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ABSTRACT

Augmenting the multi-step reasoning abilities of Large Language Models (LLMs)
has been a persistent challenge. Recently, verification has shown promise in im-
proving solution consistency by evaluating generated outputs. However, current
verification approaches suffer from sampling inefficiencies, requiring a large num-
ber of samples to achieve satisfactory performance. Additionally, training an ef-
fective verifier often depends on extensive process supervision, which is costly to
acquire. In this paper, we address these limitations by introducing a novel ver-
ification method based on Twisted Sequential Monte Carlo (TSMC). TSMC se-
quentially refines its sampling effort to focus exploration on promising candidates,
resulting in more efficient generation of high-quality solutions. We apply TSMC
to LLMs by estimating the expected future rewards at partial solutions. This ap-
proach results in a more straightforward training target that eliminates the need
for step-wise human annotations. We empirically demonstrate the advantages of
our method across multiple math benchmarks, and also validate our theoretical
analysis of both our approach and existing verification methods.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have achieved significant breakthroughs across
various domains (Park et al., 2023; Kaddour et al., 2023; Song et al.; Li et al., 2023a; Chen et al.,
2023; Zheng et al., 2023; Wang et al., 2024a). However, their performance in multi-step reason-
ing tasks, such as solving complex mathematical or coding problems, remains notably constrained
(Huang et al., 2023; Lightman et al., 2024). A key challenge arises from the high sensitivity of
these tasks to individual errors in each reasoning step. Autoregressive LLMs, in particular, strug-
gle to maintain consistency throughout the reasoning process, leading to solutions that are prone to
mistakes or logical inconsistencies (Shen et al., 2021; Cobbe et al., 2021).

Verification (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2024) has emerged as an effec-
tive strategy to mitigate these issues. In a typical verification process, multiple solutions are sampled
from the generator (LLM) and evaluated by an external verifier. The verification results are then used
to adjust the weight of each solution in determining the final answer. Since verification is generally
simpler than generation, it tends to achieve higher accuracy and consistency compared to methods
that rely solely on the generator, such as majority voting (Wang et al., 2023c). There are two primary
types of verifiers: Outcome Reward Model (ORM) (Cobbe et al., 2021) and Process Reward Model
(PRM) (Uesato et al., 2022). ORM evaluates the fully generated solution with a single scalar output
representing the confidence score, and its training is straightforward: using outcome supervision
based on comparing generated answers with ground truth. In contrast, PRM focuses on providing
rewards at each step of the reasoning process, giving more detailed feedback on the intermediate
steps. Although empirical evidence suggests that PRM outperforms ORM (Lightman et al., 2024),
there is no simple metric to evaluate the correctness of each step and efficiently collecting process
supervision for such intermediate steps remains a great challenge.

Despite being promising, existing verification methods are still limited in the following two areas:
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• (Problem I) Low sampling efficiency: Current verification methods only evaluate fully generated
solutions, without refining their quality during the generation process. Sampling efforts would be
wasted on partial solutions that are clearly incorrect. As a result, a large number of samples are
needed to obtain even one correct solution, making the process inefficient and resource-intensive.

• (Problem II) Difficulty in obtaining process supervision: Training powerful verifiers like PRM
requires detailed step-wise supervision. Existing approaches either rely on human effort (Uesato
et al., 2022; Lightman et al., 2024) or tree search (Wang et al., 2023b; Luo et al., 2024) for inter-
mediate step annotations. However, both approaches are inefficient and lack scalability, limiting
their practical application for large-scale tasks.

To address these two major problems in existing verification methods, we propose a novel approach
based on Twisted Sequential Monte Carlo (TSMC) (Doucet et al., 2001; Del Moral et al., 2006; Briers
et al., 2009; Chopin & Papaspiliopoulos, 2020). TSMC is a significant advancement in the Impor-
tance Sampling (IS) technology. Building on the foundation of Sequential Monte Carlo (SMC),
TSMC is intended to enhance the sampling efficiency of IS in the high-dimensional space. It em-
ploys a series of intermediate target distributions at each resampling step, which are defined through
twist functions. This function strategically guides the samples towards the high-density region in the
target distribution. By retaining the most promising samples, TSMC effectively reduces the variance
in estimated quantities and boosts the efficiency of the sampling process.

Notably, the application of TSMC to improve the verification method in LLMs has not been ex-
plored previously, making our study the first of its kind in this area. Our approach is inspired by
the realization that existing verification methods employing reward-weighted majority voting (Li
et al., 2023b) essentially performs IS, where the sampling efficiency deteriorates as the disparity
between the proposal distribution (which generates potential solutions) and the target distribution
(concentrated around correct solutions) widens. We identify Problem I—low sampling efficiency—
as a consequence of high variance in IS when there is a substantial deviation between the proposal
and target distributions. In multi-step reasoning, even minor discrepancies at each step can cumulate
into a substantial mismatch between the two distributions. We therefore apply TSMC to improve
the sampling efficiency of verification by focusing the sampling effort on promising partial solutions
during the intermediate decoding process. We show that the optimal twist function in our case, which
is used to guide the sampling of TSMC, is proportional to expected future rewards, also known as
the value function. The value function could be simply learned through a neural regressor on the
data independently sampled from the generator. This simplifies the training target by eliminating the
need for human annotations or tree search. We also highlight the relationship between TSMC and
PRM in existing verification methods, allowing for a comprehensive analysis of bias and variance.

We compare our proposed method with baseline approaches on two math benchmarks: GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), utilizing fine-tuned models from Llemma-
7B (Azerbayev et al., 2023) and DeepSeek-7B (Shao et al., 2024) as the generators. Our results
indicate that TSMC consistently improves both the quality of the generated solutions and the overall
verification performance. Additionally, we empirically validate the theoretical advantage of TSMC
as an unbiased estimator with reduced variance, further highlighting its effectiveness.

Our main contributions can be summarized as follows:

1. We propose a novel method based on TSMC that enhances the sampling efficiency of verifica-
tion and reduces the reliance on process supervision, which is usually obtained through human
annotations or tree search, in training verifiers.

2. We introduce a new theoretical framework for analyzing verification methods, providing deeper
insights into their effectiveness and limitations.

3. Our empirical results demonstrate that TSMC consistently outperforms existing verification
methods across multiple math benchmarks, utilizing various generators.

2 PRELIMINARIES

2.1 LLMS FOR MATH

Following Lightman et al. (2024), we fix the generator without further fine-tuning via reinforcement
learning. For a problem statement x0, a (tokenized) candidate solution can be sampled from the
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generator, denoted as x1:T ∼ p(·|x0). For simplicity, we always assume the dependence on x0 and
no longer explicitly write it out in the following text. The solution is assumed to be decomposable
as x1:T = [x1, · · · ,xT ], where xi is a variable-length reasoning step. By default, the LLM gener-
ates all steps in an autoregressive manner, i.e., xt ∼ p(·|x1:t−1). Each solution x1:T contains the
reasoning process and an answer to the problem, with examples shown in Appendix F. We represent
the extracted answer from the solution as a = Ans(x1:T ), and its correctness as ϕ(a), which is 1 if
it is correct (matched with the ground-truth answer) and 0 otherwise.

The primary methods for solving math problems with LLMs include majority voting (Wang et al.,
2023c) and verification (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2024).

Majority Voting. Majority voting independently samples N (tokenized) candidate solutions
{xi

1:T }Ni=1 from the generator. It selects the final answer as the one with the most votes, i.e.,
a∗ = argmaxa

∑N
i=1 I(ai = a), where I(·) is the indicator function.

