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ABSTRACT

Large vision-language models (LVLMs) have demonstrated remarkable capabili-
ties in aligning textual and visual modalities across diverse natural image datasets.
Despite these advances, their direct deployment in industrial defect detection re-
mains challenging due to significant domain discrepancies. Industrial images typ-
ically exhibit unique visual characteristics such as complex textures, low contrast,
metallic reflections, and subtle localized anomalies that differ fundamentally from
natural scenes. Furthermore, fine-grained semantic alignment between domain-
specific textual prompts and corresponding visual regions remains underexplored,
which limits the precise localization and recognition of defects. Compounding
these issues, industrial datasets are often limited in annotated samples per defect
category, rendering full-model fine-tuning impractical and prone to overfitting. To
overcome these challenges, we propose a novel fine-tuning framework that com-
bines low-rank adaptation (LoRA) applied selectively to the attention modules
of the Grounding DINO architecture with a carefully designed prompt engineer-
ing strategy tailored for industrial defects. This approach leverages lightweight
parameter-efficient updates alongside semantically rich, domain-specific prompts
to enable effective adaptation of pretrained LVLMs with minimal labeled data. We
curate a comprehensive dataset comprising approximately 30,000 high-resolution
industrial images spanning a wide range of defect categories for rigorous eval-
uation. Extensive experiments demonstrate that our method consistently outper-
forms competitive baselines across diverse industrial scenarios, achieving superior
detection accuracy while requiring only a fraction of trainable parameters. Our
work offers a scalable, annotation-efficient, and semantically aware solution for
real-world industrial visual inspection leveraging the power of LVLMs.

1 INTRODUCTION

Large Vision-Language Models (LVLMs), such as CLIP Radford et al. (2021), ALIGN Jia et al.
(2021), and Grounding DINO Li et al. (2023b), have demonstrated remarkable performance in
vision-language grounding tasks including referring expression comprehension and phrase ground-
ing. Notably, recent works such as Scene-adaptive and Region-aware Multi-modal Prompt Zhao
et al. (2024) and Exploring Region-Word Alignment in Built-in Detectors Zhang et al. (2024) fur-
ther enhance region-level alignment by introducing scene-specific and region-aware prompt mecha-
nisms, significantly improving grounding accuracy and robustness in complex visual scenes.

These approaches leverage large-scale image-text corpora to learn fine-grained visual-semantic cor-
respondence, enabling models to detect objects specified by textual prompts without task-specific
retraining. Similarly, DetCLIPv3 Yao et al. (2024) extends this capability by integrating a caption
head and generative mechanisms, achieving new state-of-the-art results in generating hierarchical
labels for detected objects.

Despite these advancements, transferring large vision-language models (LVLMs) to domain-specific
scenarios such as industrial defect detection remains challenging. Industrial images differ substan-
tially from natural scenes in texture, reflectance, and lighting; anomalies are subtle, localized, and
often absent from pretraining data. This domain shift undermines detection accuracy and weak-
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ens the visual–textual grounding capability in low-data regimes—challenges also highlighted by
MQADet Li et al. (2025), which leverages multimodal question answering to refine detector outputs.
Thus, addressing domain-specific grounding and adaptation remains an open and critical research
problem.

While one might consider fine-tuning these large models on the target domain, conventional full fine-
tuning is computationally expensive, memory-intensive, and requires substantial GPU resources.
More critically, it poses a high risk of overfitting in small-data regimes, especially in domain-specific
applications such as industrial defect detection where only a few hundred labeled samples per class
are available. Additionally, full parameter updates tend to overwrite the generalizable knowledge
acquired during pretraining, thereby reducing the model’s ability to transfer to other tasks or domains
in the future. This lack of modularity and flexibility hinders scalable deployment in real-world
industrial settings, where rapid adaptation to new defect types or production lines is often required.

