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Abstract

Retrofitting legacy buildings for energy efficiency
is critical for sustainability, yet balancing eco-
nomic feasibility, energy savings, and occupant
comfort remains challenging. This research pro-
poses a Phased Retrofitting System framework
with Reinforcement Learning & Agentic AI char-
acteristics, integrating economic assessment with
adaptive HVAC control. Algorithmic develop-
ments decide which locations to fit and what to fit.
The strategic agent decides on synchronization
with existing systems while optimizing daily en-
ergy use, jointly minimizing energy consumption,
carbon emissions, and costs while maintaining
thermal comfort. Simulations show higher energy
savings and minimal comfort violations compared
to baselines. This approach offers a scalable solu-
tion for building portfolios, aligning with urban
decarbonization goals.

1. Introduction
Buildings contribute 37% of U.S. carbon emissions and
consume 40% of global energy, with HVAC systems us-
ing 40–50% of electricity in commercial settings (Yu et al.,
2021). Yet, many legacy buildings still rely on outdated con-
trols, making intelligent retrofitting a crucial but complex
opportunity due to trade-offs in energy, comfort, cost, and
system compatibility.

Recent advances in deep reinforcement learning (DRL)
have shown promising results for HVAC control optimiza-
tion, with studies demonstrating energy savings of 2-14%
while maintaining thermal comfort (Nguyen et al., 2024).
Multi-agent reinforcement learning approaches have further
expanded these capabilities, enabling coordinated control
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of complex building systems through distributed decision-
making agents (Yu et al., 2021; Wu et al., 2024). Ad-
vanced DRL methods have achieved even more substantial
energy savings, with entropy-driven approaches showing
up to 38.95% energy consumption reduction under high-
temperature conditions (Zhang & Tan, 2025). However,
existing research has primarily focused on optimizing con-
trol strategies for buildings with existing sensor infrastruc-
ture and modern automation systems, leaving a significant
gap in addressing the unique challenges of legacy building
retrofitting.

Our approach addresses three critical limitations in existing
building optimization research. First, most current methods
assume the availability of comprehensive sensor networks
and modern control infrastructure, which is rarely the case
in legacy buildings (Sierla et al., 2022). Second, existing
approaches typically optimize for steady-state operations
rather than the transitional challenges inherent in phased
retrofitting. Third, current multi-agent building control sys-
tems focus on operational optimization rather than the strate-
gic planning required for retrofitting decisions (Huang et al.,
2025).

The contribution of this work is threefold: This work (1)
proposes a zone selection algorithm for targeted retrofitting
using sensor data, (2) enables coordinated phased upgrades
through agent-to-agent communication, and (3) introduces
an RL-based control framework for adaptive HVAC opti-
mization in retrofitted zones.

2. Methodology
The Agentic Multi-Objective Retrofitting Framework
(AMORF) consists of four interconnected components: syn-
thetic building data generation, zone prioritization, multi-
agent coordination, and reinforcement learning-based con-
trol. This section details each component’s design and im-
plementation.

2.1. Synthetic Building Environment

To evaluate AMORF systematically, we develop a synthetic
legacy commercial building environment using Monte Carlo
simulation. The building model encompasses 50 rooms
across different categories (offices, conference rooms, com-
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mon areas) with heterogeneous characteristics.

Each room ri is parameterized by:

• Occupancy dynamics Oi(t): Stochastic hourly occu-
pancy patterns following realistic business schedules
with probabilistic variations

• Thermal characteristics Ti(t): Temperature evolution
governed by thermal mass, insulation properties, and
HVAC capacity

• HVAC specifications Hi: Legacy system parame-
ters including cooling capacity, energy efficiency ratio
(EER), and operational constraints

• Comfort requirements Ci: Target temperature range
(22–24°C) with tolerance thresholds

The environment incorporates external weather conditions
W (t) = {Text(t), ϕ(t), Isolar(t)} representing outdoor
temperature, relative humidity, and solar irradiance respec-
tively. Energy consumption for room i at time t is modeled
as:

Ei(t) = αi ·Hi ·max(0, Ti(t)− Tsetpoint)

+ βi ·Oi(t) + γi · Isolar(t)
(1)

where αi, βi, γi are room-specific coefficients capturing
HVAC efficiency, occupancy heat gains, and solar heat
gains.

