of interactions z.

4.1. Overall design of SRI-AC

Our SRI-AC network structure consists of the following parts, as
shown in Fig. 1.

(1) State Abstraction (Abs Model)
With the game running, we can get each agent’s replay buffer

which includes states oi, actions ai, reward ri, and follow-up states

o0i that constitute tuplesD ¼ oi; ai; ri; o0i
� �T

t¼0. Based on the fully con-
nected state abstract model, the raw high-dimensional observation
state oi is compressed into low-dimensional abstract information
oi;abs. We use a multilayer perceptron (MLP) network to eliminate
redundant information and obtain embedding abstraction oi;abs.

(2) Variational Autoencoder (VAE) Model
In this model, we implement our variational autoencoder with

an encoder-decoder framework which includes an abstract state
reconstruction error and a KL-divergence. The encoder learns the
pairwise interaction posterior q/ zjoð Þwith all agents’ partial obser-
vation information. Under the condition of action a, the decoder
can predict the next moment abstract state o0i;abs which can be writ-
ten as oi;abs � ai ! o0i;abs. We formulate the decoder as

p o0absj oabs; að Þ; z� �
. For all of them, we use the Graph Neural Network

(GNN) message passing operation to capture all agents’ structural
information.

(3) GAT Model
All the agents can be considered as nodes of graph G, based on

agent’s interactions zij. We combine all pairwise relations zij to
form adjacency matrix V. More importantly, we aggregate informa-
tion from other agents with graph attention under the adjacency
matrix V. In the process of updating, agent i can see the observa-
tions of neighbor agents and obtain the attention coefficient aij,
which is the importance of the neighbor agents j 2 Ni.

(4) Q-value Model
We calculate the action-value Qi o; að Þ for every agent, while

updating together to minimize a joint loss function of a mix-Q.
The Q-value model captures aggregate information from all agents’
action a ¼ a1; � � � ; aNð Þ and observation o ¼ o1; � � � ; oNð Þ. It can be
written as: Qi o; að Þ ¼ Qi oi; aið Þ; xið Þ, where xi is the result of agent
i’s neighbor information obtained by GAT model. The Q-value
model adopts parameter sharing to address the ‘‘lazy agent” prob-
lem and this design also reduces the parameter size.

4.2. VAE model

We model the structural inference as a VAE as shown in Fig. 2.
For dynamic multi-agent systems, there are latent interaction z

Fig. 2. There are two parts in VAE model: An encoder that predicts the interactions from agents’ observations; and a decoder that contrasts between contrasts between the
reconstructed and the real observations given the agents’ interactions.

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
between agents, changing over time, given from every agent’s local
observation oi. We construct our model which includes approxi-
mate posterior distribution q/ zjoð Þ as inference neural networks
with trainable parameters /. Based on this potential interaction,
the local relationship zij can realize the collaboration of the entire
multi-agent system. We consider that each agent has a partially
observable observation oi, and the number of agents is N. At time
t, we use a graph neural networks (GNN) network to capture our
structure with the set of observations of all N agents:
o ¼ o1; . . . ; oNf g. Finally, through the GNN network, we generate
the representation eij of our edges. We can obtain N � N � 1ð Þ=2
edges, in which each edge zij connects agents v i and v j. An edge
is a binary variable sampled as zij 2 0;1f g. There is one path from
v i to v j if and only if zij ¼ 1. All edges can form a real graph struc-
ture G.

We need to calculate the agent interaction structure under the
condition of local observation o, which can be written as p zjoð Þ:

ph zjoð Þ ¼ ph ojzð Þph zð Þ
ph oð Þ ¼ ph ojzð Þph zð ÞR

z ph ojzð Þph zð Þdz ð3Þ

For computing the denominator, we need to integrate all the terms
with respect to z. The above calculation is unrealistic, hence we
need to find approximate distribution q zjoð Þ. The approximate prob-
ability must be as close to the real posterior distribution p zjoð Þ as
possible.

logph oð Þ ¼
Z

q/ zjoð Þ logph oð Þdz

¼ Dkl q/ zjoð Þkph zjoð Þ� �þ Z q/ zjoð Þ logph z; oð Þ
q/ zjoð Þ dz ð4Þ

Since the probability ph oð Þ is fixed, we can maximize the evi-
dence lower bound (ELBO) [47,48] to make the probability
q/ zjoð Þ and ph zjoð Þ as close as possible.

max
h;/

Z
q/ zjoð Þ logph z;oð Þ

q/ zjoð Þdz¼max
h;/

�Dkl q/ zjoð Þkph zð Þ� �þEq/ zjoð Þ logph ojzð Þ½ �
n o

ð5Þ
We formalize our VAE loss function as Lvae:

Lvae ¼ Dkl q/ zjoð Þkph zð Þ� �� Eq/ zjoð Þ logph ojzð Þ½ � ð6Þ
386
There are two parts in our VAE loss function: the first part is an
encoder that predicts the interactions from agents’ observations,
and the other part is reconstruction error that contrasts between
reconstruction and real observation error given the agents’ interac-
tion. The model is shown in Fig. 2.

4.2.1. Encoder - edges inference
The first item is KL divergence in the loss function Lvae:

Dkl q/ zjoð Þkph zð Þ� � ¼ �H q/ zjoð Þ� �� Z
z
q/ zjoð Þ logph zð Þ

¼ �H q/ zjoð Þ� �� const ð7Þ
We have a constant term ‘‘�const”, which is generated by the prob-
ability of the uniform prior ph zð Þ. In order to infer the pairwise inter-
action relations zij between agents from observation set
o ¼ o1; . . . ; oNf g, where we draw inspiration from NRI [2]. This
model takes fully-connected graph as input of GNN to predict the
latent graph structure q/ zjoð Þ, where / are the parameters of the
fully-connected graph neural networks. Firstly, we concatenate
the features of the pairwise agents as their edges’ representation,
eij ¼ f e oi; oj

� �� �
, where f e is a MLP network, and eij is the representa-

tion of the edge connecting agent i and j. Then we can use softmax
function to calculate the probability of each edge. We formalize the
posterior probability of the edges as q/ zijjo

� � ¼ SoftMax eij
� �

.