To overcome these limitations, we propose a parameter-efficient adaptation strategy that combines
Low-Rank Adaptation (LoRA) Hu et al. (2022) and soft prompt learning Zhu et al. (2023).
LoRA approximates the weight updates in transformer layers using low-rank matrices, allowing
efficient fine-tuning of selected subspaces while freezing the majority of the pretrained parameters.
This design substantially reduces both computational cost and memory footprint during training.
Concurrently, soft prompt learning introduces a small set of learnable tokens into the input text
embeddings, which act as task-specific semantic anchors to steer the model toward relevant concepts
without modifying the backbone architecture.

In our framework, we integrate LoRA modules into both the self-attention and cross-attention layers
of the vision transformer in Grounding DINO, targeting key layers where vision-language fusion
occurs. At the same time, we optimize a set of prompt tokens that are prepended to the textual input
queries. These prompts are initialized randomly and learned end-to-end, enabling the model to
better align visual features with domain-specific textual descriptions. By disentangling adaptation
into low-rank updates for capacity-efficient tuning and prompt-based semantic conditioning, our
method achieves strong domain adaptation performance with only a few megabytes of trainable
parameters—making it highly practical for low-resource, high-precision industrial scenarios.

To validate the effectiveness of our proposed adaptation strategy, we construct a large-scale bench-
mark dataset comprising approximately 30,000 high-resolution industrial defect images spanning
a wide variety of defect types and visual conditions. This dataset is designed to capture the di-
verse, fine-grained characteristics common in real-world manufacturing scenarios, including texture
variations, lighting inconsistencies, and subtle defect manifestations.

We conduct extensive experiments to evaluate the generalization and robustness of our method
within industrial defect detection scenarios. Results demonstrate that our approach consistently
outperforms strong baselines, including full fine-tuning and other parameter-efficient adaptation
methods applied to large vision-language models (LVLMs). Our method achieves state-of-the-art
performance in both standard and low-data regimes. Notably, it excels in settings with extremely
limited annotations, confirming its practicality for real-world industrial applications.

Overall, our approach offers a modular, scalable, and annotation-efficient solution for applying large
vision-language models (LVLMs) in complex, domain-specific environments. It provides a flexible
alternative to full fine-tuning, enabling rapid adaptation to new defect categories with minimal la-
beled data and computational cost. Our main contributions are summarized as follows:

• We introduce a Low-Rank Adaptation (LoRA) framework that integrates LoRA modules
into the self- and cross-attention layers of Grounding DINO, combined with soft prompt
learning. This enables rapid adaptation under limited supervision without updating the full
model parameters.

• We systematically optimize learnable prompt tokens alongside LoRA modules, achieving
strong semantic alignment between defect categories and textual prompts. This approach
ensures accurate localization and recognition of defects while maintaining semantic con-
sistency, all without requiring full-model fine-tuning.

• We construct a large-scale benchmark dataset containing 30,000 high-resolution industrial
defect images spanning diverse categories. This, along with our lightweight parameter-
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efficient fine-tuning approach, enables effective model adaptation with minimal labeled
data, preventing overfitting and ensuring strong performance in low-data environments.

We evaluate our method on industrial defect detection tasks using LVLMs. It consistently outper-
forms full fine-tuning and other parameter-efficient baselines, achieving strong results under both
standard and low-data conditions. Its effectiveness under limited annotations highlights its practical
value for real-world industrial applications.

2 RELATED WORK

Industrial Defect Detection. Recent advances in industrial defect detection have shifted toward
label-efficient learning due to the high cost of manual annotation. Power et al. Power et al. (2025)
explore unsupervised and semi-supervised techniques for defect detection in metal additive manu-
facturing, achieving promising performance with limited labels. A recent survey Cao et al. (2025b)
highlights such methods as scalable and cost-effective solutions for industrial inspection tasks.
However, most approaches still struggle to generalize to unseen or rare defect categories under
open-world settings. Meanwhile, vision-language foundation models are emerging as compelling
alternatives, enabling few-shot detection through multimodal alignment, although concerns remain
regarding inference latency and model complexity Wang et al. (2025).

