PROBLEM: SHARDED RESILIENT TRANSACTION PROCESSING WITH MINIMAL
CoSTS

Anonymous authors
Paper under double-blind review

Abstract

To enable scalable resilient blockchain systems, several pow-
erful general-purpose approaches toward sharding such sys-
tems have been demonstrated. Unfortunately, these ap-
proaches all come with substantial costs for ordering and
execution of multi-shard transactions.

In this work, we ask whether one can achieve significant
cost reductions for processing multi-shard transactions by
limiting the type of workloads supported. To initiate the study
of this problem, we propose core-CHIMERA (CCHIMERA).
CCHIMERA uses strict UTXO-based environmental require-
ments to enable powerful multi-shard transaction processing
with an absolute minimum amount of coordination between
shards. In the environment we designed CCHIMERA for,
CCHIMERA will operate perfectly with respect to all trans-
actions proposed and approved by well-behaved clients, but
does not provide any other guarantees.

To illustrate that CCHIMERA-like protocols can also be of
use in environments with faulty clients, we also demonstrate
two generalizations of CCHIMERA, optimistic-CHIMERA and
resilient-CHIMERA, that make different tradeoffs in complex-
ity and costs when dealing with faulty behavior and attacks.
Finally, we compare these three protocols and show their
potential scalability and performance benefits over state-of-
the-art general-purpose systems. These results underline the
importance of the study of specialized approaches toward
sharding in resilient systems.

1 Introduction

The advent of blockchain applications and technology has re-
juvenated interest of companies, governments, and developers
in resilient distributed fully-replicated systems and the dis-
tributed ledger technology (DLT) that powers them. Indeed,
in the last decade we have seen a surge of interest in reimag-
ining systems and build them using DLT networks. Examples
can be found in the financial and banking sector [15, 39, 52],
IoT [45], health care [28,40], supply chain tracking, advertis-
ing, and in databases [5,23,30,31,49,50]. This wide interest is
easily explained, as blokchains promise to improve resilience
against both failures and malicious behavior, while enabling
the federated management of data by many participants.

To illustrate this, we look at the financial sector. Current
traditional banking infrastructure is often rigid, slow, and

creates substantial frictional costs. It is estimated that the
yearly cost of transactional friction alone is $71 billion [8] in
the financial sector, creating a strong desire for alternatives.
This sector is a perfect match for DLT, as it enables systems
that manage digital assets and financial transactions in more
flexible, fast, and open federated infrastructures that eliminate
the friction caused by individual private databases maintained
by banks and financial services providers. Consequently, it
is expected that a large part of the financial sector will move
towards DLT [18].

At the core of DLT is the replicated state maintained by
the network in the form of a ledger of transactions. In tradi-
tional blockchains, this ledger is fully replicated among all
participants using consensus protocols [14,30,37,45,48]. For
many practical use-cases, one can choose to use either permis-
sionless consensus solutions that are operated via economic
self-incentivization through cryptocurrencies (e.g., Nakamoto
consensus [47, 57]), or permissioned consensus solutions
that require vetted participation (e.g, PBFT, POE, and HOT-
STUFF [16,32,59]). Unfortunately, the design of consensus
protocols are severely limited in their ability to provide the
high transaction throughput that is needed to address prac-
tical needs, e.g., in the financial sector. Indeed, on the one
hand, we see that permissionless solutions can easily scale
to thousands of participants, but are severely limited in their
transaction processing throughput. E.g., in Ethereum, a popu-
lar public permissionless DLT platform, the rapid growth of
decentralized finance applications [12] causes its network fees
to rise precipitously as participants bid for limited network ca-
pacity [7], while Bitcoin can only process a few transactions
per second [52]. On the other hand, permissioned solutions
can reach much higher throughput. Permissioned blockchains
are still fully-replicated resilient systems, however. Hence,
the speed by which individual replicas can process transac-
tions provides an upper-bound on the performance of these
permissioned blockchains, ruling out scalability. Furthermore,
adding replicas will actively decrease performance of a per-
missioned blockchain, as full replication among more replicas
increases the cost of full replication (e.g., via consensus). As
such, permissioned blockchains lack the scalability required
by many modern data-based applications.

Recently, several general-purpose sharded consensus-based
systems have been proposed to combat the limitations of fully-
replicated consensus-based systems [1, 3,4, 17,34,53]. In
these systems, one partitions the data among several shards

2022

Request on 03,05 Request on 02,014 Request on 012,017
(via PBFT) (via CHIMERA) (via PBFT)

¥ ¥ v

Al «<——> Ay By «<—> B;

CHIMERA

PBFT PBFT
Ay «———> Ay B3 «——> By

(Objects o1, ...,010) (Objects 011, ...,020)

Figure 1: A sharded design in which two resilient blockchains
each hold only a part of the data. Local decisions within a
cluster are made via traditional PBFT consensus, whereas
multi-shard transactions are processed via CHIMERA (pro-
posed in this work).

that each can potentially operate mostly-independent on their
data, while only requiring inter-shard coordination to process
multi-shard transactions that affect data on several shards (see
Figure 1).

The choice of protocol for such multi-shard transaction
processing determines greatly the scalability benefits of
sharding and the overhead costs incurred by sharding, how-
ever [1,3,4,17,34,53]. In practice, existing proposals
for sharding consensus-based systems have taken a general-
purpose approach aiming at serving any workload. Unfortu-
nately, such genericity comes at a cost, and existing proposals
either have high coordination costs, incur high latencies, or
have severe bottlenecks with multi-shard workloads.

In this work, we ask whether one can improve on the state-
of-the-art proposals by limiting the type of workloads sup-
ported by the systems. In specific, we propose the following
problem for further study:

Problem. Can one reduce the cost of coordination
in the design of sharded consensus-based systems
by limiting the types of workloads supported?

In this paper, we give a preliminary positive answer for the
above problem. In specific, we put forward the CHIMERA
family of multi-shard transaction processing protocols that
can process UTXO-transactions and uses properties of these
transactions to reduce coordination to a minimum.

To be able to adapt to the needs of specific use-cases, we
propose three variants of CHIMERA:

1. In Section 4, we propose Core-CHIMERA (CCHIMERA),
a design specialized for processing UTXO-like transac-
tions. CCHIMERA uses strict environmental assump-
tions on UTXO-transactions to its advantage to yield
a minimalistic design that only requires a single local
consensus step in affected shards, an absolute minimum.
Furthermore, CCHIMERA requires only a single round
of information sharing between shards. This information
sharing can be implemented either via an all-to-all com-
munication step (favoring latency over bandwidth usage)

or via an all-to-one-to-all communication step (favoring
bandwidth usage over latency).

Even with this minimalistic design, CCHIMERA will op-
erate perfectly with respect to all transactions proposed
and approved by well-behaved clients (although it may
fail to process transactions originating from malicious
clients).

To also support more general-purpose environments in which
clients are malicious or can legitimately approve conflicting
transactions, we propose Optimistic-CHIMERA and Resilient-
CHIMERA, two generalizations of CCHIMERA that each deal
with the strict environmental assumptions of CCHIMERA
while preserving the minimalistic design of CCHIMERA:

2. In Section 5, we propose Optimistic-CHIMERA. In the
design of Optimistic-CHIMERA (OCHIMERA), we as-
sume that malicious behavior is rare and we optimize
the normal-case operations. We do so by keeping the
normal-case operations as minimalistic as possible by
utilizing a single multi-shard consensus step to execute
multi-shard transactions in the normal case.

This multi-shard consensus step combines the local con-
sensus steps of CCHIMERA and the information shar-
ing steps of CCHIMERA into a single step. As with
CCHIMERA, this step can either favor latency or band-
width. When compared to CCHIMERA, the multi-shard
consensus step does not require any additional coordina-
tion phases in the well-behaved optimistic case, while
still being able to lift the environmental assumptions of
CCHIMERA and lowering the latency of transaction pro-
cessing in most cases. In doing so, OCHIMERA does
require intricate coordination when recovering from at-
tacks, however.

3. In Section 6, we propose Resilient-CHIMERA. In the
design of Resilient-CHIMERA, we assume that mali-
cious behavior is common and we add sufficient coor-
dination to the normal-case operations of CCHIMERA
to enable a simpler and localized recovery path, allow-
ing RCHIMERA to operate in a general-purpose fault-
tolerant environments without significant costs to recover
from attacks.

In Section 7, we show that all three variants of CHIMERA
provide strong ordering guarantees based on their usage of
UTXO-transactions. Finally, in Section 8, we compare the
three CHIMERA protocols and show their potential scalabil-
ity and performance benefits over state-of-the-art general-
purpose systems

2 Preliminaries

As permissioned blockchains already have much higher
throughputs than permissionless blockchains, we will focus
on permissioned blockchains in this paper.

2022

First, we introduce the system model, the sharding model,
the data model, the transaction model, and the terminology
and notation used throughout this paper.

If S is a set of replicas, then G(§) denotes the non-faulty
good replicas in S that always operate as intended, and
F(S) =S\ G(S) denotes the remaining replicas in S that
are faulty and can act Byzantine, deviate from the intended
operations, or even operate in coordinated malicious manners.
We write ng = |S|, gs = |G(S)|, and fs = |S\ G(S)| =ns —gs
to denote the number of replicas in S, good replicas in S, and
faulty replicas in S, respectively.

We assume that communication between replicas is au-
thenticated: on receipt of a message m from replica R € R,
one can determine that R did sent m if R € G(R). Hence,
faulty replicas are able to impersonate each other, but are
not able to impersonate good replicas. To provide authenti-
cated communication under practical assumptions, we can
rely on cryptographic primitives such as digital signatures
and threshold signatures [41, 54].

Let R be a set of replicas. In a sharded fault-tolerant system
over R, the replicas are partitioned into sets shards(R) =
{80, --,Sz} such that the replicas in S;, 0 < i < z, operate as
an independent Byzantine fault-tolerant system. As each §;
operates as an independent Byzantine fault-tolerant system,
we require ng, > 3f,, a minimal requirement to enable Byzan-
tine fault-tolerance in an asynchronous environment [20,21].
We assume that every shard § € shards(fR) has a unique
identifier 1d(S).

Assumption 2.1. We assume coordinating adversaries that
can, at will, choose and control any replica R € § in any
shard § € shards(fR) in the sharded fault-tolerant system as
long as, for each shard §’ € shards(R), the adversaries only
control up to f replicas in 5.

We use the object-dataset model in which data is modeled
as a collection of objects. Each object o has a unique identifier
id(0) and a unique owner owner(o). In the following, we
assume that all owners are clients of the system that manages
these objects. The only operations that one can perform on an
object are construction and destruction. An object cannot be
recreated, as the attempted recreation of an object o will result
in a new object o’ with a distinct identifier (id(0) # 1d(0')).

Changes to object-dataset data are made via transactions
requested by clients. We write (T). to denote a transac-
tion T requested by a client c. We assume that all transac-
tions are UTXO-like transactions: a transaction T first pro-
duces resources by destructing a set of input objects and
then consumes these resources in the construction of a set
of output objects. We do not rely on the exact rules re-
garding the production and consumption of resources, as
they are highly application-specific. Given a transaction
T, we write Inputs(t) and Outputs(t) to denote the input
objects and output objects of T, respectively, and we write
Objects(t) = Inputs(t)UOutputs(t).

Assumption 2.2. Given a transaction T, we assume that one
can determine Inputs(t) and Outputs(t) a-priori. Further-
more, we assume that every transaction has inputs. Hence,
|Inputs(t)| > 1.

Owners of objects o can express their approval for transac-
tions 7T that have o as their input. To provide this functionality,
we can rely on digital signatures [41].

Assumption 2.3. If an owner is well-behaved, then an ex-
pression of approval cannot be forged or provided by any
other party.! Furthermore, a well-behaved owner of o will
only express its approval for a single transaction T with
0 € Inputs(T), as only one transaction can consume the ob-
ject o, and the owner will only do so after the construction of
0.

Let 0o be an object. We assume that there is a well-
defined function shard(o) that maps object o to the single
shard § € shards(fR) that is responsible for maintaining o.
Given a transaction T, we write shards(t) = {shard(o) | o €
Objects(t)} to denote the shards that are affected by 1. We
say that T is a single-shard transaction if |shards(t)| = 1 and
is a multi-shard transaction otherwise.

3 Multi-Shard Transaction Processing

Before we introduce CHIMERA, we put forward the correct-
ness requirements we want to maintain in a multi-shard trans-
action system in which each shard is itself a set of repli-
cas operated as a Byzantine fault-tolerant system. We say
that a shard S performs an action if every good replica in
G (S) performs that action. Hence, any processing decision
or execution step performed by .S requires the usage of a
consensus protocol [14, 16,30, 44, 45] that coordinates the
operations of individual replicas in the system, e.g., a Byzan-
tine fault-tolerant system driven by PBFT [16], POE [32],
or HOTSTUFF [59], or a crash fault-tolerant system driven
by PAXO0S [44]. As these systems are fully-replicated, each
replica holds exactly the same data, which is determined by
the sequence of transactions—the journal—agreed upon via
consensus:

Definition 3.1. A consensus protocol coordinate decision
making among the replicas of a resilient cluster § by pro-
viding a reliable ordered replication of decisions. To do so,
consensus protocols provide the following guarantees:

1. If good replica R € § makes a p-th decision, then all
good replicas R’ € § will make a p-th decision (whenever
communication becomes reliable).

'Earlier, we assumed a unique owner that can approve transactions and
prove object ownership in a unique and non-ambiguous way. This does not
preclude shared ownership in which multiple participants own an object,
however. In that case, we simply require that such a group of participants can
approve transactions via their own agreement process to determine which
transactions to support (e.g., via multiple signatures, via threshold signatures,
or via other mechanisms).

2022

2. If good replicas R, Q € § make p-th decisions, then they
make the same decisions.

3. Whenever a good replica learns that a decision D needs
to be made, then it can force consensus on D.?

Let © be a transaction processed by a sharded fault-tolerant
system. Processing of T does not imply execution: the trans-
action could be invalid (e.g., the owners of affected objects
did not express their approval) or the transaction could have
inputs that no longer exists. We say that the system commits
to 7T if it decides to apply the modifications prescribed by 7,
and we say that the system aborts 7 if it decides to not do
so. Using this terminology, we put forward the following
requirements for any sharded fault-tolerant system:

R1 Validity. The system must only processes transaction
T if, for every input object 0 € Inputs(t) with a well-
behaved owner owner (o), the owner owner(o) approves
the transaction.’

R2 Shard-involvement. The shard § only processes transac-
tion T if S € shards(t).

R3 Shard-applicability. Let D(S) be the dataset maintained
by shard § at time . The shards shards(t) only commit
to execution of transaction T at ¢ if T consumes only
existing objects. Hence, Inputs(t) C U{D(S) | S €
shards(T)}.

R4 Cross-shard-consistency. If shard S commits (aborts)
transaction T, then all shards §’ € shards(t) eventually
commit (abort) T.

RS Service. If client ¢ is well-behaved and wants to request
a valid transaction T, then the sharded system will even-
tually process (t).. If T is shard-applicable, then the
sharded system will eventually execute (T)..

R6 Confirmation. If the system processes (). and ¢ is well-
behaved, then ¢ will eventually learn whether T is com-
mitted or aborted.