Verification. Verification introduces an external verifier r(·) to evaluate the N solutions produced
by the LLM generator. Existing verifiers can be roughly divided into two kinds: the outcome re-
ward model (ORM) family and the process reward model (PRM) family. ORM directly evaluates
the confidence score for each complete solution as s = rORM (x1:T ), while PRM aggregates the
confidence scores of sub-sequences as s = rPRM (x1:T ) = Aggr({rPRM (xt|x1:t−1)}Tt=1). Here,
rPRM (xt|x1:t−1) corresponds to the process reward, and Aggr(·) is the aggregation function such
as the minimum or product:

min = min{rPRM (xt|x1:t−1)}Tt=1, prod =

T∏
t=1

rPRM (xt|x1:t−1). (1)

The final answer could either be selected from the solution with the highest score a∗ = argmaxai si

(best-of-N ), or the answer with the highest total weight a∗ = argmaxa
∑N

i=1 s
iI(ai = a)

(weighted majority voting) (Li et al., 2023b). In this work, we mainly develop our method on
top of the weighted majority voting due to its empirical better performance (Sun et al., 2024).

2.2 IMPORTANCE SAMPLING AND TWISTED SEQUENTIAL MONTE CARLO

Importance Sampling. Consider a target distribution σ(x1:T ) = σ̃(x1:T )
Zσ , where σ̃(x1:T ) ≥ 0

is the unnormalized probability density and Zσ =
∫
x1:T

σ̃(x1:T )dx1:T is the normalizing factor,
typically intractable. For a given function h(x1:T ), it could be difficult to estimate its expectation
under σ(x1:T ) via direct sampling. Importance sampling (IS) (Robert & Casella, 2000) instead
introduces a proposal distribution q(x1:T ) and provides an estimator of the expectation as

Eσ(x1:T )[h(x1:T )] =
1

Zσ
Eq(x1:T )[

σ̃(x1:T )

q(x1:T )
h(x1:T )] =

Eq(x1:T )[
σ̃(x1:T )
q(x1:T )h(x1:T )]

Eq(x1:T )[
σ̃(x1:T )
q(x1:T ) ]

. (2)

Here, σ̃(x1:T )
q(x1:T ) is known as the importance weight w(x1:T ). Using some q(x1:T ) that is easy to

sample from, we can leverage Equation 2 to estimate the expectation via the Monte Carlo method:

Eσ(x1:T )[h(x1:T )] ≈
N∑
i=1

w(xi
1:T )∑N

j=1 w(x
j
1:T )

h(xi
1:T ), xi

1:T ∼ q(x1:T ). (3)

Although ideally a zero variance of the importance weight could be achieved when q(x1:T ) =
σ(x1:T ), such a case rarely holds in practice. Remarkably, the distribution mismatches at each
step are accumulated as the generation proceeds, leading to an exponentially increasing variance
with respect to T (Doucet & Johansen, 2009). Such a limitation makes IS inefficient in the high-
dimensional space, since extensive sampling is needed to reduce the variance.

Twisted Sequential Monte Carlo. Twisted Sequential Monte Carlo (TSMC) enhances the sam-
pling efficiency of IS by modifying the marginal distribution of the proposal, q(x1:t), to a more
informative intermediate distribution, πt(x1:t). The aim is to ensure that partial sequences from
πt(x1:t) are more likely to produce high-density samples in the final target distribution σ(x1:T ).
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Here, {πt}Tt=1 are known as the (twisted) intermediate targets, where πt(x1:t) = π̃t(x1:t)
Zπ

t
, and the

final target is aligned with π̃T ≡ σ̃. In standard Sequential Monte Carlo, πt(x1:t) is typically the
target marginal σ(x1:t) =

∑
xt+1:T

σ(x1:T ), to ensure that at each time step, the marginal distribu-
tion matches the target. However, if our primary interest is only the final target σ(x1:T ), we are free
to design {πt}T−1

t=1 on the specific problem at hand, leading to the flexibility of the TSMC method.

TSMC operates recursively, alternating between generation and resampling. At each step, TSMC
takes the input of N partial sequences, {xi

1:t−1}Ni=1, following the distribution πt−1(x1:t−1), and
extends these sequences by sampling the next step from the proposal, i.e., xt ∼ q(·|x1:t−1). It
computes the incremental importance weight for each sequence as

wt(x1:t) =
π̃t(x1:t)

q(xt|x1:t−1)π̃t−1(x1:t−1)
. (4)

These weights are used to approximate the distribution πt by resampling the partial sequences from
a categorical distribution with the self-normalized weights:

xi
1:t ← xωi

1:t, ωi ∼ Cat({ wt(x
i
1:t)∑N

j=1 wt(x
j
1:t)

)}Ni=1), i = 1, · · · , N. (5)

This new set of N sequences would serve as the input to the next step of TSMC. With informative
intermediate targets, the resampling step could promptly discard the sequences with a low potential
in the target distribution and avoid a large variance in the importance weights. More importantly,
since πT (x1:T ) is matched with the target σ(x1:T ), TSMC always yields an unbiased estimator of∑

x1:T
σ̃(x1:T )h(x1:T ) regardless of the twist functions (Del Moral, 2004).

3 METHODOLOGY

3.1 EXISTING VERIFICATION METHODS ARE PERFORMING IMPORTANCE SAMPLING

The motivation of our method is based on the observation that existing verification methods are
essentially performing IS. To see this, compare the normalized voting weight of each answer in
majority voting and weighted majority voting when N is infinitely large:

lim
N→∞

∑N
i=1 I(ai = a)

N
= Ep(x1:T )[I(Ans(x1:T ) = a)] (majority voting) (6)

lim
N→∞

∑N
i=1 siI(ai = a)

N
= Ep(x1:T )[r(x1:T )I(Ans(x1:T ) = a)] (weighted majority voting) (7)

It can be seen that the weighting process actually introduces a factor r(x1:T ) with a similar role of
the importance weight in Equation 2. In particular, we can let σ̃(x1:T ) = p(x1:T )r(x1:T ) and treat
weighted majority voting as IS to estimate the answer voting weight

w(a) =
∑
x1:T

σ̃(x1:T )I(Ans(x1:T ) = a). (8)

However, as described in Section 2.2, the importance weight in IS suffers from a large variance in
the high-dimensional space, so do the estimation objectives according to Proposition 3.1.

Proposition 3.1. For IS with the target σ(x1:T ) and proposal q(x1:T ), up to a constant C indepen-
dent of q(x1:T ), the following identity in the variance holds for the set of all answers A:∑

a∈A
Vq[

σ̃(x1:T )I(Ans(x1:T ) = a)

q(x1:T )
] = Vq[

σ̃(x1:T )

q(x1:T )
] + C. (9)

We include the proof in Appendix A.1. This issue also accounts for problem I, that is, many samples
are needed to reduce the variance of the estimator. Therefore, we aim to address this problem via
TSMC, which provides the unbiased estimator of w(a), but with less variance. We visualize the
comparison between existing IS-based verification and our TSMC-based verification in Figure 1.

4



Published as a conference paper at ICLR 2025

Figure 1: IS-based verification vs. TSMC-based verification. (a) Typical IS-based verification
only weights (verifies) the solutions until they are fully generated, which often leads to generat-
ing incorrect solutions with high probability, aka low sampling efficiency. (b) Our TSMC-based
verification weights and resamples partial solutions at each step of the generation process. This se-
quential resampling process reduces the discrepancy between the proposal and target distributions,
improving the overall correctness of the generated solutions and thus the sampling efficiency.