4.2.2. Decoder - contrastive learning
In the second part, we use the contrastive learning loss as the

reconstruction error in our VAE model. By sampling from continu-
ous relaxation, we can get the dynamic interaction graph structure
zij 2 0;1f g between agents through the encoder. Based on the
interaction relationship zij, we construct the graph structure G.
The reconstruction error is to predict the dynamics of observations
of the agents at the next moment o0abs ¼ f h oabs; að Þ; zð Þ. In our set-
ting, the last item of VAE loss function, Eq/ zjoð Þ log ph ojzð Þ½ � , can be
written as follow:

Eq/ zjoð Þ logph ojzð Þ¼: � kf h oabs; að Þ; zð Þ � o0absk ð8Þ
Similar to NRI, we model the decoder with interaction neural

networks f h, where the h denotes the parameters of our networks.
Firstly, we obtain the concatenation of abstracted state oabs and

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
action a as bo ¼ oabs; að Þ as the initial information of each node in the
graph G. For each type of edge, we specify a MLP network. The
same types share the same parameters. We can obtain the repre-

sentation of edges be i;jð Þ ¼
P

kzij;k
bf ke boi; boj
� �� �

, where k is the k-th
type of edges. In our setting, we use categorical type edges, so this
formula can select useful edges. In the end, all information is

aggregated to vertices of the edges Doi ¼ bf v Pj–i
be i;jð Þ

� 	
, where Doi

is update. For agent i, we can predict the next step state abstraction
f h oabs; að Þ; zð Þ ¼ oi;abs þ Doi. The contrastive loss can be obtained as
follow: kf h oabs; að Þ; zð Þ � o0k ¼Pikoi;abs þ Doi � o0i;absk, so we can
rewrite the reconstruction error as:

Eq/ zjoð Þ log ph ojzð Þ¼:
X
i

koi;abs þ Doi � o0i;absk ð9Þ
4.2.3. Differentiable sampling - gumbel softmax
In our model, the interaction between agents is categorical type.

However, after sampling directly from probability, the model will
lose the differentiability. To obtain this categorical interaction,
we utilize gumbel-softmax to sample the edges z of our interaction
structure. The method can obtain a continuous relaxation result,
recently proposed by [49,50] , which can be effectively applied to
our setting.

G logpð Þk ¼
exp log pk þ nð Þ=sð ÞPK
j¼0 exp log pj þ n

� �
=s

� � ð10Þ

where n can be sampled from distribution
Gumble 0;1ð Þ; n ¼ � log � log uð Þð Þ;u � U 0;1½ �. s is a temperature
parameter that controls softmax approaching argmax. When the
parameter n approaches 0, our distribution will turn to one-hot cod-
ing. After obtaining our discrete distribution, the whole model is
able to use the backpropagation algorithm.

4.3. GAT model

We obtain interaction zij with the VAE model, which can inte-
grate as the adjacency matrix V of the interaction graph structure.
Based on the generated graph structure, we can use a GAT model to
pay attention to neighborhoods’ information of an agent, which
will specify different weights to different agents in one agent’s
neighborhood. In traditional GNN, node embedding update in a
graph is as follow:

Hlþ1 ¼ r VHlWl
� 	

ð11Þ

where hidden layer embedding of each node Hl performs a linear

transformation with a weight matrix Wl. Multiplication with the
adjacency matrix V means that this formula combines all the neigh-
bor node information. To that end, using an activation function, we

will get the next step hidden embedding Hlþ1.
In our model, we consider that agents have different attention

to nearby agents, therefore we use graph attention network to cap-
ture observations of nearby agents, which is written as

H lþ1ð Þ
i ¼ kKk¼1r

X
j2N ið Þ

a lð Þ
ij;kH

lð Þ
j W lð Þ

k

 !
ð12Þ

where aij ¼ r HiWð ÞC HjW
� �� �

is an attention coefficient which indi-
cates the importance between i-th and j-th node, and C is a coupling
matrix corresponding to the dictionaries of pairwise interaction
relations [51]. We use a multi-head attention, therefore k is used
to connect the features from different channels.

We can take advantage of GAT model to calculate the contribu-
tion of other agents’ states and actions feed into critic. Each agent
387
has a Q-value function Qi o; að Þ, which receives the observations
o ¼ o1; . . . ; oNð Þ, and actions, a ¼ a1; . . . ; aNð Þ. In our setting, we
can use the following formula to calculate the contribution of all
agents feed into critic Qi o; að Þ:
Qi o; að Þ ¼ Qi oi; aið Þ; xið Þ ð13Þ
where oi; aið Þ is concatenation of agent i’ state and action, and xi
indicates the information of other agents calculated from GAT
model. For calculating xi, we can rewrite Eq. (12) as:

xi ¼ kKk¼1r
X
j2N ið Þ

a lð Þ
ij;kmjWk

 !
ð14Þ

where agent i0s neighbor node information, mj; j 2 N ið Þ, can be writ-
ten as mj ¼ oj; aj

� �
. The attention coefficient becomes as:

aij ¼ r miWð ÞC mjW
� �T� 	

ð15Þ

The activation functions r �ð Þ are tanh for Eq. (14) and Leaky
ReLU for Eq. (15), respectively. In the end, we get the concatenation
vector of the contributions from all heads.