The validity of transactions is a local requirement: whether a
transaction 7 is valid can be determined by checking whether
all owners of inputs of T support that transaction. Typically,
ownership is expressed via digital signatures, which can be

2Many definitions of consensus include a requirement of non-triviality
instead. Here, we focus on the usage of consensus for operating services
that processes requests of clients (e.g., the purpose for which PBFT was
designed). In such services, non-triviality is typically provided by assuring
that any client can get their requests processed. To do so, clients can send
their request D to all good replicas, whom then can collaborate together to
force a consensus on D. The specific details of such process depend on the
details of the consensus protocol.

3Determining validity of a transaction can include application-level re-
quirements that should hold in a transaction. If, for example, the objects
represent monetary balances, then transactions that produce more output than
they consume input can be considered invalid.

verified deterministically by any replica in any shard indepen-
dently. Hence, all replicas in all affected shards will make
the same conclusion on whether 7 is valid. Likewise, also
shard-involvement is a local requirement, as individual shards
can determine whether they need to process a given transac-
tion. In the same sense, shard-applicability and cross-shard-
consistency are global requirements, as assuring these require-
ments requires coordination between the shards affected by a
transaction.

In the above and throughout this paper, we will speak of
transaction processing whenever we look at the steps the
system takes after receiving a request (eventually leading to
discarding the request when it is invalid, a commit decision,
or an abort decision). We will speak of transaction execution
to refer to transactions that finished processing with either a
commit decision or an abort decision.

4 Core-CHIMERA:
Simple Yet Efficient Transaction Processing

The core idea of CHIMERA is to minimize the coordination
necessary for multi-shard ordering and execution of trans-
actions. To do so, CHIMERA combines the semantics of
transactions in the object-dataset model with the minimal
coordination required to assure shard-applicability and cross-
shard consistency. This combination results in the following
high-level three-step approach towards processing any trans-
action T:

1. Local inputs. First, every affected shard § € shards(t)
locally determines whether it has all inputs from § that
are necessary to process T.

2. Cross-shard exchange. Then, every affected shard §
exchanges these inputs to all other shards in shards(t),
thereby pledging to use their local inputs in the execution
of 7.

3. Decide outcome. Finally, every affected shard .S decides
to commiit 7 if all affected shards were able to provide
all local inputs necessary for execution of T.

Next, we describe how these three high-level steps are
incorporated by CHIMERA into normal consensus steps at
each shards. Let shard § € shards(fR) receive client request
(t)¢. The good replicas in S will first determine whether 7 is
valid and applicable.

If T is not valid or § ¢ shards(t), then the good replicas
discard 1. Otherwise, if T is valid and § € shards(t), then the
good replicas utilize consensus to force the primary P(S) to
propose in some consensus round p the message m(S, 1), =
((T)e,1(S,7),D(S,7)), in which I(S,T) = {0 € Inputs(T) |
S = shard(o)} is the set of objects maintained by § that

2022

are input to T and D(S,t) C I(S,7) is the set of currently-
available inputs at S. Only if I(5,t) = D(S,T) will S pledge
to use the local inputs I(S,) in the execution of 7.

We use consensus during the local inputs step as it provides
an ordered agreement among seqeuences of transactions. This
ordered agreement is necessary to acquire a consistent results
among all replicas in a shard: all replicas of a shard need
to process all transactions they process in the same order,
as otherwise they cannot agree on which of the inputs of
a transaction T are available to T in the presence of other
transactions with the same inputs.

The acceptance of m(S,7), in round p by all good replicas
completes the local inputs step. Next, during processing of
T, the cross-shard exchange and decide outcome steps are
performed. First, the cross-shard exchange step. In this
step, S broadcasts m(S,7) to all other shards in shards(t).
To assure that the broadcast arrives, we rely on a reliable
primitive for cross-shard exchange that guarantees that only
approved-upon values can be exchanged. Recently, such
primitives have been formalized as cluster-sending [33,35]:

Definition 4.1. Let 51,5, be two shards. The cluster-sending
problem is the problem of sending a value v from $; to S
such that:

1. all good replicas in .S, receive the value v;

2. all good replicas in) receive confirmation that the value
v was received by all good replicas in .5,; and

3. good replicas in S, can only receive a value v if all good
replicas in §; agreed upon sending v.

After § broadcasts m(S,T), to all other shards in
shards(7), the replicas in § wait until they receive messages
m(S',1)y = (1), 1(8',7),D(S’,7)) from all other shards
S’ € shards(7).

After cross-shard exchange comes the final decide out-
come step. After § receives m(S’, 1)y from all shards §' €
shards(T), it decides to commit whenever I(S',t) = D(5',7)
for all §' € shards(t). Otherwise, it decides abort. If §
decides commit, then all good replicas in .S destruct all ob-
jects in D(S,t) and construct all objects o € Outputs(T)
with § = shard(o). Finally, each good replica informs ¢
of the outcome of execution. If ¢ receives, from every shard
S" € shards(t), identical outcomes from gg» — £ distinct
replicas in §”, then it considers T to be successfully executed.
In Figure 2, we sketched the working of CCHIMERA.

The cross-shard exchange step of CCHIMERA at § involves
waiting for other shards S’. Hence, there is the danger of
deadlocks if the other shards ' never perform their cross-
shard exchange steps. To assure that such situations do not
lead to a deadlock, we employ two techniques.

1. Internal propagation. To deal with situations in which
some shards § € shards(t) did not receive (1), (e.g.,

Te

Si \ Consensus on (T), - it for Commit/Abor /
S5 Consensus on {T). - ait for Commit/Abor

S3 Consensus on (T), - ait for Commit/Abort!

Local Inputs Decide Outcome Inform

(Consensus)
Cross-Shard Exchange
(Cluster-Sending)

Figure 2: The message flow of CCHIMERA for a 3-shard
client request (t), that is committed.

due to network failure or due to a faulty client that fails
to send (1), t0 S), we allow each shard to learn T from
any other shard. In specific, § will start consensus on
(1) after receiving cross-shard exchange related to (T)..

2. Concurrent resolution. To deal with concurrent trans-
actions that content for the same objects, we allow
each shard to accept and process transactions for dif-
ferent rounds concurrently. To assure that concurrent
resolution does not lead to inconsistent state updates,
each replica implements the following first-pledge and
ordered-commit rules. Let T be a transaction with
S € shards(t) and R € §. The first-pledge rule states
that .S pledges o, constructed in round p, to transaction
T only if 7T is the first transaction proposed after round
p with o € Inputs(t). The ordered-commit rule states
that § can abort T in any order, but will only commit T
that is accepted in round p after previous rounds finished
execution.

The above first-pledge and ordered-commit rules do not
need to be enforced or guaranteed, as they specify determin-
istic behavior for all good replicas. Next, we illustrate the
usage of these rules.

Example 4.2. Consider two shards §; and S affected by
transactions T; and T, that each require objects o; and o;
residing on shards $; and .5, respectively. Now consider the
case in which shard §; first processes T, and then T,, while
shard S, first processes T, and then 7. In this case, shard .$;
will pledge o1 to T; and shard .5, will pledge o, to T,. Hence,
both T, and T, miss inputs and will fail to complete execution.
As both transactions will abort, the order in which they abort
does not matter.

In this situation, which will only happen if two transactions
have the same inputs in violation of Assumption 2.3, will
result in an abort for the two transactions T; and 1. Transac-
tions that have unique inputs (in line with Assumption 2.3),
will always be able to be committed.

Abort decisions at shard .S on a transaction T can often be
made without waiting for all shards §' € shards(t): shard
S can decide abort after it detects 1(S,T) # D(S,T) or af-
ter it receives the first message ((t).,1(S”,71),D(S",7)) with

2022

1(8",7) # D(S",7), S” € shards(t). For efficiency, we al-
low S to abort in these cases.

Theorem 4.3. [f, for all shards S*, gs+ > 2f¢+, and Assump-
tions 2.1, 2.2, and 2.3 hold, then Core-CHIMERA satisfies
Requirements R1-R6 with respect to all transactions that are
not requested by malicious clients and do not involve objects
with malicious owners.

Proof. Let 1 be a transaction. As good replicas in S discard
T if it is invalid or if § ¢ shards(t), CCHIMERA provides
validity and shard-involvement. Next, shard-applicability
follow directly from the decide outcome step.

If a shard § commits or aborts transaction T, then it must
have completed the decide outcome and cross-shard exchange
steps. Hence, all shards S’ € shards(t) must have exchanged
the necessary information to §. By relying on cluster-sending
for cross-shard exchange, .S’ requires cooperation of all good
replicas in S’ to exchange the necessary information to .
Hence, we have the guarantee that these good replicas will
also perform cross-shard exchange to any other shard §” €
shards(t). As such, every shard S” € shards(t) will receive
the same information as §, complete cross-shard exchange,
and make the same decision during the decide outcome step,
providing cross-shard consistency.

Due to internal propagation and concurrent resolution, ev-
ery valid transaction T will be processed by CCHIMERA as
soon as it is send to any shard § € shards(t). Hence, ev-
ery shard in shards(t) will perform the necessary steps to
eventually inform the client. As all good replicas R € S,
S € shards(t), will inform the client of the outcome for 7,
the majority of these inform-messages come from good repli-
cas, enabling the client to reliably derive the true outcome.
Hence, CCHIMERA provides service and confirmation. [

Notice that in the object-dataset model in which we oper-
ate, each object can be constructed once and destructed once.
Hence, each object o can be part of at-most two committed
transactions: the first of which will construct o as an output,
and the second of which has o as an input and will consume
and destruct o. This is independent of any other operations
on other objects. As such these two transactions cannot hap-
pen concurrently. Consequently, we only have concurrent
transactions on o if the owner owner (o) expresses approval
for several transactions that have o as an input. By Assump-
tion 2.3, the owner owner (o) must be malicious in that case.
As such, transactions of well-behaved clients and owners will
never abort.

In the design of CCHIMERA, we take full advantage of the
above observation: CCHIMERA effectively eliminates all co-
ordination when deciding to process a multi-shard transaction
due to which all involved shards can process a transaction in-
dependently with a single consensus step: all communication
between shards in CCHIMERA is dedicated to exchange exe-
cution state after individual shards reach consensus. We can

do so as any aborts, which could have been prevented with
additional coordination, are always due to malicious behavior
by clients and owners of objects. Due to this, CCHIMERA
will not undo any pledges of objects to the execution of any
transactions. This implies that objects that are involved in
malicious transactions can get lost for future usage, while not
affecting any transactions of well-behaved clients.

Finally, we remark that CCHIMERA depends on underlying
consensus and cluster-sending protocols. The level to which
CCHIMERA can deal with asynchronous behavior depends
on the particular choices of these protocols.

5 Optimistic-CHIMERA:
Robust Transaction Processing

In the previous section, we introduced CCHIMERA, a mini-
malistic multi-shard transaction processing protocol that relies
on properties of UTXO-like transactions to maximize perfor-
mance. Although the design of CCHIMERA is simple yet
effective, we see two shortcomings that limits its use. First,
CCHIMERA operates under Assumption 2.3, the assumption
that any issues arising from concurrent transactions is due to
malicious behavior of clients. As such, CCHIMERA chooses
to lock out objects affected by such malicious behavior for
any future usage. Second, CCHIMERA requires consecutive
consensus and cluster-sending steps, which increases its trans-
action processing latencies. Next, we investigate how to deal
with these weaknesses of CCHIMERA without giving up on
the minimalistic nature of CCHIMERA.

To do so, we propose Optimistic-CHIMERA (OCHIMERA),
which is optimized for the optimistic case in which we have no
concurrent transactions, while providing a recovery path that
can recover from concurrent transactions without locking out
objects (and without requiring Assumption 2.3). At the core
of OCHIMERA is assuring that any issues due to malicious
behavior, e.g., concurrent transactions, are detected in such
a way that individual replicas can recover. At the same time,
we want to minimize transaction processing latencies. To
bridge between these two objectives, we integrate detection
and cross-shard coordination within a single consensus round
that runs at each affected shard.

OCHIMERA does not rely on underlying consensus and
cluster-sending protocols. For the design of OCHIMERA, we
assume asynchronous communication: messages can get lost,
arrive with arbitrary delays, and in arbitrary order. Conse-
quently, it is impossible to distinguish between, on the one
hand, a replica that is malicious and does not send out mes-
sages, and, on the other hand, a replica that does send out
proposals that get lost in the network. It is well-known that in
such an environment, consensus cannot be provided [25,27].
As such, OCHIMERA is designed to operate in a asynchronous
environment in which it will never cause data inconsistency
and only guarantees progress (service and confirmation) even-

2022

tually when communication is reliable for a sufficiently-long
period of time. This is the same model of partial asynchronous
communication as used by PBFT.

Let (t), be a multi-shard transaction, let § € shards(t)
be an affected shard with primary P(S), and let m(S,7),p =
((t)¢,1(S5,7),D(S,7)) be the round-p proposal of P(S) of
view v of S. To enable detection of concurrent transactions,
OCHIMERA modifies the consensus-steps of the underlying
consensus protocol by applying the following high-level idea:

AreplicaR € S, S € shards(t), only accepts pro-
posal m(S,7),,, for transaction 7 if it gets confirma-
tion that replicas in each other shard §” € shards(t)
are also accepting proposals for T. Otherwise,
replica R detects failure.

To simplify presentation, we will use a traditional design
that uses all-to-all communication between all replicas in all
affected shards akin to the design of PBFT [16]. To minimize
inter-shard communication (at the cost of latency) one can
also utilize threshold signatures to implement all-to-one-to-all
communication akin to the design of HOTSTUFF [59] to carry
over local prepare and commit certificates between shards via
a few constant-sized messages.

Next, we illustrate how to integrate the above idea in the
three-phase design of PBFT, thereby turning PBFT into a
multi-shard aware consensus protocol:

1. Global preprepare. Primary P(S) must send m(S,T).p
to all replicas R" € §', ' € shards(t). ReplicaR € §
only finishes the global preprepare phase after it re-
ceives a global preprepare certificate consisting of a
set M = {m(S") o | §” € shards(t)} of preprepare
messages from all primaries of shards affected by 7.

2. Global prepare. AfterR € S, § € shards(t), finishes
the global preprepare phase, it sends prepare messages
for M to all other replicas in R’ € §/, §’ € shards(t).
Replica R € S only finishes the global prepare phase
for M after, for every shard S’ € shards(t), it receives
a local prepare certificate consisting of a set P(S') of
prepare messages for M from g¢ distinct replicas in
S'. We call the set {P(S5") | §” € shards(t)} a global
prepare certificate.

3. Global commit. After replicaR € S, S € shards(t), fin-
ishes the global prepare phase, it sends commit messages
for M to all other replicas in R’ € §’, §' € shards(1).
Replica R € S only finishes the global commit phase for
M after, for every shard §’ € shards(t), it receives a
local commit certificate consisting of a set C(§") of com-
mit messages for M from g distinct replicas in §’'. We
call the set {P(S") | §” € shards(t)} a global commit
certificate.

