
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A HIERARCHICAL PROBABILISTIC FRAMEWORK FOR
INCREMENTAL KNOWLEDGE TRACING IN CLASS-
ROOM SETTINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge tracing (KT) aims to estimate a student’s evolving knowledge state
and predict their performance on new exercises based on performance history.
Many realistic classroom settings for KT are typically low-resource in data and
require online updates as students’ exercise history grows, which creates signifi-
cant challenges for existing KT approaches. To restore strong performance under
low-resource conditions, we revisit the hierarchical knowledge concept (KC) in-
formation, which is typically available in many classroom settings and can provide
strong prior when data are sparse. We therefore propose Knowledge-Tree-based
Knowledge Tracing (KT2), a probabilistic KT framework that models student un-
derstanding over a tree-structured hierarchy of knowledge concepts using a Hid-
den Markov Tree Model. KT2 estimates student mastery via an EM algorithm
and supports personalized prediction through an incremental update mechanism
as new responses arrive. Our experiments show that KT2 consistently outperforms
strong baselines in realistic online, low-resource settings.

1 INTRODUCTION

Knowledge tracing (KT) refers to an educational task that, given historical exercises performance
of a set of students, aims to predict whether they can solve a new exercise correctly. It can be
regarded as modeling the evolution of a student’s knowledge during learning, which is essential in
personalized learning systems, enabling dynamic adaptation to students’ needs. While prior works
on knowledge tracing impose very loose constraints about the availability of data (Piech et al., 2015;
Ghosh et al., 2020), in many practical real-world classroom scenarios, these constraints tend to
be much more stringent, due to various privacy and usability considerations. In particular, three
practical constraints have usually been understudied.

• Cold Start. For each target student, existing works usually assume that abundant historical data
from that student is available before the prediction starts. This implies that the prediction would need
to happen at a very late stage of the student’s learning – only after many exercises have been done.
To make KT meaningful, the prediction should start shortly after the target student starts learning,
with only a few exercises completed. This creates a cold start scenario for KT.

• Online Update. Conventional KT methods keep their model parameters fixed once the training
phase is completed, and apply the same parameters to predict all test data. However, in practice, new
student exercises constantly arrive in a streaming fashion, requiring KT methods to be efficiently
updated to capture the evolution of students’ understanding.

• Limited Peers. Many KT methods require a large number of peers to form a sufficiently large
dataset as the training set. In practice, the number of peers may be limited due to privacy protection.

The aforementioned constraints create significant challenges for existing KT algorithms. Specifi-
cally, recent KT approaches can be broadly categorized into two types. The first type, the deep-
learning-based methods (Zhang et al., 2017; Ghosh et al., 2020; Pandey & Karypis, 2019; Liu et al.,
2023b), trains neural architectures to model complex student performance patterns. Although these
methods have shown strong performance under benchmark settings, they require large amounts of
training data to achieve good performance, which is unavailable under the practical constraints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Student B

Incremental Inference

P(Q1 Correct) = ?

START

EM Update

+Burn-In

Q1: How many
triangles…

P(Q2 Correct) = ?

EM Update

Q2: How many
three-digit…

P(Q3 Correct) = ?

+Burn-In

+Q1

START

START

Knowledge-Tree-Based KT Incremental Inference

Class Burn-In Data Initial EM Estimation

Figure 1: KT2 framework. The model first performs a class-level estimation using burn-in responses
to initialize a global knowledge model. Each student is assigned a personalized knowledge concept
tree, which is incrementally updated with each new interaction via one-step EM.

On the other hand, the second type of methods, the large language model (LLM)-based methods (Li
et al., 2024; Neshaei et al., 2024), leverages LLMs to perform the prediction tasks, either fine-tuning
the LLM or selecting a subset of the target student’s historical data as in-context examples. While
these methods have improved data efficiency and online flexibility, they often struggle to capture
fine-grained patterns in historical data and may make predictions based on naive decision rules.

In summary, there appears to be a fundamental trade-off between data availability and a model’s
capacity to capture complex dependencies in student responses across exercises. Yet, one crucial
source of information—long underused in existing KT methods—could help overcome this bottle-
neck: knowledge concepts.

Knowledge concepts (KCs) refer to the labeled topics, knowledge areas, or skills associated with
each exercise. These concepts often follow a hierarchical structure, where broader concepts en-
compass finer-grained sub-concepts. KCs are readily available in many classroom settings, and
can be effective for modeling student learning. Intuitively, if a student has not mastered a particular
concept, they are likely to answer related questions incorrectly. Moreover, their performance on con-
ceptually adjacent or dependent concepts may also be affected. In low-resource classroom settings,
these knowledge labels, along with their hierarchical organization, can provide strong structural pri-
ors that enhance prediction performance. Can we leverage hierarchical knowledge concepts to
enable data-efficient, flexible, and online knowledge tracing for realistic classroom settings?

Motivated by this observation, we propose Knowledge-Tree-based Knowledge Tracing (KT2), a
probabilistic framework for low-resource, online knowledge tracing. KT2 builds a Hidden Markov
Tree Model (Crouse et al., 2002) based on the hierarchical tree structure of KCs, where the hidden
variables represent the student’s mastery of each KC, and the observed variables correspond to their
correctness on individual exercise questions. As shown in Fig. 1, the model parameters are first es-
timated using a small amount of initial (“burn-in”) data via the standard Expectation-Maximization
(EM) algorithm (Dempster et al., 1977), and are then incrementally updated as new exercise re-
sponses are observed. KT2 enables principled prediction of future performance of target students
by computing the distribution of correctness on upcoming exercises variables, conditioned on the
students’ historical exercise performance.

Our experiments demonstrate that KT2 effectively addresses the challenges of low-resource knowl-
edge tracing. For instance, with only 100 target students and as few as ten exercises per student,
KT2 consistently outperforms the strongest baselines.

In the online setting, KT2 requires only a single EM step to incorporate new data, enabling efficient
and consistent performance updates.

2 RELATED WORKS

Traditional Machine Learning KT The earliest KT models are based on probabilistic or statistical
machine learning methods. BKT (Corbett & Anderson, 1994) formulates the task as a Hidden

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Markov Model over students’ latent knowledge states. Extensions such as PFA (Pavlik Jr et al.,
2009) employ logistic regression to model the effect of practice and forgetting, while IRT (Cai et al.,
2016) focuses on estimating student ability and item difficulty. Later works, such as iBKT (Yudelson
et al., 2013), adapt these methods to incorporate personalization.

Deep Learning KT In recent years, with the rapid development of deep learning techniques, many
knowledge tracing methods have adopted neural models to predict student performance. Early mod-
els include RNN-based DKT (Piech et al., 2015), memory-augmented DKVMN (Zhang et al., 2017),
and its IRT-inspired neural variant Deep-IRT (Yeung, 2019). Later works such as SAKT (Pandey &
Karypis, 2019) and GIKT (Yang et al., 2021) adopt attention mechanisms to better model the im-
portance of historical exercises. Transformer-based KT models, such as AKT (Ghosh et al., 2020),
qDKT (Sonkar et al., 2020), SAINT (Choi et al., 2020), and AT-DKT (Liu et al., 2023a), further im-
prove this by capturing long-range dependencies and contextual signals. ReKT (Shen et al., 2024)
adopts architecture inspired by human cognitive development theories with only two linear units,
achieve strong performance with simple designs. These models typically treat KCs as independent
and represent the student knowledge in latent vectors, limiting interpretability and generalizability.

Structure-Aware KT Several works have attempted to incorporate structural relationships among
KCs. Recent graph-based KT models such as GKT (Nakagawa et al., 2019), GIKT (Yang et al.,
2021), SHDKT (Yang et al., 2022), KSGAN (Mao et al., 2022), and DHKT (Wang et al., 2019) en-
hance embeddings by encoding concept co-occurrence or hierarchy via GNNs or attention. More re-
cent approaches like HHSKT (Ni et al., 2023) construct heterogeneous graphs over learner-question
interactions with hierarchical differentiation, while PSI-KT (Zhou et al., 2024) jointly models learner
traits and prerequisite structure using a hierarchical Bayesian generative model. These models pri-
marily treat structure as auxiliary input or require substantial learner histories for inference.

