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ABSTRACT

The Segment Anything Model 2 (SAM2) has emerged as a powerful foundation
model for object segmentation in both images and videos, paving the way for
various downstream video applications. The crucial design of SAM2 for video
segmentation is its memory module, which prompts object-aware memories from
previous frames for current frame prediction. However, its greedy-selection mem-
ory design suffers from the “error accumulation” problem, where an errored or
missed mask will cascade and influence the segmentation of the subsequent frames,
which limits the performance of SAM2 toward complex long-term videos. To this
end, we introduce SAM2Long, an improved training-free video object segmen-
tation strategy, which considers the segmentation uncertainty within each frame
and chooses the video-level optimal results from multiple segmentation pathways
in a constrained tree search manner. In practice, we maintain a fixed number of
segmentation pathways throughout the video. For each frame, multiple masks are
proposed based on the existing pathways, creating various candidate branches. We
then select the same fixed number of branches with higher cumulative scores as the
new pathways for the next frame. After processing the final frame, the pathway
with the highest cumulative score is chosen as the final segmentation result. Ben-
efiting from its heuristic search design, SAM2Long is robust toward occlusions
and object reappearances, and can effectively segment and track objects for com-
plex long-term videos. Without introducing any additional parameters or further
training, SAM2Long significantly outperforms SAM2 on six VOS benchmarks.
Notably, it achieves an average improvement of 3.8 points across all model sizes
and, in some cases, up to 5 points in J&F on long-term video object segmentation
benchmarks SA-V and LVOS.

1 INTRODUCTION

The Segment Anything Model 2 (SAM2) has gained significant attention as a unified foundational
model for promptable object segmentation in both images and videos. Notably, SAM2 (Ravi et al.,
2024) has achieved state-of-the-art performance across various video object segmentation tasks,
significantly surpassing previous methods. Building upon the original SAM (Kirillov et al., 2023),
SAM2 incorporates a memory module that enables it to generate masklet predictions using stored
memory contexts from previously observed frames. This module allows SAM2 to seamlessly extend
SAM into the video domain, processing video frames sequentially, attending to the prior memories of
the target object, and maintaining object coherence over time.

While SAM2 demonstrates strong performance in video segmentation, its greedy segmentation
strategy struggles to handle complex video scenarios with frequent occlusions and object reappearance.
In detail, SAM2 confidently and accurately segments frames when clear visual cues are present.
However, in scenarios with occlusions or reappearing objects, it can produce mask proposals that
are highly variable and uncertain. Regardless of the frame’s complexity, a uniform greedy selection
strategy is applied to both scenarios: the mask with the highest predicted IoU is selected. Such greedy
choice works well for the easy cases but raises the error potential for the challenging frames. Once an
incorrect mask is selected into memory, it is uncorrectable and will mislead the segmentation of the
subsequent frames. We show such an “error accumulation” problem in Figure 1 both qualitatively and
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(a) Comparison in handling object occlusion over time. (b) Per-frame performance comparison across three benchmarks.

Figure 1: Comparison of occlusion handling and long-term compatibility between SAM2 and
SAM2Long. (a) When an occlusion occurs, SAM2 may lose track or follow the wrong object, leading
to accumulated errors. In contrast, SAM2Long utilizes memory tree search to recover when the
object reappears. (b) The per-frame J&F scores of the predicted masks are plotted at specific
timestamps on the LVOS and SA-V datasets. SAM2Long demonstrates greater resilience to elapsed
time compared to SAM2, maintaining superior performance over longer periods.

quantitatively. The performance of SAM2 progressively deteriorates as the propagation extends into
the later temporal segment, highlighting its limitations in maintaining accurate tracking over time.

To this end, we redesign the memory module of SAM2 to enhance its long-term compatibility
and robustness against occlusions and error propagation. Our improvement is completely free of
additional training and does not introduce any external parameters, but simply unleashes the potential
of SAM2 itself. Our approach is motivated by the observation that the SAM2 mask decoder generates
multiple diverse masks, accompanied by predicted IoU scores and an occlusion score when handling
challenging and ambiguous cases. However, SAM2 only selects a single mask as memory, sometimes
disregarding the correct one. To address this, we aim to equip SAM2 with multiple memory pathways,
allowing various masks to be stored as memory at each time step, thereby improving predictions for
subsequent frames.

In particular, we introduce a novel constrained tree memory structure, which maintains a fixed number
of memory pathways over time to explore multiple segmentation hypotheses with efficiently managed
computational resources. At each time step, based on a set of memory pathways, each with its
own memory bank and cumulative score (accumulated logarithm of the predicted IoU scores across
the pathway), we produce multiple candidate branches for the current frame. Then, among all the
branches, we select the same fixed number of branches with higher cumulative scores and prune
other branches, thereby constraining the tree’s growth. After processing the final frame, the pathway
with the highest cumulative score is selected as the final segmentation result. Moreover, to prevent
premature convergence on incorrect predictions, we select hypotheses with distinct predicted masks
when their occlusion scores indicate uncertainty, in order to maintain diversity in the tree branches.
This tree-like memory structure augments SAM2’s ability to effectively overcome error accumulation.