3.2 VERIFICATION VIA TSMC

The optimal reward model in our problem is simply the correctness function of each solution, i.e.,
r∗(x1:T ) = ϕ(Ans(x1:T )). In the following section, we fix our target distribution as

σ(x1:T ) =
p(x1:T )ϕ(Ans(x1:T ))

Zσ
, (10)

since it corresponds to the actual target distribution we try to sample from.

To utilize TSMC for verification, we need to decide the proposal distribution q(xt|x1:t−1) and inter-
mediate targets {πt}T−1

t=1 . Following Zhao et al. (2024), we define the intermediate targets through
the nonnegative twist functions {ψt}T−1

t=1 , which are designed to be optimized:

πt(x1:t) =
p(x1:t)ψt(x1:t)

Zπ
t

. (11)

Let ψ0(x0) ≡ 1 and ψT (x1:T ) ≡ ϕ(Ans(x1:T )), the incremental importance weight is given by

wt(x1:t) =
p(xt|x1:t−1)ψt(x1:t)

q(xt|x1:t−1)ψt−1(x1:t−1)
. (12)

Zhao et al. (2024) have shown that the optimal proposal and intermediate targets correspond to

q∗t (xt|x1:t−1) =
σ(x1:t)

σ(x1:t−1)
and π∗

t (x1:t) = σ(x1:t). (13)

However, it is hard to directly apply these optimal choices in our case. We outline the reasons and
our approach as follows.
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Proposal. There are two challenges that prevent us from using the optimal proposal. First, the
combinatorial nature of the step xt, which consists of multiple tokens, makes q∗t (xt|x1:t−1) gen-
erally intractable. Moreover, even if we can approximately sample from it, we still encounter the
second challenge, the large variance in q∗t (xt|x1:t−1) caused by the high dimensionality of xt. This
would result in the weight degeneracy issue (Naesseth et al., 2019) of TSMC, where the incremental
importance weights would be dominated by a single sample, resulting in a poor diversity of solutions
after resampling. We therefore simply let q(xt|x1:t−1) = p(xt|x1:t−1) for ease of sampling, and
weight degeneracy would be alleviated when q(xt|x1:t−1) cancels in Equation 12.

Intermediate targets. The intermediate targets in Equation 13 are no longer optimal when we use
p(xt|x1:t−1) as our proposal. However, it is also hard to solve the globally optimal intermediate
targets for an arbitrary proposal. We instead seek to sequentially derive the locally optimal twists in
a greedy manner. Since our ultimate goal is to estimate the answer weights w(a), we start by look-
ing for the optimal intermediate target π∗

T−1(x1:T−1) to minimize the variance of the incremental
importance weight in the last TSMC step. We prove the following proposition in Appendix A.2.
Proposition 3.2. Given an intermediate target πt(x1:t) and the proposal q(xt|x1:t−1), the optimal
πt−1(x1:t−1) in minimizing the variance of the incremental importance weight corresponds to

πq
t−1(x1:t−1) ∝

√∑
xt

πt(x1:t)2

q(xt|x1:t−1)
. (14)

Taking t = T and q = p implies πp
T−1(x1:T−1) ∝ p(x1:T−1)

√∑
xT
p(xT |x1:T−1)ϕ(Ans(x1:T )).

Here we apply the fact that ϕ(Ans(x1:T ))
2 = ϕ(Ans(x1:T )) as it is binary. If we fix the inter-

mediate target as the choice above, we could further propagate the derivation to previous steps by
recursively applying Proposition 3.2, getting the locally optimal intermediate targets for t < T as

πp
t (x1:t) ∝ p(x1:t)

√ ∑
xt+1:T

p(xt+1:T |x1:t)ϕ(Ans(x1:T )). (15)

In particular,
∑

xt+1:T
p(xt+1:T |x1:t)ϕ(Ans(x1:T )) actually represents the value function V p(x1:t)

in reinforcement learning (Ouyang et al., 2022). Hence, the locally optimal twists are given by

ψp
t (x1:t) ∝

√
V p(x1:t). (16)

3.3 CONNECTION WITH THE PRM

Based on our above choices, the incremental importance weights in Equation 12 becomes

wp
t (x1:t) =

ψp
t (x1:t)

ψp
t−1(x1:t−1)

∝

√
V p(x1:t)

V p(x1:t−1)
. (17)

The incremental importance weight could also be treated as a measurement of the step quality,
similar to the process reward in PRMs. To further augment this connection, note that

T∏
t=1

wp(x1:t) =

T∏
t=1

ψp
t (x1:t)

ψp
t−1(x1:t−1)

=
ψp
T (x1:T )

ψp
0(x0)

= ϕ(Ans(x1:T )), (18)

which is in the same format as the PRM with prod aggregation. The key observation here is that
TSMC always yields an unbiased estimator of the importance weight ϕ(Ans(x1:T )), when there is
no estimation error of V p. We continue to compare this estimator to some existing PRMs.

The PRM learned through automatic supervision. This class of PRMs (Wang et al., 2023a; Luo
et al., 2024) computes the process reward by evaluating the value function at each partial solution
with respect to a roll-out policy µ. The solution confidence score will be computed as

rPRM (x1:T ) = Aggr({r(xt|x1:t−1)}Tt=1) = Aggr({V µ(x1:t)}Tt=1). (19)

However, such an estimator is always biased no matter min or prod is used for aggregation.
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The PRM learned through human supervision. The human supervision is generated through
the logical sense of step correctness. We formally establish the definition of step correctness in
Definition A.1 and prove the following proposition in Appendix A.3.
Proposition 3.3. The PRM corresponding to the step correctness can be expressed as

rPRM (xt|x1:t−1) = I(σ(x1:t) > 0). (20)

Therefore, the solution confidence score from this PRM is always an unbiased estimator of
ϕ(Ans(x1:T )) for both min and prod aggregation. However, using I(σ(x1:t) > 0) for the in-
termediate target, as tried by Uesato et al. (2022), does not effectively reduce the sampling variance
or improve verification performance since it ignores the likelihood of the proposal p(xt+1:T |x1:t).

3.4 VALUE FUNCTION ESTIMATION

The approximation of {ψp
t }T−1

t=1 and r∗ can be consolidated into a single learning task: estimating
the value function V p. We therefore use a single neural model parameterized by θ for the approx-
imation. Estimating the value function through independently sampled data from a fixed policy
(generator) is a well-studied topic (Bertsekas, 2012). It therefore eliminates the need for explicit
process supervision during training, as outlined in Problem II.

In this paper, we adopt the Contrastive Twist Learning (CTL) method developed by Zhao et al.
(2024). It is hard to directly approximate πp

t via Monte Carlo sampling, so we instead approximate
the target marginal σ(x1:t) to estimate the value function, and take the square root of the estimated
value function during the inference time. Let V θ be our estimated value function of V p, and define
the intermediate target πθ

t (x1:t) =
p(x1:t)V

θ(x1:t)
Zπ

t (x1:t)
. CTL minimizes the KL divergence between the

target marginal distributions and the intermediate targets:

min
θ
LCTL(θ) = min

θ

T∑
t=1

DKL(σ(x1:t)∥πθ
t (x1:t)), (21)

whose gradient at t-th step can be derived as

Eσ(x1:t)[∇θ log V
θ(x1:t)]− Eπθ

t (x1:t)[∇θ log V
θ(x1:t)]. (22)

We approximate the gradient in the first term via rejection sampling, and the gradient in the second
term via importance sampling, as done in Equation 3. We include more training details in Appendix
C.2 and summarize our entire TSMC-based verification algorithm in Appendix B.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We briefly outline our experimental setup in this section and include more details in Appendix C.