LLM-Based KT LLMs have seen remarkable progress in recent years (Achiam et al., 2023; An-
thropic, 2025; DeepMind, 2025), leading to growing interest in their application in education, in-
cluding online tutoring, feedback generation, and question generation (Heffernan et al., 2024; Liu
et al., 2024; Luo et al., 2024). Recent works have explored applying LLMs for KT, aiming to im-
prove interpretability and reduce data dependence. One line of work adopts few-shot prompting to
estimate student mastery and generate natural language rationales (Li et al., 2024). These methods
require repeated prompting, are sensitive to example selection, and lead to high computational and
financial costs. Another line of work investigates fine-tuning LLMs for KT. Current results show
that fine-tuned LLMs can match classical probabilistic models like BKT, but they still lag behind
modern deep KT models’ performance (Neshaei et al., 2024; Lee et al., 2024). While LLMs offer
flexibility and reasoning capabilities, further adaptation is needed for real-world deployment.

3 METHODS

3.1 PROBLEM FORMULATION

The problem of KT can be formulated as follows. Denote I as a set of student IDs. For each i ∈ I,
denote Ni as a set of exercise IDs for which student i has solved. For each i ∈ I, and n ∈ Ni,
define Qni as a random binary variable:

Qni =

{
1 if student i answers question n correctly,
0 otherwise.

. (1)

Finally, define Qi = {Qni : n ∈ Ni} as a set of historical exercise variables of student i. Given a
new question n∗, our goal is to predict:

pθ(Qn∗i = 1|Qi). (2)

Here, θ represents a set of parameters that defines the distribution, which will be estimated based on
all the observed historical data, ∪iQi.

We here restate the real-world constraints mentioned in Sec. 1 formally:

• Cold Start. At the onset, each Qi is a very small set, making the conditional probability in
Eq. equation 2 uninformative and the estimation of θ challenging.

• Online Update. Each Qi is expanding, requiring Eq. equation 2 and θ to be constantly updated.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Limited Peers. I is a small set, adding to data scarcity when estimating θ.

In the following, we will discuss how the hierarchical KCs can alleviate the challenges.

3.2 KNOWLEDGE CONCEPT TREE

Many hierarchical KC structures can be organized into trees. Fig. 2(left) shows a portion of an
example knowledge concept tree, where parent nodes represent broader KCs and child nodes finer
ones. Each edge represents an entailment relationship. We make two assumptions on our classroom
setting: ❶ We have access to a knowledge concept tree that contains all the KCs covered in the
exercises; and ❷ each exercise question is labeled with one KC at the leaf node.

3.3 THE KT2 MODEL

KT2 incorporates the knowledge concept tree information into the probabilistic modeling of the Qni

variables. Specifically, denote C as the set of all KCs. For each i ∈ I, and c ∈ C, define Kci as the
following random binary variable:

Kci =

{
1 if student i masters KC c,
0 otherwise.

. (3)

KT2 introduces a Hidden Markov Tree Model to model the joint probability distribution of {Qni}
(as observed variables) and {Kci} (as hidden variables) via the following assumptions.

First, all the variables are independent across different students, i.e.,

p
(
∪n,i {Qni},∪c,i{Kci}

)
=

∏
i

p
(
∪n {Qni},∪c{Kci}

)
. (4)

Second, for each student i, the corresponding probability distribution can be decomposed as

p
(
∪n {Qni},∪c{Kci}

)
= p

(
∪c {Kci}

)︸ ︷︷ ︸
transition

· p
(
∪n {Qni}| ∪c {Kci}

)︸ ︷︷ ︸
emission

, (5)

where the first term, representing the transition probabilities, models interdependencies among the
mastery of different KCs; the second term, representing the emission probabilities, models how the
mastery of KCs indicates the exercise correctness.

Third (Transition Probabilities), for each student i, the probability graphical model for {Kci}
(Fig. 2 (right)) follows the same topological structure as the knowledge concept tree (Fig. 2 (left)).
Namely, each Kci only directly depends on the mastery variable of its parent KC:

p
(
∪c {Kci}

)
=

∏
c

p(Kci|KP(c)i), (6)

where P(c) denotes the parent KC of c. To model transition probability, p(Kci|KP(c)i), we assume
that mastering a parent KC would entail mastering ALL its children (but not vise versa), hence

p(Kci = 1 | KP(c)i = k) =

{
1 if k = 1,

γc otherwise,
(7)

where each γc is a parameter to be estimated. When c is the root node, Eq. equation 7 still applies
with the condition KP(c)i = k removed.

Fourth (Emission Probabilities), as shown in Fig. 2 (right), we assume each Qni only directly
depends on the mastery variable of its corresponding labeled concepts, i.e.,

p
(
∪n {Qni}| ∪c {Kci}

)
=

∏
n

p(Qni|KM(n)i), (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Related QuestionsSc

Transition Probability Emission Probability

Mastery Level (hidden)Kci Correctness (observed)Qni

K0i

K2i

Knowledge Tree

S1

S3
Qn(3)i

S4

Geometry

Square

Triangle

Square
Area

Square
Perimeter

Qn(1)i

Qn(4)i

K1i

Probabilistic Framework

K3i

K4i

Figure 2: An KC tree structure (left), and its
corresponding probabilistic framework (right).

where M(n) denotes KC for exercise n. Emis-
sion probability, p(Qni|KM(n)i), is modeled as

p(Qni = 1 | KM(n)i = k) =

{
ϕn, if k = 1,

ε, otherwise,
(9)

where ϕn represents the correct probability if the
student knows the underlying concepts. It takes
on three possible values, {reasy, rmed, rhard},
depending on the difficulty level of the exercise,
which is determined by which of the three pre-
defined bins (high, medium, or low) the historical
solve rate falls into. ε represents the correct prob-
ability by random guessing. ε < rhard < rmed <
reasy are parameters to be estimated.

Summary. The joint probability of all the hidden and observed variables is defined by Eqs. equa-
tion 4 to equation 9. The parameters of the model, θ, include

θ = [∪cγc, reasy, rmed, rhard, ε]. (10)
Sec. 3.4 will discuss how to estimate θ. Sec. 3.5 will discuss how to predict the correctness proba-
bility (Eq. equation 2).

3.4 PARAMETER ESTIMATION

The parameters θ are estimated via the maximum log-likelihood objective on the observed variables:
max

θ
log pθ(Q), (11)

where Q denotes a set of observed historical correctness; pθ(Q) can be computed by marginalizing
Eq. equation 4 over all the hidden variables, {Kci} (we add a subscript θ under p to emphasize that
p is parameterized by θ).

Directly computing Eq. equation 11 is computationally expensive due to the marginalization of
the hidden variables. We thus adopt the standard EM algorithm (Dempster et al., 1977) for the
optimization. EM algorithm is an iterative algorithm. Denote θ(τ−1) as the parameter estimate after
iteration τ − 1. Then θ(τ) can be computed from θ(τ−1) via the following objective:

θ(τ) = argmax
θ

A(θ;θ(τ−1)), (12)

where A(θ;θ(τ−1)) equals
Ep

θ(τ−1) (∪c,i{Kci}|Q)[log pθ(∪n,i{Kci},Q)]. (13)

It can be shown that EM algorithm can converge to the optimal solution to Eq. equation 11. Eq. equa-
tion 12 bears a closed-form solution that can be computed efficiently. See Appendix A for details.

3.5 INFERENCE

Once θ is estimated, we can predict if student i can answer question n∗ correctly by computing
Eq. equation 2, which can be further decomposed into

pθ(Qn∗i = 1|Qi) =

1∑
k=0

pθ(KM(n∗)i = k|Qi)p(Qn∗i = 1|KM(n∗)i = k,Qi)

= pθ(KM(n∗)i = 0|Qi)ε+ pθ(KM(n∗)i = 1|Qi)ϕn,

(14)

where the second equality is derived from the conditional independence assumption in Eq. equa-
tion 8; the last equality is from Eq. equation 9.