Within each pathway, we construct an object-aware memory bank that selectively includes frames
with confidently detected objects and high-quality segmentation masks, based on the predicted
occlusion scores and IoU scores. Instead of simply storing the nearest frames as SAM2 does, we filter
out frames where the object may be occluded or poorly segmented. This ensures that the memory
bank provides effective object cues for the current frame’s segmentation. Additionally, we modulate
the memory attention calculation by weighting memory entries according to their occlusion scores,
emphasizing more reliable entries during cross-attention. These strategies help SAM2 focus on
reliable object clues and improve segmentation accuracy with negligible computational overhead. As
evidenced in Figure 1(a), our approach successfully resolves occlusions and re-tracks the recurring
balloon, where SAM2 fails.

We provide a comprehensive evaluation demonstrating that SAM2Long consistently outperforms
SAM2 across six VOS benchmarks, particularly excelling in long-term and occlusion-heavy scenarios.
For instance, on the challenging SA-V validation set, SAM2Long-Large improves the J&F score
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by 4.7 points, and SAM2Long-Small shows an impressive 4.9-point gain over the same size SAM2
model. Similar trends are observed on the LVOS validation set, where SAM2Long-Large surpasses
SAM2-Large by 4.2 points. These consistent improvements, which range from 2.9 to 4.9 points
across different model sizes, clearly indicate the effectiveness of our proposed method. Furthermore,
as illustrated in Figure 1(b), the per-frame performance gap between SAM2Long and SAM2 widens
over time, showcasing SAM2Long excels in long-term tracking scenarios. With these results, we
believe SAM2Long sets a new standard for video object segmentation based on SAM2 in complex,
real-world applications, delivering superior performance without any additional training or external
parameters.

2 RELATED WORK

2.1 VIDEO OBJECT SEGMENTATION

Perceiving the environment in terms of objects is a fundamental cognitive ability of humans. In
computer vision, Video Object Segmentation (VOS) tasks aim to replicate this capability by requiring
models to segment and track specified objects within video sequences. A substantial amount of
research has been conducted on video object segmentation in recent decades (Fan et al., 2019; Oh
et al., 2019; Hu et al., 2018a; Oh et al., 2018; Perazzi et al., 2017; Wang et al., 2019; Hu et al., 2018b;
Li & Loy, 2018; Bao et al., 2018; Zhang et al., 2019; Li et al., 2020; Johnander et al., 2019; Zhang
et al., 2023; Ventura et al., 2019; Li et al., 2022; Wu et al., 2023; Wang et al., 2023).

There are two main protocols for evaluating VOS models (Pont-Tuset et al., 2017; Perazzi et al.,
2016): semi-supervised and unsupervised video object segmentation. In semi-supervised VOS,
the first-frame mask of the objects of interest is provided, and the model tracks these objects in
subsequent frames. In unsupervised VOS, the model directly segments the most salient objects from
the background without any reference. It is important to note that these protocols are defined in the
inference phase, and VOS methods can leverage ground truth annotations during the training stage.

In this paper, we explore SAM2 (Ravi et al., 2024), for its application in semi-supervised VOS.
We enhance the memory design of SAM2, significantly improving mask propagation performance
without requiring any additional training.

2.2 MEMORY-BASED VOS

Video object segmentation remains an unsolved challenge due to the inherent complexity of video
scenes. Objects in videos can undergo deformation (Tokmakov et al., 2023), exhibit dynamic
motion (Brox & Malik, 2010), reappear over long durations (Hong et al., 2024; 2023), and experience
occlusion (Ding et al., 2023), among other challenges. To address the above challenges, adopting a
memory architecture to store the object information from past frames is indispensable for accurately
tracking objects in video. Previous methods (Bhat et al., 2020; Caelles et al., 2017; Maninis et al.,
2018; Robinson et al., 2020; Voigtlaender & Leibe, 2017) treat VOS as an online learning task,
where networks are test-time tuned on the first-frame annotation. However, this approach was
time-consuming due to test-time fine-tuning. Other techniques (Chen et al., 2018; Hu et al., 2018b;
Voigtlaender et al., 2019; Yang et al., 2018; 2020; 2021b) use template matching, but they lack the
capability of tracking under occlusion.