Datasets. Building on prior work (Uesato et al., 2022; Lightman et al., 2024; Wang et al., 2023a),
we assess our TSMC method using two widely used math datasets: GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). For GSM8K, we evaluate model performance on all testing
instances. While for MATH, we follow Lightman et al. (2024) to select a representative subset of
500 testing instances, referred to as MATH500 in the following text.

Generators. We fine-tune two solution generators from pretrained Llemma-7B (Azerbayev et al.,
2023) and DeepSeek-7B (Shao et al., 2024), respectively. Following Sun et al. (2024), we use the
filtered PRM800K (Lightman et al., 2024) as the supervised fine-tuning dataset.

Baselines. We compare our method to both non-verification methods, including zero-shot greedy
decoding and majority voting (MV) (Wang et al., 2023c), and verification methods based on
weighted majority voting (WMV). For verification methods, we use various types of verifiers, in-
cluding the ORM, the PRM trained with human supervision on PRM800K (Lightman et al., 2024)),
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and the PRM trained with automatic supervision on MATH-SHEPHERD (Wang et al., 2023a). We
employ min for aggregation on both PRMs. For each generator, we use the same pretrained model
to train the reward models and value function, with a linear head applied. The problem solving rate
(in %) is used as the comparison metric.

TSMC details. Our TSMC is applied at the step level. We implement a warm-up stage that skips
resampling in the initial stage, setting this threshold at 50 tokens across all experiments. A maxi-
mum of five resampling steps is allowed to reduce the latency. For sequences that terminate early,
we assign an incremental importance weight of 1 during the remaining resampling steps. We em-
ploy stratified sampling (Kitagawa, 1996) for resampling to reduce variance. Due to the resource
constraint, we perform resampling over a mini-batch of M samples instead of the full batch of N
solutions. The batch set is fixed as M = 40 by default in the following experiments.

4.2 MAIN RESULTS

To verify whether TSMC really improves the sampling efficiency with better solution quality, we
also perform the majority voting on the solutions generated by TSMC. We denote this method as
TSMC + MV, and the complete TSMC as TSMC + WMV. We present our main results in Table 1.

Table 1: Comparative results in the problem solving rate (%) on GSM8K and MATH500 datasets.
We use two generators fine-tuned from pretrained Llemma-7B and DeepSeek-7B, respectively. We
bold the best results in each category. The voting is performed on 240 samples.

Generators Methods GSM8K MATH500

Llemma-7B

Greedy 38.2 19.4
MV 72.5 41.2
WMV w. ORM 78.7 43.0
WMV w. PRM (PRM800K) 73.6 43.2
WMV w. PRM (SHEPHERD) 79.2 43.6
TSMC + MV (Ours) 78.1 44.2
TSMC + WMV (Ours) 80.4 46.4

DeepSeek-7B

Greedy 61.2 30.8
MV 86.4 52.8
WMV w. ORM 86.6 55.0
WMV w. PRM (PRM800K) 87.0 55.2
WMV w. PRM (SHEPHERD) 89.5 52.6
TSMC + MV (Ours) 89.5 55.6
TSMC + WMV (Ours) 91.7 60.8

It is evident that TSMC + MV demonstrates a significant improvement over vanilla MV, highlight-
ing its effectiveness in enhancing the overall solution quality. Moreover, TSMC consistently out-
performs other methods in terms of final verification performance. It is worth noting that the final
verification step in TSMC operates independently of the generator, meaning that a better reward
model could further improve TSMC’s performance in WMV. Overall, our TSMC-based verification
method shows a clear advantage over existing verification methods, with a simpler training target.

4.3 IMPACT OF BIAS ON ESTIMATORS

TSMC is characterized by its unbiased estimation of the importance weight, which is ϕ(Ans(x1:T ))
in our task. However, since the training error is unavoidable in practice, it remains unclear whether
such an unbiased estimation in the theoretical optimal case is meaningful. We therefore examine
this problem by comparing different biased and unbiased estimators analyzed in Section 3.3.

We consider both the PRM predicting step correctness, i.e., PRM (PRM800K), and the PRM esti-
mating the value function, including PRM (SHEPHERD) and the estimated value function in TSMC,
abbreviated as Value (TSMC). PRM (PRM800K) and PRM (SHEPHERD) are applied to indepen-
dently generated solutions, while Value (TSMC) is applied to TSMC-generated solutions, treating
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estimated values as process rewards. Beyond min and prod, we also consider aggregating the
process rewards by taking last-step reward only, yielding an ORM-like unbiased estimator:

last = rPRM (xT |x1:T−1). (23)
Exceptionally, since the solutions in TSMC have already gone through the resampling process, we
use the last incremental weight for last in this scenario, recovering the original TSMC process as
an unbiased estimator. We compare all estimators in Figure 2, under different settings.

Figure 2: Comparison among all biased and unbiased estimators of the importance weight.

The trend is highly consistent when the estimated value is used as the process reward, i.e., in PRM
(SHEPHERD) and Value (TSMC). In this case, prod consistently exhibits poor performance across
all settings. Since the value at each step lies in [0, 1], the product of values is highly biased towards
the solutions with fewer steps. In contrast, min could overcome such a bias as its value is insensitive
to the number of steps. Its clear advantage against prod is also in line with the choice of (Wang
et al., 2023a). However, the performance is still consistently worse than the unbiased estimator using
last. A different pattern shows up in PRM (PRM800K), where the estimated step correctness is
used as the process reward. The min strategy still achieves the overall best result, but prod is
also comparably good. We find no advantage of last in this case, as all estimators are unbiased.
Instead, prod and min would benefit from ensemble modeling by aggregating multiple scores.

We find our results consistent with the observation from Sun et al. (2024). Basically, the advantage
of PRM against ORM is enduring only when both are unbiased estimators of ϕ(Ans(x1:T )). When
PRM is biased, there is no clear guarantee of better performance against ORM, which is always an
unbiased estimator. TSMC instead assimilates the strength of the unbiased estimation from ORM
and the intermediate-step modeling from PRM, leading to the best performance.

4.4 IMPACT OF VARIANCE ON ESTIMATORS

Besides of being unbiased, TSMC reduces the variance of importance weight through informative
twists. To investigate the impact of variance, we consider the following variants of TSMC: using
the step correctness predicted by PRM (PRM800K) as the incremental importance weight; using the
process reward in PRM (SHEPHERD) as the estimated value function; and using V p(x1:t) rather
than

√
V p(x1:t) for the twist, which approximates the target marginal σ(x1:t) as the intermediate

target. Taking Llemma-7B on MATH500 as an example, we compare their performance in Figure 3.

As noted in Uesato et al. (2022), the use of step correctness to guide intermediate decoding does
not enhance performance because it disregards the likelihood from the generator. In contrast, PRM
(SHEPHERD) offers a more informative guidance through its estimated value function. Nonethe-
less, this value is assessed using a different generator µ, resulting in inferior performance compared
to employing the approximated V p as the twist. Finally, utilizing V p(x1:t) as the twist yields poorer
results than using

√
V p(x1:t), highlighting the importance of optimizing variance.
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Figure 3: TSMC with different intermediate tar-
gets. Variance are visualized across many sub-
samples of the 240 solutions per problem.