4.4. Training SRI actor-critic

Our algorithm has a centralized critic like the MADDPG [21] and
MAAC [18], and the actors are independent with each other. Fig. 1
shows the critic Qi; i 2 Nð Þ, where we need two loss functions for
calculating our ultimate Q-value. The first loss is a VAE loss:

Lvae ¼ E o;o0ð Þ�DDkl q/ zjoð Þkph zð Þ� �� Eq/ zjoð Þ logph ojzð Þ½ �

¼ E o;o0ð Þ�D �H q/ zjoð Þ þ
X
i

koi;abs þ Doi � o0i;absk � const

 #"
ð16Þ

The second loss is a temporal-difference loss, the parameters of
which is shared in the agent’s critic networks [44]. This design
can avoid lazy agents in a cooperative setting. We update all critic
networks with a mix-Q model, which is the accumulation of total
agents’ Q-value. Mix-Q of SRI-AC is trained by:

LQ wð Þ ¼
XN
i¼1

E o;a;r;o0ð Þ�D Qw
i o; að Þ � yi

� �2where : yi

¼ ri þ cEa0�p�h o0ð Þ Q
�w
i o0; a0ð Þ

h i
ð17Þ

We then combine two Eqs. (16) and (17) as our total loss:

Ltotal ¼ aLvae þ LQ wð Þ ð18Þ
Our algorithm uses an Actor-Critic framework, hence the train-

ing process needs to take Q-value and its observation. We extend
Eq. (1) into the multi-agent setting as follows:

rhi J phð Þ ¼ Eo�D;a�p rhi log phi aijoið Þ� �
Qw

i o; að Þ� � ð19Þ
The pseudo-code for algorithm is presented in Algorithm 1 and

Algorithm 2.

Algorithm 1: Structural Relational Inference Actor-Critic (SRI-
AC)

1: Initialize parallel environments E for all agents
2: Initialize replay buffer, D
3: Tupdate 0
4: for each training episode epi do
5: Reset environment, and get intial obsei for each agent i
6: for t ¼ 1 . . .steps per epi do

(continued on next page)

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
a (continued)

Algorithm 1: Structural Relational Inference Actor-Critic (SRI-
AC)

7: choose actions aei � p �jobsei
� �

for each agent
8: Get reward ri and next obs0ei for all agents
9: Add episode to buffer, D
10: Tupdate ¼ Tupdate þ E
11: if Tupdate PBatchSize then
12: for j ¼ 1 . . . num updates do
13: Sample minibatch, B
14: Get latent interactions, zij � q �jBð Þ
15: Combine all zij as adjacency matrix, V
16: UPDATECRITICAndSRI(B,V)
17: UPDATEPOLICIES(B, V)
18: end for
19: Update target parameters
20: Tupdate 0
21: end if
22: end for
23: end for

Algorithm 2: Update Procedure for Critic, VAE and Polices

1: function UPDATECRITICandSRI(B, V)
2: Unpack minibatch
3: oB1...N ; a

B
1...N; r

B
1...N; o

0B
1...N

� � B

4: Calculate Qw
i oB1...N; a

B
1...N;V

� �
for every agent on the

condition of adjacency matrix V
5: Calculate a0Bi � ph

i o0Bi
� �

using target policies
6: Calculate obs0; a0 using target polices
7: Calculate Q �w

i o0B1...N; a
0B
1...N;V

� �
for all agents using target

critic
8: Calculate ELBO Lvae
9: Calculate TD-error LQ
10: Update critic using r LQ þ Lvae

� �
11: end function
12:
13: function UPDATEPOLICIES(B, V)
14: Calculate aB1...N � p�h

i o0B1...N
� �

; i 2 1 . . .N
15: Calculate Qw

i oB1...N; a
B
1...N ;V

� �
for all agent

16: Update policy using rJ phð Þ
17: end function
5. Experiments

In order to validate the performance of our algorithm, we test
SRI-AC in four experimental environments. The first three scenar-
ios are multi-agent particle environment proposed in [21,29,52].
In our setting, we change the first three into a two-dimensional
world with discrete-time, continuous space and discrete action
spaces. Agents can execute five actions, including up, down, left,
right, or stay. In the first three scenarios, we choose DDPG [37]
with discrete actions to train the opponent’s policy. For comparing
the performance between SRI-AC and baseline algorithms, we fix
the parameters of DDPG’s module when opponents learn how to
escape or attack. The last environment is google research football
environment [30], which is an advanced, physics-based 3D simula-
tor with an open-source license. The football scenario supports
388
multi-agent settings, which is challenging for the study of rein-
forcement learning. The details of the experimental environments
are as follows.

5.1. The testing environments

5.1.1. Predator-prey
We choose the predator-prey scenario which is one of the

Multi-Agent Particle Environments (MPE) [21]. Fig. 3(a) illustrates
one of our game fields, in which we extended it as cooperative-
competitive environments. This game contains two types of
agents: predator and prey. To increase the difficulty of the game,
we place random landmarks on the game field, and the landmarks
don’t take actions. As shown in Fig. 3(a), grey circles represent
landmarks, green circles are the good agents (prey) and red circles
are the adversary agents (predator). Our algorithm needs to control
adversary agents to capture the good agents collaboratively, while
the good agents learn a pattern to escape from adversary agents. To
verify the collaborative interaction structure, the game needs more
than one good agent. Taking the scenario of Fig. 3(a) as an example,
we have five homogeneous adversary agents and two good agents.
We use SRI-AC to learn adversary agents’ strategies. Agents have
more than one target, which promotes interaction between agents.
The adversary agents’ acceleration and speed are all slower than
the good agents, hence they need to learn a mechanism of coordi-
nation to capture the faster good agents. Each time one adversary
agent catches the good agents, this adversary agent gets a positive
reward, +10, while the good agent obtains a negative reward, �10.