More recent approaches have introduced efficient memory reading mechanisms, utilizing either
pixel-level attention (Cheng et al., 2023; Zhou et al., 2024; Duke et al., 2021; Liang et al., 2020; Oh
et al., 2018; Seong et al., 2020; Cheng & Schwing, 2022; Xie et al., 2021; Yang & Yang, 2022; Yang
et al., 2021a) or object-level attention (Athar et al., 2023; 2022; Cheng et al., 2024). A prominent
example is XMem (Cheng & Schwing, 2022), which leverages a hierarchical memory structure for
pixel-level memory reading combined. Building on XMem’s framework, Cutie (Cheng et al., 2024)
further improves segmentation accuracy by processing pixel features at the object level to better
handle complex scenarios.

The latest SAM2 (Ravi et al., 2024) incorporates a simple memory module on top of the image-based
SAM (Kirillov et al., 2023), enabling it to function for VOS tasks. However, by selecting only the
temporally nearest frames as memory, SAM2 struggles with challenging cases involving long-term
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reappearing objects and confusingly similar objects. we redesign SAM2’s memory to maintain
multiple potential correct masks, making the model more object-aware and robust.

2.3 SEGMENT ANYTHING MODEL

Segment Anything Model (SAM) (Kirillov et al., 2023) is recognized as a milestone vision foundation
model that can segment any object in an image using interactive prompts. Its impressive zero-shot
transfer performance has shown great versatility in various vision tasks, including segmentation
applications (Li et al., 2023; Ma et al., 2024; Xu et al., 2024), image editing (Gao et al., 2023) and
object reconstruction (Lin et al., 2024).

Building on SAM, SAM 2 (Ravi et al., 2024) extends its functionality to video segmentation through
a memory-based transformer architecture for real-time video processing. SAM 2’s memory stores
information about objects and past interactions, enabling it to generate segmentation masks across
video frames more accurately and efficiently than previous methods. To further enhance SAM 2, we
introduce a constrained memory tree structure. This training-free design leverages the SAM2’s ability
to generate multiple candidate mask proposals with predicted IoU and occlusion score, mitigating
error accumulation during segmentation.

3 METHOD

3.1 PRELIMINARY ON SAM2

SAM2 (Ravi et al., 2024) begins with an image encoder that encodes each input frame into embed-
dings. In contrast to SAM, where frame embeddings are fed directly into the mask decoder, SAM2
incorporates a memory module that conditions the current frame’s features on both previous and
prompted frames. Specifically, for semi-supervised video object segmentation tasks, SAM2 maintains
a memory bank at each time step t ≥ 1:

Mt =
{
Mτ ∈ RK×C

}
τ∈I ,

where K is the number of memory tokens per frame, C is the channel dimension, and I is the set of
frame indices included in the memory. In SAM2, memory set I stores up to N of the most recent
frames, along with the initial mask, using a First-In-First-Out (FIFO) queue mechanism.

Each memory entry consists of two components: (1) the spatial embedding fused with the predicted
mask (generated by the memory encoder), and (2) the object-level pointer (generated by the mask
decoder). After cross-attending to the memory, the current frame’s features integrate both fine-grained
correspondences and object-level semantic information.1

The mask decoder, which is lightweight and retains the efficiency of SAM, then generates three
predicted masks for the current frame. Each mask is accompanied by a predicted Intersection
over Union (IoU) score IoUt ≥ 0 and an output mask token. Additionally, the mask decoder
predicts a single occlusion score ot for the frame, where ot > 0 indicates object presence, ot < 0
indicates absence, and the absolute value |ot| depicts the model’s confidence. The mask with the
highest predicted IoU score is selected as the final prediction, and its corresponding output token is
transformed into the object pointer for use as the memory.

3.2 CONSTRAINED TREE MEMORY WITH UNCERTAINTY HANDLING

To enhance SAM2’s robustness towards long-term and ambiguous cases, we propose a constrained
tree memory structure that enables the model to explore various object states over time with minimal
computational overhead. We show the high-level pipeline in Figure 2. This tree-based approach main-
tains multiple plausible pathways and mitigates the effects of occlusions and erroneous predictions.

Specifically, at each time step t, we maintain a set of P memory pathways, each with a memory bank
Mp

t and a cumulative score Sp[t], representing a possible segmentation hypothesis up to frame t.
Conditioned on the memory bank of each pathway p, the SAM2 decoder head generates three mask

1In practice, SAM2 stores more object pointers than spatial embeddings, as pointers are lighter. We assume
equal numbers of both components solely for illustrative purposes, without altering the actual implementation.
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Figure 2: (a) The pipeline of constrained memory tree: At each time step t, we maintain multiple
memory pathways, each containing a memory bank and a cumulative score Sp[t]. The input frame
is processed through the mask decoder conditioned on the memory bank, generating three mask
candidates for each pathway. The candidates with the highest updated cumulative scores Sp,k[t]
are carried forward to the next time step. (b) Mask selection with uncertainty handling: When the
maximum absolute occlusion score exceeds the threshold δconf (Certain), the high-scoring mask is
selected. Otherwise (Uncertain), distinct mask candidates are picked to avoid incorrect convergence.