The above three-phase global-PBFT protocol already takes
care of the local input and cross-shard exchange steps. Indeed,

Te
Si \ WM_DCCMS Commit/Abort /
S Decide Commit/Abort
S3 "Decide Commit/Abort

Preprepare Prepare Commit Decide Outcome Inform

Local Inputs and Cross-Shard Exchange
(Global Consensus)

Figure 3: The message flow of OCHIMERA for a 3-shard
client request (1), that is committed.

a replica R € § that finishes the global commit phase has
accepted global preprepare certificate M, which contains all
information of other shards to proceed with processing. At
the same time, R also has confirmation that M is prepared by
a majority of all good replicas in each shard .§’ € shards(t)
(which will eventually be followed by execution of T within
S"). With these ingredients in place, only the decide outcome
step remains.

The decide outcome step at shard S is entirely de-
termined by the global preprepare certificate M. Shard
S decides to commit whenever I(S',T) = D(S’,1) for all
((T)e,1(S,7),D(S', 7)) € M. Otherwise, it decides abort. If
S decides commit, then all good replicas in § destruct all
objects in D($,T) and construct all objects o € Outputs(T)
with § = shard(o). Finally, each good replica informs ¢ of
the outcome of execution. If ¢ receives, from every shard
S’ € shards(t), identical outcomes from g¢ — f¢ distinct
replicas in S, then it considers T to be successfully executed.
In Figure 3, we sketched the working of OCHIMERA.

We note that OCHIMERA is not the only multi-shard aware
consensus protocol recently proposed (e.g., [3,4]). What
sets OCHIMERA apart is how it guarantees correctness in
all environments, which is determined by how OCHIMERA
deals with non-optimistic cases in which failure is detected
and recovery is necessary. We will detail recovery next. As
a first step, we illustrate the ways in which the normal-case
of OCHIMERA can fail (e.g., due to malicious behavior of
clients, failing replicas, or unreliable communication).

Example 5.1. Consider a transaction T proposed by client ¢
and affecting shard § € shards(t). First, we consider the
case in which P(S) is malicious and tries to set up a coor-
dinated attack. To have maximum control over the steps of
OCHIMERA, the primary sends the message m(S,T)s.p to only
g¢» —fgn good replicas in each shard S” € shards(t). By do-
ing so, P(S) can coordinate the faulty replicas in each shard
to assure failure of any phase at any replicaR’ € §’, S’ € T

1. To prevent R’ from finishing the global preprepare phase
(and start the global prepare phase) for an M with
m(S',7)y o € M, P(S) simply does not send m(S,7),,p
to R’.

2. To prevent R’ from finishing the global prepare phase

2022

(and start the global commit phase) for M, P(S) instructs
the faulty replicas in F (S) to not send prepare messages
for M to R’. Hence, R" will receive at-most gg — fg
prepare messages for M from replicas in S, assuring that
it will not receive a local prepare certificate P(S) and
will not finish the global prepare phase for M.

3. Likewise, to prevent R’ from finishing the global commit
phase (and start execution) for M, P(S) instructs the
faulty replicas in F () to not send commit messages
to R’. Hence, R’ will receive at-most g5 — f5 commit
messages for M from replicas in .S, assuring that it will
not receive a local commit certificate C($) and will not
finish the global commit phase for M.

None of the above attacks can be attributed to faulty behavior
of P(S) as unreliable communication can result in the same
outcomes for R’. Furthermore, even if communication is reli-
able and P(S) is good, replica R’ can see the same outcomes
due to malicious behavior of the client or of primaries of other
shards in shards(t):

1. The client ¢ can be malicious and not send T to . At
the same time, all other primaries P(S") of shards S €
shards(t) can be malicious and not send anything to §
either. In this case, P(S) will never be able to send any
message m(S,T),p to R, as no replica in § is aware of
T.

2. If any primary P(S”) of §” € shards(t) is malicious,
then it can prevent some replicas in § from starting the
global prepare phase, thereby preventing these replicas
to send prepare messages to R". If P(S") prevents suffi-
cient replicas in § from starting the global prepare phase,
R’ will be unable to finish the global prepare phase.

3. Likewise, any malicious primary P(S”) of S§" €
shards(t) can prevent replicas in § from starting the
global commit phase, thereby assuring that R’ will be
unable to finish the global commit phase.

To deal with malicious behavior, OCHIMERA needs a ro-
bust recovery mechanism. Indeed, the main difference of the
multi-shard consensus of OCHIMERA and the single-shard
consensus PBFT is that OCHIMERA will use a single primary
per shard whereas PBFT only has a single primary. This dif-
ference affects the capability of individual replicas to detect
the root cause of disruptions of the normal-case operations
(as several primaries could be the root cause of such disrup-
tions). As such, we cannot simply build the robust recovery
mechanism on top of traditional view-change approaches:
these traditional view-change approaches require that one can
identify a single source of failure (when communication is
reliable), namely the current primary. To remedy this, the
recovery mechanisms of OCHIMERA has components that
perform local view-change and that perform global state re-
covery.

1: event R € S is unable to finish round p of view v do
2: if R finished in round p the global prepare phase for M,
but is unable to finish the global commit phase then
3 Let P be the global prepare certificate of R for M.
4 if R has a local commit certificate C(S”) for M then
5 for §' € shards(t) do
6: if R did not yet receive a local commit certificate C(.S”) then
7 Broadcast (VCGlobalSCR: M, P,C(S")) to all replicas in §'.
8 else Detect the need for local state recovery of round p of view v (Figure 5).
9 else Detect the need for local state recovery of round p of view v (Figure 5).
0; (Eventually repeat this event if R remains unable to finish round p.)

11: event R’ € §' receives message (VCGlobalSCR: M,P,C(S")) fromR € S do

12: if R’ did not reach the global commit phase for M then
13: Use M, P, and C(S") to reach the global commit phase for M.
14: else Send a commit message for M to R.

Figure 4: The view-change global short-cut recovery path
that determines whether R already has the assurance that the
current transaction will be committed. If this is the case,
then R requests only the missing information to proceed with
execution. Otherwise, R requires at-least local recovery (Fig-
ure 5).

Next, we will detail the working of the recovery mech-
anisms of OCHIMERA. To simplify presentation, we will
focus on the recovery of a single transaction. The techniques
presented are straightforward to generalize to any history of
zero-or-more transactions. The pseudo-code for the recovery
protocol can be found in Figure 4. Next, we describe the
working of this recovery protocol in detail.

Let R € S be a replica that determines that it cannot finish
a round p of view v.First, R determines whether it already
has a guarantee on which transaction it has to process in
round p. This is the case when the following conditions
are met: R finished the global prepare phase for M with
m(S8,7)yp € M and has received a local commit certificate
C(S") for M from some shard §” € shards(t). In this case,
R can simply request all missing local commit certificates di-
rectly, as C(S”) can be used to prove to any involved replica
R' € 5, 5" € shards(t), that R also needs to commit to M.
To request such missing commit certificates of §’, replica R
sends out VCG1lobalSCR messages to all replicas in S’ (Line 7
of Figure 4). Any replica R’ that receives such a VCGlobalSCR
message can use the information in that message to reach the
global commit phase for M and, hence, provide R with the
requested commit messages (Line 11 of Figure 4).

If R does not have a guarantee itself on which transac-
tion it has to process in round p, then it needs to determine
whether any other replica (either in its own shard or in any
other shard) has already received and acted upon such a guar-
antee. To initiate such local and global state recovery, R
simply detects the current view as faulty. To do so, R broad-
casts a VCRecoveryRQ message to all other replicas in § that
contains all information R collected on round p in view v
(Line 4 of Figure 5). Other replicas Q € S that already have
guarantees for round p can help R by providing all missing
information (Line 6 of Figure 5). On receipt of this informa-

2022

tion, R can proceed with the round (Line 7 of Figure 5). If no
replicas can provide the missing information, then eventually
all good replicas will detect the need for local recovery, this
either by themselves (Line | of Figure 5) or after receiving
VCRecoveryRQ messages of at-least f¢ + 1 distinct replicas in
S, of which at-least a single replica must be good (Line 10 of
Figure 5).

Finally, if a replica R receives g5 VCRecoveryRQ messages,
then it has the guarantee that at least g¢ —fs > f5 4 1 of
these messages come from good replicas in .S. Hence, due
to Line 10 of Figure 5, all g5 good replicas in .§ will send
VCRecoveryRQ, and, when communication is reliable, also
receive these messages. Consequently, at this point, R can
start the new view by electing a new primary and awaiting the
NewView proposal of this new primary (Line 12 of Figure 5).
If R is the new primary, then it starts the new view by propos-
ing a NewView. As other shards could have already made final
decisions depending on local prepare or commit certificates
of § for round p, we need to assure that such certificates are
not invalidated. To figure out whether such final decisions
have been made, the new primary will query other shards §’
for their state whenever the NewView message contains global
preprepare certificates for transactions T, §’ € shards(t), but
not a local commit certificate to guarantee execution of T
(Line 17 of Figure 5).

The new-view process has three stages. First, the new
primary P proposes the new-view via a NewView message
(Line 12 of Figure 5). If necessary, the new primary P also
requests the relevant global state from any relevant shard
(Line 1 of Figure 6). The replicas in other shards will respond
to this request with their local state (Line 9 of Figure 6).
The new primary collects these responses and sends them
to all replicas in § via a NewViewGlobal message. Then,
after P sends the NewView message to R € §, R determines
whether the NewView message contains sufficient information
to recover round p (Line 15 of Figure 6), contains sufficient
information to wait for any relevant global state (Line 17 of
Figure 0), or to determine that the new primary must propose
for round p (Line 19 of Figure 6). If R determines it needs
to wait for any relevant global state, then R will wait for this
state to arrive via a NewViewGlobal message. Based on the
received global state, R determines to recover round p (Line 21
of Figure 0), or determines that the new primary must propose
for round p (Line 24 of Figure 6).

Next, we will prove the correctness of the view-change of
OCHIMERA. First, using a standard quorum argument, we
prove that in a single round of a single view of §, only a single
global preprepare message affecting .§ can get committed by
any other affected shards:

Lemma 5.1. Let t; and t» be transactions with S €
(shards(t)) N shards(ty)). If gs > 2fs and there exists
shards S; € shards(t;), i € {1,2}, such that good repli-
cas R; € G(S;) reached the global commit phase for global
preprepare certificate M; with m(S,7%;),,p € M;, then Ty = 1.

: event R € § detects the need for local state recovery of round p of view v do
Let M be any latest global preprepare certificate accepted for round p by R.
Let S be M and any prepare and commit certificates for M collected by R.
Broadcast (VCRecoveryRQ : v,p,S).

e o

w

: event Q € S receives messages (VCRecoveryRQ : v,p,S) of R € S and Q has

1. started the global prepare phase for M with m($,7),,p € M;
2. a global prepare certificate for M;
3. alocal commit certificate C(5”) for M

do
6 Send (VCLocalSCR: M,P,C(S")) toRE S.

<

: event R € S receives message (VCLocalSCR: M,P,C(S")) from Q € S do
8: if R did not reach the global commit phase for M then
9: Use M, P, and C to reach the global commit phase for M.

10: event R € § receives messages (VCRecoveryRQ : v;,p,S;), 1 <i<fs+1,
from f5 + 1 distinct replicas in S do
11: R detects the need for local state recovery of round p of view min{v; | 1 <i <
fs+1}.

12: event R € § receives messages (VCRecoveryRQ : v,p,S;), 1 <i<gs,
from distinct replicas in S do
13: if id(R) # (v+ 1) mod n; then

14: (R awaits the NewView message of the new primary, Line 14 of Figure 6.)
15: else
16: Broadcast (NewView : (VCRecoveryRQ : v,p,S;) | 1 < i< gs) to all replicas
inS.
17: if there exists a S; that contains global preprepare certificate M,
but no §; contains a local commit certificate for M then
18: R initiates global state recovery of round p (Line | of Figure 6).

Figure 5: The view-change local short-cut recovery path that
determines whether some Q can provide R with the assurance
that the current transaction will be committed. If this is the
case, then R only needs this assurance, otherwise § requires a
new view (Figure 6).

Proof. We prove this property using contradiction. We as-
sume T| # Tp. Let P;(S) be the local prepare certificate pro-
vided by S for M; and used by R; to reach the global commit
phase, let S; C S be the g¢ replicas in § that provided the
prepare messages in P;(S), and let 7; = S; \ F () be the good
replicas in S;. By construction, we have |T;| > g5 —fs. As all
replicas in 71 UT; are good, they will only send out a single
prepare message per round p of view v. Hence, if 1| # 1o,
then 71 N 7> = 0, and we must have 2(gs —fs) < |T1UTz|. As
all replicas in T} U T, are good, we also have |71 UT>| < gs.
Hence, 2(gs —f5) < gg, which simplifies to g5 < 2f, a con-
tradiction. Hence, we conclude t; = T5. O

Next, we use Lemma 5.1 to prove that any global prepre-
pare certificate that could have been accepted by any good
affected replica is preserved by OCHIMERA:

Proposition 5.1. Let T be a transaction and m(S,7),p be a
preprepare message. If, for all shards S*, g5« > 2f ¢+, and
there exists a shard S’ € shards(t) such that g —fs good
replicas in S’ reached the global commit phase for M with
m(S,%)vp € M, then every successful future view of S will
recover M and assure that the good replicas in S reach the
commit phase for M.

Proof. Let v <v be the first view in which a global prepare

2022

1. event P € S initiates global state recovery of round p using (NewView: V) do

2 Let T be the transactions with global preprepare certificates for round p of § in
view V.

Let S be the shards affected by transactions in 7'.

Broadcast (VCGlobalStateRQ: v,p,V) to all replicas in ' € S.

for §' € Sdo

Let W(S’) be the set of received VCGLOBALSTATERQ messages.
Broadcast (NewViewGlobal : V,{W(S’) | 8’ € S}) to all replicas in S.

9: event R’ € §’ receives message (VCGlobalStateRQ: v,p,V) from P € S do
1. if R’ has a global preprepare certificate M with m(S,1),,p € M
and reached the global commit phase for M then
11: Let P be the global prepare certificate for M.
12: Send (VCGlobalStateR:v,p,V,M,P) toP.
13: else Send (VCGlobalStateR:v,p,V) toP.

14: event R € § receives valid (NewView : V) message from replica P do
15: if there exists a (VCRecoveryRQ : v;,p,S;) € V that contains
a global preprepare certificate M with m(S$,7),,p € M,
a global prepare certificate P for M, and a local commit certificate C(S5")
for M then
16: Use M, P, and C to reach the global commit phase for M.
17: else if there exists a (VCRecoveryRQ : v;,p,S;) € V that contains
a global preprepare certificate M,
but no (VCRecoveryRQ : v;,p,S;) € V contains a local commit certificate

for M then
18: R detects the need for global state recovery of round p (Line 20 of Figure 6).
19: else (P must propose for round p.)

20: event R € S receives valid (NewViewGlobal : V,W) from P € S do
21: if any message in W is of the form (VCGlobalStateR :v,p,V,M,P) then

22: Select (VCGlobalStateR : v,p,V,M,P) € W with latest view w,
m(S,7)p €M.

23; Use M and P to reach the global commit phase for M.

24: else (P must propose for round p.)