Eq. equation 14 implies that the prediction process involves two steps. First, infer the mastery
of the KC associated with the target exercise based on the historical performance, i.e., computing
pθ(KM(n∗)i = k|Qi), which can be efficiently computed using the upward-downward algorithm
(Crouse et al., 2002) (see Appendix B). Second, use the KC mastery probability to modulate the
emission probability (last line of Eq. equation 14).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

XES3G5M Mean Std Interactions

Application Module 0.6249 0.1600 10532
Computation Module 0.6235 0.1354 7521
Counting Module 0.6689 0.1424 7279

MOOCRADAR Mean Std Interactions

Wine Knowledge 0.6592 0.1342 8469
Circuit Design 0.6394 0.1320 17616
Education Theory 0.6791 0.1205 8796

Table 1: Statistics of simulated classroom data extracted from XES3G5M and MOOCRADAR.
Mean and Std correspond to class accuracy rates on all interactions.

3.6 INCREMENTAL UPDATE

In online settings, each Qi is constantly expanding, making it necessary to re-estimate θ based on
Eqs. equation 11 and equation 12. We design the following incremental update scheme to balance
between efficiency and performance, as shown in Fig. 1.

Communal Burn-in. At the start, each Qi contains only a few data. We aggregate the early data
from all target students into a shared burn-in dataset, denoted by Qinit, and estimate a common
model, θinit, via Eq. equation 11 with Q = Qinit. We run the full EM iterations till convergence.
This model is then used to predict the correctness of the first exercise (post-burn-in) for both seen
and unseen students.

Personalized Update. After the burn-in phase, we maintain personalized models for each target
student. Let θi denote the model parameters for student i, estimated by Eq. equation 11 with Q =
Qinit ∪ Qi – that is, the burn-in data from all students and all historical responses from student i.
As new responses are observed (i.e., as Qi expands), we incrementally update θi by performing a
single EM iteration, enabling efficient adaptation and personalization.

4 EXPERIMENT

We first describe the construction of classroom testbeds and baseline settings in Secs. 4.1 and 4.2, re-
spectively. We then compare KT2 with existing baselines and provide analysis in Sec. 4.3 - Sec. 4.5.

4.1 DATA CONSTRUCTION

We first construct evaluation datasets that follow the low-resource scenarios as described in Sec. 1
and that come with knowledge concept trees. We will open-source all our datasets, along with the
code for preprocessing and dataset construction.

Dataset Selection. We identify two widely used educational datasets: XES3G5M (Liu et al.,
2023c) for K–12 math and MOOCRADAR (Yu et al., 2023) for university-level courses.
Each exercise is annotated with fine-grained KCs and can also be assigned a difficulty label
(easy/medium/hard) based on student correctness rates. Statistics for the datasets are in Appendix E.

Knowledge Concept Tree. Next, we discuss how the knowledge concept trees are structured in
these datasets. XES3G5M arranges its KCs into a hierarchical entailment structure, allowing us
to use it directly as a knowledge concept tree. For MOOCRADAR, it only provides KCs with-
out any hierarchical structure, so we build a knowledge concept tree for it instead. Inspired by
KCQRL (Ozyurt et al., 2024), we encode KCs into semantic embeddings (McInnes et al., 2018)
and cluster semantically similar KCs together (Campello et al., 2013). For each cluster, we use
GPT-4o-mini (OpenAI, 2024) to generate a representative KC label. Finally, we manually annotate
unclustered KCs. Further details are provided in Appendix F.

Data Sampling. To simulate the low-resource setting, we need to sample a subset of questions and
students. First, to sample a subset of questions and KCs, we partition the knowledge concept trees by
taking each level-1 node as the root of a knowledge module. Each module consists of the root and all
its descendant KCs. We then identify students who have worked on at least 50 exercises associated
with the module. For each dataset, we select the top-3 knowledge modules with the largest number
of students satisfying the condition. Then, we remove out-of-module exercises for those students.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We then sample 100 students per module with a good coverage of overall performance. Specifically,
we use a normal distribution N (0.65, 0.15) to draw 100 overall correctness rates. For each drawn
correctness rate, we select a student whose overall correctness rate best matches the drawn sample
without replacement. Each sampled student’s first 10 interactions are added to the burn-in data, and
the remaining are used for incremental inference. Table 1 shows the statistics of simulated sets.

4.2 SETUP

Metrics. Following previous works, we evaluate models using AUC, accuracy, and F1 score.

Baselines. We consider several commonly used methods in knowledge tracing, including conven-
tional machine learning methods, deep learning methods, and LLM-based approaches.

• IBKT (Yudelson et al., 2013) is an individualized extension of BKT that assigns separate param-
eters to each student, modeling student-specific knowledge states with a Hidden Markov Model.

• AKT (Ghosh et al., 2020) is a transformer-based KT model that uses a monotonic attention mech-
anism to measure the relevance between current questions and historical exercises.

• SAINT (Choi et al., 2020) is a transformer-based model with a deep encoder-decoder architec-
ture. It separates exercise and response sequences and encodes them respectively, allowing stacked
attention layers to learn the dependencies.

• QDKT (Sonkar et al., 2020) is a variant of DKT that models performance at the question level.
It applies Laplacian regularization to smooth predictions across similar questions and uses fastText
based initialization to improve generalization.

• REKT (Shen et al., 2024) is a lightweight KT model that models student knowledge from question,
concept, and domain perspectives by a Forget-Response-Update (FRU) architecture.

• LLM’s ability to handle long-context inputs makes them potentially capable for predicting student
performance based on historical exercises. We adopt two different LLM architectures: QWEN-2.5-
7B (Qwen-Team, 2025) and LLAMA-3.2-3B (Meta, 2024). During inference, each model is given
10 historical data of the current student and predicts the correctness of the next.

We also implement an online variant for three deep learning knowledge tracing (DLKT) base-
lines, denoted as AKT-ONLINE, SAINT-ONLINE, and QDKT-ONLINE. These models are ini-
tially trained on the same burn-in data as their offline versions. During inference, we aggregate all
students’ cumulative interactions into the training set and perform an additional round of training.
The updated model is then used to predict the next question for all students. Note that this online
strategy gives the baselines access to more training data compared to KT2, which only performs
individual-level updates without using other students’ new interactions.

4.3 MAIN RESULT

Table 2 presents the performance of all methods across both datasets. First, KT2 achieves the highest
scores across all metrics on both XES3G5M and MOOCRADAR, demonstrating its effectiveness
and robustness. Second, among the conventional DLKT baselines, all online variants outperform
their offline counterparts, highlighting the importance of online updating. Notably, compared with
our method, all DLKT-Online baselines have access to more data at each update step, as they retrain
using the full classroom’s cumulative interactions. In contrast, KT2 updates only with the new in-
teraction from a single student. Despite this apparent advantage, these baselines still underperform,
suggesting that simply applying online retraining to existing DLKT models is insufficient to fully
capture the evolution of an individual student’s knowledge state. Third, we also observe that both
Qwen and LLaMA do not perform well on both datasets. This suggests that current LLMs may lack
the capability to effectively extract student characteristics from historical exercise data and make
accurate predictions.

4.4 QUALITATIVE ANALYSIS

To better understand how our framework performs real-time updates, we visualize the changes in the
posterior mastery probability, pθ(Kci = 1|Qi), across a KC subtree during incremental inference for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1

XES3G5M (Liu et al., 2023c)
Application Module Computation Module Counting Module Avg.

IBKT (Yudelson et al., 2013) 0.5630 0.6054 0.7104 0.6011 0.6483 0.7684 0.6093 0.7040 0.8025 0.5911 0.6526 0.7604
AKT (Ghosh et al., 2020) 0.6790 0.6659 0.7418 0.6701 0.6628 0.7560 0.6994 0.7184 0.8114 0.6828 0.6824 0.7697
AKT-ONLINE 0.7106 0.6825 0.7645 0.6848 0.6722 0.7690 0.7174 0.7203 0.8080 0.7043 0.6917 0.7805
SAINT (Choi et al., 2020) 0.6031 0.6423 0.7822 0.6079 0.6306 0.7735 0.5794 0.6886 0.8156 0.5968 0.6538 0.7904
SAINT-ONLINE 0.6899 0.6826 0.7615 0.6641 0.6609 0.7558 0.6779 0.6904 0.7834 0.6773 0.6780 0.7669
QDKT (Sonkar et al., 2020) 0.5177 0.5178 0.5965 0.5338 0.5272 0.5897 0.4856 0.4716 0.5410 0.5124 0.5055 0.5757
QDKT-ONLINE 0.6663 0.6358 0.7185 0.6606 0.6363 0.7138 0.6988 0.6697 0.7603 0.6752 0.6473 0.7309
REKT (Shen et al., 2024) 0.7068 0.6726 0.7458 0.6909 0.6725 0.7633 0.6847 0.7150 0.8199 0.6941 0.6867 0.7763
QWEN-2.5 (Qwen-Team, 2025) 0.5939 0.6425 0.7823 0.5730 0.6301 0.7731 0.5918 0.6857 0.8136 0.5862 0.6528 0.7897
LLAMA-3.2 (Meta, 2024) 0.5839 0.6431 0.7825 0.5649 0.6304 0.7732 0.5873 0.6868 0.8136 0.5787 0.6534 0.7898
OURS 0.7448 0.7057 0.7962 0.7079 0.6952 0.7807 0.7470 0.7326 0.8258 0.7332 0.7111 0.8009

MOOCRADAR (Yu et al., 2023)
Wine Knowledge Circuit Design Education Theory Avg.