Figure 4: Ablation study on the TSMC batch
size. Variance are visualized across many sub-
samples of the 240 solutions per problem.

4.5 SENSITIVITY ANALYSIS OF MODEL PERFORMANCE TO TSMC BATCH SIZE

Different from standard decoding, TSMC is a batch decoding method whose performance is de-
pendent on the batch size M . Notably, when M = 1, TSMC is reduced to standard decoding. To
explore how sensitive TSMC is to its batch size, we vary M over {10, 20, 40, 80} and visualize the
comparative results in Figure 4. As illustrated, the overall variance stays within a reasonable range,
and all outcomes significantly outperform the baselines in Table 1. Consequently, we claim that
TSMC is robust to changes in its batch size, provided that the batch size is not too small.

5 RELATED WORK

Verification for reasoning. Verification has proven to be an effective approach in enhancing the
multi-step reasoning ability of LLMs. Two widely adopted verification methods are Outcome Re-
ward Model (ORM) (Cobbe et al., 2021) and Process Reward Model (PRM) (Uesato et al., 2022).
Although empirical evidence suggests that PRM outperforms ORM (Lightman et al., 2024), training
PRM presents a significant challenge due to the need for process supervision, which is often diffi-
cult to obtain. Therefore, recent research has increasingly focused on automatic supervision to train
PRMs more efficiently (Wang et al., 2023b; Luo et al., 2024; Wang et al., 2024b).

(Twisted) Sequential Monte Carlo. Sequential Monte Carlo (SMC) is a generic statistical in-
ference approach that has been widely applied in various domains, including signal processing
(Doucet & Johansen, 2009; Simon J Godsill & West, 2004), financial econometrics (Johannes &
Polson, 2010; Creal, 2012), and robotics (Montemerlo et al., 2002; Bailey & Durrant-Whyte, 2006;
Thrun et al., 2005). Recently, SMC has been integrated with neural networks to enhance sequen-
tial generative models, such as diffusion models (Trippe et al., 2023; Wu et al., 2023) and LLMs
(Lew et al., 2023; Zhao et al., 2024). The most relevant work to ours is Zhao et al. (2024), which
presents a general framework for controlled text generation using Twisted Sequential Monte Carlo
(TSMC). However, our work primarily focuses on multi-step reasoning, under the assumption of a
weak generator and long reasoning process. Furthermore, we are the first to bridge TSMC with the
predominant verification methods, offering a novel theoretical perspective for interpretability.

6 CONCLUSION & LIMITATION

In this paper, we introduce a novel verification method for multi-step reasoning using Twisted Se-
quential Monte Carlo (TSMC). Our approach sequentially approximates intermediate targets, en-
hancing the reasoning process of large language models, and improving both solution quality and
sampling efficiency. By incorporating step-wise guidance that is learned without human supervision,
our method provides a scalable framework for various multi-step reasoning tasks.

Although promising, our method could potentially suffer from the broken parallelism caused by
the variable step length, leading to additional inference latency. One possible solution involves
blockwise resampling over steps with a fixed number of tokens. Future work could also explore the
impact of TSMC batch size and refine algorithmic design for further efficiency gains.
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econometrics. In YACINE AÏT-SAHALIA and LARS PETER HANSEN (eds.), Handbook of
Financial Econometrics: Applications, volume 2 of Handbooks in Finance, pp. 1–72. Elsevier,
San Diego, 2010. doi: https://doi.org/10.1016/B978-0-444-53548-1.50003-9. URL https:
//www.sciencedirect.com/science/article/pii/B9780444535481500039.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

Genshiro Kitagawa. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of Computational and Graphical Statistics, 5(1):1–25, 1996. doi: 10.
1080/10618600.1996.10474692. URL https://www.tandfonline.com/doi/abs/
10.1080/10618600.1996.10474692.
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timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
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A PROOFS

Here we include the proofs for all the propositions present in the main paper.

A.1 PROOF FOR ANSWER WEIGHT VARIANCE

Proposition 3.1. For IS with the target σ(x1:T ) and proposal q(x1:T ), up to a constant C indepen-
dent of q(x1:T ), the following identity in the variance holds for the set of all answers A:∑

a∈A
Vq[

σ̃(x1:T )I(Ans(x1:T ) = a)

q(x1:T )
] = Vq[

σ̃(x1:T )

q(x1:T )
] + C. (9)

Proof. For simplicity, denote fa(x1:T ) = I(Ans(x1:T ) = a). Using the fact that fa(x1:T )
2 =

fa(x1:T ) and
∑

a∈A fa(x1:T ) = 1, we have∑
a∈A

Vq[
σ̃(x1:T )fa(x1:T )

q(x1:T )
] =

∑
a∈A

(Eq[(
σ̃(x1:T )fa(x1:T )

q(x1:T )
)2]− Eq[

σ̃(x1:T )fa(x1:T )

q(x1:T )
]2)

=
∑
a∈A

(
∑
x1:T

σ̃(x1:T )
2fa(x1:T )

2

q(x1:T )
− (

∑
x1:T

σ̃(x1:T )fa(x1:T ))
2)

=
∑
x1:T

σ̃(x1:T )
2
∑

a fa(x1:T )
2

q(x1:T )
−

∑
a∈A

(
∑
x1:T

σ̃(x1:T )fa(x1:T ))
2

=
∑
x1:T

σ̃(x1:T )
2

q(x1:T )
−

∑
a∈A

(
∑
x1:T

σ̃(x1:T )fa(x1:T ))
2

= Vq[
σ̃(x1:T )

q(x1:T )
] + C.

(24)

Here, C = (
∑

x1:T
σ̃(x1:T ))

2 −
∑

a∈A(
∑

x1:T
σ̃(x1:T )fa(x1:T ))

2 is independent of q(x1:T ).

A.2 PROOF FOR LOCALLY OPTIMAL INTERMEDIATE TARGETS

Proposition 3.2. Given an intermediate target πt(x1:t) and the proposal q(xt|x1:t−1), the optimal
πt−1(x1:t−1) in minimizing the variance of the incremental importance weight corresponds to

πq
t−1(x1:t−1) ∝

√∑
xt

πt(x1:t)2

q(xt|x1:t−1)
. (14)

Proof. Note that we have the expectation of importance weight

Ep,πt−1 [
πt(x1:t)

p(xt|x1:t−1)πt−1(x1:t−1)
] = 1. (25)

Using the fact that V[X] = E[X2]− E[X]2, we write the variance of the importance weight as

Vp,πt−1
[

πt(x1:t)

q(xt|x1:t−1)πt−1(x1:t−1)
] = Eq,πt−1

[(
πt(x1:t)

q(xt|x1:t−1)πt−1(x1:t−1)
)2]− 1 (26)

Minimizing the variance is therefore equivalent to minimizing Eq,πt−1 [(
πt(x1:t)

p(xt|x1:t−1)πt−1(x1:t−1)
)2].

Subject to the constraint of the probability, we introduce the Lagrange multiplier λ in our objective:

min
πt−1

Eq,πt−1
[(

πt(x1:t)

q(xt|x1:t−1)πt−1(x1:t−1)
)2] + λ(

∑
x1:t−1

πt−1(x1:t−1)− 1)

=min
πt−1

∑
x1:t

πt(x1:t)
2

q(xt|x1:t−1)πt−1(x1:t−1)
+ λ(

∑
x1:t−1

πt−1(x1:t−1)− 1).