Large Vision-Language Models for Detection (LVLMs). have emerged as a powerful paradigm
for visual understanding by aligning textual and visual modalities through joint pretraining. Recent
works such as BLIP-2 Li et al. (2023a), OpenFlamingo Anas et al. (2023), and OWL-ViT++ Deng
et al. (2024) demonstrate strong capabilities in image-text alignment and visual grounding by lever-
aging massive image–text pairs during training. Grounding DINO ?, in particular, unifies grounding
and detection via contrastive language–region matching, and has become a widely used backbone for
vision-language tasks across diverse domains. Owing to their strong generalization and modularity,
such LVLMs are increasingly suitable for industrial visual inspection tasks, where annotated data
is scarce and defect patterns are diverse. Moreover, their architecture facilitates parameter-efficient
fine-tuning, making them adaptable to new categories and imaging conditions with minimal super-
vision.

However, adapting LVLMs to industrial visual inspection remains nontrivial. Industrial defect im-
ages differ significantly from natural scenes, often exhibiting low contrast, repetitive textures, or
subtle surface anomalies. Furthermore, textual prompts in industrial contexts require fine-grained,
domain-specific formulation, which is under-addressed in current LVLM frameworks. As a re-
sult, while LVLMs exhibit promising performance on general benchmarks, their effectiveness for
semantic-aware, fine-grained detection in manufacturing remains underexplored.

Multimodal Fusion and Large-Scale Model Tuning. The integration of vision and language
modalities has propelled progress in tasks such as visual grounding, image-text retrieval, and vi-
sual question answering Li et al. (2023c); Chen et al. (2022); Wang et al. (2022). Grounding DINO
leverages this paradigm by conditioning visual predictions on textual inputs through contrastive lan-
guage–region alignment ?. However, full fine-tuning of such large-scale models for specific domains
is computationally expensive and data-hungry. Parameter-efficient fine-tuning methods—including
Low-Rank Adaptation (LoRA) Hu et al. (2021), Adapter modules Houlsby et al. (2019), and prompt
tuning Lester et al. (2021)—have emerged as practical solutions, enabling effective domain adapta-
tion by updating only a small subset of parameters. Recent studies demonstrate the effectiveness of
these methods in various vision-language tasks Wang et al. (2023); Li et al. (2022), making them
particularly suitable for industrial applications where both labeled data and computational resources
are limited.

LoRA Fine-Tuning in Industrial Defect Detection. Recent studies have explored the applica-
tion of Low-Rank Adaptation (LoRA) in industrial defect detection tasks. For instance, Zhong et
al. Zhong et al. (2024) applied LoRA to fine-tune vision-language models for detecting surface de-
fects in steel manufacturing, achieving improved performance with fewer parameters compared to
traditional fine-tuning methods. Similarly, Zanella and Ayed Zanella et al. (2024) demonstrated
the effectiveness of LoRA in few-shot learning scenarios for vision-language models, highlighting
its potential for industrial applications where labeled data is scarce. These studies underscore the
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promise of LoRA as a parameter-efficient fine-tuning approach for adapting large vision-language
models to specific industrial tasks.

3 METHOD

3.1 OVERVIEW OF THE PROPOSED FRAMEWORK

Our framework builds upon the Grounding DINO architecture, which consists of a frozen image
encoder, a text encoder, and a transformer decoder for cross-modal reasoning. We introduce two
major modifications: (1) Prompt conditioning, where learned prompt tokens are prepended to the
text encoder input to guide semantic alignment toward industrial defect descriptions; (2) LoRA-
based adaptation, where trainable Low-Rank Adaptation (LoRA) modules are injected into both
self-attention and cross-attention layers of the transformer decoder, enabling efficient fine-tuning
with minimal trainable parameters.