candidates along with their predicted IoU scores, denoted as IoUp,1
t , IoUp,2

t , and IoUp,3
t . This process

expands the tree by branching each existing pathway into three new candidates. As a result, there are
a total of 3P possible pathways at each time step. We then calculate the cumulative scores for each
possible pathway by adding the logarithm of its IoU score to the pathway’s previous score:

Sp,k[t] = Sp[t− 1] + log(IoUp,k
t + ϵ), for k = 1, 2, 3,

where ϵ is a small constant to prevent the logarithm of zero.

However, continuously tripling the pathways would lead to unacceptable computational and memory
costs. Therefore, to manage computational complexity and memory usage, we implement a pruning
strategy that selects the top P pathways with the highest cumulative scores to carry forward to the
next time step. This selection not only retains the most promising segmentation hypotheses but
also constrains the tree-based memory, ensuring computational efficiency. Finally, we output the
segmentation pathway with the highest cumulative score as the ultimate result.

Compared to SAM2, our approach introduces additional computation mainly by increasing the
number of passes through the mask decoder and memory module. Notably, these components
are lightweight relative to the image encoder. For instance, the image encoder of SAM2-Large
consists of 212M parameters while the total parameter of SAM2-Large is 224M. Since we process
the image encoder only once just as SAM2 does, the introduction of a memory tree adds negligible
computational cost while significantly enhancing SAM2’s robustness against error-prone cases.

Uncertainty Handling. Unfortunately, there are times when all pathways are uncertain. To prevent
the model from improperly converging on incorrect predictions, we implement a strategy to maintain
diversity among the pathways by deliberately selecting distinct masks. That is, if the maximum
absolute occlusion score across all pathways at time t, max({|opt |}Pp=1), is less than a predefined
uncertainty threshold δconf, we enforce the model to select mask candidates with unique IoU values.
This is inspired by the observation that, within the same frame, different IoU scores typically
correspond to distinct masks. In practice, we round each IoU score IoUp,k

t to two decimal places and
only select those hypotheses with distinct rounded values.

Overall, the integration of constrained tree memory with uncertainty handling offers a balanced
strategy that leverages multiple segmentation hypotheses to enhance robustness toward the long-term
complex video and achieve more accurate and reliable segmentation performance by effectively
mitigating error accumulation.
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3.3 OBJECT-AWARE MEMORY BANK CONSTRUCTION

In each memory pathway, we devise object-aware memory selection to retrieve frames with discrimi-
native objects. Meanwhile, we modulate the memory attention calculation to further strengthen the
model’s focus on the target objects.

Memory Frame Selection. To construct a memory bank that provides effective object cues, we
selectively choose frames from previous time steps based on the predicted object presence and
segmentation quality. Starting from the frame immediately before the current frame t, we iterate
backward through the prior frames i = {t − 1, t − 2, . . . , 1} in sequence. For each frame i, we
retrieve its predicted occlusion score oi and IoU score IoUi as reference. We include frame i in the
memory bank if it satisfies the following criteria:

IoUi > δIoU and oi > 0,

where δIoU is a predefined IoU threshold. This ensures that only frames with confidently detected
objects and reasonable segmentation masks contribute to the memory. We continue this process
until we have selected up to N frames. In contrast to SAM2, which directly picks the nearest N
frames as the memory entries, this selection process effectively filters out frames where the object
may be occluded, absent, or poorly segmented, thereby providing more robust object cues for the
segmentation of the current frame.

Memory Attention Modulation. To further emphasize more reliable memory entries during the
cross-attention computation, we utilize the associated occlusion score ot to modulate the contribution
of each memory entry. We define a set of standard weights W std that are linearly spaced between a
lower bound wlow and an upper bound whigh:

W std =

{
wlow +

i− 1

N
(whigh − wlow)

}N+1

i=1

.

Next, we sort the occlusion scores in ascending order to obtain sorted indices I ′ = {Ii}N+1
i=1 such

that:
oI1 ≤ oI2 ≤ · · · ≤ oIN+1

.

We then assign the standard weights to the memory entries based on these sorted indices:

wIi = W std
i , for i = 1, 2, . . . , N + 1.

This assignment ensures that memory entries with higher occlusion scores, which indicate object
presence with higher confidence, receive higher weights. Then, we linearly scale the original keys
Mτ with their corresponding weights:

M̃τ = wτ ·Mτ , for τ ∈ I.