Figure 6: The view-change new-view recovery path that re-
covers the state of the previous view based on a NewView
proposal of the new primary. As part of the new-view recov-
ery path, the new primary can construct a global new-view
that contains the necessary information from other shards to
reconstruct the local state.

certificate M* with m(S,7"),+ o € M* satisfied the premise of
this proposition. Using induction on the number of views after
the first view v*, we will prove the following two properties
on M*:

1. every good replica that participates in view w, v* < w,
will recover M* upon entering view w and reach the
commit phase for M*; and

2. no replica will be able to construct a local prepare certifi-
cate of § for any global preprepare certificate M' # M*
with m(S,’cT)w,p eMf v <w.

The base case is view v* + 1. Let S C G(S’) be the setof g —
fs good replicas in §’ that reached the global commit phase
for M*. Each replica R’ € §’ has a local prepare certificate
P(S) consisting of g prepare messages for M* provided
by replicas in §. We write S(R') C G(S) to denote the at-
least g5 —f s good replicas in § that provided such a prepare
message to R’.

Consider any valid new-view proposal (NewView : V) for
view v* + 1. If the conditions of Line 15 of Figure 6 hold for
global preprepare certificate M' with m(S,t%),,, € M*, then

Wait for VCGlobalStateRQ messages for V from g distinct replicas in S’

10

we recover M*. As there is a local commit certificate for M+ in
this case, the premise of this proposition holds on M*. As v* is
the first view in which the premise of this proposition hold, we
can use Lemma 5.1 to conclude that w = v*, M¥ = M*, and,
hence, that the base case holds if the conditions of Line 15
of Figure 6 hold. Next, we assume that the conditions of
Line 15 of Figure 6 do not hold, in which case M* can only
be recovered via global state recovery. As the first step in
global state recovery is proving that the condition of Line 17
of Figure 6 holds. Let 7 C G(S) be the set of at-least gg —f
good replicas in § whose VCRecoveryRQ message is in V
and let R € §'. We have |S(R")| > g5 —fs and |T| > gs —
fs. Hence, by a standard quorum argument, we conclude
SRYNT #0. LetQ € (S(R")NT). As Q is good and send
prepare messages for M*, it must have reached the global
prepare phase for M*. Consequently, the condition of Line 17
of Figure 6 holds and to complete the proof, we only need
to prove that any well-formed NewViewGlobal message will
recover M*.

Let (NewViewGlobal : V,W) be any valid global new-view
proposal for view v* + 1. As Q reached the global prepare
phase for M*, any valid global new-view proposal must in-
clude messages from §’ € shards(t). Let U’ C S’ be the
replicas in § of whom messages VCGlobalStateR are in-
cludedin W. Let V' =U"\ F(S'). We have |§'| > gg —f
and |V’| > g —fg. Hence, by a standard quorum argument,
we conclude S'NV’' £ 0. Let Q' € (§'NV’). As Q reached
the global commit phase for M*, it will meet the conditions of
Line 23 of Figure 6 and provide both M* and a global prepare
certificate for M*. Let M* be any other global preprepare cer-
tificate in W accompanied by a global prepare certificate. Due
to Line 22 of Figure 6, the global preprepare certificate for
the newest view of § will be recovered. As v* is the newest
view of §, M* will only prevent recovery of M* if it is also
a global preprepare certificate for view v* of . In this case,
Lemma 5.1 guarantees that M* = M*. Hence, any replica R
will recover M* upon receiving (NewViewGlobal : V,W).

Now assume that the induction hypothesis holds for all
views j, v < j <i. We will prove that the induction hypothe-
sis holds for view i+ 1. Consider any valid new-view proposal
(NewView:V) for view i+ 1 and let M* withm(S,t%),,, € M*
be any global preprepare certificate that is recovered due to the
new-view proposal (NewView : V). Hence, M* is recovered
via either Line 16 of Figure 6 or Line 23 of Figure 6. In both
cases, there must exist a global prepare certificate P for M*.
As (NewView : V) is valid, we must have w < i. Hence, we
can apply the second property of the induction hypothesis to
conclude that w < v*. If w = v*, then we can use Lemma 5.1
to conclude that M* = M*. Hence, to complete the proof,
we must show that w = v*. First, the case in which M¥ is
recovered via Line 16 of Figure 6. Due to the existence of a
global commit certificate C for M*, M* satisfies the premise
of this proposition. By assumption, v* is the first view for
which the premise of this proposition holds. Hence, w > v*,

2022

in which case we conclude M* = M*. Last, the case in which
M* is recovered via Line 23 of Figure 6. In this case, M is
recovered via some message (NewViewGlobal : V,W). Anal-
ogous to the proof for the base case, V will contain a message
VCRecoveryRQ from some replica Q € S(R'). Due to Line 2
of Figure 5, Q will provide information on M*. Consequently,
a prepare certificate for M* will be obtained via global state
recovery, and we also conclude M = M. O

Lemma 5.1 and Proposition 5.1 assure that no transaction
that could-be-committed by any replica will ever get lost by
the system. Next, we bootstrap these technical properties to
prove that all good replicas can always recover such could-
be-committed transactions.

Proposition 5.2. Let T be a transaction and m(S,7),.p be a
preprepare message. lIf, for all shards S*, g¢« > 2f¢+, and
there exists a shard S' € shards(t) such that g — £ good
replicas in S' reached the global commit phase for M with
m(S,7)yp € M, then every good replica in S will accept M
whenever communication becomes reliable.

Proof. Let R € S be a good replica that is unable to accept
M. At some point, communication becomes reliable, after
which R will eventually trigger Line | of Figure 4. We have
the following cases:

1. If R meets the conditions of Line 4 of Figure 4, then R has
a local commit certificate C(S"”), §” € shards(t). This
local commit certificate certifies that at least g —f¢r
good replicas in S” finished the global prepare phase for
M. Hence, the conditions for Proposition 5.1 are met
for M and, hence, any shard in shards(t) will maintain
or recover M. Replica R can use C(S") to prove this
situation to other replicas, forcing them to commit to M,
and provide any commit messages R is missing (Line 11
of Figure 4).

2. If R does not meet the conditions of Line 4 of Figure 4,
but some other good replica Q € § does, then Q can
provide all missing information to R (Line 6 of Figure 5).
Next, R uses this information (Line 7 of Figure 5), after
which it meets the conditions of Line 4 of Figure 4.

3. Otherwise, if the above two cases do not hold, then all g¢
good replicas in .S are unable to finish the commit phase.
Hence, they perform a view-change. Due to Proposi-
tion 5.1, this view-change will succeed and put every
replica in § into the commit phase for M. As all good
replicas in S are in the commit phase, each good replica
in S will be able to make a local commit certificate C(S)
for M, after which they meet the conditions of Line 4 of
Figure 4. O

Finally, we use Proposition 5.2 to prove cross-shard-
consistency.

11

Theorem 5.2. Optimistic-CHIMERA maintains cross-shard
consistency.

Proof. Assume a single good replica R € S executes a trans-
action T (by committing or aborting). Hence, it accepted some
global preprepare certificate M with m (S, 1), € M. Conse-
quently, R has local commit certificates C(S") for M of every
S’ € shards(t). Hence, at least g5 — £ good replicas in S’
reached the global commit phase for M, and we can apply
Proposition 5.2 to conclude that any good replica R” € §”,
S" € shards(t) will accept M. As R” bases its execution
decision for T on the same global prepare certificate M as
R, they will both make the same decision, completing the
proof. O

Due to the similarity between OCHIMERA and CCHIMERA,
one can use the details of Theorem 4.3 to prove that
OCHIMERA provides validity, shard-involvement, and shard-
applicability. Via Theorem 5.2, we proved cross-shard-
consistency. We cannot prove service and confirmation, how-
ever. The reason for this is simple: even though OCHIMERA
can detect and recover from accidental faulty behavior and
accidental concurrent transactions, OCHIMERA is not de-
signed to gracefully handle targeted attacks: OCHIMERA
is optimistic in the sense that it is optimized for the situa-
tion in which faulty behavior (including concurrent transac-
tions that content for the same objects) is rare. Still, in all
cases, OCHIMERA maintains cross-shard consistency, how-
ever. Moreover, in the optimistic case in which shards have
good primaries and no concurrent transactions exist, progress
is guaranteed whenever communication is reliable:

Proposition 5.3. [f, for all shards S*, gs+ > 2f¢+, and As-
sumptions 2.1, 2.2, and 2.3 hold, then Optimistic-CHIMERA
satisfies Requirements R1—-R06 in the optimistic case.

OCHIMERA cannot defend against denial-of-service at-
tacks targeted at blocking individual replicas and shards from
participating. Unfortunately, no existing consensus proto-
col is able to deal with such attacks. Furthermore, as is the
case for other multi-shard consensus protocols, coordinated
attempts can prevent OCHIMERA from making progress in
periods when the optimistic assumption does not hold. At
the core of such attacks is the ability for malicious clients
and malicious primaries to corrupt the operations of shards
coordinated by good primaries, as already shown in Exam-
ple 5.1. Due to Theorem 5.2, such attacks will never affect
consistency in OCHIMERA, however.

To further reduce the impact of targeted attacks, one can
make primary election non-deterministic, e.g., by using shard-
specific distributed coins to elect new primaries in individ-
ual shards [11, 13]. Finally, we remark that we have pre-
sented OCHIMERA with a per-round checkpoint and recovery
method. In this simplified design, the recovery path only has
to recover at-most a single round. Our approach can easily
be generalized to a more typical multi-round checkpoint and

2022

recovery method, however. Furthermore, we believe that
the way in which OCHIMERA extends PBFT can easily be
generalized to other consensus protocols, e.g., POE [32] and
HOTSTUEFF [59].

6 Resilient-CHIMERA:
Transaction Processing Under Attack

In the previous section, we introduced OCHIMERA, a general-
purpose minimalistic and efficient multi-shard transaction
processing protocol. OCHIMERA is designed with the as-
sumption that malicious behavior is rare, due to which it can
minimize coordination in the normal-case while requiring
intricate coordination when recovering from attacks. As an
alternative to the optimistic approach of OCHIMERA, we can
apply a pessimistic approach to CCHIMERA to gracefully
recover from concurrent transactions that is geared towards
minimizing the influence of malicious behavior altogether
(without requiring Assumption 2.3). Next, we explore such a
pessimistic design via resilient-CHIMERA (RCHIMERA).

The design of RCHIMERA builds upon the design of
CCHIMERA by adding additional coordination to the cross-
shard exchange and decide outcome steps. As in CCHIMERA,
the acceptance of m(S,7), in round p by all good replicas
completes the local inputs step. Before cross-shard exchange,
the replicas in § destruct the objects in D(5,7), thereby fully
pledging these objects to T until the commit or abort deci-
sion. Then, S performs cross-shard exchange by broadcasting
m(S,7)p to all other shards in shards(t), while the replicas
in § wait until they receive messages m(S’,t), from all other
shards §’ € shards(T).

After cross-shard exchange comes the final decide out-
come step. After § receives m(S’, 1)y from all shards §' €
shards(7), the replicas force a second consensus step that
determines the round p* at which § decides commit (when-
ever I(S',1) = D(S',7) for all §’ € shards(t)) or abort. If
S decides commit, then, in round p*, all good replicas in §
construct all objects o € Outputs(t) with § = shard(o). If
S decides abort, then, in round p*, all good replicas in S re-
construct all objects in D($,t) (rollback). Finally, each good
replica informs ¢ of the outcome of execution. If ¢ receives,
from every shard §' € shards(t), identical outcomes from
gs —f¢ distinct replicas in §’, then it considers T to be suc-
cessfully executed. In Figure 7, we sketched the working of
RCHIMERA.

We notice that processing a multi-shard transaction via
RCHIMERA requires two consensus steps per shard. In some
cases, we can eliminate the second step, however. First, if T is
a multi-shard transaction with § € shards(t) and the repli-
cas in S accept ((t)¢,1(S,7),D(S,1)) with I(S,7) # D(S,1),
then the replicas can immediately abort whenever they ac-
cept ((T)¢,1(5,7),D(S,7)). Second, if T is a single-shard
transaction with shards(t) = {5}, then the replicas in § can

12

c destruction construction or rollback
T)e
S \ Consensus on (T). - Commit/Abort? /
K% Consensus on (T), Commit/Abort?
S3 Consensus on (T), - Commit/Abort?

Local Inputs Decide Outcome Inform

(Consensus) (Consensus)
Cross-Shard Exchange
(Cluster-Sending)

Figure 7: The message flow of RCHIMERA for a 3-shard
client request (1), that is committed.

immediately decide commit or abort whenever they accept
((t),1(S,7),D(S,7)). Hence, in both cases, processing of
T at S only requires a single consensus step at .§. Next, we
prove the correctness of RCHIMERA:

Theorem 6.1. If, for all shards S*, g¢+ > 2f s+, and Assump-
tions 2.1, 2.2, and 2.3 hold, then Resilient-CHIMERA satisfies
Requirements R1-R6.

Proof. Let 7 be a transaction. As good replicas in .S discard
T if it is invalid or if § ¢ shards(t), RCHIMERA provides
validity and shard-involvement. Next, shard-applicability
follow directly from the decide outcome step.

If a shard § commits or aborts transaction T, then it must
have completed the decide outcome and cross-shard exchange
steps. Hence, all shards §’ € shards(t) must have exchanged
the necessary information to §. By relying on cluster-sending
for cross-shard exchange, S’ requires cooperation of all good
replicas in §’ to exchange the necessary information to
S. Hence, we have the guarantee that these good replicas
will also perform cross-shard exchange to any other shard
S" € shards(t). Consequently, every shard §” € shards(t)
will receive the same information as .S, complete cross-shard
exchange, and make the same decision during the decide
outcome step, providing cross-shard consistency.

A client can force service on a transaction T by choosing
a shard § € shards(t) and sending 7 to all good replicas in
G(S). By doing so, the normal mechanisms of consensus can
be used by the good replicas in G(5) to force acceptance on
Tin S and, hence, bootstrapping acceptance on 7 in all shards
S’ € shards(t). Due to cross-shard consistency, every shard
in shards(t) will perform the necessary steps to eventually
inform the client. As all good replicas R € S, S € shards(1),
will inform the client of the outcome for 7, the majority of
these inform-messages come from good replicas, enabling the
client to reliably derive the true outcome. Hence, RCHIMERA
provides service and confirmation. O

As with CCHIMERA, RCHIMERA depends on underly-
ing consensus and cluster-sending protocols and the level
to which RCHIMERA can deal with asynchronous behavior
depends on the particular choices of these protocols.

2022

7 The Ordering of Transactions in CHIMERA

Having introduced the three variants of CHIMERA in Sec-
tions 4, 5, and 6, we will now analyze the ordering guaran-
tees provided by CHIMERA. We further refer to Section 8
for a detailed comparison of the three variants of CHIMERA.
Here, we will show that CHIMERA provides serializable exe-
cution [6,9].

The data model utilized by CCHIMERA, OCHIMERA, and
RCHIMERA guarantees that any object o can only be involved
in at-most two committed transactions: one that constructs
o and another one that destructs o. Assume the existence
of such transactions T; and T, with o € Outputs(t;) and
0 € Inputs(t2). Due to cross-shard-consistency (Require-
ment R4), the shard shard(o) will have to execute both T
and T,. From these observations, we can derive a serializable
order on all committed transactions:

Theorem 7.1. A sharded fault-tolerant system that uses the
object-dataset data model, processes UTXO-like transactions,
and satisfies Requirements R1-R5 commits transactions in a
serializable order.