To improve bounding box regression under weak supervision and high-resolution settings, we also
integrate the Mean Absolute Error (MAE) loss, denoted as LMAE, into the training objective:

LMAE =
1

N

N∑
i=1

∣∣∣b̂i − bi

∣∣∣ , (1)

where N is the number of positive samples, and b̂i, bi are the predicted and ground-truth bounding
boxes, respectively. Compared to L1 loss, LMAE introduces less gradient noise and is more robust
to annotation errors, making it particularly suitable for industrial defect detection tasks with noisy
or imprecise labels.

3.2 DATA PREPARATION

We construct an industrial defect detection dataset X = {(xi, yi, ti)}Ni=1, where each xi ∈
RH×W×3 represents a high-resolution industrial image, yi = {bi,j}Mi

j=1 denotes the set of ground-
truth bounding boxes bi,j = (ui,j , vi,j , wi,j , hi,j), and ti = {ci,j}Mi

j=1 provides the corresponding
defect class labels ci,j ∈ C. We split the full label set C into disjoint subsets for training and evalua-
tion, i.e., Ctrain ∩ Ceval = ∅.

To bridge the semantic gap between visual features and defect semantics, we introduce a learnable
soft prompt vocabulary P = {pk}Kk=1, where each prompt pk resides in a continuous prompt space
and is jointly optimized with model parameters. Starting from a pretrained vision-language model
(e.g., Grounding DINO) parameterized by θ0, we inject lightweight low-rank adaptation (LoRA)
modules ∆θ = {AlB

⊤
l | l ∈ L} into both self- and cross-attention layers, yielding updated param-

eters θ = θ0 +∆θ.

The adapted model fθ(x, p) takes an image–prompt pair as input and outputs a set of bounding
boxes with corresponding class scores {(b̂j , ŝj)}M̂j=1, where each score ŝj ∈ [0, 1]|C| represents
the predicted probabilities over the predefined defect classes. For evaluation, the prompt set P is
constructed to cover the target defect categories relevant to the testing scenario.

The overall training objective is given by:

L = Ldet + λLp, (2)

where Ldet is the Hungarian-matched detection loss and Lp denotes a semantic alignment loss on
the prompt regions, with λ balancing the two terms.

This formulation enables efficient adaptation to complex industrial scenarios while supporting robust
closed-set detection under limited supervision.

3.3 PROMPT CONSTRUCTION

To improve linguistic diversity and enhance model robustness, we generate multiple paraphrases for
each base prompt via controlled synonym substitution and phrase reordering. For example, “Scratch
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on aluminum” may be paraphrased to “Aluminum scratch”, “scratch found on aluminum surface”,
or “scratch present on aluminum part”. We denote the resulting expanded prompt set as:

P = {prk,m}, (3)

where k = 1, . . . ,K; m = 1, . . . ,M ; r = 1, . . . , R. All prompts are consistently normalized
and tokenized according to the pretrained LVLM’s tokenizer.

During both training and inference, each image xi is paired with one or more prompts from P that
correspond to its defect label. The model fθ(xi, p) then processes this image–text pair to output
bounding boxes and confidence scores conditioned on the semantic content of the prompt. This
prompt-guided mechanism promotes learning of fine-grained associations between textual defect
descriptions and localized visual patterns, facilitating precise detection of diverse defect categories.

3.4 LORA-BASED FINE-TUNING

To efficiently tailor GroundingDINO to the industrial defect domain, we adopt a module-aware
LoRA strategy, injecting low-rank adapters directly into the transformer’s self-attention and cross-
attention blocks. For each attention head’s projection layer (e.g., query, key, value), we keep the
pretrained weight W0 frozen and supplement it with a learnable adaptation term of the form:

WQ,k,v = W0Q,k,v + α ·AQ,k,vBQ,k,v, (4)

where A ∈ Rd×r, B ∈ Rr×k, r ≪ min(d, k), and α is a global scaling factor. This design confines
adaptation to a compact subspace, drastically reducing trainable parameters.