Finally, the modulated memory keys M̃t = {M̃τ}τ∈I are used in the memory module’s cross-
attention mechanism to update the current frame’s features. By using the available occlusion scores as
indicators, we effectively emphasize memory entries with more reliable object cues while introducing
minimal computational overhead.

4 EXPERIMENTS

4.1 DATASETS

To evaluate our method, we select 6 standard VOS benchmarks and report the following metrics: J
(region similarity), F (contour accuracy), and the combined J&F . All evaluations are conducted in
a semi-supervised setting, where the first-frame mask is provided. The datasets used for testing are
detailed as follows:

SA-V (Ravi et al., 2024) is a large-scale video segmentation dataset designed for promptable visual
segmentation across diverse scenarios. It encompasses 50.9K video clips, aggregating to 642.6K
masklets with 35.5M meticulously annotated masks. The dataset presents a challenge with its
inclusion of small, occluded, and reappearing objects throughout the videos. The dataset is divided
into training, validation, and testing sets, with most videos allocated to the training set for robust
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model training. The validation set has 293 masklets across 155 videos for model tuning, while the
testing set includes 278 masklets across 150 videos for comprehensive evaluation.

LVOS v1 (Hong et al., 2023) is a VOS benchmark for long-term video object segmentation in realistic
scenarios. It comprises 720 video clips with 296,401 frames and 407,945 annotations, with an average
video duration of over 60 seconds. LVOS introduces challenging elements such as long-term object
reappearance and cross-temporal similar objects. In LVOS v1, the dataset includes 120 videos for
training, 50 for validation, and 50 for testing.

LVOS v2 (Hong et al., 2024) expends LVOS v1 and provides 420 videos for training, 140 for
validation, and 160 for testing. This paper primarily utilizes v2, as it already includes the sequences
present in v1. The dataset spans 44 categories, capturing typical everyday scenarios, with 12 of these
categories deliberately left unseen to evaluate and better assess the generalization capabilities of VOS
models.

Long Videos Dataset (Liang et al., 2020) contains 3 long-form video sequences, each averaging over
2,000 frames, designed to evaluate VOS performance in real-world scenarios. For evaluation, 20
frames from each video are uniformly annotated.

VOST (Tokmakov et al., 2023) is a semi-supervised video object segmentation benchmark that
emphasizes complex object transformations. Unlike other datasets, VOST includes objects that
are broken, torn, or reshaped, significantly altering their appearance. It comprises more than 700
high-resolution videos, captured in diverse settings, with an average duration of 21 seconds, all
densely labeled with instance masks.

DAVIS2017 (Pont-Tuset et al., 2017) is a well-known benchmark dataset comprising 60 training
videos and 30 validation videos, with a total of 6,298 frames. It offers high-quality, pixel-level
annotations for every frame, making it a standard resource for evaluating different VOS methods.

4.2 MAIN RESULTS

SAM2Long consistently improves SAM2 over all model sizes and datasets. Table 1 presents
an overall comparison between SAM2 and SAM2Long across various model sizes on the SA-V
validation and test sets, as well as the LVOS v2 validation set. SAM2Long consistently outperforms
the SAM2 baseline by a large margin. For instance, on the SA-V test set, SAM2Long-Small achieves
a J&F score of 77.8, showing an improvement of 4.9 over SAM2-Small. Similarly, SAM2Long-
Large achieves a J&F score of 80.3 on the SA-V test set, with a notable 4.7 improvement over
SAM2-Large. This trend is also reflected in the LVOS validation set, where SAM2Long demonstrates
considerable performance gains of at least 2.9 over SAM2 of the corresponding model size. These
results showcase the effectiveness of the training-free memory tree in various video scenarios.

Table 1: Performance comparison on SA-V (Ravi et al., 2024) and LVOS v2 (Hong et al., 2024)
datasets between SAM2 and SAM2Long across all model sizes. † We report the re-produced
performance of SAM2 using its open-source code and checkpoint.

Method SA-V val SA-V test LVOS v2 val
J&F J F J&F J F J&F J F

SAM2-Tiny† 73.6 70.2 77.0 74.6 71.1 78.1 76.7 73.3 80.0
SAM2Long-Tiny 76.7 (3.1↑) 73.0 80.5 78.6 (4.0↑) 74.6 82.6 80.0 (3.3↑) 76.5 83.5
SAM2-Small† 72.9 69.6 76.2 74.2 70.6 77.8 78.0 74.4 81.6
SAM2Long-Small 77.8 (4.9↑) 74.0 81.6 77.9 (3.7↑) 73.9 81.8 80.9 (2.9↑) 77.3 84.6
SAM2-Base+† 75.3 71.9 78.7 74.8 71.3 78.2 77.3 73.9 80.6
SAM2Long-Base+ 79.3 (4.0↑) 75.5 83.0 78.1 (3.3↑) 74.3 81.8 80.5 (3.2↑) 77.0 84.1
SAM2-Large† 76.6 73.3 79.8 75.6 72.3 79.0 79.3 74.6 84.1
SAM2Long-Large 81.3 (4.7↑) 77.5 85.0 80.3 (4.7↑) 76.4 84.2 83.5 (4.2↑) 79.9 87.0