(27)
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Taking (·)
πt−1(x1:t−1)

= 0, we get

−
∑
xt

πt(x1:t)
2

q(xt|x1:t−1)π2
t−1(x1:t−1)

+ λ = 0. (28)

This yields the optimal πq
t−1 given q as

πq
t−1(x1:t−1) =

1

λ

√∑
xt

πt(x1:t)2

q(xt|x1:t−1)
, (29)

where λ is chosen to normalize the densities to have a sum of 1. Especially, when πt and q corre-
spond to the optimal choices in Equation 13, we recover

πq
t−1(x1:t−1) =

1

λ

√∑
xt

σ(x1:t)σ(x1:t−1) = σ(x1:t−1) = π∗
t−1(x1:t−1). (30)

A.3 PROOF FOR THE PRM BASED ON STEP CORRECTNESS

Although the human-annotated process supervision is informally understood as the correctness of
a step, there lacks a formal definition of this concept in existing literature (Uesato et al., 2022;
Lightman et al., 2024; Wang et al., 2023a; Luo et al., 2024). Here we formally establish the definition
of step correctness as follows.

Definition A.1. Each step xt|x1:t−1 is either correct or incorrect, following the two axioms below:

• For any solution x1:T , if xt|x1:t−1 is correct for t = 1, · · · , T , then ϕ(Ans(x1:T )) = 1.

• For any solution x1:T , if any step xt|x1:t−1 is incorrect, then ϕ(Ans(x1:T )) = 0.

Based on Definition A.1 we proceed to prove Proposition 3.3.

Proposition 3.3. The PRM corresponding to the step correctness can be expressed as

rPRM (xt|x1:t−1) = I(σ(x1:t) > 0). (20)

Proof. According to Definition A.1, a step is correct as long as it is contained by at least one correct
solution. Otherwise, it would be incorrect. Therefore, the process reward in this case corresponds to

rPRM (xt|x1:t−1) = I(
∑

xt+1:T

σ(x1:T ) > 0) = I(σ(x1:t) > 0). (31)

Here, we treat all steps as incorrect if they follow an incorrect step. In Lightman et al. (2024), a step
could still be labeled correct even if its previous steps are incorrect. This is because logical thinking
is not always in a linear dependency, i.e. a future step is not necessarily dependent on all steps prior
to it. However, how to label these steps is up to inductive bias, which does not affect the solution
score in the theoretical optimal case.

B PSEUDOCODE FOR TSMC

Here we summarize the pseudocode for our TSMC-based verification method, where CONCAT(·)
represents the concatenation function, i.e., appending a new element to a list.
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Algorithm 1 TSMC for Verification
1: Input: Generator p, estimated value function V θ

2: for t = 1, . . . , T do
3: for i = 1, · · · , N do
4: # Sample the next step
5: xi

t ∼ p(·|xi
1:t−1)

6: # Concatenate the sampled step to the partial sequence
7: xi

1:t ← CONCAT(xi
1:t−1,x

i
t)

8: # Evaluate the incremental importance weight
9: if t < T then

10: w(xi
1:t)←

√
V θ(xi

1:t)

V θ(xi
1:t−1)

11: else
12: w(xi

1:T )←
V θ(xi

1:T )√
V θ(xi

1:T−1)

13: end if
14: end for
15: if t < T then
16: for i = 1, · · · , N do
17: # Resample the sequences

18: ωi ∼ Cat({ wt(x
i
1:t)∑N

j=1 wt(x
j
1:t)

)}Ni=1)

19: xi
1:t ← xωi

1:t
20: end for
21: end if
22: end for
23: # Create a dictionary to store the voting weight
24: W ← {}
25: for i = 1, · · · , N do
26: # Extract the answer
27: ai ← Ans(xi

1:T )
28: if ai ∈W then
29: # Update the answer voting weight
30: W [ai]←W [ai] + w(xi

1:T )
31: else
32: W [ai]← w(xi

1:T )
33: end if
34: end for
35: # Voting
36: return: argmaxaW [a]

C ADDITIONAL EXPERIMENTAL DETAILS

We conducted our experiments for Llemma-7B on 8 NVIDIA H100 GPUs, and our experiments
for DeepSeek-7B on 4 NVIDIA RTX A6000 GPUs. Since Llemma-7B is generally weaker than
DeepSeek-7B, it in general requires more training samples per problem (the batch size B) to obtain
at least one positive solution. The summary of the model hyperparameters is presented in Table 2,
and we include individual details as follows.

C.1 GENERATOR TRAINING

We follow Sun et al. (2024) to fine-tune the generators on a filtered subset from PRM800K (Light-
man et al., 2024). The hyperparameters are kept the same across the fine-tuning over Llemma-7B
(Azerbayev et al., 2023) and DeepSeek-7B (Shao et al., 2024). The generators are fixed once the
supervised fine-tuning is over and no additional reinforcement learning is applied.

During the inference time, we generate the solution using top-K sampling with K = 20 and set the
temperature as 0.7. The maximum length of the solution is fixed as 768.
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Table 2: The summary of training hyperparameters for all models.

Llemma-7B Generator Value ORM PRM (PRM800k) PRM (SHEPHERD)

Learning rate 2× 10−5 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 128 40 128 128 128

# Epochs 3 2 2 2 2

Warmup ratio 0.2 0.05 0.2 0.2 0.2

Max. length 768

Dtype BF16
Deepseek-7B Generator Value ORM PRM (PRM800k) PRM (SHEPHERD)

Learning rate 2× 10−5 5× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 128 80 128 128 128

# Epochs 3 2 2 2 2

Warmup ratio 0.2 0.10 0.2 0.2 0.2

Max. length 768

Dtype BF16

C.2 VALUE NETWORK TRAINING

For each math problem in the training dataset, we generate B (the batch size in the above tables)
solutions independently with the generator and ignore the problem during training time if all solu-
tions are correct or incorrect. The inference hyperparameters for the generator are kept the same as
above. We use the same way to create the validation set using 500 validation instances.

We apply CTL loss (Zhao et al., 2024) on the step-level. The steps are separated by double newline
indicators, that is, \n\n, and the value function is trained on the token corresponding to the second
newline indicator, along with the end-of-sentence token <eos>. Since the CTL loss is computed
over all solutions to a single problem, we fill each training batch with all 80 samples collected from
that problem.

Recall that the gradient of the CTL loss at t-th step is given by

Eσ(x1:t)[∇θ log V
θ(x1:t)]− Eπθ

t (x1:t)[∇θ log V
θ(x1:t)]. (32)

We approximate the gradient in the first term via rejection sampling, while the gradient in the
second term via IS. The first term is approximated as

∑B
i=1

ϕ(Ans(xi
1:T ))∑B

j=1 ϕ(Ans(xj
1:T ))
∇θ log V

θ(xi
1:t).

In the second term, we first compute the importance weight using the current approximated
value function wθ

t (x
i
1:t) =

V θ(xi
1:t)

V θ(xi
1:t−1)

, then approximate the expected gradient via IS as∑B
i=1

wθ
t (x

i
1:t)∑B

j=1 wθ
t (x

j
1:t)
∇θ log V

θ(xi
1:t). Therefore, we can approximate the gradient of θ on the train-

ing problems as

∇θLCTL(θ) ≈ Ex0
[

T∑
t=1

B∑
i=1

(
ϕ(xi

1:T )∑B
j=1 ϕ(x

j
1:T )
− wθ

t (x
i
1:t)∑B

j=1 w
θ
t (x

j
1:t)

)∇θ log V
θ(xi

1:t)]. (33)

C.3 ORM TRAINING

To ensure a fair comparison, the ORM is trained on the same data used to train and validate our
value function, but with a different data processing strategy and training method.