Different from standard LoRA, we introduce two key enhancements:

1. **Adaptive Initialization (LoRA-GA)**: To accelerate convergence and better align with full
fine-tuning gradients, we initialize A and B via gradient approximation, matching the initial gradient
direction of the full-rank update—drawing from the LoRA-GA framework .

2. **Dynamic Rank Sparsity**: We apply asymmetric L1 regularization to encourage sparsity
in higher-rank columns of A, inspired by DS-LoRA principles , enabling module-level adaptabil-
ity: important heads retain more representation, while others are automatically pruned in low-data
regimes.

Concretely, the augmented projection becomes:

W = W0 + αAB, Lspars = λs

∑
i>r′

∥A·,i∥1, (5)

with r′ < r designating a soft rank cutoff, and λs a sparsity coefficient.

We apply this enriched LoRA scheme (rank r = 8, α = 32) across all self- and cross-attention
layers. The adapters are followed by dropout (0.1) and the sparsity regularizer during training.
This hybrid approach merges fast adaptation (via LoRA-GA), structured regularization (via dynamic
sparsity), and attention-head granularity. The result is an efficient fine-tuning pipeline that preserves
pretrained robustness while swiftly specializing to industrial textures and defect semantics with
minimal overhead.

3.5 PROMPT-AWARE DETECTION HEAD AND LOSS

Building upon the standard transformer-decoder structure, we enhance each object query by inte-
grating a learned prompt embedding, resulting in prompt-conditioned queries that explicitly encode
defect semantics. Inspired by recent advances in query design for object detection ?Zhu et al. (2022);
Zhou et al. (2023), the decoder processes these enriched queries to produce both bounding-box pre-
dictions and similarity scores that measure the alignment between visual regions and the textual
prompt.

During training, we employ a Hungarian-based matching strategy Carion et al. (2020) to assign each
prediction to a ground-truth defect instance. The overall loss combines the standard detection objec-
tives—box regression and classification—with a prompt-alignment term, in which region features
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are encouraged to be close to their corresponding prompt embeddings in feature space. This joint
optimization ensures that the detection head not only localizes defects accurately but also respects
the semantic content of domain-specific prompts Deng et al. (2024); Chen et al. (2023).

We formulate the total training objective as a combination of standard detection losses and a prompt-
aware alignment term:

L =
∑
i

λiLi, (6)

where Li ∈ {Lcls,LL1,Lgiou,Lp} denotes classification, box regression, generalized IoU, and
prompt alignment losses respectively; and λi are their corresponding balancing weights. This joint
optimization encourages accurate localization and semantic alignment with domain-specific prompts
.

The novel component Lp enforces semantic consistency between each predicted region and its asso-
ciated prompt embedding. Concretely, if fvis(b) denotes the visual feature pooled from box b, and
E(p) is the embedding of the corresponding soft prompt, we define

Lp =
∑

(i,j)∈σ

[
1− cos

(
fvis(b̂i), E(pj)

)]
, (7)

where σ is the Hungarian matching between predictions and ground-truth instances. By jointly
optimizing these terms, the model learns not only to localize and classify defects accurately but also
to align visual regions with domain-specific prompt semantics.

4 EXPERIMENTS

4.1 DATASET

To facilitate research in industrial defect detection under limited supervision and diverse semantic
conditions, we construct a high-quality dataset comprising 30,000 high-resolution industrial images
collected from multiple real-world sources. The images are obtained from three major channels:
(1) manually curated samples from real-world production lines using industrial cameras; (2) pub-
licly available defect datasets adapted to our unified format; and (3) domain-specific augmentation
pipelines that simulate industrial noise, reflections, and surface variations. All images are resized
and normalized to ensure consistent visual quality and resolution.

Each image is annotated with bounding boxes and fine-grained natural language descriptions that
indicate the type and context of the defect (e.g., “scratch on aluminum surface”, “missing solder on
PCB”). Annotations follow a simplified COCO-style format, and each instance is described using
structured prompts that serve both as class labels and language queries during training.