SAM2Long outperforms previous methods and excels in unseen categories. We also compare our
proposed method, SAM2Long, with various state-of-the-art VOS methods on both the SA-V (Ravi
et al., 2024) and LVOS (Hong et al., 2023; 2024) datasets, as shown in Table 2 and 3. Although
SAM2 already surpasses previous methods by a large margin, SAM2Long pushes these limits even
further. Specifically, our method achieves a J&F score of 81.3 on the SA-V validation set, a
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5.2-point improvement over SAM2. For LVOS, SAM2Long respectively attains a J&F score of
82.3 and 83.5, outperforming SAM2 by 4.4 and 3.7 points on v1 and v2 subset. Notably, SAM2Long
particularly excels in unseen categories, achieving J and F scores of 79.6 and 87.4. The significant
improvements of 8.0 and 6.3 points over SAM2 highlight its robust generalization capabilities.

Table 2: Performance comparison with the-state-of-the-arts methods on SA-V dataset.

Method SA-V val SA-V test
J&F J F J&F J F

STCN (Cheng et al., 2021) 61.0 57.4 64.5 62.5 59.0 66.0
RDE (Li et al., 2022) 51.8 48.4 55.2 53.9 50.5 57.3
SwinB-AOT (Yang et al., 2021a) 51.1 46.4 55.7 50.3 46.0 54.6
SwinB-DeAOT (Yang & Yang, 2022) 61.4 56.6 66.2 61.8 57.2 66.3
XMem (Cheng & Schwing, 2022) 60.1 56.3 63.9 62.3 58.9 65.8
DEVA (Cheng et al., 2023) 55.4 51.5 59.2 56.2 52.4 60.1
Cutie-base+ Cheng et al. (2024) 61.3 58.3 64.4 62.8 59.8 65.8
SAM2 (Ravi et al., 2024) 76.1 72.9 79.2 76.0 72.6 79.3
SAM2Long (ours) 81.3 77.5 85.0 80.3 76.4 84.2

Table 3: Performance comparison with the-state-of-the-arts methods on validation set of LVOS
dataset. Subscript s and u denote scores in seen and unseen categories.

Method LVOS v1 LVOS v2
J&F J F J&F Js Fs Ju Fu

LWL (Bhat et al., 2020) 56.4 51.8 60.9 60.6 58.0 64.3 57.2 62.9
CFBI (Yang et al., 2020) 51.5 46.2 56.7 55.0 52.9 59.2 51.7 56.2
STCN (Cheng et al., 2021) 48.9 43.9 54.0 60.6 57.2 64.0 57.5 63.8
RDE (Li et al., 2022) 53.7 48.3 59.2 62.2 56.7 64.1 60.8 67.2
DeAOT (Yang et al., 2021a) - - - 63.9 61.5 69.0 58.4 66.6
XMem (Cheng & Schwing, 2022) 52.9 48.1 57.7 64.5 62.6 69.1 60.6 65.6
DDMemory (Hong et al., 2023) 60.7 55.0 66.3 - - - - -
SAM2 (Ravi et al., 2024) 77.9 73.1 82.7 79.8 80.0 86.6 71.6 81.1
SAM2Long (ours) 82.3 77.4 87.2 83.5 80.0 86.9 79.6 87.4

SAM2Long demonstrates versatility when handling videos with various challenges. In addition
to the SA-V and LVOS datasets, we evaluate our proposed SAM2Long on other VOS benchmarks in
Table 4. On the Long Videos Dataset (Liang et al., 2020), SAM2Long shows a significant performance
boost over SAM2 by an improvement of 6.6 points. This validates the intuition that SAM2 faces
challenges with error accumulation during long-term segmentation, while our SAM2Long with
constrained memory tree effectively mitigates this issue. For the VOST dataset (Tokmakov et al.,
2023), which focuses on complex object transformations, SAM2Long obtains a J&F score of 52.8,
highlighting its capability to handle challenging transformations. On the DAVIS2017 dataset (Pont-
Tuset et al., 2017), despite it being a relatively small, short-term benchmark where SAM2 already
scores a high 89.8, SAM2Long still provides a 0.5-point gain. These results underscore the robustness
and versatility of SAM2Long across a range of VOS benchmarks.

Table 4: The performance comparisons between SAM2 and SAM2Long on other VOS benchmarks.
All experiments use SAM2-Large model. † We report the re-produced performance of SAM2 using
its open-source code and checkpoint.