We basically follow the same procedure in Cobbe et al. (2021) to train the ORM. We balance the
positive and negative samples in the dataset by selecting the same number of correct and incorrect
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solutions per problem. The ORM is trained with the binary cross-entropy loss on each token while
only the last token is used for prediction during the inference time.

C.4 PRM TRAINING

We use PRM800K (Lightman et al., 2024) and MATH-SHEPHERD (Wang et al., 2023a) datasets
to train two PRMs separately. Especially, we use the PRM800K data to train the PRM once and
apply it on both GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) datasets. While
for MATH-SHEPHERD, it consists of the samples from both the GSM8K and MATH datasets, and
we use the corresponding portion to train two PRMs separately. A validation set of 4096 samples is
held from the training set of each benchmark. We apply the binary cross entropy loss on the second
newline token of a step and the last token of each sample.

D ADDITIONAL EXPERIMENTS

In this section, we present four additional experiments to check TSMC’s advantage over other non-
sampling methods, its performance on easy math problems, its generalizability to other reasoning
tasks, and its performance on other problems in the MATH dataset (Hendrycks et al., 2021).

D.1 COMPARISON WITH NON-SAMPLING ALGORITHMS

Although TSMC produces an unbiased estimation of importance weight with less variance, the
ultimate goal in reasoning tasks is to generate the solution with the highest probability of correctness.
In case we have a perfect estimation of the value function, we could greedily select the partial
sequence with the highest value and continue the search since then, which in theory should give the
highest chance of reaching the correct answer (Mudgal et al., 2024). But in practice, the training
error is unavoidable, and the estimation of the value function is always imperfect, which makes
the sampling necessary. In this section, we compare our TSMC method with some non-sampling
approaches to verify the necessity of sampling.

The most straightforward non-sampling variant of our TSMC method is blockwise best-of-K, (Mud-
gal et al., 2024), which iteratively selects the partial sequence with the highest value amongK partial
sequences, and clone the sequence forK times. Such a process is very similar to the resampling pro-
cess but with the density fully concentrated a single sample. A less greedy method is the Step-Level
Beam Search (SBS) (Chen et al., 2024). At each step, SBS selects the top-B1 partial sequences with
the highest values, then clones each sample for B2 times to continue the search in the next step.
It is also shown to outperform the Monte Carlo Tree Search method (Kocsis & Szepesvári, 2006;
Coulom, 2006; Silver et al., 2016; Świechowski et al., 2023) in both the efficiency and solving rate.
We follow Chen et al. (2024) to fix B2 in SBS. All these variants share the same batch size for
inference as in TSMC, with K = B1B2 = M = 40. We fix the value function for all methods and
compare TSMC to these variants in Figure 5.

Figure 5: Comparison with non-sampling algorithms. Variance are visualized across many sub-
samples of the 240 solutions per problem.
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It can be seen that our TSMC method still consistently outperforms both non-sampling approaches.
Although SBS achieves better results than other baselines in Table 1, there remains a clear perfor-
mance gap compared to our TSMC method. This underscores the robustness of the TSMC method
to the estimation error of the value function and highlights the importance of sampling in handling
such an error.

D.2 EASY MATH PROBLEMS

To examine whether TSMC has an adverse effect when the problem is easy, we evaluate the per-
formance of TSMC on an easy math reasoning benchmark, Multiarith (Roy & Roth, 2015). Since
the answer format of Multiarith is identical to that of GSM8K (Cobbe et al., 2021), consisting of
integer numbers, we directly utilize the generators and reward/value models trained on GSM8K to
evaluate this dataset. All experimental setups remain consistent with those described in Section 4.
The comparative results are shown in Table 3.

Table 3: Comparative results in the problem solving rate (%) on the Multiarith dataset. We use two
generators fine-tuned from pretrained Llemma-7B and DeepSeek-7B, respectively. We bold the best
results in each category. The voting is performed on 240 samples.

Generators Methods Multiarith

Llemma-7B

Greedy 66.7
MV 95.4
WMV w. ORM 97.1
WMV w. PRM (PRM800K) 95.4
WMV w. PRM (SHEPHERD) 97.8
TSMC + MV (Ours) 98.3
TSMC + WMV (Ours) 98.9

DeepSeek-7B

Greedy 85.6
MV 98.3
WMV w. ORM 98.3
WMV w. PRM (PRM800K) 97.7
WMV w. PRM (SHEPHERD) 98.9
TSMC + MV (Ours) 98.9
TSMC + WMV (Ours) 98.9

Although the absolute performance gap between TSMC and other baselines is reduced, TSMC, es-
pecially TSMC + MV, still shows a consistent improvement without showing any adverse effect. But
in practice, the usage of TSMC should balance the trade-off between the performance improvement
and the additional computational cost. In general, TSMC is particularly well-suited for scenarios
where the generator lacks the capacity to produce correct solutions.

D.3 OTHER REASONING TASK

In this section, we demonstrate the generalizability of TSMC to other reasoning tasks beyond mathe-
matical problems. Here we choose the quantitative natural language inference task in the NumGLUE
benchmark (Mishra et al., 2022), which uses a Python program for multi-step reasoning.

We separate the Python program into steps using the single newline character \n. We re-split the
dataset by choosing a subset of the original validation and testing sets for validation and testing, and
add the remaining ones to the training set. This forms a final dataset with 5924 training samples,
200 validation samples, and 200 testing samples. The training set is used for the fine-tuning of the
generator and the estimation of the value function, with CodeLlama-7B (Rozière et al., 2024) as the
pretrained model. The entire training process is kept the same as before. Since this task is relatively
easy, we perform TSMC across the full reasoning process, without skipping the first few tokens or
setting the maximum number of resampling steps.

The comparative results are presented in Table 4 below. Since PRMs are not available for this
task, we only compare our method with zero-shot greedy decoding, majority voting, and the ORM
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method. Here we vary the voting sample size across {5, 10, 20, 40}, and the TSMC batch size is
set the same as the number of voting samples. The results indicate that TSMC achieves a consistent
advantage over the baselines in all voting sizes. It still achieves a high solving rate (99%) with only 5
voting samples. Despite the simplicity of this task, the promising results have clearly demonstrated
the potential of TSMC for application to other reasoning tasks.

Table 4: Comparative results in the problem solving rate (%) on the NumGLUE dataset (quantita-
tive natural language inference). We fine-tune our generator from pretrained CodeLlama-7B. The
voting is performed under N = 5, 10, 20 and 40 respectively (no difference for the zero-shot greedy
decoding). We bold the best results in each category.

Generator Methods N = 5 N = 10 N = 20 N = 40

CodeLlama-7B

Greedy 94.0 94.0 94.0 94.0
MV 97.0 98.0 98.0 98.0
WMV w. ORM 97.0 98.5 98.5 98.5
TSMC + MV (Ours) 98.5 99.0 99.5 99.5
TSMC + WMV (Ours) 99.0 99.5 99.5 99.5

D.4 OTHER PROBLEMS IN THE MATH DATASET

To investigate whether the conclusion on MATH500 could be generalized to other problems in the
MATH dataset (Hendrycks et al., 2021), here we repeat our evaluation on the on-hold validation set,
which consists of 500 samples as well. The results are shown in Table 5. It can be seen that the
results are basically consistent with the ones presented in Table 1, where TSMC takes a consistent
lead over all baselines.