IBKT (Yudelson et al., 2013) 0.6019 0.6719 0.7873 0.5651 0.6331 0.7654 0.5635 0.6794 0.8037 0.5768 0.6615 0.7855
AKT (Ghosh et al., 2020) 0.5901 0.6546 0.7784 0.6142 0.6402 0.7722 0.5535 0.6910 0.8173 0.5859 0.6619 0.7893
AKT-ONLINE 0.7208 0.6967 0.7955 0.6726 0.6712 0.7749 0.6442 0.6974 0.8059 0.6792 0.6884 0.7921
SAINT (Choi et al., 2020) 0.4905 0.6568 0.7929 0.6066 0.6347 0.7766 0.5918 0.6910 0.8173 0.5630 0.6608 0.7956
SAINT-ONLINE 0.5646 0.6510 0.7767 0.6284 0.6389 0.7554 0.6052 0.6878 0.8085 0.5994 0.6592 0.7802
QDKT (Sonkar et al., 2020) 0.5857 0.5629 0.6371 0.5248 0.5106 0.5774 0.5420 0.5142 0.5918 0.5508 0.5292 0.6021
QDKT-ONLINE 0.7661 0.7230 0.7924 0.7063 0.6716 0.7438 0.7327 0.7292 0.8118 0.7350 0.7079 0.7827
REKT (Shen et al., 2024) 0.6313 0.6248 0.7264 0.5490 0.5254 0.6228 0.5792 0.6896 0.8154 0.5865 0.6133 0.7215
QWEN-2.5 (Qwen-Team, 2025) 0.6190 0.6526 0.7898 0.5595 0.6377 0.7788 0.5454 0.6861 0.8138 0.5746 0.6588 0.7941
LLAMA-3.2 (Meta, 2024) 0.5889 0.6526 0.7898 0.5852 0.6385 0.7790 0.5562 0.6887 0.8142 0.5768 0.6599 0.7943
OURS 0.7714 0.7354 0.8237 0.7662 0.7315 0.7906 0.7891 0.7656 0.8329 0.7756 0.7442 0.8157

Table 2: Knowledge tracing performance comparison on XES3G5M and MOOCRADAR. Bold
number indicates the best performance in each module, and underlined number indicates the second
best. The Avg. column reports the average result across all modules in each dataset.

two students (Fig. 3), as the historical observation, Qi, expands. Color reflects differences between
the current mastery probability and the initial estimation based on burn-in data only. Each node is
annotated with step-wise mastery change. Our findings are as follows:

First, we find the probability updates align with the inputs. In this example, Student A solves all
three questions correctly, leading to an increase in mastery probability on all nodes in the tree.
Student B answers the first question correctly, but the next two incorrectly. As a result, only the
“Count Line” node corresponding to the first question shows a higher mastery probability than the
initial estimation, while the rest of the nodes all get lower mastery probabilities.

Second, it is worth noting that due to the tree propagation, the mastery probability changes are not
confined to the KCs directly associated with the questions. Other nodes also dynamically adjust their
mastery probabilities, even when the KC has not been explicitly visited in the student’s exercise
history. This effect is evident not only in direct parent or sibling nodes. For example, Student A
correctly answering a “Count Lines” question also increases confidence in “Auxiliary Line”.

In summary, these findings demonstrate the ability of KT2 to dynamically update and adjust the
student’s profile in a structured and interpretable way, with respect to the concept hierarchy.

4.5 ABLATION STUDY

Fig. 4ab shows the AUC results on both datasets (average across all modules) under two settings: ❶
different burn-in sizes, and ❷ different classroom sizes. We exclude LLM-based KT methods from
these comparison, as their few-shot prompting approach relies on randomly selected examples from
the same student rather than leveraging the structured burn-in set and peers’ data.

As observed, KT2 consistently outperforms the baselines across all burn-in size settings, particularly
in low burn-in scenarios, but also remains competitive under larger burn-in sizes. When the burn-
in size increases, all offline methods benefit less from online updates. Similar trends are observed
when varying classroom size. Our method achieves the best performance in all cases, highlighting its
ability to generalize well even with limited peers. The fact that DLKT models require a substantial

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Q: How many line segments are
there in the figure?
Interaction 1

Q: How many triangles are there
in the figure?

Interaction 2

Q: How many triangles are there
in the figure?

Interaction 3

Count Lines
Q: After dividing each side of …

how many line segments?
Q: How many rectangles are

there in the figure?
Q: How many squares are there

in the figure?

Counting by
Multiplication

Count
Triangles

Count
Rectangles

Count
Lines

Auxiliary
Line

Geometric
Counting

Initial KC Tree

Student B
START

Student A
START

Count Lines

Count Rectangles Count Rectangles

Count Triangles Auxiliary Line

Figure 3: Examples of KC mastery probability update. Node color indicates the cumulative mas-
tery probability change from the initial estimation (after burn-in) to the current step, with blue for
increase and red for decrease. The value denotes the step-wise change. The node with dashed lines
indicates the current concept. The row under each tree shows the student’s interaction at that step.

amount of data to perform well further underscores their limitations in real-world classroom settings,
where the ability to understand students’ capabilities from a limited data is crucial.

We further ablate update individualization (Fig. 4c), ranging from fixing both model parameters and
student mastery posteriors after burn-in, to updating only the posteriors during inference phrase,
and finally to updating both, corresponds to our proposed KT2. Results show that posterior updates
alone already improve performance, while full updates consistently achieve the best results.

0.5 0.6 0.7 0.8
AUC

10

20

30

Bu
rn

-In
 S

ize -0.007

 -0.004

XES3G5M

0.5 0.6 0.7 0.8
AUC

MoocRadar

SAINT qDKT AKT OursSAINT qDKT AKT Ours
Online Improvement

(a) Burn-in size

0.4 0.5 0.6 0.7 0.8
AUC

30

50

100

200

Cl
as

sr
oo

m
 S

ize

XES3G5M

0.4 0.5 0.6 0.7 0.8
AUC

MoocRadar

qDKT AKT OursqDKT AKT Ours
Online Improvement

(b) Classroom size

XES3G5M MoocRadar
0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

AU
C

0.6592

0.7324

0.7195

0.7474

0.7332

0.7756

No Update Posterior UpdateNo Update Posterior Update
Parameters + Posterior Update

(c) Update strategy

Figure 4: Ablation studies. (a) Effect of burn-in size. (b) Effect of peers number. (c) Effect of update
individualization. Dashed bars/lines denote online improvement; negative gains annotated inline.

5 CONCLUSION

In this paper, we propose KT2, a probabilistic framework for low-resource, online knowledge trac-
ing. Leveraging the hierarchical structure of KCs, KT2 builds a Hidden Markov Tree Model, where
hidden variables represent concept mastery levels and observed variables correspond to students’
correctness on exercise questions. It enables effective learning from minimal initial data and sup-
ports incremental updates as new responses are observed. Experiments across six simulated class-
room scenarios show that KT2 consistently outperforms existing baselines. Qualitative analysis
further demonstrates the ability of KT2 to dynamically refine mastery estimates and propagate the
updates across related concepts. Overall, our work underscores the value of integrating concept hier-
archies and probabilistic inference in developing practical, personalized knowledge tracing systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/claude-3-7-sonnet,
2025.