Figure 1. Occupancy patterns for different room types over a 30-
day simulation period showing distinct usage characteristics across
office spaces, conference rooms, and common areas.

2.2. Prioritization Algorithm for Retrofitting

AMORF employs a multi-criteria decision algorithm to iden-
tify high-impact zones for retrofitting. The algorithm evalu-

Algorithm 1 Zone Prioritization for Retrofit Selection
1: Input: Room dataset R = {r1, r2, . . . , rn}, target se-

lection count N
2: Output: Prioritized zone list S for retrofitting
3: Initialize weights: we = 0.4 (energy), wc = 0.3 (com-

fort), wo = 0.3 (occupancy)
4: Initialize score dictionary D = {}
5: for each room ri ∈ R do
6: Compute energy intensity: Ei = 1

T

∑T
t=1

Ei(t)
Ai

{kWh/m²}
7: Compute comfort violation rate: Ci =

|{t:|Ti(t)−Ttarget|>δ}|
T

8: Compute occupancy utilization: Oi =
1
T

∑T
t=1 Oi(t)

9: end for
10: Normalize metrics: E′

i =
Ei−min(E)

max(E)−min(E)+ϵ

11: Similarly normalize C ′
i and O′

i

12: for each room ri ∈ R do
13: D[ri] = we · E′

i + wc · C ′
i + wo ·O′

i

14: end for
15: Sort D in descending order
16: S = top-N rooms from sorted D
17: return S

ates rooms based on three weighted criteria: energy intensity,
comfort violations, and occupancy utilization.

2.3. Reinforcement Learning-Based Control

After finding the zones with high priority for the first phase
of retrofitting. We employ Q-learning to optimize HVAC
operations across selected zones assuming that the latest
HVAC systems have been installed in the legacy zones. The
agent learns policies that balance energy efficiency, occu-
pant comfort, and operational costs through multi-objective
reward design.

2.3.1. STATE AND ACTION SPACES

The state space S for each room includes: st =
⟨Tcurrent, Texternal, Ocount, Cviolations, Hstatus⟩

The action space A consists of dis-
crete HVAC control decisions: A =
{maintain, coolmoderate, coolaggressive, heatmoderate,
shutdown}

2.3.2. MULTI-OBJECTIVE REWARD FUNCTION

The reward function balances three objectives:

r(st, at) =− λ1 · Energy Cost(at)
− λ2 · Comfort Penalty(st, at)
+ λ3 · Efficiency Bonus(st, at) (2)
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Algorithm 2 Q-Learning HVAC Control Strategy
1: Input: Q-table Q, learning rate α = 0.1, discount

factor γ = 0.95
2: Initialize: Exploration rate ϵ = 0.1, episode counter

ep = 0
3: for each episode do
4: Reset environment to initial state s0
5: for each time step t do
6: Observe current state st
7: if random() < ϵ then
8: Select random action at ∼ Uniform(A)
9: else

10: Select greedy action at = argmaxa Q(st, a)
11: end if
12: Execute action at, observe reward rt and next state

st+1

13: Update Q-value:
14: Q(st, at) ← Q(st, at) + α[rt +

γmaxa Q(st+1, a)−Q(st, at)]
15: Communicate action and state to coordination

framework
16: st ← st+1

17: end for
18: ep← ep+ 1
19: end for

where λ1 = 0.4, λ2 = 0.4, λ3 = 0.2 weight the competing
objectives.

2.3.3. AGENTIC COORDINATION FRAMEWORK

The AMORF framework employs a hybrid architecture inte-
grating distributed RL agents with a centralized agentic AI
coordinator for optimal control and stakeholder communi-
cation.

• Distributed RL Agents: Q-learning agents deployed
at each HVAC system within prioritized zones. Each
agent learns optimal control policies by observing local
conditions and executing actions while maintaining
zone-specific Q-tables.