Dataset SAM2† SAM2Long
J&F J F J&F J F

Long Videos Dataset (Liang et al., 2020) 71.6 70.2 73.0 78.2 76.3 80.0
VOST (Tokmakov et al., 2023) 51.4 46.3 56.6 52.8 46.9 58.6
DAVIS2017 (Pont-Tuset et al., 2017) 89.8 87.1 92.5 90.3 87.6 93.0

4.3 ABLATION STUDY

We conduct a series of ablation studies on the validation split of SA-V dataset and use SAM2-Large
as default model size.
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Table 5: Ablation on number of pathways P .

P J&F J F Speed
1 76.6 73.3 79.8 1×
2 80.9 77.3 84.5 0.93×
3 81.3 77.5 85.0 0.82×
4 81.2 77.5 84.9 0.75×

Table 6: Ablation on IoU threshold δiou.

δiou J&F J F
0 80.5 76.7 84.2
0.3 81.3 77.5 85.0
0.7 80.6 76.8 84.4
0.9 78.0 74.6 81.4

Table 7: Ablation on uncertainty threshold δconf.

δconf J&F J F
0.5 80.9 77.2 84.6
2 81.3 77.5 85.0
5 80.9 77.3 84.6

Table 8: Ablation on modulation [wlow, whigh].

[wlow, whigh] J&F J F
[1, 1] 80.7 77.0 84.3
[0.95, 1.05] 81.3 77.5 85.0
[0.9, 1.1] 81.0 77.4 84.7

Number of Memory Pathways P . We ablate the number of memory pathways to assess their impact
on SAM2Long in Table 5. Note that setting P = 1 reverts to the SAM2 baseline. Increasing the
number of memory pathways to P = 2 yields a notable improvement, raising the J&F score to
80.9. This result demonstrates that the proposed memory tree effectively boosts the model’s ability
to track the correct object while reducing the impact of occlusion. Further increasing the number
of memory pathways to P = 3 achieves the best performance. However, using P = 4 shows no
additional gains, suggesting that three pathways strike the optimal balance between accuracy and
computational efficiency for the SAM2 model.

In terms of speed, since pruning is performed at every step, the speed is effectively maintained. Using
three memory pathways slows down the model by only 18%, while yielding nearly a 5-point increase
in performance.

Iou Threshold δiou. The choice of the IoU threshold δiou is crucial for selecting frames with reliable
object cues. As shown in Table 6, setting δiou = 0.3 yields the highest J&F , indicating an effective
trade-off between filtering out poor-quality frames and retaining valuable segmentation information.
In contrast, having no requirement on mask quality and feeding all masks containing objects into
memory (δiou = 0) decreases the score to 80.5, showing that unreliable frames with poor segmentation
harm the SAM2 model. Meanwhile, an overly strict selection (δiou = 0.9) degrades performance even
more severely to 78.0, as it excludes too many potentially important neighboring frames, causing the
model to rely on frames that are too far away from the current frame as memory.

Uncertainty Threshold δconf. The uncertainty threshold δconf controls the selection of hypotheses
under uncertain conditions. Our results in Table 7 indicate that setting δconf to 2 provides the highest
J&F score, indicating an optimal level for uncertainty handling. Lower values (e.g., 0.5) result in
suboptimal performance, as they may prematurely commit to incorrect segmentation hypotheses,
leading to significant performance drops due to error propagation. On the other hand, higher values
(e.g., 5) do not further improve performance, suggesting that beyond a certain threshold, the model
does not benefit from additional mask diversity and can efficiently rely on the top-scoring masks
when the segmentation is confident.

Memory Attention Modulation [wlow, whigh]. We explore the effect of modulating the attention
weights for memory entries using different ranges in Table 8. The configuration [1, 1] means no
modulation is applied. We find that the configuration of [0.95, 1.05] achieves the best performance
while increasing the modulation range to ([0.9, 1.1]) slightly decreases performance. This result
indicates that slight modulation sufficiently emphasizes reliable memory entries.

4.4 VISUALIZATION

We present a qualitative comparison between SAM2 and SAM2Long in Figure 3. SAM2Long
demonstrates a significant reduction in segmentation errors, maintaining more accurate and consistent
tracking of objects across various frames.

For example, in the second sequence of the first row, SAM2 immediately loses track of the man
of interest when occlusion happens. Although SAM2Long also loses track initially, its memory

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

G
T

SA
M

2L
on

g
SA

M
2

G
T

SA
M

2L
on

g
SA

M
2

Time Flow Time Flow

G
T

SA
M

2L
on

g
SA

M
2

Figure 3: Qualitative comparison between SAM2 and SAM2Long, with GT (Ground Truth) provided
for reference. A blue box is used to highlight incorrectly segmented objects, while a red box indicates
missing objects. Best viewed when zoomed in.

tree with multiple pathways enables it to successfully re-track the correct man later on. In another
case, depicted in the second row where a group of people is dancing, SAM2 initially tracks the
correct person. However, when occlusion occurs, SAM2 mistakenly switches to tracking a different,
misleading individual. In contrast, SAM2Long handles this ambiguity effectively. Even during the
occlusion, SAM2Long manages to resist the tracking error and correctly resumes tracking the original
dancer when she reappears.