Proof. Assume the existence of transactions T; and 1T
with o € Outputs(t;) and o € Inputs(t). Due to shard-
applicability (Requirement R3), shard shard(o) will execute
T strictly before T,. Now consider the relation

< :={(1,7) | (the system committed to T and T') A
(Outputs(t) N Inputs(t) #0)}.

Obviously, we have <(ty,T2). To prove that all committed
transactions are executed in a serializable ordering, we first
prove the following:

If we interpret transactions as nodes and < as an
edge relation, then the resulting graph is acyclic.

The proof is by contradiction. Let G be the graph-
interpretation of <. We assume that graph G is cyclic. Hence,
there exists transactions Tp,...,T,—] such that <(T;,T;+1),
0<i<m—1,and <(T,_1,T0). By the definition of <, we
can choose objects 0;, 0 < i < m, with 0; € (Outputs(t;) N
Inputs(T(is1) mod m))- Due to cross-shard-consistency (Re-
quirement R4), the shard shard(o;), 0 < i < m, executed
transactions T; and T(;; 1) mod m- Consider 0;, 0 <i < m, and
let 7; be the time at which shard shard(o;) executed T; and con-
structed o;. Due to shard-applicability (Requirement R3), we
know that shard shard(o;) executed (i 1) mod m Strictly after
ti. Moreover, also shard shard(0(j; 1) mod m) must have exe-
cuted T(;1 1) mod m Strictly afterz; and we derive ; <71 1) mod m-
Hence, we must have 1y <t < --- <t,,—1 <y, a contradiction.
Consequently, G must be acyclic.

To derive a serializable execution order for all committed
transactions, we simply construct a directed acyclic graph in

13

which transactions are nodes and < is the edge relation. Next,
we fopologically sort the graph to derive the searched-for
ordering. O

We notice that CHIMERA only provides serializability for
committed transactions: concurrent transactions that content
for the same objects will always be aborted and, hence, will
not be executed and will not affect the serializable order of
execution of transactions. It is this flexibility in dealing with
aborted transactions that allows all variants of CHIMERA to
operate with minimal and fully-decentralized coordination
between shards; while still providing strong isolation for all
committed transactions.

8 Analysis of the Three CHIMERA Variants

In the previous sections, we proposed three variants of
CHIMERA and showed their correctness. Next, we analyze the
benefits and costs of the three CHIMERA multi-shard transac-
tion processing protocols, compare them with state-of-the-art
multi-shard transaction processing protocols, and evaluate the
impact of malicious behavior on CHIMERA. A summary of
this analysis can be found in Figure 8.

We did not detail the exact message complexity of the three
CHIMERA protocols. For CCHIMERA and RCHIMERA we
measure the complexity in the number of consensus steps
and cluster-sending steps they require. Implementation-wise,
one can choose to either implement these steps with all-to-all
communication (as in PBFT) or with all-to-one-to-all commu-
nication (as in HOTSTUFF) to optimize for either low latency
or low bandwidth usage. Similarly, we can implement also
OCHIMERA with all-to-one-to-all communication instead of
all-to-all communication.

Remark 8.1. A common technique to improve the transaction
throughput of consensus-based systems is by processing a
batch holding many transactions per consensus decision. To
simplify presentation, we have chosen to present the three
CHIMERA protocols without such batching. Both CCHIMERA
and RCHIMERA can easily be generalized to process transac-
tions in batches: at a per-shard level, they use standard con-
sensus protocols that operate independently of other shards.
Hence, instead of one transaction per consensus decision,
both can include a batch of transactions in their consensus
decisions (after which they perform the steps related to the
transactions in that batch in order).

For OCHIMERA, blocks of transactions are more challeng-
ing as OCHIMERA uses a single multi-shard consensus step
that includes all replicas of all shards affected by a transaction.
Still, OCHIMERA can be generalized to process batches of
transactions that affect the same set of shards. Such a general-
ization requires additional machinery, however: multi-shard
batches can lead to several shards proposing distinct batches
that include the same transaction, however. It is possible to

2022

deal with such issues with existing techniques (e.g., by assign-
ing each transaction to a single batch-proposal shard based
on the digest of that transaction) [30].

8.1 A Comparison of CHIMERA Variants

First, Figure 8 provides a high-level comparison of the costs
of each of the three CHIMERA protocols to process a sin-
gle transaction 7 that affects s = |shards(t)] distinct shards.
For the normal-case behavior, we compare the complexity in
the number of sequential communication phases (which, in
the idle case, are the main determinant for client latencies),
the number of consensus steps per shard and cross-shard ex-
change steps between shards (which together determine the
bandwidth costs and put an upper bound on throughput). As
one can see, all three protocols have a low number of phases,
due to which all three can provide low latencies toward clients.
In environments in which cross-shard communication has low
latency, OCHIMERA will be able to provide lower latencies
than both CCHIMERA and RCHIMERA, as its optimistic de-
sign eliminates one phase of communication (at the cost of
requiring cross-shard communication in every phase).

Next, we compare how the three protocols deal with mali-
cious behavior by clients and by replicas. If no clients behave
malicious, then all transactions will commit. In all three pro-
tocols, malicious behavior by clients can lead to the existence
of concurrent transactions that affect the same object. Upon
detection of such concurrent transactions, all three protocols
will abort. The consequences of such an abort are different in
the three protocols.

In CCHIMERA, objects affected by aborted transactions re-
main pledged and cannot be reused. In practice, this loss
of objects can provide an incentive for clients to not be-
have malicious, but does limit the usability of CCHIMERA
in non-incentivized environments. Both OCHIMERA and
RCHIMERA deal with concurrent transactions by aborting
them via the normal-case of the protocol. The three CHIMERA
protocols are resilient against malicious replicas: only ma-
licious primaries can affect the normal-case operations of
these protocols. If the behavior of a primary is disrupting the
normal-case operations, then in CCHIMERA and RCHIMERA
such behavior is dealt with by the recovery mechanisms of
the underlying consensus protocol (e.g., in PBFT such disrup-
tions will eventually lead to a view-change whenever com-
munication is reliable), whereas OCHIMERA will utilize the
view-change recovery mechanisms outlined in Section 5. In
both CCHIMERA and RCHIMERA, dealing with a malicious
primary in a shard can be done completely in isolation of
all other shards. In OCHIMERA, which is optimized with
the assumption that failures are rare, the failure of a primary
while processing a transaction T can lead to view-changes in
all shards affected by 7.

In conclusion, we see that the three CHIMERA variants
each make their own tradeoff between normal-case costs and

14

ability to deal with faulty behavior (by both clients and other
replicas), with RCHIMERA being robust against any attack at
the cost of 2 consensus decisions per transaction per involved
shard.

8.2 Comparison With the State-of-the-Art

Several recent papers have proposed specialized systems
that combine sharding with consensus-based resilient sys-
tems. Examples include systems such as AHL [17],
BYSHARD [34], CAPER [3], CHAINSPACE [l], RING-
BFT [53], and SHARPER [4], which all use sharding for
data management and transaction processing. Next, we
compare the design of CHIMERA in detail with AHL [17],
CHAINSPACE [1], RINGBFT [53], and SHARPER [4], and
briefly look at BYSHARD [34] and CAPER [3].

AHL [17]. AHL uses a centralized commit protocol to
order all multi-shard transactions. In specific, AHL [17]
uses a reference committee that leads a centralized two-phase
commit protocol (Centralized 2PC) [29, 51] that is imple-
mented via consensus steps and cluster-sending. Furthermore,
AHL uses non-blocking locks to provide transaction isolation
due to which valid transactions can be aborted, whereas in
CHIMERA only faulty transactions (e.g., by malicious clients)
are aborted. By using Centralized 2PC, AHL eliminates
any all-to-all communication between shards affected by a
transaction in favor of one-to-all communication between
the reference committee and the affected shards. Due to
this, AHL takes five consecutive consensus rounds, more
than twice the number of rounds required by the costliest
CHIMERA variants. As reported in the original evaluation
of AHL [17, Section 7.3], the reference committee will be-
come a bottleneck for performance when processing work-
loads heavy in multi-shard transactions (even if none of these
transactions are concurrent), while AHL shows excellent
performance when processing single-shard transactions [34].

CHAINSPACE [1]. CHAINSPACE uses a distributed two-
phase commit protocol (Distributed 2PC) [29, 51], that is
implemented via consensus steps and cluster-sending, to or-
der all multi-shard transactions. Furthermore, similar to AHL,
CHAINSPACE uses non-blocking locks to provide transaction
isolation due to which valid transactions can be aborted. The
operations of this commit protocol are similar to the design
of RCHIMERA, except that CHAINSPACE does not take ad-
vantage of any specific properties of the data model (e.g.,
to provide isolation). A further minor difference between
CHAINSPACE and RCHIMERA is that CHAINSPACE distin-
guishes between shards that are used as inputs and shards
that are used as outputs and only informs output shards after
the input shards finish processing a transaction, due to which
transaction processing in CHAINSPACE takes one more round
as in RCHIMERA.

2022

Phases” Consensus Steps Cross-Shard ‘ Transaction Transaction Failure Recovery
Protocol Principle Technique (Cross-Shard) ~ Total ~ Sequential ~ Communication” Abort Causes Concurrency and Ordering (method and when)
CCnnERA otxoDuamoan 4O : ! I L Loca Primary Fatre
ocumrs N o 3@ s 1 3(ECAW Ry Only e o Py P
RCammRA UTXO Daa Model o w2 1(CS,A20) Faulty Only > avorn Loca primary Fatre
AHL [17] Non-Blocking Locks D@ 225 480 Rakdlodks NGEe TRe Loca rimry Fatre
cnasece 11 P HE 23 2eSAA) Rakdleks PPt SR Loca rimry Fetre
RINGBFT [53] é;g:ifn(;‘:’;?l: 85—5(2s—2) 2s—1 2s—1 25—2(CS,020) Invalid Only é;::i:n?:;?;i Loé?ﬁiiz;’v;;ymm
SHARPER [4] Multi-Shard Consensus 3(3) 5 1 3 (GC, A2A) Failed Locks Multi-Shard Consensus Global Recovery

Shard-Wide Blocking Locks

(Shard-Wide) Shard-Wide Locks & Aborts ~ Any Primary Failure, Concurrency

“Total number of consecutive communication phases. For protocols that use a local consensus protocol, we count three consecutive phases per consensus step

(e.g., using PBFT), and we count a single phase per cluster-sending step.

bWe write CS to indicate cluster-sending and MS to indicate multi-shard consensus; and we write A2A to denote all-to-all communication, O2A to denote
one-to-all or all-to-one communication, and O20 to denote one-to-one communication between involved shards.

Figure 8: Comparison of the three CHIMERA protocols for processing a transaction that affects s shards. We compare the
normal-case complexity. the mechanism used to deal with concurrent transactions (due to malicious clients), and the mechanisms

used to provide failure recovery.

RINGBFT [53]. RINGBFT uses a linear two-phase com-
mit protocol (Linear 2PC) [29, 51], that is implemented via
consensus steps and cluster-sending, to order all multi-shard
transactions. Due to the usage of Linear 2PC, RINGBFT is
able to utilize blocking locks in a deadlock-free manner to
provide transaction isolation. Due to this usage of locks,
RINGBFT is the only protocol besides CHIMERA that is
able to always process valid transactions without spurious
aborts. Furthermore, the usage of Linear 2PC minimizes
cross-shard communication costs, as all communication is be-
tween pairs-of-affected-shards (no all-to-all, one-to-all, or all-
to-one communication). The benefits of RINGBFT come at a
cost, however, as the linear design imposes a linear amount of
consecutive consensus and cross-shard communication steps
in terms of the shards affected by the transaction, whereas
all other proposals require a constant number of consecutive
steps.

SHARPER [4]. SHARPER uses a multi-shard consensus
protocol to order all multi-shard transactions. The opera-
tions of this multi-shard consensus protocol are conceptually
similar to the design of OCHIMERA, except that SHARPER
does not take advantage of any specific properties of the data
model (e.g., to provide isolation or to simplify recovery). Fur-
thermore, SHARPER requires that affected shards process
their multi-shard transactions in a common processing or-
der, due to which SHARPER can only processing a single
multi-shard transaction at a time. In effect, this imposes a
per-shard lock on multi-shard transaction processing, limiting
concurrent execution even in the absence of transactions that
content for the same data objects. Finally, the philosophy
of SHARPER is to serve as a single unified protocol that can

15

support both PAX0S-style crash fault-tolerance and malicious
behavior, and it remains an important research question as to
whether SHARPER can be extended to the general-purpose
unreliable communication and attack models supported by
OCHIMERA. In specific, we believe OCHIMERA improves
on the resilience of SHARPER by providing a robust local and
global view-change mechanism that can deal with per-shard
replica failures, per-shard primary failures, and coordinated
attacks by replicas and clients to disrupt global consensus
steps.

BYSHARD [34] and CAPER [3]. BYSHARD [34] proposes
a framework in which one can evaluate many distinct proto-
cols based on the application of two-phase commit and two-
phase locking in a consensus-based environment. Specific
instances of BYSHARD correspond with the approaches taken
by CHAINSPACE and RINGBFT, while AHL can be seen
as a restricted case of the BYSHARD protocols that utilize
distributed orchestration. The differences between, on the one
hand, CHIMERA and, on the other hand, AHL, CHAINSPACE,
and RINGBFT, extend to the BYSHARD framework. The
design of CAPER [3] shares similarities with the design of
SHARPER.

8.3 The Performance Potential of CHIMERA

Next, we modelled the performance benefits of CHIMERA.
To do so, we have modeled the maximum throughput of each
of these protocols in an environment where each shard has
seven replicas (of which two can be faulty) and each replica
has a bandwidth of 1Gbit/s. We have chosen to optimize
CCHIMERA, OCHIMERA, and RCHIMERA to minimize pro-

2022

’ —@— CCHIMERA

OCHIMERA —@— RCHIMERA —@— AHL ‘

(61 replicas per shard)

(7 replicas per shard) ‘
Performance (2 obj/txn) Performance (4 obj/txn)
@ 106F E
E B B} | b
S 1061 E i]
g | 1 10%: f
&] F]
%0 10° 8 1 i]
=2 B 1 10*F E
F 104 ;\ Il Il Il Il \75 E Il Il Il Il Il Il E
20 22 24 26 28 210 2() 22 24 26 28 210
Shards Shards
Performance (8 obj/txn) Performance (16 obj/txn)
<105 E |
g | 10%: E
| | |
5107 F|
g 10°1]
E | b
103 j\ Il Il Il Il \? Il Il Il Il Il Il |
20 22 24 26 28 210 20 22 24 26 28 210
Shards Shards
Performance (32 obj/txn) Performance (64 obj/txn)
R : T T T T T T E 103 ;\ T T T T \7:
{ | b
g
=103 1
2 !
oy 11020 E
= | b
e
=102 . ,
B R I T
Shards Shards

Performance (4 obj/txn)

Performance (2 obj/txn)

2 110° g E
Z105| I f
ER 1 10%
D10t EI f
2 i 1
_E; r 1103 E
]‘O% j\ Il Il Il I \E E Il Il Il Il I I E
20 22 24 26 28 210 20 22 24 26 28 210
Shards Shards
Performance (8 obj/txn) Performance (16 obj/txn)
Z10%¢ ER |
g | 10°} E
g : 1 |]
S103h il
107 T
& 11021 1
= | i §]
F
102 El I I | ! 1= L I I I] il
20 22 24 26 28 210 20 22 24 26 28 210
Shards Shards
Performance (32 obj/txn) Performance (64 obj/txn)
_ : T T T T T T : 102 ;\ T T T T \E
2 TN\]
= | ¥ 1
g i 1
2102} E
: .
8
= 10"]
= [
e
=
=10 10]
S T R e e T

Shards Shards

Figure 9: Throughput of the three CHIMERA protocols as a function of the number of shards when processing a workload in

which 50% of the transactions are multi-shard transactions.