5.1.2. Grassland
This game consists of two kinds of animals, sheep and wolves,

where sheep move faster than wolves [52]. We also set a fixed
number of green landmarks as food for sheep, which is shown in
Fig. 3(b). When a wolf collides (eats) with a sheep, it will be
rewarded. The (eaten) sheep will be rewarded negatively and
become inactive (dead). A grass pellet will be collected and regen-
erated in another random position when a sheep encounters it, and
the sheep will get a positive reward. In order to incentivize the
sheep work as a team, we set a shared reward value: when a sheep
eats grass, others can get part of the reward; when one sheep dies,
the whole sheep herd will be punished.

5.1.3. Adversarial battle
As shown in Fig. 3(c), we have two opposite teams in this sce-

nario. The two teams need to attack each other and compete for
resources to improve their teams’ reward score. As in the grassland
scenario, resources will appear in random positions after being col-
lected, and the total number of resources will not change. The
agent who collects resources will get a reward value, and his team
will also receive a shared reward value. We also design another
mechanism for two teams of agents to attack each other. When
more than two agents from team one collide with one agent in
the other team at the same time, the alone agent will die and his
whole team will get negative rewards, while the attacking agent
and their whole team will get positive rewards [52].

5.1.4. Google football
This environment is an open-source virtual football game for

reinforcement learning research, which enables us to quickly verify
and test the designed algorithm in sports games. The physical 3D
simulation model of the game scenario is very close to the real
football game [30].

In the simulator, we can set two football teams, from which we
can choose one to select players that we can control. This soccer
environment supports three state representations: pixels, super-
mini map, and floats. We choose the floats as features, which can

Fig. 3. All scenarios are based on the multi-agent particle environment (MPE). (a) is predator-prey scenario, where we can see 5 adversary agents chasing 2 good agents and 2
large dark circles indicate landmarks impeding the way. (b) is the grassland scenario. This game has 5 sheep, 2 wolves and fixed amount of grass pellets as green landmarks.
(c) is adversarial scenario. In this game, we have two teams of agents and fixed number of resources as green landmarks.

Table 1
The hyperparameters used in games.

Hyperparameters Description Value

a Learning rate for the Lvae 0.01
c Discount factor 0.95
lr_actor Learning rate for the actor 0.01
lr_critic Learning rate for the critic 0.01
optimizer Optimizers for all the networks Adam

[53]
batch_size How many tuples to sample for each update 1024

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
represent the current critical state of all games with 115-
dimensional floating-point vector. It contains position, speed, and
direction of all athletes, as well as the game’s information of one-
hot vector. In order to make the observation of each agent differ-
ent, we add the coordinates of each agent relative to other entities
to the original 115-dimensional vector. Finally, we form 161-
dimensional vector. These floating-points numbers are critical fea-
tures for algorithm training. This representation greatly reduces
the difficulty of feature extraction. We can focus on the design of
the reinforcement learning algorithm. In the original game, there
are 21 basic actions. In order to improve the convergence speed
of the algorithm, we simplify the actions into several basic actions,
including idle, top right, right, bottom right, high pass, and shot.
We choose scoring and checkpoints as agents’ reward. When a con-
trolled team scores a goal, the reward is +1 for all members of the
team. If an agent brings the ball close to the goal, he can also get
checkpoint reward.

5.2. Comparison with the baselines

5.2.1. Baselines
We compare with 6 algorithms in our examples, three of which

are recently proposed algorithms based on the framework of cen-
tralized training and decentralized execution: MADDPG [21],
ATT-MADDPG [11], NCC-MARL [17], AHAC [19], MAAC [18], and
COMA [22]. Apart from these three algorithms, we also designed
several structurally simplified algorithms: the Centralized-AC that
feeds the concatenated observation of all agents to the centralized
critics, two single-agent RL methods DDPG and IAC that make each
agent learn independently with its own actor and critic. All of our
environments use discrete action spaces, while the original DDPG,
MADDPG and ATT-MADDPG use continuous actions. In the process
of training, if we sample discrete actions directly, the model will
lose the differentiability. In order to transfer the gradient to the
actor network, we use the Gumbel-Softmax [50] to sample the
actions, and transform the original algorithm into DDPG (Discrete),
MADDPG (Discrete) and ATT-MADDPG(Discrete). All of our base-
line algorithms have the same network parameters in the actor
network. All kinds of critic networks have the same hyper-
parameters. SRI-AC is robust enough, so the hyper-parameters
are consistent in all environments. A list of the final hyper-
parameters for our tests is shown in Table 1.