In conclusion, SAM2Long significantly improves SAM2’s ability to handle object occlusion and
reappearance, thereby enhancing its performance in long-term video segmentation.

5 CONCLUSION

In this paper, we introduce SAM2Long, a training-free enhancement to SAM2 that alleviates its
limitations in long-term video object segmentation. By employing a constrained tree memory structure
with object-aware memory modulation, SAM2Long effectively mitigates error accumulation and
improves robustness against occlusions, resulting in a more reliable segmentation process over
extended periods. Extensive evaluations on six VOS benchmarks demonstrate that SAM2Long
consistently outperforms SAM2, especially in complex video scenarios. Notably, SAM2Long
achieves up to a 5-point improvement in J&F scores on challenging long-term video benchmarks
such SA-V and LVOS without requiring additional training or external parameters.
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Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Andreas Robinson, Felix Jaremo Lawin, Martin Danelljan, Fahad Shahbaz Khan, and Michael
Felsberg. Learning fast and robust target models for video object segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 7406–7415, 2020.

Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized memory network for video object
segmentation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXII 16, pp. 629–645. Springer, 2020.

Pavel Tokmakov, Jie Li, and Adrien Gaidon. Breaking the “object” in video object segmentation. In
CVPR, 2023.

Carles Ventura, Miriam Bellver, Andreu Girbau, Amaia Salvador, Ferran Marques, and Xavier Giro-i
Nieto. Rvos: End-to-end recurrent network for video object segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 5277–5286, 2019.

Paul Voigtlaender and Bastian Leibe. Online adaptation of convolutional neural networks for video
object segmentation. arXiv preprint arXiv:1706.09364, 2017.

Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and Liang-Chieh
Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9481–9490, 2019.

Junke Wang, Dongdong Chen, Zuxuan Wu, Chong Luo, Chuanxin Tang, Xiyang Dai, Yucheng Zhao,
Yujia Xie, Lu Yuan, and Yu-Gang Jiang. Look before you match: Instance understanding matters
in video object segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2268–2278, 2023.

Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast online object tracking
and segmentation: A unifying approach. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 1328–1338, 2019.

Qiangqiang Wu, Tianyu Yang, Wei Wu, and Antoni B Chan. Scalable video object segmentation with
simplified framework. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 13879–13889, 2023.

Haozhe Xie, Hongxun Yao, Shangchen Zhou, Shengping Zhang, and Wenxiu Sun. Efficient regional
memory network for video object segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1286–1295, 2021.

Xiuwei Xu, Huangxing Chen, Linqing Zhao, Ziwei Wang, Jie Zhou, and Jiwen Lu. Embodiedsam:
Online segment any 3d thing in real time. arXiv preprint arXiv:2408.11811, 2024.

Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K Katsaggelos. Efficient
video object segmentation via network modulation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 6499–6507, 2018.

Zongxin Yang and Yi Yang. Decoupling features in hierarchical propagation for video object
segmentation. Advances in Neural Information Processing Systems, 35:36324–36336, 2022.

Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative video object segmentation by foreground-
background integration. In European Conference on Computer Vision, pp. 332–348. Springer,
2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zongxin Yang, Yunchao Wei, and Yi Yang. Associating objects with transformers for video object
segmentation. Advances in Neural Information Processing Systems, 34:2491–2502, 2021a.

Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative video object segmentation by multi-
scale foreground-background integration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(9):4701–4712, 2021b.

Jiaming Zhang, Yutao Cui, Gangshan Wu, and Limin Wang. Joint modeling of feature, correspon-
dence, and a compressed memory for video object segmentation. arXiv preprint arXiv:2308.13505,
2023.

Lu Zhang, Zhe Lin, Jianming Zhang, Huchuan Lu, and You He. Fast video object segmentation
via dynamic targeting network. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5582–5591, 2019.

Junbao Zhou, Ziqi Pang, and Yu-Xiong Wang. Rmem: Restricted memory banks improve video
object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18602–18611, 2024.

14


	Introduction
	Related work
	Video Object Segmentation
	Memory-Based VOS
	Segment Anything Model

	Method
	Preliminary on SAM2
	Constrained Tree Memory with Uncertainty Handling
	Object-aware Memory Bank Construction

	Experiments
	Datasets
	Main Results
	Ablation Study
	Visualization

	Conclusion