0.5) —— CCHIMERA | |
OCHIMERA

~04r ——RCHIMERA | |
N ——RINGBFT
20.3F |
=
£0.2
<02 g
—

0.1+ a

Il

é 4‘1 é é 10 1‘2 1‘4 1‘6 1‘8 Zb 2‘2 2‘4 2‘6 2‘8 3‘0 3‘2

Figure 10: Latency of processing a transaction during multi-
shard transaction processing as a function of the number
of affected shards, assuming that the transaction affects 64
objects, the network has a bandwidth of 1Gbit/s, the message
delay is 15ms, and each shard has 7 replicas.

16

cessing latencies over minimizing bandwidth usage, as reduc-
ing processing latencies is the goal of the design of CHIMERA.
In specific, we do not use request batching, we use a one-
phase broadcast-based cross-shard exchange steps, and we do
not use threshold signatures. In cases when one does not want
to optimize for processing latencies and individual replicas
have spare computational power, then one can utilize thresh-
old signatures to further boost throughput by a constant factor
(at the cost of the per-transaction processing latency).

In Figure 9, we have visualized the maximum attainable
throughput (the number of transactions processed per second
while processing a workload of 32M transactions) for each
of the protocols as a function of the number of shards and as
a function of the number of objects affected by each trans-
action when processing a workload with 50% multi-shard

2022

—@— 2o0bj/txn 4o0bj/txn —@— 8 obj/txn
—@— 160bj/txn 32 obj/txn 64 obj/txn
.109 Total Steps 3 5.107 Steps per Shard
10 I h 30 . 4
0.8+ 125¢ i
A\
0.6/ 1 20r I
)
& 04l 1 15F a
’ 1.0 :
0.2 o 105 |
0.0 1 1 | | L 0.0’\ | | | 1 il
20 22 24 26 28 2]0 20 22 24 26 28 2]0
Shards Shards

Figure 11: Cumulative number of shards affected by a work-
load of 32M transactions as a function of the size of transac-
tions and the number of shards. On the left, the total number
of steps. On the right, the average number of steps per shard.

transactions. As a baseline for comparison, we have also
included AHL [17]. For AHL, we used an additional shard
as a reference committee (hence, if we use n shards in the
experiment, then AHL can use n+ 1). We have chosen to
only include AHL in our comparison as it has a similar de-
sign goal as the three CHIMERA protocols, while having a
substantial different design. We excluded CHAINSPACE, as it
has a design very similar to RCHIMERA (but slightly more
costly due to some overheads RCHIMERA can avoid). For
RINGBFT, we notice that it is optimized for a completely
different design goal: RINGBFT is optimized to minimize
communication costs and maximize throughput (by inducing
very high latencies for multi-shard transactions), whereas the
three CHIMERA protocols aim to maximize throughput while
also minimizing latency. We refer to Figure 10 for a compari-
son of the multi-shard transaction processing latencies for the
three CHIMERA protocols and for RINGBFT.

In our workloads, the ratio of multi-shard transactions is
high: we want to study how the multi-shard transaction pro-
cessing protocols we compare differ in their operations and
we are especially interested in the performance of the sys-
tem when dealing with multi-shard transactions that require
substantial coordination to deal with contention. Indeed, in
workloads that mainly consist of single-shard transactions,
each of the multi-shard transaction protocols we look at will
fall back to the same underlying single-shard consensus pro-
tocol to efficiently process such single-shard transactions.

In Figure 11, we have visualized the number of per-
shard steps performed by the system (for CCHIMERA and
OCHIMERA, this is equivalent to the number of per-shard
consensus steps, for RCHIMERA this is half the number of
per-shard consensus steps). In general, we see that an increase
in shards has two effects:

1. Simple single-shard transactions can be dispersed over

17

more shards. Hence, increasing the number of shards
will reduce the average number of shard steps each
shard has to process with respect to single-shard transac-
tions. Furthermore, significantly increasing the number
of shards will distribute the multi-shard transactions
over these shards, reducing the cost of these transactions
per shard. Both effects will result in drastically improved
performance when scaling to many shards.

2. Large transactions can become more complex when in-
creasing the number of shards, as more shards can hold
objects relevant of large transactions. For example, a
transaction that affects 16 objects in an environment with
four shards can affect at-most four shards, while in an en-
vironment with 16 shards it can affect at-most 16 shards).
Hence, for large transactions, we only see reductions in
the per-shard cost to process these transactions when
scaling beyond the number of shards large transactions
can affect.

In a general-purpose sharded system without any specific bot-
tlenecks, the above will result in great scalability as soon as
the number of shards far outgrows the size of transactions.
This behavior is clearly observable for all three CHIMERA pro-
tocols. Indeed, all three CHIMERA protocols have excellent
scalability: increasing the number of shards will increase the
overall throughput of the system. Sharding does come with
clear overheads, however, increasing the number of shards
also increases the number of shards affected by each transac-
tion, thereby increasing the overall number of consensus steps.
This is especially true for very large transactions that affect
many objects (that can affect many distinct shards). Hence, as
one can see from the results, the benefits of sharding are the
strongest when processing mainly single-shard transactions
or when scaling beyond the size of individual transactions.
In the comparison between OCHIMERA and RCHIMERA,
we see that OCHIMERA (implemented with all-to-all commu-
nication) will outperform RCHIMERA whenever transactions
involve few shards (due to them involving few objects). In
this case, the communication cost of the three cross-shard
communication steps that are part of the multi-shard con-
sensus of OCHIMERA is lower than the cost of the second
local consensus round in RCHIMERA. When transactions
affect many shards, RCHIMERA outperforms OCHIMERA, as
RCHIMERA only has a single cross-shard communication step
per transaction (and all other communication is local within
a shard). In all cases, CCHIMERA will outperform the other
protocols with respect to transaction throughput. Further-
more, by design CCHIMERA will always have lower latencies
than RCHIMERA (due to the fewer consensus and cluster-
sending steps CCHIMERA performs). In environments in
which inter-shard and intra-shard communication have similar
(high) message delays, OCHIMERA will typically have lower
latencies than CCHIMERA due to the large impact message
delays have on the latency of consensus and cluster-sending

2022

103 Performance (16 obj/txn)
2.5 [1 T T T T T T T T T T _.‘_C(‘:HII\‘/IERA]
OCHIMERA
2.0 —— RCHIMERA ||
1.5+ 8
1.0+ 8
0.5r 8
0.0t ‘ |

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Malicious Shards
Figure 12: Throughput of the three CHIMERA protocols as a

function of the number of malicious shards, as measured by
the transaction cost at each shard.

steps, this even when CCHIMERA has higher throughput than
OCHIMERA.

In comparison with AHL, we see a large improvement in
performance. Due to the high ratio of multi-shard transac-
tions, the performance of AHL for processing multi-shard
transactions is bottlenecked by the throughput of the refer-
ence committee used by AHL. These findings are in line
with the original evaluation of AHL [17, Section 7.3]. A
closer look at the data does reveal excellent scalability of
AHL with regards to single-shard transactions: although the
reference committee has a full load while processing all multi-
shard transactions, all shards except the reference committee
show a very low load (that can be used to process many more
single-shard transactions during the experiment).

8.4 CHIMERA and Malicious Behavior

Finally, we have modeled the maximum throughput of each
of the three CHIMERA protocols in an environment in which
some shards are impacted by malicious replicas. Unless stated
otherwise, we use the same setting as in Section 8.3. We have
used 64 shards and four objects per shard and we measure the
performance of the three CHIMERA protocols as a function of
the number of shards that are affected by malicious behavior.

Within a shard, only malicious primaries have a strong im-
pact on the performance of that shard. Furthermore, malicious
primaries that completely disrupt normal-case operations will
be replaced. Hence, to maximize the malicious impact, we
have chosen for malicious primaries that try to throttle the
performance of the system by slowing down their own opera-
tions. In the experiment, we have chosen that these primaries
do so by halving the speed by which their shards operate.

In Figure 12, we have visualized the average attainable
throughput for shards processing workloads in which 50% of
the transactions are multi-shard as a function of the number of
shards that are affected by malicious behavior (and can affect
the speed by which some of the multi-shard transactions pro-
cessed are processed) for each of the CHIMERA protocols. We
see that each malicious shard will slow down each CHIMERA

18

protocol with respect to those transactions that are affected
by these shards. At the same time, transactions not handled
by malicious shards are unaffected and will be processed at
normal speed.

9 Related Work

Distributed systems are typically employed to either increase
reliability (e.g., via consensus-based fault-tolerance) or to in-
crease performance (e.g., via sharding). Consequently, there
is abundant literature on such distributed systems, distributed
databases, and sharding (e.g., [51,55,56]) and on consensus-
based fault-tolerant systems (e.g., [10,14,19,30,55]). Further-
more, in Section 8.2, we reviewed related work on multi-shard
permissioned consensus-based systems. Next, we focus on
other works that deal with sharding in fault-tolerant systems.

In Section 8.2, we have only compared with other sharded
resilient systems with similar environmental assumptions. Be-
sides these sharded systems, several other resilient systems
such as OMNILEDGER [42] and RAPIDCHAIN [61] have
been proposed. These systems make very different environ-
mental assumptions (e.g., different threat and communica-
tion models) due to which these systems are incomparable
to the CHIMERA protocols and the systems considered in
Section 8.2.

A few fully-replicated consensus-based systems utilize
sharding at the level of consensus decision making, this to
improve consensus throughput without adopting a multi-shard
design [2,22,26,31]. In these systems, only a small subset
of all replicas, those in a single shard, participate in the con-
sensus on any given transaction, thereby reducing the costs
to replicate this transaction without improving storage and
processing scalability.

Recently, there has also been promising work on shard-
ing and techniques supporting sharding for permission-
less blockchains. Examples include techniques to enable
sidechains, blockchain relays, and atomic swaps [23, 24, 36,
38,43,58,60], which each enable various forms of cooperation
between blockchains (including simple cross-chain commu-
nication and cross-chain transaction coordination). Unfortu-
nately, these permissionless techniques are several orders of
magnitudes slower than comparable techniques for traditional
fault-tolerant systems, making them incomparable with the
design of CHIMERA discussed in this work.

10 Conclusion

In this paper, we took a new look at the problem of multi-
shard transaction processing in consensus-based systems. In
specific, we proposed the study of sharded consensus-based
systems that use restrictions on the workloads supported to
improve performance over general-purpose methods.

2022

To initiate this study, we introduced Core-CHIMERA,
Optimistic-CHIMERA, and Resilient-CHIMERA, three fully
distributed approaches towards multi-shard fault-tolerant
transaction processing. The design of these approaches is
geared towards processing UTXO-like transactions in sharded
distributed ledger networks. Due to the usage of UTXO-like
transactions, the three CHIMERA variants can minimize cost
to an absolute minimum, while maximizing performance,
thereby showing the potential of restricting the types of sup-
ported workloads. This potential is further underlined by our
comparison with the state-of-the-art protocols, in which we
see that the three CHIMERA variants both have lower costs
and complexity.

Although the workloads supported by CHIMERA are min-
imalistic, we believe that our results can be generalized to
more-general settings. In specific, we believe that the combi-
nation of sharding and Conflict-free Replicated Data Types
(CRDTs) [46] has great potential to provide high performance
in a consensus-based environment.

References

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano,
Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform, 2017. URL: http:
//arxiv.org/abs/1708.03778.

[2] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan

Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,

and David Zage. Steward: Scaling byzantine fault-

tolerant replication to wide area networks. IEEE Trans-

actions on Dependable and Secure Computing, 7(1):80—

93,2010. doi:10.1109/TDSC.2008.53.

[3] Mohammad Javad Amiri, Divyakant Agrawal, and

Amr El Abbadi. CAPER: A cross-application permis-

sioned blockchain. Proc. VLDB Endow., 12(11):1385-

1398, 2019. doi:10.14778/3342263.3342275.

[4] Mohammad Javad Amiri, Divyakant Agrawal, and

Amr El Abbadi. SharPer: Sharding permissioned

blockchains over network clusters. In Proceedings

of the 2021 International Conference on Management
of Data, page 76-88. ACM, 2021. doi:10.1145/

3448016.3452807.

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-

tian Cachin, Konstantinos Christidis, Angelo De Caro,

David Enyeart, Christopher Ferris, Gennady Lavent-

man, Yacov Manevich, Srinivasan Muralidharan, Chet

Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith

Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,

Marko Vukolié, Sharon Weed Cocco, and Jason Yellick.

Hyperledger Fabric: A distributed operating system for

19

[9]

(10]

(11]

(12]

[13]

[14]

[15]

permissioned blockchains. In Proceedings of the Thir-
teenth EuroSys Conference, pages 30:1-30:15. ACM,
2018. doi:10.1145/3190508.3190538.

Vijayalakshmi Atluri, Elisa Bertino, and Sushil Jajodia.
A theoretical formulation for degrees of isolation in
databases. Inform. Software Tech., 39(1):47-53, 1997.
doi:10.1016/0950-5849(96)01109-3.

Paddy Baker and Omkar Godbole. Ethereum fees
soaring to 2-year high: Coin metrics. CoinDesk, 2020.
URL: https://www.coindesk.com/defi-hype-
has-sent-ethereum-fees-soaring-to-2-year-
high-coin-metrics.

Guillaume Bazot. Financial intermediation cost, rents,
and productivity: An international comparison. Tech-
nical report, European Historical Economics Society,
2018.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of
ANSI SQL isolation levels. SIGMOD Rec., 24(2):1-10,
1995. doi:10.1145/568271.223785.

Christian Berger and Hans P. Reiser. Scaling byzantine
consensus: A broad analysis. In Proceedings of the 2nd
Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers, pages 13—18. ACM, 2018. doi:
10.1145/3284764.3284767.

Gabi Bracha and Ophir Rachman. Randomized consen-
sus in expected O((n*logn)) operations. In Distributed
Algorithms, pages 143—150. Springer Berlin Heidelberg,
1992. doi:10.1007/BFb0022443.

Christopher Brookins. DeFi boom has saved
bitcoin from plummeting. Forbes, 2020.
URL: https://www.forbes.com/sites/
christopherbrookins/2020/07/12/defi-boom-

has-saved-bitcoin-from-plummeting/.

Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524-541. Springer Berlin Heidelberg, 2001.
doi:10.1007/3-540-44647-8_31.