5.2.2. Comparison
Predator-Prey. We compare our method with a series of baseli-

nes in predator-prey scenario. In this experiment, we first train
10,000 steps with DDPG to help the good agents learn how to
escape. In order to control variables in all algorithms, we fix the
policy of good agents, and then train SRI-AC and baseline algo-
rithms for adversary agents. Fig. 4(a) and Fig. 4(b) show the learn-
389
ing curves of 30,000 episodes in 4v2 and 5v2 scenarios,
respectively. Because more agents in 6v2 scenario lead to difficult
training, we set 50,000 episodes in this scenario. The curve is the
mean reward over a sliding window of 500 steps. Shaded regions
are one standard deviation over 5 runs. The predator-prey scenario
require agents form connect into pair-wise groups to capture mul-
tiple targets. As can be seen from Fig. 4, benefited from the rela-
tional inference scheme, our algorithm always outperforms its
baselines in predator-prey scenarios, when it confronts with DDPG.
We also compare with the state-of-the-art algorithm AHAC. In
AHAC, the observations of the enemy are fed into critic network,
however, those observations are often invisible in the real scene.
Therefore, we compared the performance of this case separately
in the most difficult scenario (6v2). To evaluate the performance
of SRI-AC and AHAC, we set the algorithm SRI-AC (with adv-obs).
In SRI-AC (with adv-obs), not only can the structure between
agents be established, but also the enemy’s observations are also
fed into the critic network with the attention mechanism. As
shown in Fig. 5, SRI-AC (with adv-obs) still gets more rewards than
AHAC. In Section 5.3, we analyze the effectiveness of our algorithm
as the number of agents changes in predator-prey scenarios.

Grassland. In this game, we also use DDPG algorithm to train the
policies of the wolves. We calculate the average reward of sheep in
one episode of the game. Our environment is competitive and part
of the reward value is negative. In order to compare the perfor-
mance of the algorithms, we add 20 to all the original reward.
We set up two scenarios, 4v2 and 5v2, in this environment with
different numbers of sheep. As shown in Fig. 6, we can see that
our algorithm is better than other baseline algorithms. The inter-
esting phenomenon is that the IAC algorithm is better than other
baseline algorithms because a single agent only needs to escape
the wolf attack and eat the nearest grass, which will lead to a
higher reward value. The network does not need information from
special agents, and local observations provide enough information
for agents. SRI-AC can also automatically infer agents that need to
cooperate, so it can effectively filter some unnecessary informa-
tion. Fig. 4 shows that SRI-AC performs substantially better than
all alternative approaches in the 5v2 and 6v2 scenarios, and perfor-
mance similar to MAAC on 4v2 scenarios. When the number of

Fig. 4. Learning curves of our method and baselines on predator-prey scenarios. (a) shows the result of 4 adversary agents with 2 good agents training on 30000 episodes. (b)
shows the result of 5 adversary agents with 2 good agents training on 30000 episodes. (c) shows the result of 6 adversary agents with 2 good agents training on 50000
episodes. Error bars are one standard deviation over 5 runs.

Fig. 5. Learning curves of SRI-AC (with adv-obs) and AHAC [19]. In SRI-AC (with
adv-obs), the observations of the enemy are fed into critic network, which is the
same as AHAC.

Fig. 6. Grassland scenarios: the average reward of one episode.

Fig. 7. Adversarial scenarios: the average reward of one episode.

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
agents increases, SRI-AC can avoid collision and performs better.
Note that COMA fails to achieve good results in our experiments,
because COMA uses a single critic network, which would achieve
good results for agents with a global reward value and a single
goal. However, in our experiment, there are multiple sheep to
chase, so it does not perform very well.
390
Adversarial Battle. In this game, we set up scenarios 5v2 and 5v5
with 2 opponents and 5 opponents, respectively. The opponents’
policy also trained 10000 steps with DDPG algorithm. It can be
seen from Fig. 7 that the reward of SRI-AC is higher than other
baselines. Whereas, the MAAC algorithm does not produce good
results compared to other baseline algorithms. In this adversarial
game, It requires two agents to destroy an opponent at the same
time to destroy it. Nevertheless, MAAC merges information from
all agents, which cannot make good use of local information.

Google Football. Fig. 8 is the scenario of the google football. In
this scenario, we limit the maximum number of steps per episode
to 150. We calculate the average reward value return at each step
in the entire episode as shown in Fig. 9. As the curves show, we can
see that our algorithm can also achieve good results in complex
environment compared with the baseline algorithm MADDPG.
5.3. Increasing the number of agents

In predator-prey scenarios, we test agents’ performance when
the number of adversary agents changes from 4 to 6. In Fig. 4(a),
for the small number of agents, our algorithm does not show obvi-
ous advantages. Because this topology is rather simple, and all
methods can find a not-so-bad control policy, regardless of
whether the methods adopt advanced relational mechanisms. In
Fig. 4(b-c), with the increase of agents, MAAC has a good reward
value because of the self-attention mechanism. However, SRI-AC
shows a better performance than all baseline algorithms. Com-

Fig. 8. Football 4v3.

Fig. 9. The average result of football 4v3 scenario.

Fig. 10. Comparison between topologies: SRI-AC, linear connection and full
connection.

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
pared with other algorithms, we find that the performances of
Centralized-AC and MADDPG do not perform well as the number
of agents increases. The reason is that the critic concatenates fea-
ture of all agents, and the dimension of it becomes relatively large.

5.4. Ablation models

In order to verify that our model can generate effective connec-
tions, we design fully connected and linearly connected structures.
The adjacency matrix of the fully connected graph is a matrix with
0 in every diagonal entry, and 1 in every off-diagonal entry. The lin-
early connected graph is the sequential connection from the first
node to the last node. They are all undirected graphs, so we set
them as undirected and symmetric. The adjacency matrices (5
agents) are as follows:

Mf ¼

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

26666664

37777775 ð20Þ

Ml ¼

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

26666664

37777775 ð21Þ

where Mfand Ml represent fully connected and linearly connected
adjacency matrices, respectively. Different from the fixed topology
391
connection, SRI-AC can automatically learn a dynamic relationship.
The dynamic relationship forms the adjacency matrix between our
agents, which can affect the GAT model by filtering out useless
information. The average rewards across 5 runs for different topolo-
gies are shown in Fig. 10. We can see that our algorithm has obvious
advantages over manually defined structure. This result shows that
SRI-AC can learn dynamically changing connections compared to
manually defined structure-base algorithms, helping critics get
information from neighbor agents, thereby increasing rewards.