• Central Orchestrating Agent: Agentic AI system in-
terfacing with RL agents and stakeholders. Leverages
LLM capabilities to synthesize optimization data into
contextual insights and strategic decisions for energy
management.

• Stakeholder Interface: Automated natural language
communication generating reports, alerts, and recom-
mendations from aggregated RL performance data for
facility managers and operators.

Synthetic Building Data Generation

Zone Selection Algorithm

HVAC Agent
Retrofit Planning Agent

Reporting Agent

Central Control Agent

RL-Based HVAC Control

Figure 2. Multi-agent coordination workflow.

Table 1. Top 5 office rooms identified by AMORF prioritization
algorithm, ranked by composite retrofit priority scores.

ROOM ID ROOM TYPE SCORE

ROOM 15 OFFICE 0.811
ROOM 33 OFFICE 0.793
ROOM 9 OFFICE 0.751
ROOM 5 OFFICE 0.735
ROOM 3 OFFICE 0.731

3. Experimental Validation
We validate AMORF through simulation experiments that
demonstrate the complete framework from data generation
to stakeholder communication.

3.1. Experimental Setup

We generate synthetic data for a 50-room commercial build-
ing using Monte Carlo simulation over 30-day periods. The
AMORF prioritization algorithm identifies top-N zones for
retrofitting based on energy intensity, comfort violations,
and occupancy patterns. Multi-agent coordination manages
retrofit implementation while Q-learning optimizes HVAC
control policies. Table 1 shows the top 10 office rooms
identified by our prioritization algorithm, ranked by their
composite retrofit priority scores.

Performance is evaluated using four key metrics: (1) en-
ergy efficiency (kWh/day), (2) thermal comfort violations
(% time outside 22–24°C), (3) operational cost reduction
($/day), and (4) carbon emissions (kg CO/day). We com-
pare AMORF against baseline static control and rule-based
heuristics.
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Algorithm 3 Integrated Agent Coordination and Stake-
holder Communication

1: Input: Agent states Θ, sensor readings S(t), MCP
serverM, stakeholder profiles SP

2: Initialize: Message queue Q, LLM context C, report
templates T

3: while system operational do
4: for each agent Aj do
5: Update local state: θj ← fj(θj ,S(t),Q)
6: if significant state change OR periodic sync re-

quired then
7: Extract context: ctxj ←

M.extract(θj , actionsj)
8: Transmit MCP message to orchestrator
9: end if

10: end for
11: Aggregate contexts: C ←

⋃
j ctxj

12: Generate insights: insights ←
LLM.reason(C, objectives)

13: Update coordination strategy and broadcast to agents
14: for each stakeholder sp ∈ SP do
15: Filter insights: insightssp ← fil-

ter by role(insights, sp)
16: Generate report: report ←

LLM.generate(T , insightssp)
17: Transmit via appropriate channel based on urgency
18: end for
19: Clear processed contexts from Q
20: end while

3.2. Natural Language Communication Validation

AMORF autonomously generates actionable no-
tifications—alerts, warnings, and recommenda-
tions—demonstrating effective agentic communication.
This confirms its ability to translate optimization outcomes
into human-readable insights for stakeholders.

4. Results & Conclusion
We validated the AMORF framework through simulations,
with room 15 emerging as the top retrofit candidate (score:
0.811). After 800 Q-learning episodes, the agent achieved
a high average reward of 3458.52, confirming successful
multi-objective optimization. The system maintained ther-
mal comfort (mean temperature: 24.1°C), reduced energy
cost (215.99 units), and minimized comfort violations (197.1
instances), with convergence indicated by a low exploration
rate (ϵ = 0.081).

These results highlight AMORF’s ability to integrate zone
prioritization, agent-based coordination, and adaptive RL
control to optimize building energy performance. The frame-
work effectively balances comfort, cost, and efficiency, of-

Figure 3. AMORF results for Room:15

fering a scalable path toward data-driven retrofitting and
urban decarbonization.
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