Christian Cachin and Marko Vukolic. Blockchain con-
sensus protocols in the wild (keynote talk). In 31st
International Symposium on Distributed Computing,
volume 91, pages 1:1-1:16. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
DISC.2017.1.

Michael Casey, Jonah Crane, Gary Gensler, Simon John-
son, and Neha Narula. The impact of blockchain tech-
nology on finance: A catalyst for change. Technical

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1016/0950-5849(96)01109-3
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1007/BFb0022443
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1

2022

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

report, International Center for Monetary and Bank-
ing Studies, 2018. URL: https://www.cimb.ch/
uploads/1/1/5/4/115414161/geneva2l_1.pdf.

Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398-461, 2002. doi:10.1145/
571637.571640.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin,
Ee-Chien Chang, Qian Lin, and Beng Chin Ooi. To-
wards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on
Management of Data, pages 123-140. ACM, 2019.
doi:10.1145/3299869.3319889.

Nikhilesh De. CFTC chair: ‘a large part’ of financial
system could end up in blockchain format. CoinDesk,
2020. URL: https://www.coindesk.com/cftc-
chair-a-large-part-of-financial-system-
could-end-up-in-blockchain-format.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang
Chen, Beng Chin Ooi, and Ji Wang. Untangling
blockchain: A data processing view of blockchain sys-
tems. IEEE Trans. Knowl. Data Eng., 30(7):1366-1385,
2018. doi:10.1109/TKDE.2017.2781227.

D. Dolev. Unanimity in an unknown and unreliable
environment. In 22nd Annual Symposium on Founda-
tions of Computer Science, pages 159—-168. IEEE, 1981.
doi:10.1109/SFCS.1981.53.

Danny Dolev. The byzantine generals strike again. J.
Algorithms, 3(1):14-30, 1982. doi:10.1016/0196-
6774 (82)90004-9.

Michael Eischer and Tobias Distler. Scalable byzan-
tine fault-tolerant state-machine replication on hetero-
geneous servers. Computing, 101:97-118, 2019. doi:
10.1007/s00607-018-0652-3.

Muhammad El-Hindi, Carsten Binnig, Arvind
Arasu, Donald Kossmann, and Ravi Ramamurthy.
BlockchainDB: A shared database on blockchains.
Proc. VLDB Endow., 12(11):1597-1609, 2019.
doi:10.14778/3342263.3342636.

Ethereum Foundation. BTC Relay: A bridge between
the bitcoin blockchain & ethereum smart contracts,
2017. URL: http://btcrelay.org.

Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374-382, 1985.
doi:10.1145/3149.214121.

20

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scal-
ing byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP, pages 51-68. ACM, 2017.
doi:10.1145/3132747.3132757.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51-59, 2002. doi:
10.1145/564585.564601.

William J. Gordon and Christian Catalini. Blockchain
technology for healthcare: Facilitating the transition
to patient-driven interoperability. Computational and
Structural Biotechnology Journal, 16:224-230, 2018.
doi:10.1016/3j.csbj.2018.06.003.

Jim Gray. Notes on data base operating systems. In
Operating Systems, An Advanced Course, pages 393—
481. Springer-Verlag, 1978. doi:10.1007/3-540-
08755-9_09.

Suyash Gupta, Jelle Hellings, and Mohammad
Sadoghi. Fault-Tolerant Distributed Transactions on
Blockchain. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool, 2021. doi:10.2200/
S01068ED1V01Y202012DTM065.

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mo-
hammad Sadoghi. ResilientDB: Global scale resilient
blockchain fabric. Proc. VLDB Endow., 13(6):868-883,
2020. doi:10.14778/3380750.3380757.

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and
Mohammad Sadoghi. Proof-of-execution: Reaching
consensus through fault-tolerant speculation. In Pro-
ceedings of the 24th International Conference on Ex-
tending Database Technology (EDBT), pages 301-312.
OpenProceedings.org, 2021. doi:10.5441/002/edbt.
2021.27.

Jelle Hellings and Mohammad Sadoghi. Brief an-
nouncement: The fault-tolerant cluster-sending prob-
lem. In 33rd International Symposium on Distributed
Computing (DISC 2019), pages 45:1-45:3. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.DISC.2019.45.

Jelle Hellings and Mohammad Sadoghi. Byshard:
Sharding in a byzantine environment. Proceedings
of the VLDB Endowment, 14(11):2230-2243, 2021.
doi:10.14778/3476249.3476275.

Jelle Hellings and Mohammad Sadoghi. The fault-
tolerant cluster-sending problem. In Ivan Varzinczak,

https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3299869.3319889
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1007/s00607-018-0652-3
https://doi.org/10.1007/s00607-018-0652-3
https://doi.org/10.14778/3342263.3342636
http://btcrelay.org
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1016/j.csbj.2018.06.003
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.14778/3476249.3476275

2022

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

editor, Foundations of Information and Knowledge Sys-
tems, pages 168—186. Springer, 2022. doi:10.1007/
978-3-031-11321-5_10.

Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, pages 245-254. ACM, 2018.
doi:10.1145/3212734.3212736.

Maurice Herlihy. Blockchains from a distributed com-
puting perspective. Commun. ACM, 62(2):78-85, 2019.
doi:10.1145/3209623.

Maurice Herlihy, Barbara Liskov, and Liuba Shrira.
Cross-chain deals and adversarial commerce. The VLDB
Journal, 2021. doi:10.1007/s00778-021-00686-1.

Matt Higginson, Johannes-Tobias Lorenz, Bjorn
Miinstermann, and Peter Braad Olesen. The
promise of blockchain. Technical report, McKin-
sey&Company, 2017. URL: https://www.mckinsey.
com/industries/financial-services/our-
insights/the-promise-of-blockchain.

Maged N. Kamel Boulos, James T. Wilson, and
Kevin A. Clauson. Geospatial blockchain: promises,
challenges, and scenarios in health and healthcare. In-
ternational Journal of Health Geographics, 17(1):1211—
1220, 2018. doi:10.1186/512942-018-0144~x.

Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography. Chapman and Hall/CRC, 2nd
edition, 2014.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niLedger: A secure, scale-out, decentralized ledger
via sharding. In 2018 IEEE Symposium on Secu-
rity and Privacy (SP), pages 583-598. IEEE, 2018.
doi:10.1109/SP.2018.000-5.

Jae Kwon and Ethan Buchman. Cosmos whitepaper:
A network of distributed ledgers, 2019. URL: https:
//cosmos.network/cosmos-whitepaper.pdf.

Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4):51-58, 2001. Distributed Computing Col-
umn 5. doi:10.1145/568425.568433.

Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Song-
tao Guo, and Yuanyuan Yang. A survey of iot applica-
tions in blockchain systems: Architecture, consensus,
and traffic modeling. ACM Comput. Surv., 53(1), 2020.
doi:10.1145/3372136.

Mihai Letia, Nuno Preguica, and Marc Shapiro. Con-
sistency without concurrency control in large, dynamic
systems. SIGOPS Oper. Syst. Rev., 44(2):29-34, 2010.
doi:10.1145/1773912.1773921.

21

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2009. URL: https://bitcoin.org/
bitcoin.pdf.

Arvind Narayanan and Jeremy Clark. Bitcoin’s aca-
demic pedigree. Commun. ACM, 60(12):36-45, 2017.
doi:10.1145/3132259.

Senthil Nathan, Chander Govindarajan, Adarsh Saraf,
Manish Sethi, and Praveen Jayachandran. Blockchain
meets database: Design and implementation of a
blockchain relational database. Proc. VLDB Endow.,
12(11):1539-1552, 2019. doi:10.14778/3342263.
3342632.

Faisal Nawab and Mohammad Sadoghi. Blockplane:
A global-scale byzantizing middleware. In 35th In-
ternational Conference on Data Engineering (ICDE),
pages 124-135. IEEE, 2019. doi:10.1109/ICDE.
2019.00020.

M. Tamer Ozsu and Patrick Valduriez. Principles of
Distributed Database Systems. Springer, 2020. doi:
10.1007/978-3-030-26253-2.

Michael Pisa and Matt Juden. Blockchain and economic
development: Hype vs. reality. Technical report,
Center for Global Development, 2017. URL: https:
//www.cgdev.org/publication/blockchain-and-
economic-development-hype-vs-reality.

Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv
Krishnan, and Mohammad Sadoghi. RingBFT: Re-
silient consensus over sharded ring topology. In Pro-
ceedings of the 25st International Conference on Extend-
ing Database Technology, pages 298-311. OpenPro-
ceedings.org, 2022. doi:10.48786/edbt.2022.17.

Victor Shoup. Practical threshold signatures. In Ad-
vances in Cryptology — EUROCRYPT 2000, pages
207-220. Springer Berlin Heidelberg, 2000. doi:
10.1007/3-540-45539-6_15.

Gerard Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2nd edition, 2001.

Maarten van Steen and Andrew S. Tanenbaum. Dis-
tributed Systems. Maarten van Steen, 3th edition, 2017.
URL: https://www.distributed-systems.net/.

Gavin Wood. Ethereum: a secure decentralised gener-
alised transaction ledger, 2016. EIP-150 revision. URL:
https://gavwood.com/paper.pdf.

Gavin Wood. Polkadot: vision for a heteroge-
neous multi-chain framework, 2016. URL: https:
//polkadot.network/PolkaDotPaper.pdf.

https://doi.org/10.1007/978-3-031-11321-5_10
https://doi.org/10.1007/978-3-031-11321-5_10
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.1007/s00778-021-00686-1
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://doi.org/10.1186/s12942-018-0144-x
https://doi.org/10.1109/SP.2018.000-5
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/3372136
https://doi.org/10.1145/1773912.1773921
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3132259
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://doi.org/10.48786/edbt.2022.17
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://www.distributed-systems.net/
https://gavwood.com/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf

2022

[59]

[60]

[61]

Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 347-356. ACM, 2019.
doi:10.1145/3293611.3331591.

Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi.
Atomic commitment across blockchains. Proc. VLDB
Endow., 13(9):1319-1331, 2020. doi:10.14778/
3397230.3397231.

Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full
sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 931-948. ACM, 2018. doi:10.1145/3243734.
3243853.

22

https://doi.org/10.1145/3293611.3331591
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

Supplemental Materials

See attached the rebuttal comments based on the previous reviews. We have
applied the changes proposed in these rebuttal comments in the revised paper.

Response to the Reviewers’ comments
“Problem: Sharded Resilient Transaction Processing with
Minimal Costs”

Anonymous authors

October 1, 2022

We like to thank each of the three reviewers for their careful review and their detailed feedback of
our previous manuscript. To address the reviewers comments, we have detailed below our rebuttal to the
reviewers comments and the corresponding revisions (in red).

Review #1 (reviewer 3UEy)

Review: The most major element that should be improved is the accuracy and subjectiveness.
The paper mentions “absolute minimum amount of coordination” repeatedly but does not offer
any method or model to quantify whether this is indeed the case.

e Even in the CChimera protocol (the simplest), the step #2 cross-shard exchange entails an
all-to-all communication across all shards in a given transaction.

e It is not clear if this is truly the “absolute” minimum, as I can imagine other approaches
with various tradeoffs that would still work in the given model (ex: the client handling the
cross-shard coordination step).

e The paper should either (a) rephrase their contribution to make it more accurate and less
subjective, or (b) discuss why their proposed approach offers the minimum amount of coor-
dination.

We agree that our original description can be made more precise as to what being minimized mean.
Furthermore, in all three protocols we present various implementations are possible to trade off between
bandwidth and latency (e.g., all-to-all communication versus all-to-one-to-all communication using threshold
signatures).

Both CCHIMERA and OCHIMERA minimize the number of agreement (consensus) steps each involved
shard performs, as they both only perform one such step. We believe that one agreement step is the minimum
in any sharded environment if a form of serializable transaction execution is to be provided.

Revise: We will include the above clarification in the revision.

Review: I enjoyed seeing how the paper builds on the insight of “limiting the types of workload
supported”. Generally, this kind of leveraging of application-specific semantics is indeed very
powerful. Since this paper applies itself specifically to the UTXO model, and praises “minimum”
coordination, it would be helpful to explain why is consensus even necessary within a cluster,
since that part was not clear. In the local inputs step, in particular, it seems like a Byzantine
reliable broadcast primitive might have sufficed. I would be curious to see an explanation on why
is consensus necessary.

The solution in §4 seems to rely on a key property that the “set of currently-available inputs at
S” (a shard) is known, which is a set in constant change, but it was not clear to me how this set
was determined. This is likely related to the UTXO model from what I can tell.

As the transactions are UTXO-like, one can determine from the structure of a transaction what its input
and output objects are. Furthermore, each object is maintained by exactly a single shard. Hence, while
processing a transaction, one only has to check whether the affected input objects are available at those
shards that should maintain them. To assure that this availability check is done consistently among all
replicas in an affected shard, all replicas in that shard need to process their shard-specific availability checks
for distinct transactions in the same order, as otherwise they will not agree on which objects are available
for which transactions. As such a strict ordering of these shard-specific steps is required, which is naturally
provided by consensus.

Review: §4: The cluster-sending protocol is important, and should be at least described, not
delegated to a reference [33].

Revise: We will include a full definition and provide references to effective cluster-sending
protocols in the revision.

Review: It is not clear how can a consensus protocol (such as the ones referenced in this paper)
can be used so that “whenever a good replica learns that a decision D needs to be made, then
it can force consensus on D”; this assumption should be detailed more, with the explanation in
section 4 (local inputs) being insufficient.

The way in which replicas can force consensus on D will depend on the internals of the consensus protocol.
Next, we shall sketch an approach that works with PBFT (and most other primary-backup protocols that
follow in the footsteps of PBFT).

Say, for example, that a good replica R of cluster C' either (1) receives a client request that has not yet
been processed; or (2) receives details on a client request already processed by another cluster (e.g., due to
cross-shard exchange). Let 7 be this request. In both cases, R knows that the primary P of cluster C' needs
to initiate processing of 7. To force processing of 7, R can forward 7 to all replicas in C. Next, all good
replicas are aware that 7 needs to be processed and, hence, all good replicas can forward 7 to primary P
with the request to initiate a round of consensus. If primary P fails to do so on time, all good replicas in C'
will consider P to be faulty and initiate one-or-more view-changes until a new primary is found that is able
and willing to initiate consensus on 7.

Revise: In the revision, we will expand on the definitions of consensus and, as mentioned
before, cluster-sending to detail what building blocks we need and how they can be provided by
typical consensus and cluster-sending protocols.

Review: Given that the paper assumes the UTXO model, it was not clear how is integrity
guaranteed. By integrity I mean that the values of the objects being destructed should be equal
to the values of objects produced (if Alice has 10 tokens, she cannot send 10 to Bob and 2 to
Carol).

We abstracted out and any integrity checking routines, including balance-integrity constraints. If simple
UTXO transactions are used that destroy and recreate objects (with some balance attached to them) then
one can enforce that all transactions maintain balance-integrity before any processing steps (and discard
transactions that do not maintain balance-integrity). For more complex transactions (e.g., non-UTXO
transactions), a proper integrity-constraint mechanism can be coupled with the decision to commit or abort
transactions (as at that point all information regarding the transaction is available to all involved shards,
due to which all replicas can make a deterministic decision as to whether balance-integrity is maintained).