Anirudhan Badrinath, Frederic Wang, and Zachary Pardos. pybkt: An accessible python library
of bayesian knowledge tracing models. In Proceedings of the 14th International Conference on
Educational Data Mining, pp. 468–474, 2021.

Li Cai, Kilchan Choi, Mark Hansen, and Lauren Harrell. Item response theory. Annual Review of
Statistics and Its Application, 3(1):297–321, 2016.

Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hier-
archical density estimates. In Pacific-Asia conference on knowledge discovery and data mining,
pp. 160–172. Springer, 2013.

Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha,
Dongmin Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and value compu-
tation for knowledge tracing. In Proceedings of the seventh ACM conference on learning@ scale,
pp. 341–344, 2020.

Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted interaction, 4:253–278, 1994.

Matthew S Crouse, Robert D Nowak, and Richard G Baraniuk. Wavelet-based statistical signal
processing using hidden markov models. IEEE Transactions on signal processing, 46(4):886–
902, 2002.

Google DeepMind. Gemini: Google deepmind’s multimodal llms.
https://deepmind.google/technologies/gemini/, 2025.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

Aritra Ghosh, Neil Heffernan, and Andrew S Lan. Context-aware attentive knowledge tracing. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 2330–2339, 2020.

Neil Heffernan, Rose Wang, Christopher MacLellan, Arto Hellas, Chenglu Li, Candace Walking-
ton, Joshua Littenberg-Tobias, David Joyner, Steven Moore, Adish Singla, et al. Leveraging
large language models for next-generation educational technologies. In Proceedings of the 17th
International Conference on Educational Data Mining, pp. 1037–1039, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Unggi Lee, Jiyeong Bae, Dohee Kim, Sookbun Lee, Jaekwon Park, Taekyung Ahn, Gunho Lee,
Damji Stratton, and Hyeoncheol Kim. Language model can do knowledge tracing: Simple
but effective method to integrate language model and knowledge tracing task. arXiv preprint
arXiv:2406.02893, 2024.

Haoxuan Li, Jifan Yu, Yuanxin Ouyang, Zhuang Liu, Wenge Rong, Juanzi Li, and Zhang Xiong.
Explainable few-shot knowledge tracing. arXiv preprint arXiv:2405.14391, 2024.

Zhengyuan Liu, Stella Xin Yin, Carolyn Lee, and Nancy F Chen. Scaffolding language learning
via multi-modal tutoring systems with pedagogical instructions. In 2024 IEEE Conference on
Artificial Intelligence (CAI), pp. 1258–1265. IEEE, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Jiliang Tang, and Weiqi Luo. pykt: a
python library to benchmark deep learning based knowledge tracing models. Advances in Neural
Information Processing Systems, 35:18542–18555, 2022.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, Boyu Gao, Weiqi Luo, and Jian Weng. En-
hancing deep knowledge tracing with auxiliary tasks. In Proceedings of the ACM web conference
2023, pp. 4178–4187, 2023a.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang, and Weiqi Luo. simplekt: a simple but
tough-to-beat baseline for knowledge tracing. arXiv preprint arXiv:2302.06881, 2023b.

Zitao Liu, Qiongqiong Liu, Teng Guo, Jiahao Chen, Shuyan Huang, Xiangyu Zhao, Jiliang Tang,
Weiqi Luo, and Jian Weng. Xes3g5m: A knowledge tracing benchmark dataset with auxiliary
information. Advances in Neural Information Processing Systems, 36:32958–32970, 2023c.

Haohao Luo, Yang Deng, Ying Shen, See-Kiong Ng, and Tat-Seng Chua. Chain-of-exemplar: en-
hancing distractor generation for multimodal educational question generation. ACL, 2024.

Shun Mao, Jieyu Zhan, Jiawei Li, and Yuncheng Jiang. Knowledge structure-aware graph-attention
networks for knowledge tracing. In International Conference on Knowledge Science, Engineering
and Management, pp. 309–321. Springer, 2022.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Meta. Llama 3.2: Revolutionizing edge ai and vision with open, customizable models.
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024.

Hiromi Nakagawa, Yusuke Iwasawa, and Yutaka Matsuo. Graph-based knowledge tracing: model-
ing student proficiency using graph neural network. In IEEE/WIC/aCM international conference
on web intelligence, pp. 156–163, 2019.

Seyed Parsa Neshaei, Richard Lee Davis, Adam Hazimeh, Bojan Lazarevski, Pierre Dillenbourg,
and Tanja Käser. Towards modeling learner performance with large language models. arXiv
preprint arXiv:2403.14661, 2024.

Qin Ni, Tingjiang Wei, Jiabao Zhao, Liang He, and Chanjin Zheng. Hhskt: A learner–question
interactions based heterogeneous graph neural network model for knowledge tracing. Expert
Systems with Applications, 215:119334, 2023.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence/, 2024.

Yilmazcan Ozyurt, Stefan Feuerriegel, and Mrinmaya Sachan. Automated knowledge con-
cept annotation and question representation learning for knowledge tracing. arXiv preprint
arXiv:2410.01727, 2024.

Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing. arXiv preprint
arXiv:1907.06837, 2019.

Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. Performance factors analysis–a new alterna-
tive to knowledge tracing. Online submission, 2009.

C Piech, J Bassen, J Huang, S Ganguli, M Sahami, LJ Guibas, and J Sohl-Dickstein. Deep knowl-
edge tracing. advances in neural information processing systems. Association for Computing
Machinery, pp. 201–204, 2015.

Qwen-Team. Qwen2. 5 technical report. arXiv preprint arXiv:2502.13923, 2025.

Xiaoxuan Shen, Fenghua Yu, Yaqi Liu, Ruxia Liang, Qian Wan, Kai Yang, and Jianwen Sun. Re-
visiting knowledge tracing: A simple and powerful model. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 263–272, 2024.

Shashank Sonkar, Andrew E Waters, Andrew S Lan, Phillip J Grimaldi, and Richard G Baraniuk.
qdkt: Question-centric deep knowledge tracing. arXiv preprint arXiv:2005.12442, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianqi Wang, Fenglong Ma, and Jing Gao. Deep hierarchical knowledge tracing. In Proceedings of
the 12th international conference on educational data mining, 2019.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Yang Yang, Jian Shen, Yanru Qu, Yunfei Liu, Kerong Wang, Yaoming Zhu, Weinan Zhang, and
Yong Yu. Gikt: a graph-based interaction model for knowledge tracing. In Machine learning and
knowledge discovery in databases: European conference, ECML PKDD 2020, Ghent, Belgium,
September 14–18, 2020, proceedings, part I, pp. 299–315. Springer, 2021.

Zhenyuan Yang, Shimeng Xu, Changbo Wang, and Gaoqi He. Skill-oriented hierarchical structure
for deep knowledge tracing. In 2022 IEEE 34th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 425–432. IEEE, 2022.

Chun-Kit Yeung. Deep-irt: Make deep learning based knowledge tracing explainable using item
response theory. arXiv preprint arXiv:1904.11738, 2019.

Jifan Yu, Mengying Lu, Qingyang Zhong, Zijun Yao, Shangqing Tu, Zhengshan Liao, Xiaoya Li,
Manli Li, Lei Hou, Hai-Tao Zheng, et al. Moocradar: A fine-grained and multi-aspect knowledge
repository for improving cognitive student modeling in moocs. In Proceedings of the 46th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
2924–2934, 2023.

Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. Individualized bayesian knowl-
edge tracing models. In International conference on artificial intelligence in education, pp. 171–
180. Springer, 2013.

Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value memory networks
for knowledge tracing. In Proceedings of the 26th international conference on World Wide Web,
pp. 765–774, 2017.

Hanqi Zhou, Robert Bamler, Charley M Wu, and Álvaro Tejero-Cantero. Predictive, scalable and
interpretable knowledge tracing on structured domains. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
NgaLU2fP5D.

A PARAMETER ESTIMATION

In this section, we provide the closed-form solution of θ(τ), computed by taking the partial derivative
on Eq. equation 13 with respect to each parameter.

γ
master P(c)
ci = pθ(τ−1)(Kci = 1,KP(c)i = 0|Qi) (15)

γ
not-master P(c)
ci = pθ(τ−1)(Kci = 0,KP(c)i = 0|Qi) (16)

γ(τ)
c =

∑
i γ

(1)
ci∑

i γ
(0)
ci +

∑
i γ

(1)
ci

. (17)

The closed-form solution of any root node can be obtained similarly by removing the KP(c)i = 0.