We define a unified defect vocabulary covering 26 industrial defect types, and normalize diverse
naming conventions into consistent semantic templates. This vocabulary serves as the basis for
annotation and evaluation across all experiments.

The dataset is randomly split into training and validation subsets using an 80/20 ratio. It supports
both closed-set evaluation (standard class-based detection) and prompt-based detection where model
predictions are conditioned on natural language descriptions. This design makes the dataset well-
suited for benchmarking prompt-driven adaptation, semantic generalization, and low-resource fine-
tuning in industrial visual inspection tasks.

4.2 IMPLEMENTATION DETAILS

We adopt Grounding DINO with a Swin-T backbone as our base detection model, initialized with
publicly available weights pre-trained on the Grounding Objects dataset and Visual Genome. The
BERT-Base-Uncased is used as the language encoder to enable semantic alignment between defect
prompts and visual regions.

For parameter-efficient adaptation, we apply Low-Rank Adaptation (LoRA) to the attention modules
of the transformer backbone. Specifically, we set the rank r = 8, the scaling factor α = 32, and
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Table 1: The table compares detection performance between our prompt-conditioned LoRA-adapted
GroundingDINO and other LVLM-based methods with mAP@0.5 and Average Recall (AR) metrics
on small, medium, and large defects. defect scales. Our approach achieves higher accuracy and
better localization recall, demonstrating its superiority under minimal supervision.

0.9!
Method Backbone mAP@0.5 AR@small AR@medium AR@large

CORA ViT-B 0.473 0.312 0.451 0.493
DetCLIPv2 Swin-T 0.508 0.332 0.467 0.511
LP-OVOD ResNet50 0.516 0.345 0.476 0.523

PLG-DINO (ours) ViT-B (Grounding DINO) 0.526 0.401 0.562 0.616

Table 2: The table below presents a quantitative comparison, demonstrating that our LVLM-based
method surpasses conventional, vision-only industrial defect detectors. By leveraging semantic
alignment between region-level visual features and domain-specific prompt embeddings, our ap-
proach achieves significantly enhanced detection accuracy and recall for subtle, fine-grained defects.

0.9!
Method Backbone mAP@0.5 AR@small AR@medium AR@large

SSA-YOLO CSPDarkNet 0.453 0.298 0.412 0.527
ETDNet M-LVT 0.481 0.312 0.429 0.541
YOLO-PCB YOLOv5s 0.512 0.323 0.457 0.573
LF-YOLO Tiny-YOLOv5 0.431 0.364 0.481 0.572
CACS-YOLO YOLOv8n 0.376 0.351 0.474 0.536

PLG-DINO (ours) ViT-B (Grounding DINO) 0.526 0.401 0.495 0.616

apply LoRA to the cross-attention and self-attention layers in both the encoder and decoder. A
dropout rate of 0.1 is used to regularize the injected adapters.

We fine-tune the model for 30 epochs using the AdamW optimizer with a learning rate of 1× 10−4

and weight decay of 1 × 10−2. The batch size is set to 16, and mixed precision (FP16) training is
enabled to accelerate convergence and reduce memory usage. During training, image-text prompt
pairs are sampled dynamically to cover diverse defect categories and compositions.

All experiments are conducted on a single server with 4 NVIDIA A6000 GPUs (40GB each). The
average training time per epoch is approximately 15 minutes. Inference is performed at a resolution
of 800 × 1333 pixels unless otherwise stated.

4.3 EVALUATION METRICS

To evaluate our method’s effectiveness in industrial defect detection, we follow the evaluation pro-
tocol from Grounding DINO ? and report several metrics. mAP@0.5 measures the model’s ability
to correctly localize and classify defects at an IoU threshold of 0.5. mAP@[0.5:0.95] reflects local-
ization accuracy across varying thresholds. Recall@0.5 assesses the model’s sensitivity in detecting
ground truth defects. Precision indicates the proportion of true positive predictions, important for
minimizing false alarms. Finally, F1-score balances precision and recall to provide a comprehensive
assessment of detection quality.