5.5. Visualization

We visualized the adversarial scenario. As shown in Fig. 11, our
algorithm learned a clever strategy. When the scenario is initial-
ized, our agents (brown) are distributed in the field. Then, these
agents quickly concentrate in the middle of the field. They can
unite well to avoid being eaten by another team, while a collabora-
tive relationship can be formed in pairs to attack the opponents.

It can be seen from Fig. 12 that, in the predator-prey scenarios,
adversary agents can coordinate to prey good agents. At first, there
are four agents in order to hunt one good agent. When adversary
agent senses that, good agent is only hunted by one hunter at that
time, A1 and A2 adjust the pursuit target (good agent) to form a
hunting relationship of 2 agents and 3 agents, which can reduce
the collision between hunters and increase the reward value of
the team.
6. Conclusion and future work

In this paper, we propose the Structural Relational Inference
Actor-Critic (SRI-AC), a novel multi-agent deep reinforcement algo-
rithm for collaborative tasks. SRI-AC uses a variational inference
model that allows agents to find the necessary cooperative part-
ners automatically in training phase. The algorithm has the charac-
teristics of centralized learning and decentralized execution,
allowing agents to take actions in a completely decentralized
way in execution phase. SRI-AC is evaluated by four tasks. Experi-
mental results demonstrate that this method can achieve better
results than a range of baseline MARL algorithms. The ablation
study shows that our model can learn effective interactive topol-
ogy and promote training.

The advantage of using our algorithm is that when our critic
uses the inference relationship, the critic can collect the most rel-
evant neighbor agents’ information to estimate a value function,
and then optimize the policy network. However, we found that

Fig. 11. A convergent joint policy learned by SRI-AC under an instance of the adversarial scenario. Note that dark particles are dead agents.

Fig. 12. A convergent joint policy learned by SRI-AC under an instance of the predator-prey scenarios.

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
when the number of agents increases, the impact on VAE model
limits the speed of convergence. Therefore, future research can
improve the exploration efficiency of generating interactive rela-
tionships. In addition, Communication between agents can also
be considered, which allows agents to share high-dimensional
information when executing actions. In the end, it can also be inte-
grated with the recursive neural networks (RNN) to improve the
utilization of local observations.

CRediT authorship contribution statement

Xianjie Zhang: Conceptualization, Methodology, Software, Val-
idation, Writing - original draft. Yu Liu: Supervision, Resources,
Funding acquisition, Writing - review & editing. Xiujuan Xu:
Supervision, Writing - review & editing. Qiong Huang: Methodol-
ogy, Writing - review & editing. Hangyu Mao: Methodology. Anil
Carie: Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Founda-
tion of China (Grant: 61672128) and the Fundamental Research
Fund for Central University (Grant: DUT20TD107). The contact
author is Yu Liu.

References

[1] E.S. Spelke, K.D. Kinzler, Core knowledge, Developmental science 10 (1) (2007)
89–96.

[2] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, R. Zemel, Neural relational inference
for interacting systems, in: International Conference on Machine Learning
(ICML), PMLR, 2018, pp. 2688–2697.

[3] D. Ha, J. Schmidhuber, Recurrent world models facilitate policy evolution, in:
Advances in Neural Information Processing Systems (NIPS), 2018, pp. 2450–
2462..
392
[4] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J.
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of go with deep neural networks and tree search, Nature 529 (7587)
(2016) 484–489.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[6] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep visuomotor
policies, J. Mach. Learn. Res. 17 (1) (2016) 1334–1373.

[7] J. Jin, X. Ma, Hierarchical multi-agent control of traffic lights based on
collective learning, Eng. Appl. Artif. Intell. 68 (2018) 236–248.

[8] Y. Cao, W. Yu, W. Ren, G. Chen, An overview of recent progress in the study of
distributed multi-agent coordination, IEEE Trans. Ind. Inf. 9 (1) (2012) 427–
438.

[9] D. Ye, M. Zhang, Y. Yang, A multi-agent framework for packet routing in
wireless sensor networks, Sensors 15 (5) (2015) 10026–10047.

[10] H. Mao, Z. Gong, Z. Zhang, Z. Xiao, Y. Ni, Learning multi-agent communication
under limited-bandwidth restriction for internet packet routing, arXiv
preprint arXiv:1903.05561 (2019)..

[11] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, Modelling the dynamic joint policy of
teammates with attention multi-agent ddpg, in: Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 2019, pp. 1108–1116.

[12] C. Guestrin, M. Lagoudakis, R. Parr, Coordinated reinforcement learning, in:
International Conference on Machine Learning (ICML), Vol. 2, Citeseer, 2002,
pp. 227–234..

[13] J.R. Kok, N. Vlassis, Sparse cooperative q-learning, in: Proceedings of the
Twenty-First International Conference on Machine Learning, Association for
Computing Machinery, New York, NY, USA, 2004, p. 61..

[14] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, J. Wang, Mean field multi-agent
reinforcement learning, in: International Conference on Machine Learning
(ICML), 2018, pp. 5571–5580.

[15] J. Jiang, Z. Lu, Learning attentional communication for multi-agent
cooperation, in: Advances in Neural Information Processing Systems (NIPS),
Curran Associates Inc, 2018, pp. 7254–7264..

[16] W. Boehmer, V. Kurin, S. Whiteson, Deep coordination graphs, in: Proceedings
of the 37th International Conference on Machine Learning (ICML), PMLR, 2020,
pp. 980–991.