We define N (i)
pos and N (i)

neg as the sets of correctly and incorrectly answered questions by student i,
respectively. Then we have

εpos
i =

∑
n:n∈N (i)

pos

pθ(τ−1)(KM(n)i = 0|Qi) (18)

εneg
i =

∑
n:n∈N (i)

neg

pθ(τ−1)(KM(n)i = 0|Qi) (19)

ε(τ) =

∑
i ε

pos
i∑

i ε
neg
i +

∑
i ε

pos
i

. (20)

12

https://openreview.net/forum?id=NgaLU2fP5D
https://openreview.net/forum?id=NgaLU2fP5D

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For each difficulty class l, where l ∈ {easy,medium, hard}, the closed-form solution of the emission
probability is

rl
pos
i =

∑
n:n∈N (i)

pos
difficulty=l

pθ(τ−1)(KM(n)i = 1|Qi) (21)

rl
neg
i =

∑
n:n∈N (i)

neg
difficulty=l

pθ(τ−1)(KM(n)i = 1|Qi) (22)

rl
(τ) =

∑
i rl

pos
i∑

i rl
neg
i +

∑
i rl

pos
i

. (23)

B UPWARD-DOWNWARD ALGORITHM

For each student i, we only need to compute the following posterior distributions, which are suffi-
cient for updating all required parameters.

pθ(KM(n)i = 1|Qi) (24)
pθ(KM(n)i = 0|Qi) (25)

pθ(Kci = 1,KP(c)i = 0|Qi) (26)
pθ(Kci = 0,KP(c)i = 0|Qi) (27)

We first introduce two auxiliary probabilities. The first one is downward probability

αc(k) = p(Kc = k,QSV\D(c)
= qSV\D(c)

). (28)

Here, D(c) denotes all the descendant nodes of c, including c. V\D(c) denotes all the nodes except
for D(c). QSV\D(c)

represents all the questions that involve concepts in V\D(c) and V\D(c) only.
Sc denotes the set of questions that involves KC c and that is answered by student i (the subscript i
is removed for convenience).

The second probability is called the upward probability

βc(k) = p(QSD(c)
= qSD(c)

|Kc = k). (29)

The upward probability can be recursively computed from that of the children nodes (denote the
children nodes of c as Child(c))

βc(k) =
∏

n∈Sc

p(Qn = qn|Kc = k) ·
∏

j∈Child(c)

β̃j,c(k), (30)

where

β̃j,P(j)(k) = p(QSD(j)
= qSD(j)

|KP(j) = k) (31)

=
∑
kj

βj(kj)p(Kj = kj |Kc = k). (32)

At leaf nodes, βc(k) is just a simple emission probability.

The downward probability can be recursively computed from that of the parent node

αc(k) = p(Kc = k,QSV\D(c)
= qSV\D(c)

) (33)

=
∑
kP(c)

p(Kc = k|KP(c) = kP(c))α̃P(c), (34)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where
α̃P(c)(k) = αP(c)(kP(c))

βP(c)(kP(c))

β̃c,P(c)(kP(c))
. (35)

At root nodes, αc(k) is just the prior distribution.

After all the auxiliary variables are computed, the target posterior distributions can be computed as

pθ(Kci = 1|Qi) =
αc(1)βc(1)∑1

k=0 αc(k)βc(k)
, (36)

pθ(Kci = kc,KP(c)i = kP(c)|Qi)

=
α̃P(c)(kP(c))βc(kc)p(kc|kP(c))∑

k′
c,k

′
P(c)

∈{0,1} α̃P(c)(k
′
P(c))βc(k′

c)p(k′
c|k′

P(c))
.

(37)

C USE OF LARGE LANGUAGE MODELS

In this paper, we utilized LLMs for auxiliary purposes only. Specifically, LLMs were used to polish
the writing and correct grammatical issues in the manuscript, and to assist in data translation (see
Appendix D) and KC tree construction when only fine-grained KCs are provided (see Appendix F).

D TRANSLATION

For both XES3G5M and MOOCRADAR, the data translation is done following the pipeline below.

We translated each question into English using GPT-4o-mini with [Prompt for Translation]. We
specifically required the LLM to convert all fill-in-the-blank questions into a proper question format
(e.g., ‘There are squares in the plot.’ should be transformed into ‘How many squares are there in
the plot?’). Then, the GPT-4o-mini was prompted with [Prompt for Translation Check] to self-check
the correctness of its translation, considering both the meaning match between the Chinese question
and the English translation, as well as the question format conversion.

We noticed that in the XES3G5M dataset, the blank symbol might be missing in some Chinese
fill-in-the-blank questions (e.g., the question ‘There are squares in the plot.’ might be recorded as
‘There are squares in the plot.’), leading to difficulty in both the translation and the correctness check
phases. To handle the incorrect translations, we used a stronger model, GPT-4o, to double-check
the translation correctness and generate an explanation for its justification using the same [Prompt
for Translation Check]. All questions regarded as incorrect by GPT-4o proceeded into an automatic
translation revision phase, where GPT-4o was prompted with the [Prompt for Translation Fix] to
revise the translation utilizing the explanation of why this translation was incorrect.

After one round of correction, GPT-4o checked the correctness of the new translation again. After
this stage, the remaining incorrect translations were revised by a human translator and added to the
collection of English translations. See Appendix J for all translation prompts.

E DATASETS

We summarized the statistics of original XES3G5M and MOOCRADAR in Table 3.

License: XES3G5M is an open-sourced dataset released under the MIT license, which allow free
use of research and educational purposes. MOOCRADAR is also publicly available for academic
research. Both datasets have been anonymized to protect student privacy and do not contain personal
identifiable information.

F KNOWLEDGE CONCEPT TREES

In this section, we describe the details of knowledge concept trees for the XES3G5M and
MOOCRADAR. As noted in Sec. 4.1, XES3G5M provides a predefined hierarchical structure of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dataset Students Items KCs Interactions

XES3G5M 18,066 7,652 865 5.5M
MOOCRadar 14,224 2,513 5,600 12.7M

Table 3: Dataset statistics.

KCs, which we adopt directly as its knowledge concept tree. In contrast, MOOCRADAR includes
only fine-grained KCs without any hierarchical organization, so we construct a knowledge concept
tree for it. To begin, we embed the original Chinese KCs using the bge-base-zh model (Xiao et al.,
2023), producing semantic embeddings. These embeddings are then reduced in dimensionality us-
ing UMAP (McInnes et al., 2018) and clustered with HDBSCAN (Campello et al., 2013) to group
semantically similar KCs. This process yields a set of KC clusters along with a number of outliers
that do not belong to any cluster. For each cluster, we use GPT-4o-mini to generate a summarized
KC label. To maintain robustness, we include an “unsummarizable” option, allowing the model to
flag incoherent clusters, which are then manually reviewed and reclassified. For the outlier KCs,
we sample a representative exercise from the dataset and prompt GPT-4o-mini again to determine
whether the KC can be merged into an existing cluster. If not, it is retained as an independent node
and manually labeled on a case-by-case basis.

We also apply post-processing to refine the knowledge concept trees. Since we assume each exercise
is associated with a single KC, we retain only the most frequently occurring KC when multiple are
assigned. Additionally, we merge child nodes associated with fewer than 10 unique exercises into
their parent to avoid sparsity. If only one child remains after merging, its questions are reassigned
to the parent, and the child node is pruned.

G MODULE STATISTICS

Table 4 shows the statistics of all six knowledge modules. The view of each module can be found in
Appendix I.

Module #Nodes Max Depth #Leaves

Application Module 148 5 100
Computation Module 95 5 66
Counting Module 69 5 46
Wine Knowledge 5 2 4
Circuit Design 9 2 8
Education Theory 4 2 3

Table 4: Statistics of the knowledge modules.

H IMPLEMENTATION DETAILS

We initialize our model parameters as in Table 5.