All metrics are reported on the full set of defect categories in our benchmark dataset. Evaluation
is conducted using the official Grounding DINO evaluation scripts, which support prompt-aware
grounding and region-level IoU-based matching.

4.4 QUANTITATIVE RESULTS

LVLM Performance in Industrial Domains

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We evaluate our model’s effectiveness in adapting large vision-language models (LVLMs) to in-
dustrial defect detection tasks. We compare our approach with other state-of-the-art LVLM-based
methods, including CORA Wu et al. (2023), DetCLIPv2 Yao et al. (2023), and LP-OVOD Pham
et al. (2023), on our self-constructed industrial defect dataset. The results, presented in Table ??,
demonstrate that our method achieves superior adaptation performance, effectively capturing diverse
defect patterns through a combination of prompt tuning and LoRA-based fine-tuning. Compari-
son with Vision-Only Industrial Detectors We compare our method with prior industrial defect
detection approaches, including SSA-YOLO Huang et al. (2024), ETDNet Zhang et al. (2023),
YOLO-PCB JiaLim98 (2023), Salience DETR Hou et al. (2024), LF-YOLO Liu et al. (2021), and
CACS-YOLO Cao et al. (2025a). The results are summarized in Table 2. Our method outperforms
these models in detection accuracy across various defect categories, demonstrating the robustness of
our fine-tuning strategy. Additionally, our approach achieves competitive results in both localization
precision and semantic alignment, especially in low-resource industrial defect scenarios.

4.5 ABLATION STUDY

To evaluate the effectiveness of each proposed component, we perform an ablation study compar-
ing the contributions of prompt tuning and LoRA fine-tuning under various model configurations.
As shown in Table ??, prompt tuning alone improves detection precision and recall, particularly
for fine-grained defect types, by injecting semantic prior knowledge. LoRA fine-tuning alone en-
hances visual feature adaptation and improves overall detection accuracy with minimal parameter
updates. When combined, prompt tuning and LoRA achieve the best performance across all met-
rics, demonstrating their complementary roles in improving industrial defect detection under limited
supervision.

Table 3: Ablation results with detailed Average Recall (AR) metrics for different configurations: (a)
original Grounding DINO, (b) prompt tuning only, (c) LoRA tuning only, and (d) combined prompt
+ LoRA (ours).

!

Method mAP@0.5 AR@small AR@medium AR@large

Grounding DINO (original) 0.342 0.197 0.296 0.309
Prompt tuning 0.469 0.274 0.519 0.529
LoRA tuning 0.472 0.343 0.527 0.605
Prompt + LoRA 0.526 0.401 0.562 0.616

4.6 VISUALIZATION

The paper presents compelling visualization results that showcase the effectiveness of the proposed
method on real-world industrial images.the model successfully detects and localizes various indus-
trial defects guided by textual prompts. These visualizations provide strong empirical evidence of
the model’s ability to generalize across diverse defect types and challenging visual environments.
The overlaid bounding boxes demonstrate accurate alignment with the defect regions, highlighting
the strength of the combined prompt tuning and LoRA adaptation strategy. Overall, these results
confirm the method’s practical value for industrial defect detection, emphasizing its potential for de-
ployment in manufacturing scenarios that demand high precision and reliability in visual inspection.

5 CONCLUSION

In this paper, we proposed a lightweight and annotation-efficient framework for industrial defect
detection by integrating prompt tuning with LoRA fine-tuning into GroundingDINO. Our ablation
studies show that prompt tuning injects essential semantic cues, while LoRA adapts visual rep-
resentations efficiently—together leading to significant improvements in industrial scenarios. We
also demonstrated that our method effectively adapts large vision-language models (LVLMs) to the
domain of industrial inspection, outperforming strong baselines on our self-collected dataset. In fu-
ture work, we plan to explore richer prompt representations and develop more advanced parameter-
efficient adaptation techniques to fully unlock the potential of LVLMs for fine-grained and high-
precision industrial defect localization.
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