[17] H. Mao, W. Liu, J. Hao, J. Luo, D. Li, Z. Zhang, J. Wang, Z. Xiao, Neighborhood
cognition consistent multi-agent reinforcement learning, in: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, 2020, pp. 7219–7226..

[18] S. Iqbal, F. Sha, Actor-attention-critic for multi-agent reinforcement learning,
in: International Conference on Machine Learning (ICML), Vol. 97, PMLR, 2019,
pp. 2961–2970..

[19] Y. Wang, D. Shi, C. Xue, H. Jiang, G. Wang, P. Gong, AHAC: actor hierarchical
attention critic for multi-agent reinforcement learning, in: IEEE International
Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2020, pp. 3013–
3020..

[20] H. Mao, Z. Zhang, Z. Xiao, Z. Gong, Y. Ni, Learning multi-agent communication
with double attentional deep reinforcement learning, Auton. Agent. Multi-
Agent Syst. 34 (1) (2020) 32.

http://refhub.elsevier.com/S0925-2312(21)01048-1/h0005
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0005
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0010
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0010
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0010
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0010
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0020
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0020
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0020
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0020
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0025
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0025
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0025
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0030
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0030
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0035
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0035
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0040
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0040
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0040
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0045
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0045
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0055
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0055
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0055
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0055
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0055
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0070
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0070
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0070
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0070
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0080
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0080
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0080
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0080
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0100
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0100
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0100

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
[21] R. Lowe, Y. Wu, A. Tamar, J. Harb, O.P. Abbeel, I. Mordatch, Multi-agent actor-
critic for mixed cooperative-competitive environments, in: Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 6379–6390.

[22] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual
multi-agent policy gradients, in: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, AAAI Press, 2018, pp. 2974–2982..

[23] J.N. Foerster, Y.M. Assael, N. de Freitas, S. Whiteson, Learning to communicate
with deep multi-agent reinforcement learning, in: Advances in Neural
Information Processing Systems (NIPS), 2016, pp. 2137–2145..

[24] A. Singh, T. Jain, S. Sukhbaatar, Learning when to communicate at scale in
multiagent cooperative and competitive tasks, in: International Conference on
Learning Representations (ICLR), 2019.

[25] S. Sukhbaatar, A. Szlam, R. Fergus, Learning multiagent communication with
backpropagation, in: Advances in Neural Information Processing Systems
(NIPS), 2016, pp. 2244–2252..

[26] Q. Huang, E. Uchibe, K. Doya, Emergence of communication among
reinforcement learning agents under coordination environment, in: 2016
Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob), IEEE, 2016, pp. 57–58.

[27] Q. Huang, D. Kenji, An experimental study of emergence of communication of
reinforcement learning agents, in: International Conference on Artificial
General Intelligence, Springer, 2019, pp. 91–100.

[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, in: International Conference on Learning Representations
(ICLR), 2018.

[29] I. Mordatch, P. Abbeel, Emergence of grounded compositional language in
multi-agent populations (2018) 1495–1502..

[30] K. Kurach, A. Raichuk, P. Stanczyk, M. Zajac, O. Bachem, L. Espeholt, C.
Riquelme, D. Vincent, M. Michalski, O. Bousquet, S. Gelly, Google research
football: A novel reinforcement learning environment (2020) 4501–4510..

[31] D.S. Bernstein, R. Givan, N. Immerman, S. Zilberstein, The complexity of
decentralized control of markov decision processes, Math. Oper. Res. 27 (4)
(2002) 819–840.

[32] C.J. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3–4) (1992) 279–292.
[33] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, MIT press,

2018.
[34] R.J. Williams, Simple statistical gradient-following algorithms for

connectionist reinforcement learning, Mach. Learn. 8 (3–4) (1992) 229–256.
[35] V.R. Konda, J.N. Tsitsiklis, Actor-critic algorithms, in: Advances in neural

information processing systems (NIPS), 2000, pp. 1008–1014..
[36] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M.A. Riedmiller,

Deterministic policy gradient algorithms, in: Proceedings of the 31th
International Conference on Machine Learning (ICML), Vol. 32, JMLR.org,
2014, pp. 387–395..

[37] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2016.

[38] S. Sukhbaatar, R. Fergus, et al., Learning multiagent communication with
backpropagation, in: Advances in neural information processing systems
(NIPS), 2016, pp. 2244–2252..

[39] T.N. Kipf, E. van der Pol, M. Welling, Contrastive learning of structured world
models, in: 8th International Conference on Learning Representations (ICLR),
2020.

[40] M. Jaques, M. Burke, T.M. Hospedales, Physics-as-inverse-graphics:
Unsupervised physical parameter estimation from video, in: 8th
International Conference on Learning Representations (ICLR), 2020.

[41] L. Busoniu, R. Babuska, B. De Schutter, A comprehensive survey of multiagent
reinforcement learning, IEEE Trans. Syst. Man Cybern. C 38 (2) (2008) 156–
172.

[42] E. Yang, D. Gu, Multiagent reinforcement learning for multi-robot systems: A
survey, Tech. rep., tech. rep (2004). .

[43] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative
agents, in: Proceedings of the tenth international conference on machine
learning, 1993, pp. 330–337.

[44] P. Sunehag, G. Lever, A. Gruslys, W.M. Czarnecki, V.F. Zambaldi, M. Jaderberg,
M. Lanctot, N. Sonnerat, J.Z. Leibo, K. Tuyls, T. Graepel, Value-decomposition
networks for cooperative multi-agent learning based on team reward, in:
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS), 2018, pp. 2085–2087.