Parameter Symbol Initial Value

Transition γc 0.1
Emission (easy) reasy 0.9
Emission (medium) rmed 0.8
Emission (hard) rhard 0.75
Guessing ε 0.1

Table 5: Initialization values for model parameters before EM training.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We observe that the guessing probability ε can exceed 0.3 during training in some cases. To avoid
overfitting to spurious correct responses, we clip ε to a maximum of 0.3 in each EM update iteration.
This constraint prevents ε from approaching the emission probability of hard questions, which would
make it difficult to distinguish between true mastery and random guessing.

For IBKT, we used the open-source pyBKT implementation (Badrinath et al., 2021). For AKT,
SAINT, and QDKT, we adopt the standardized implementation provided by PYKT (Liu et al.,
2022), a unified Python library for benchmarking KT models. We implement REKT by the official
GitHub repository. For all LLM baselines, we adopt the publicly released checkpoints.

For all deep-learning-based baseline methods, we follow the default hyperparameters reported in
their original papers to train the offline versions. For online variants, we set the learning rate to
1e− 4 and the batch size to 32, and train for a single epoch at each update step.

For both LLM-based baseline methods, we use the vLLM package (Kwon et al., 2023) for inference,
with a sampling temperature of 0.8, a top-p (nucleus) sampling threshold of 0.8, and a repetition
penalty of 1.1.

Here we included a runtime comparison of KT2 and other online baselines on representative modules
from the two datasets in the table below.

Model XES3G5M MOOCRadar Device

KT2 412.1 s (6.9 min) 224.3 s (3.7 min) CPU
AKT-ONLINE 284.8 s (4.7 min) 196.6 s (3.3 min) RTX A6000 (48GB, 1 GPU)
SAINT-ONLINE 197.5 s (3.3 min) 134.7 s (2.2 min) RTX A6000 (48GB, 1 GPU)
QDKT-ONLINE 74.3 s (1.2 min) 45.4 s RTX A6000 (48GB, 1 GPU)
QWEN-2.5 4.5 hours 3.2 hours NVIDIA H100 (80GB, 1 GPU)
LLAMA-3.2 25 min 16 min NVIDIA H100 (80GB, 1 GPU)

Table 6: Runtime comparison across datasets.

KT2 requires slightly longer update time, as it performs individualized update for each student,
while DLKT-online aggregates interactions across students and retrain less frequently. Despite the
additional cost, the method remains efficient and yields consistent performance improvements.

For LLM, we can see that Qwen-2.5-7B takes 4.5h and LLaMA-3.2-3B takes 25 min on a 80G H100
GPU. This suggests that LLM-based inference is significantly more expensive.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

I MODULE VIEWS

Application Module
+-- Equation Word Problem
| +-- Linear Equation Word Problem
| \-- Indeterminate Equation Word Problem
+-- Addition/Subtraction Word Problem
| +-- Change in Ratio Word Problem
| \-- Simultaneous Increase/Decrease Word Problem
+-- Period Problem
| +-- Basic Arrangement Period Problem
| +-- Sequence Operation Period Problem
| | +-- Number Period
| | \-- Find Which Number in Sequence Problem
| +-- Period Problem in Time
| | +-- Period in Calendar Dates
| | +-- Period in Time
| | \-- Find Day of the Week for a Date Problem
| \-- Cyclic Operation Period Problem
+-- Sum and Difference Multiple Problem
| +-- Basic Calculation of Multiples
| | +-- Two Quantities Multiple
| | \-- Multiple Quantities Multiple
| +-- Change Multiple Problem
| | +-- Two Quantities Simultaneously Change Multiple
| | \-- Basic Change Multiple
| +-- Sum and Multiple Problem
| | +-- Two Quantities Sum and Multiple Problem
| | | \-- Two Quantities Sum and Multiple
| | +-- Multiple Quantities Sum and Multiple Problem
| | | \-- Multiple Quantities Sum and Multiple
| | +-- Find Hidden Sum
| | \-- From Less to More
| +-- Sum and Difference Problem
| | +-- Two Quantities Sum and Difference Problem
| | | +-- Known Differences
| | | +-- Known and Hidden Difference
| | | \-- Hidden and Known Difference
| | \-- Multiple Quantities Sum and Difference Problem
| \-- Difference Multiple
| +-- Two Quantities Difference Multiple
| | +-- Integer Ratio with Difference
| | +-- Hidden Ratio Type Two Quantities Difference Multiple Problem
| | +-- Hidden Difference Type Two Quantities Difference Multiple Problem
| | +-- Non-integer Ratio Difference Multiple Insufficient
| | \-- Non-integer Ratio Difference Multiple Remainder
| \-- Multiple Quantities Difference Multiple

...

\-- Chicken-Rabbit Problem
+-- Assumption Method for Solving Chicken-Rabbit Problem
| +-- Back-Deduction Type
| +-- Basic Type
| | +-- Prototype Problem
| | \-- Variant Problems
| \-- Find Number of Animals
+-- Grouping Method for Solving Chicken-Rabbit Problem
| +-- Head Multiple Type
| \-- Flexible Grouping
+-- Multiple Quantities Chicken-Rabbit Problem
+-- Using Assumption Method to Solve Modified Chicken-Rabbit Problem
+-- Using Grouping Method to Solve Modified Chicken-Rabbit Problem
\-- Using Grouping Method to Solve Basic Chicken-Rabbit Problem

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Computation Module
+-- Exponentiation
| +-- Application of Exponentiation
| \-- Exponentiation Operations
+-- Fraction
| +-- Fraction Basics
| | +-- Properties of Fractions
| | \-- Meaning of Fractions
| +-- Fraction Tricks
| \-- Fraction Operations
| +-- Fraction Addition and Subtraction
| \-- Addition and Subtraction of Fractions with Different Denominators
+-- Unit Conversion
| +-- Length Unit Conversion
| \-- Area Unit Conversion
+-- Define New Operation
| +-- Reverse Solving Unknown Type
| \-- Direct Calculation Type
| \-- Normal Type
+-- Decimal
| +-- Decimal Addition and Subtraction
| | +-- Decimal Addition and Subtraction Trick with Rounding Method
| | \-- Decimal Addition and Subtraction Vertical Format Calculation
| +-- Decimal Four Operations
| +-- Decimal Basics
| | +-- Rounding
| | +-- Decimal Comparison
| | +-- Decimal Point Movement Patterns
| | \-- Understanding Decimals
| \-- Meaning of Decimals
| +-- Decimal Point Movement
| \-- Reading and Writing Decimals
+-- Sequences and Number Tables
| +-- Sequence Patterns
| +-- Number Table Patterns
| | +-- Finding Patterns by Combining Numbers and Diagrams (Multiple Diagrams)
| | \-- Rectangle Number Table
| | +-- Positional Relationship
| | +-- Find Number at Known Position in Continuous Natural Number Rectangle Table
| | \-- Find Position of Known Number in Continuous Natural Number Rectangle Table
| +-- Arithmetic Sequence
| | +-- Application of Mean Value Theorem
| | +-- Truncated Sum of Arithmetic Sequence
| | +-- Find Common Difference of Arithmetic Sequence
| | +-- Sum of Arithmetic Sequence
| | +-- Find General Term of Arithmetic Sequence
| | \-- Find Number of Terms in Arithmetic Sequence
| \-- Geometric Sequence

...

+-- Equation Basics
| +-- Linear Equation in One Variable
| | \-- Equation with Integer Coefficients
| \-- Indeterminate Equation
+-- Comparison and Estimation
\-- Induction of Split and General Terms

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Counting Module
+-- Geometric Counting
| +-- Categorical Enumeration of Figures
| | +-- Regular Figure Enumeration Counting
| | | +-- Categorized Figures
| | | +-- Square
| | | +-- Understanding Line Segments
| | | \-- Rectangle
| | \-- Lattice Point Constructed Figures
| +-- Correspondence Method Figures
| | \-- Counting by Multiplication
| | +-- Count Triangles
| | +-- Count Lines
| | \-- Count Rectangles
| \-- Auxiliary Line
+-- Addition-Multiplication Principle
| +-- Multiplication Principle
| | +-- Other Types in Multiplication Principle
| | +-- Object Quantity Combination
| | +-- Item Matching
| | +-- Item Matching (With Special Requirements)
| | \-- Route Matching Problem
| +-- Comprehensive Addition-Multiplication Principle
| +-- Addition Principle
| | +-- Other Types in Addition Principle
| | \-- Handshake and Toasting Problem
| +-- Queueing Problem
| +-- Coloring Counting Problem
| \-- Grouping Problem
| +-- General Grouping Problem
| \-- Grouping Problem with Special Requirements
+-- Inclusion-Exclusion Principle
| +-- Three-Set Inclusion-Exclusion
| +-- Two-Set Inclusion-Exclusion
| \-- Geometric Counting with Multi-Set Inclusion-
...