Table 5: Comparative results in the problem solving rate (%) on the on-hold validation set in MATH.
We use two generators fine-tuned from pretrained Llemma-7B and DeepSeek-7B, respectively. We
bold the best results in each category. The voting is performed on 240 samples.

Generators Methods MATH (validation)

Llemma-7B

Greedy 26.2
MV 40.2
WMV w. ORM 42.4
WMV w. PRM (PRM800K) 44.0
WMV w. PRM (SHEPHERD) 46.8
TSMC + MV (Ours) 47.4
TSMC + WMV (Ours) 50.8

DeepSeek-7B

Greedy 33.2
MV 55.2
WMV w. ORM 57.2
WMV w. PRM (PRM800K) 58.4
WMV w. PRM (SHEPHERD) 56.4
TSMC + MV (Ours) 56.8
TSMC + WMV (Ours) 61.6

E QUALITATIVE EXAMPLES

Here we include the qualitative examples generated by our TSMC method in Table 6. We compare
the samples discarded (do not get sampled) and cloned by TSMC (get sampled multiple times) dur-
ing the same resampling step. We also include the estimated value and the incremental importance
weight in each sample. Notably, the incremental importance weight is proportional to the resampling
probability up to a constant, so a lower weight means a lower chance to be sampled.
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QUESTION What is 1(2
235423523)?

DISCARDED

VALUE: 0.09
WEIGHT: 0.77

I notice that this expression is a power of 1, so it is just 1 by the definition of exponents.

However, I also notice that the exponent is very large, so I wonder if there is a pattern
or a shortcut to simplify it.

I recall that any number raised to a multiple of 2 has a simple pattern: it is either 1 or
−1 depending on whether the exponent is even or odd.

CLONED

VALUE: 0.18
WEIGHT: 1.25

So the question is asking us to evaluate 1(2
235423523).

Right, and we know that anything to the power of 1 is just 1.

So now we just need to evaluate 12
235423523

.

And since 1 is a power of 1, then 12
235423523

= 1.

QUESTION
A regular hexagon can be divided into six equilateral triangles. If the perimeter of one
of the triangles is 21 inches, what is the perimeter, in inches, of the regular hexagon?

DISCARDED

VALUE: 0.02
WEIGHT: 0.27

Since the hexagon is regular, all the sides are equal.

And since the hexagon can be divided into six equilateral triangles, all the sides of the
hexagon are also equal to the perimeter of one of the triangles divided by six.

So the perimeter of the hexagon is 21/6 = 3.5 inches.

CLONED

VALUE: 0.36
WEIGHT: 1.37

I know that the perimeter of a regular hexagon is six times the length of one of its sides,
so I need to find the length of one side of the hexagon.

If I divide a regular hexagon into six equilateral triangles, each triangle must have the
same side length as the hexagon, because they are congruent.

So, if the perimeter of one of the triangles is 21 inches, then each side of the triangle
must be 21/3 = 7 inches.

QUESTION How many positive whole-number divisors does 196 have?

DISCARDED

VALUE: 0.17
WEIGHT: 0.85

To find the number of divisors of a positive whole-number, I can use the fact that it is
equal to the product of one more than the exponents of its prime factorization.

For example, 12 has six divisors because it can be written as 22 ∗ 31, and the product of
one more than the exponents is (2 + 1) ∗ (1 + 1) = 6.

So I need to find the prime factorization of 196

I can start by dividing by 2, the smallest prime, and see if I get an integer.

196/2 = 98, which is not an integer, so 2 is not a factor of 196.

I can try the next prime, 3, and see if I get an integer.

CLONED

VALUE: 0.33
WEIGHT: 1.10

I need to find all the positive integers that divide 196 evenly, without leaving a remainder.

One way to do this is to factor 196 into its prime factors, and then use the formula for the
number of divisors of a product of prime powers.

196 is divisible by 2, so I can write it as 2 times 98.

98 is also divisible by 2, so I can write it as 2 times 49.

49 is a perfect square, and it is also divisible by 7, so I can write it as 7 times 7.

Therefore, 196 can be written as 2 times 2 times 7 times 7, or 22 times 72.

Table 6: Qualitative examples for partial sequences discarded and cloned by TSMC. The estimated
value and incremental importance weight from the TSMC are included. We also manually annotate
the incorrect/unpromising reasoning steps and highlight them in the pink color.
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F EXAMPLE OUTPUTS

Here we include some example outputs from the generator, which follows the basic format in
PRM800K (Lightman et al., 2024). # Question and # Solution indicate the input problem
and the generated solution, respectively.

# Question

Convert the point $(0,3)$ in rectangular coordinates to polar
coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0
$ and $0 \le \theta < 2 \pi.$

# Solution

To convert from rectangular to polar coordinates, I need to use the
formulas $r = \sqrt{xˆ2 + yˆ2}$ and $\theta = \tanˆ{-1} \frac{y}{x}.$

For this point, $x = 0$ and $y = 3,$ so $r = \sqrt{0ˆ2 + 3ˆ2} = 3$ and $
\theta = \tanˆ{-1} \frac{3}{0}.$

However, I can’t divide by zero, so I need to use a limit to avoid that.

As the angle $\theta$ approaches zero from the right, the ratio $\frac{y
}{x}$ approaches $\frac{3}{0ˆ+}.$

This means that $\theta$ approaches $\frac{\pi}{2},$ which is the angle
in the first quadrant.

Since $r$ is always positive, I don’t need to worry about the sign or
the quadrant.

Therefore, the polar coordinates are $(3, \frac{\pi}{2}).$

# Answer

(3, \frac{\pi}{2})

# Question

The expression $2\cdot 3 \cdot 4\cdot 5+1$ is equal to 121, since
multiplication is carried out before addition. However, we can obtain
values other than 121 for this expression if we are allowed to

change it by inserting parentheses. For example, we can obtain 144 by
writing \[

(2\cdot (3\cdot 4)) \cdot (5+1) = 144.
\]In total, how many values can be obtained from the expression $2\cdot

3\cdot 4 \cdot 5 + 1$ by inserting parentheses? (Note that
rearranging terms is not allowed, only inserting parentheses).

# Solution

I need to count how many ways I can group the four factors of the
product into two pairs, and then combine those pairs using either
multiplication or addition.

I can use the binomial coefficient to count the number of ways to choose
two factors out of four, and then multiply that by the number of

ways to group the remaining two factors.

The binomial coefficient $\binom{4}{2} = \frac{4!}{2!2!}

= 6$ is the number of ways to choose two factors out of four, and it
represents the number of ways to arrange the two pairs of factors.
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The number of ways to combine those pairs into a single product or sum
depends on which pair I choose to be the first one.

If I choose the pair $2\cdot 3$, then I have two options: either to
multiply them $(2\cdot 3)$, or to add them to the rest of the
expression $(2\cdot 3) \cdot 4\cdot 5 + 1$.

If I choose the pair $4\cdot 5$, then I have two options: either to
multiply them $(4\cdot 5)$, or to add them to the rest of the
expression $(2\cdot 3) \cdot 4 + 1$.

In either case, the rest of the expression $(4\cdot 5) \cdot 2\cdot 3 +
1$ or $(2\cdot 3) \cdot 4 + 1$ is always a constant, and I can ignore
it for now.

So, for each pair of factors, I have two options to combine them into a
product or a sum.

Therefore, for each way to arrange the two pairs of factors, I have $2\
cdot 2 = 4$ options to combine them into a product or a sum.

This means that there are $6\cdot 4 = 24$ ways to insert parentheses in
the expression, and obtain values other than 121.

# Answer

24
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