[45] T. Rashid, M. Samvelyan, C.S. De Witt, G. Farquhar, J. Foerster, S. Whiteson,
Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning, in: Proceedings of the 35th International Conference
on Machine Learning (ICML), Vol. 80, 2018, pp. 4292–4301..

[46] K. Son, D. Kim, W.J. Kang, D.E. Hostallero, Y. Yi, Qtran: Learning to factorize
with transformation for cooperative multi-agent reinforcement learning, in:
Proceedings of the 36th International Conference on Machine Learning (ICML),
Vol. 97, 2019, pp. 5887–5896..

[47] D.P. Kingma, M. Welling, Auto-encoding variational bayes, in: International
Conference on Learning Representations (ICLR), 2014.

[48] D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and
approximate inference in deep generative models, in: International
Conference on Machine Learning (ICML), Vol. 32, 2014, pp. 1278–1286..
393
[49] C.J. Maddison, A. Mnih, Y.W. Teh, The concrete distribution: A continuous
relaxation of discrete random variables, in: International Conference on
Learning Representations (ICLR), 2017..

[50] E. Jang, S. Gu, B. Poole, Categorical reparameterization with gumbel-softmax,
in: 5th International Conference on Learning Representations (ICLR), 2017.

[51] S. Ryu, J. Lim, S.H. Hong, W.Y. Kim, Deeply learning molecular structure-
property relationships using attention-and gate-augmented graph
convolutional network, arXiv preprint arXiv:1805.10988 (2018)..

[52] Q. Long, Z. Zhou, A. Gupta, F. Fang, Y. Wu, X. Wang, Evolutionary population
curriculum for scaling multi-agent reinforcement learning, in: International
Conference on Learning Representations (ICLR), 2020..

[53] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International Conference on Learning Representations (ICLR), 2015.

Xianjie Zhang is currently pursuing the Ph.D. degree
with the School of Software Technology, Dalian
University of Technology, China. His research interest
includes reinforcement learning, multi-agent systems,
and generative models.
Yu Liu is currently a full Professor in Software School
and Head of Institute of Machine intelligence and
Informetrics, Dalian University of Technology, China. He
received the Ph.D. degree from Xi’an Jiaotong Univer-
sity, China in 2006 and worked as a postdoctoral
research fellow at Department of Computer Science and
Technology, Tsinghua Unversity from 2006 to 2008.
Professor Liu also worked at Harvard University as a
visiting research scientist in 2012. His research interests
include swarm intelligence, evolutionary computation,
computational intelligence, and Web data mining.
Xiujuan Xu received the Ph.D. degree in College of
Computer Science and Technology from Jilin University,
Changchun, China, in 2008. She is currently an Associate
Professor in School of Software, Dalian University of
Technology. Dr Xu worked at School of Computer Sci-
ence, the University of Adelaide as a visiting scholar in
2016. Her research interests include data mining,
intelligent transportation systems, recommender sys-
tems, and social network analysis. Dr Xu is the author of
more than 50 publications.
Qiong Huang received the B.S. and M.S. degrees in
electrical engineering from University of Electronic
Science and Technology of China, and is currently a Ph.
D. candidate in Okinawa Institute of Science and Tech-
nology Graduate University, Japan. Her research inter-
ests include reinforcement learning, multi-agent
system, emergence of communication and applications
of deep reinforcement learning with energy storage
systems.

http://refhub.elsevier.com/S0925-2312(21)01048-1/h0105
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0105
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0105
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0105
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0120
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0120
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0120
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0120
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0130
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0130
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0130
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0130
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0130
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0135
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0135
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0135
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0135
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0140
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0140
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0140
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0140
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0155
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0155
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0155
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0160
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0165
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0165
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0165
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0170
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0170
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0185
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0185
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0185
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0195
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0195
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0195
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0195
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0200
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0200
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0200
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0200
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0205
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0205
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0205
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0215
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0215
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0215
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0215
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0220
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0220
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0220
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0220
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0220
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0220
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0235
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0235
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0235
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0250
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0250
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0250
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0265
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0265
http://refhub.elsevier.com/S0925-2312(21)01048-1/h0265

X. Zhang, Y. Liu, X. Xu et al. Neurocomputing 459 (2021) 383–394
Hangyu Mao received the PhD degree from Peking
University, in July 2020. He is currently a researcher
with the Huawei Noah’s Ark Lab. His research interests
include Multi-agent System, Reinforcement Learning,
and various intelligent decision-making and reasoning
issues. He is a member of the AAAI.
394
Anil Carie received Ph.D. degree in Software Engineer-
ing from Dalian University of Technology, Dalian, China.
Currently is Assistant Professor in School of Computer
Science and Engineering, VIT-AP, Amaravati, India and
Serving as Post-Doctoral in Nanjing Agriculture
University, Nanjing, China. His research interests
include common control channel design for MAC and
routing protocols in Cognitive radio ad-hoc networks,
Game Theory, Vehicular Ad hoc Networks, Internet of
Things.

	Structural relational inference actor-critic for multi-agent reinforcement learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning (RL)
	2.2 Structured models

	3 Related work
	4 Methods
	4.1 Overall design of SRI-AC
	4.2 VAE model
	4.2.1 Encoder - edges inference
	4.2.2 Decoder - contrastive learning
	4.2.3 Differentiable sampling - gumbel softmax

	4.3 GAT model
	4.4 Training SRI actor-critic

	5 Experiments
	5.1 The testing environments
	5.1.1 Predator-prey
	5.1.2 Grassland
	5.1.3 Adversarial battle
	5.1.4 Google football

	5.2 Comparison with the baselines
	5.2.1 Baselines
	5.2.2 Comparison

	5.3 Increasing the number of agents
	5.4 Ablation models
	5.5 Visualization

	6 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