+-- Comprehensive Enumeration Method
| +-- Lexicographical Order Method
| | +-- Grouping
| | | +-- Increasing Numbers (Decreasing Numbers)
| | | +-- Card Grouping
| | | +-- Number Grouping (No Repetition)
| | | +-- Number Grouping (Repetition Allowed)
| | | \-- Number Grouping (Specified Digit Size)
| | \-- Non-Numeric Permutation
| +-- Integer Partition
| | +-- Integer Partition Application
| | | +-- Multiplicative Partition (Application)
| | | \-- Additive Partition (Application)
| | \-- Simple Partition
| | +-- Additive Partition (Non-Identical Numbers)
| | \-- Additive Partition (Specified Count)
| \-- Enumeration Method
| +-- Methods of Payment
| +-- Ordered Enumeration
| \-- Distribute Items by Given Count
+-- Counting Method
| +-- Standard Counting Method
| | \-- Shortest Path
| +-- Special Points or Areas
| \-- Stepwise Counting Method
\-- Statistics and Probability

+-- Probability
\-- Statistical Charts

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Wine Knowledge
+-- Wine
+-- Wine Evaluation Knowledge
+-- Wine Aroma Type
\-- Types of Wine

Circuit Design
+-- Amplifier Circuit Design
+-- Ideal Operational Amplifier
+-- Electronics
+-- Electrical Concepts
+-- Electrical Circuit Knowledge
+-- Circuit Design and Analysis
+-- Operational Amplifier Knowledge
\-- Integrated Operational Amplifier Circuit

Education Theory
+-- Feedback
+-- Class Teacher Management and Teacher-Student Relationship
\-- Foundation of Class Formation

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

J LLM PROMPT

In this section, we provide the complete prompts for LLM baselines and dataset translation.

Prompt for Translation:

You are a helpful AI assistant skilled in translating Chinese exercises to English.

Guidelines:
- You will be provided with an exercise in Chinese. Your task is to translate it accurately and clearly into
English.
- If the Chinese question is a fill-in-the-blank question, convert it into a proper question format in English.
Be mindful that the blank symbol might be missing from the original question due to formatting errors.
- Output only the translated English text. Do not include any additional text, explanations, or formatting
beyond the translation.

Examples:
User 1:
Here is the math exercise to translate: (Omit the Chinese question)
Assistant 1:
Xiao Ming has 10 apples, Xiao Hong has 5 apples, how many more apples does Xiao Ming have than Xiao
Hong?
...
(Omit other 2 examples)

Here is the math exercise to translate: (Omit the Chinese question)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt for Translation Check:

You are a helpful AI assistant skilled in assessing the quality of Chinese question translations for
accuracy and coherence. You will be provided with two versions of an exercise: one in Chinese and one in
English. Your task is to evaluate whether the English translation accurately reflects the meaning and intent
of the Chinese question and provide a detailed explanation to justify your assessment.
Guidelines:
- If the Chinese question is a fill-in-the-blank question, the English translation must be rewritten into a
proper question format without retaining the blank symbol. If it fails to meet this requirement, consider it
an incorrect translation.
- Be mindful of potential formatting errors in the Chinese question. For example, the blank symbol in a
fill-in-the-blank question might be missing. Carefully discern whether the question is a statement or a
fill-in-the-blank question with a missing blank.
- If the Chinese question references an image, it is acceptable for the English translation to omit the image
filename as long as it maintains the question’s meaning.
- Output your evaluation in JSON format using the provided template. First, explain why the English
translation is correct or incorrect, then provide a final justification as a boolean value (True for correct,
False for incorrect).
- Do not include any additional text or explanations beyond the required JSON output.

Template:
{
”explanation”: (Your explanation on why you think the English translation is correct/wrong),
”correct translation”: (a boolean value, True if the English translation is a correct translation, False
otherwise)
}

Examples:
User 1:
Here is the Chinese question:(Omit the Chinese question)
Here is the English translation of the question: A number, when divided by 4, added 4, multiplied by 4, and
then subtracted 4, results in 16. What is the number?
Assistant 1:
{
”explanation”: ”The Chinese question describes a sequence of mathematical operations performed on a
number, leading to the result of 16. The English translation accurately conveys the meaning of the Chinese
question by describing the same sequence of operations and the expected result, while appropriately
converting the blank into the question format ‘What is the number?’. Both the meaning and format are
correct.”,
”correct translation”:
}
...
(Omit other 2 examples)

Here is the Chinese question:(Omit the Chinese question)
Here is the English translation of the question:(Omit the English translation)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt for Translation Fix:

You are a helpful AI assistant skilled in improving the translation of Chinese questions to ensure ac-
curacy and coherence. You will be provided with two versions of a question: one in Chinese and one in
English, along with an explanation of why the translation is incorrect. Your task is to rewrite the English
translation based on the given explanation to make it correct and consistent with the original Chinese
question.

Guidelines:
- Be mindful of potential formatting errors in the Chinese question. For example, the blank symbol in
a fill-in-the-blank question may be missing. Carefully discern whether the question is a statement or a
fill-in-the-blank question with a missing blank.
- If the Chinese question is a fill-in-the-blank question, rewrite the English translation as a proper question
without retaining the blank symbol.
- Provide only the corrected English translation as the output. Avoid including additional explanations or
text.

Examples:
User 1:
Here is the Chinese question:(Omit the Chinese question)
Here is the English translation you should rewrite: A number, when divided by 4, added 4, multiplied by 4,
and then subtracted 4, results in 16. Then the number is ()
The reason why the translation is incorrect: The Chinese question is a fill-in-the-blank question as indicated
by the blank symbol (), which requires the English translation to be reformatted into a proper question
format without the blank. The provided English translation retains the blank, which does not conform to the
specified criteria for a correct translation.
Assistant 1:
Xiao Ming has 10 apples, Xiao Hong has 5 apples, how many more apples does Xiao Ming have than Xiao
Hong?

...
(Omit other 2 examples)

Here is the math exercise to translate: (Omit the Chinese question)
Here is the English translation you should rewrite:(Omit the English translation)
The reason why the translation is incorrect: (Omit the explanation)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt for LLM Knowledge Tracing:

Your task is to analyze student’s past performance on a series of questions and predict whether stu-
dents can answer a given question correctly. Below are 10 questions the student has already answered.
After each question you will see whether the answer was correct (1) or incorrect (0).

Q1. In a capacitive coupling amplifier circuit, after introducing negative feedback, it is only possi-
ble to have low-frequency self-excited oscillation, and high-frequency self-excited oscillation is not
possible. Is this statement true or false?
Concepts: Feedback
Correct: 0

Q2. Since some negative feedback amplifiers can produce self-excited oscillations, can they be used
as signal sources?
Concepts: Feedback
Correct: 0

Q3. ...
(Omit the other 8 historical exercises)

Now consider the new question:
If negative feedback is introduced through a resistor in a single-stage common-emitter amplifier, what will
happen? If negative feedback is introduced through a resistor in a two-stage common-emitter amplifier, what
will happen? A. It will definitely produce high-frequency self-oscillation B. It may produce high-frequency
self-oscillation C. It will definitely not produce high-frequency self-oscillation.
Concepts: Feedback
Based on the student’s past performance, will the student answer this question correctly? Respond with 1
for correct, 0 for incorrect. Output only 0, 1—no additional text.

Predict:

24

	Introduction
	Related Works
	Methods
	Problem Formulation
	Knowledge Concept Tree
	The KT2 Model
	Parameter Estimation
	Inference
	Incremental Update

	Experiment
	Data Construction
	Setup
	Main Result
	Qualitative Analysis
	Ablation Study

	Conclusion
	Parameter Estimation
	Upward-Downward Algorithm
	Use of Large Language Models
	Translation
	Datasets
	Knowledge Concept Trees
	Module Statistics
	Implementation Details
	Module Views
	LLM Prompt