We note that both OCHIMERA and RCHIMERA can be adapted to provide balance-integrity. CCHIMERA
cannot, however, as balances associated with transactions in CCHIMERA that get aborted are never returned.

Revise: As integrity constraints are required in many applications, we will include a sketch of
how to incorporate integrity constraints in CHIMERA.

Review: The authors should avoid vague statements such as “If malicious primaries behave
sufficiently malicious to affect the normal-case operations, their behavior is detected, and the
primary is replaced”. Both malicious-fault detection and consensus reconfiguration are very
difficult and subtle problems (impossible under various conditions), but this paper deals with
both via “view-change”, which skips a lot of relevant algorithmic parts.

We agree that the wording can be improved and the reviewer is correct that fault detection is generally
impossible, while PBFT-style view-changes are only possible when communication is reliable.

What we mean by our wording can be made more formal. In specific, in CCHIMERA and RCHIMERA,
we rely on the Byzantine fault-tolerant primitives used to deal with any malicious behavior. In OCHIMERA,
which adjusts a PBFT-style consensus to a multi-shard setting, malicious primaries can either:

e Be non-disruptive of the normal-case: sufficient replicas (either good or faulty) participate in the
preprepare, prepare, and commit steps to assure that at-most fg good replicas per shard S cannot
commit.

In this case, the normal case of OCHIMERA can simply proceed to the next transaction to process. A
view-change will only occur if (1) at-least a single good replica R could not commit; and (2) the faulty
replicas choose to support R in an attempt to view-change. If such a view-change happens, then the
view-change protocol guarantees that any transaction that was committed by any good replica will be
preserved (Proposition 5.1).

e Be disruptive of the normal-case: if at-least fg 4+ 1 food replicas in a shard S fail to commit, then the
normal-case of OCHIMERA will get disrupted and a view-change will be initiated.

Of course, besides the above cases, progress of the normal-case can also be halted due to unreliable
communication. In that case, no progress will be made (no new transactions will be processed) until com-
munication becomes reliable, after which the normal-case can recover via the view-change protocol that
guarantees that any transaction that was committed by any good replica will be preserved even during
intervals of unreliable communication (Proposition 5.1).

Revise: We will include the above clarification in Section 5.

Review: I'm confused by the fact that the workload includes 50% multi-shard transactions, yet
the baseline (AHL) seems to degrade or at best retain the same performance. This is not what
I would expect, since 50% of transaction are single-shard, if I understood correctly, and then
at least these 50% should turn up partitioned across different shards, manifesting into increased
throughput, or I'm misunderstanding something here.

In general, an increase in shards has two effects: (1) simple single-shard transactions can be dispersed
over more shards (which would result in drastically improved performance); and (2) multi-shard transactions
can become more complex to process (e.g., a transaction that affects 16 objects in an environment with 4
shards can affect at-most 4 shards, while in an environment with 16 shards it can affect at-most 16 shards).

Now consider a general sharded system without any specific bottlenecks. For multi-shard transactions
that affect n objects, you would expect that any number of up-to-n shards will induce little or even negative
scalability benefits (due to the second effect), while moving beyond n shards will improve scalability. This
behavior is clearly observable for the CHIMERA protocols.

As remarked by the reviewer, AHL behaves rather different. Due to the design of AHL, processing of
all multi-shard transactions passes through a reference committee (e.g., implemented by a separate shard).
Hence, this reference committee itself becomes the bottleneck as soon as the reference committee cannot
process multi-shard transactions as fast as the other shards process their share of the single-shard transac-
tions. Indeed, in AHL deployments with a high amount of multi-shard transactions (which is the case in
our experiments), the reference committee will see a 100% load, while all other shards are underutilized (and
could easily process many more single-shard transactions at the same time).

Revise: Further explain the performance that we see in the experiments.

Review: The evaluation in both Fig. 9 and Fig. 10 deals with common-case, i.e., clients
and nodes are all “good”. In order to assess scalability and resiliency differences across the 3
Chimera versions, it would be important to model & evaluate what happens under non-graceful
conditions. I'm suggesting this because the paper centers on resiliency, so it would make sense
to address that property.

Currently, we indeed only focus on performance differences in the normal case, and these performance
differences follow directly from the differences in communication patterns of the three protocols. In primary-
backup protocols, the performance impact of faulty replicas that are not the primary are typically minor
(assuming the faulty replicas do not flood the network). The impact of faulty primaries is significant,
however, as primaries can throttle performance without raising suspicion.

Revise: We will include a throttle-based experiment in which some of the shards have malicious
primaries that throttle their performance.

Review: The paragraph “The choice of protocol..” (§1) would benefit a lot if it cited certain
concrete examples (of prior work) that it is making reference to.

Revise: We will include references to recent general-purpose protocols (those mentioned in
Section 8.2).

Review: You mention a couple of times that clients “approve” transaction and not sure if I
understand what that means.

We used different terminology in the introduction (approve) and in the remainder of the paper (owner
support). Thanks for pointing our attention to this inconsistency.

Revise: Make the usage of approve and support of a transaction by a client consistent.

Review: In the Abstract an Intro the paper makes it sound like it applies beyond UTXO (“..can
be of use in non-UTXO environments”) but this was never shown. That statement is confusing
and should be clarified.

The way to do so depends on the type of data model supported and whether a strict serializable ordering
of the transactions is required. For example, to support a general-purpose data model with serializable
ordering in RCHIMERA, one can replace object destruction by a (non-blocking) lock (in which case failure
to obtain a lock would match failure to acquire input objects).

Revise: We will add details on how to generalize OCHIMERA and RCHIMERA to general-purpose
workloads.

Review #2 (reviewer Sr97) We thank the reviewer for the detailed and long list of minor comments
and suggestions to improve the writing of the paper. Next, we will only focus on the other comments.

Review: The differences between the variants are not very well explained. The comparison
with related work and the simulations could be improved. Some parts of the paper are hard to
parse.

Review: Abstract, “absolute minimum”: This is a bit vague and strong, consider making a
more concrete claim or removing this phrase.

We agree that our original description can be made more precise as to what being minimized mean.
Both CCHIMERA and OCHIMERA minimize the number of agreement (consensus) steps each involved shard
performs, as they both only perform one such step. We believe that one agreement step is the minimum in
any sharded environment if a form of serializable transaction execution is to be provided.

Revise: We will include the above clarification in the revision.

Review: Sec. 1, par. 3, “permissioned solutions [...] lack scalability as their performance
is bound by the speed of individual participants.”: Unclear, please clarify and ideally give a
reference

Permissioned blockchains are fully-replicated resilient systems. Hence, an upper-bound on the perfor-
mance of such systems is always provided by the speed by which individual replicas can process transactions.
Furthermore, adding replicas will actively decrease the upper-bound on performance, as full replication
among more replicas in a resilient system increases the cost of full replication (e.g., via consensus).

Revise: We will add the above clarification in the revision.

Review: Sec. 1, last par.: According to the Abstract, O/RChimera relax the UTXO as-
sumption. If that is correct, in the non-UTXO setting, what guarantees do these two variations
provide? If that is incorrect, please rephrase the Abstract.

CCHIMERA both requires the UTXO-like transactions and only guarantees successful processing of trans-
actions that are produced in a well-behaved manner (conforming Assumption 2.3). Transactions that do not
conform to Assumption 2.3 will get stuck in the system (see Theorem 4.1 and the paragraph thereafter).

Both OCHIMERA and RCHIMERA are able to deal with transactions that are not produced in a well-
behaved manner. In specific, they both can guarantee transaction execution even if concurrent transactions
require the same inputs (in that case, one or more such concurrent transactions will get aborted, after which
one of the transactions can be reprocessed successfully).

Furthermore, both OCHIMERA and RCHIMERA can be extended to non-UTXO data models by replacing
object destruction by a (non-blocking) locks (in which case failure to obtain a lock would match failure to
acquire input objects).

Revise: We will add details on how to generalize OCHIMERA and RCHIMERA to general-purpose
workloads.

Review: Sec. 2, p. 3, par. 2: The network assumption is confusing. Since you need the reliable
bounded-delay communication assumption (ak.a. Delta-synchronous network assumption) for
crucial parts of the protocol, the asynchronous communication assumption does not apply. E.g.
you need synchrony for the correctness of the argument of the proof of Theorem 4.1 towards
cross-shard consistency.

We agree that the network assumptions of Section 2 can be further clarified.

For OCHIMERA, the network assumption apply directly, as OCHIMERA is designed to operate in an
asynchronous environment with intervals of reliable bounded-delay communication. OCHIMERA will always
guarantee consistency, but can only provide service (execute transactions) during these reliable intervals.
As such, OCHIMERA uses the network assumptions of Section 2, which are the same as most PBFT-style
consensus protocols.

For CCHIMERA and RCHIMERA, the network assumptions are determined by the choice of the underlying
consensus and cluster-sending protocols. One can provide similar guarantees as OCHIMERA by making
appropriate choices for these underlying protocols.

Revise: Clarify the network assumptions and how they directly influence OCHIMERA and
indirectly influence CCHIMERA and RCHIMERA.

Review: After Assumption 2.1: It should be mentioned that having only 1 owner per object
makes your application-level expressivity weaker than Bitcoin, which supports multisigs, time-
locks, hashlocks etc. Can shared ownership be emulated via MuSig-like (https://popeller.io/
schnorr-musig?) key aggregation?

We assumed a unique owner (right after Assumption 2.1), as we require that owners can prove ownership
and express their support for transactions in a unique and non-ambiguous way. This assumption is used in
the normal-case commit path of CCHIMERA. This does not preclude shared ownership in which multiple
participants own an object, however. In that case, we simply require that such a group of participants can
prove ownership and express their support for transactions in a unique and non-ambiguous way. In that
case the group of participants need their own agreement process to determine which transactions to support,
while that support can be expressed either via multiple signatures (one per participant in the group), via
threshold signatures, or via another mechanism.

Revise: Relax and clarify the conditions after Assumption 2.1 and connect them clearly to
Assumption 2.3.

Review: Assumption 2.2: The first part of the assumption is unclear. What does a-priori mean
in this context?

Given a transaction, one can determine (1) which objects are inputs and outputs of that transaction;
and (2) at which shards each of these objects should reside. One way to implement this assumption is by
assigning objects to shards by their unique identifier (e.g., in a round-robin manner) or by assigning objects
to shards by their digest value.

Revise: Clarify the intend of Assumption 2.2 and provide a sketch of how the various assump-
tions we rely on can be provided in practice.

Review: Assumption 2.3: There are Bitcoin protocols (e.g. Lightning Network) in which an
honest owner has to sign multiple conflicting txs. Possibly this is a non-issue, since such protocols
typically also require shared ownership, which is precluded in your model.

CCHIMERA is not designed to be able to process multiple transactions that use the same inputs (see The-
orem 4.1). Hence, CCHIMERA only guarantees successful execution of transactions that satisfy Assumption
2.3. In the case multiple transactions have the same inputs, CCHIMERA will be able to process one of these
transactions if all shards end up processing the same transaction first. In that case, CCHIMERA does not
guarantee successfull execution, however. Both OCHIMERA and RCHIMERA do not require Assumption 2.3,
as they both can abort and rerun transactions when there is a conflict.

Revise: Expand on the need for Assumption 2.3 in CCHIMERA.

Review: Sec. 4: Parties process only one transaction per round instead of aggregating them
in atomic blocks. This design choice should be justified.

Both CCHIMERA and RCHIMERA can easily process transactions in blocks: at a per-shard level, consensus
decisions are made independently of other shards. Hence, instead of one transaction per consensus decision,
both can include a batch of transactions in their consensus decisions (after which they perform the steps
related to the transactions in that batch in order).

For OCHIMERA, blocks of transactions are more challenging as OCHIMERA uses a single multi-shard
consensus step that includes all replicas of all shards affected by a transaction. Still, OCHIMERA can be
generalized to process blocks of transactions that affect the same set of shards. Without further precautions,
such a setup can lead to several shards proposing distinct blocks that include the same transaction, however.
It is possible to deal with such issues with further techniques (e.g., by either assuring that only a single
shard can construct blocks that contain a given transaction based on the digest of that transaction). To
keep presentation simple, we have chosen to present only the simple case in which each round processes a
single transaction.

Revise: Include a remark that sketches how the three protocols can be generalized to atomic
blocks of transactions.

Review: Sec. 4, p. 4, col. 2, par. 3: What happens if a transaction looks valid to shard S
but invalid to shard S’'? It seems that S will wait forever for a m(S’, 7) message that will never
come, as S’ sends nothing in that case. There should be some form of timeout, after which a
“processed” (#1) transaction is dropped.

Assuming that a transaction 7 is syntactically correct (which can be determined by any replica indepen-
dently), the validity of 7 is determined by checking whether all owners of inputs of 7 support that transaction.
Typically, ownership is expressed via digital signatures, which can be verified deterministically by any replica
independently. Hence, all replicas in all affected shards will make the same conclusion on whether 7 is valid.

Revise: At the end of Section 3, we have provided details on local requirements and global
requirements. We will extend this part by including details on how validity is a local requirement
(that can be checked deterministically by replicas independently of other replicas).

Review: Sec. 4, p. 5, bullet 2: The first-pledge rule does not specify how to resolve disagree-
ments between parties on which tx is the first.

Sec. 4, p. 5, bullet 2: The two rules are not discussed in the rest of the paper. How are they
guaranteed to hold?

Consider two shards S; and S5 affected by transactions 7 and 75 that each require objects O; and Os
residing on shards S; and S5, respectively. Now consider the case in which shard S; first processes 71 and
then 79, while shard S5 first processes 75 and then 7. In this case, shard S; will pledge Oy to 71 and shard
Sy will pledge Os to 5. Hence, both 7, and 75 miss inputs and will fail to complete execution. As both
transactions will abort, the order in which they abort does not matter.

Note that the above situation, in which we always have an abort, will only happen if two transactions have
the same inputs. If a transaction has unique inputs, it will always be able to commit (without interference
of other replicas).

The above rules do not need to be guaranteed, as they specify deterministic behavior for all good replicas.

Review: (#1) Secs. 3 & 4: The terminology “process” vs “execute” is very unclear. Normally
these two terms are interchangeable. I think that one can see a tx but decide not to process
it, or process it but then not execute it, or execute it but then not commit it. In detail, my
understanding on the lifecycle of a transaction is: a party learns about it, validates it and
ensures it belongs to its shard. It then processes it, i.e. it tries to achieve consensus with
its other shard members on the message m(S,7). Once this is achieved, the party waits for
the cross-shard exchange to complete and then it executes 7, i.e. it updates its local state
by destructing Inputs(7) and constructing Outputs(7) of its shard. Lastly it commits to these
changes by achieving consensus on the execution of tau with its other shard members. Only the
last step, commitment, respects round ordering. Whether I'm right or not, this workflow should
be clearly described with all relevant terms introduced and explicitly defined (not necessarily in
delineated definitions, but clearly enough). Figure 2 should also be expanded to show all these
phases with the respective names. Lastly, if my understanding of the flow is correct, I propose
renaming “processing” to “intra-shard processing” and “executing” to “inter-shard processing”
or equivalent.

The workflow outlined by the reviewer is correct and we agree that the paper can benefit from clearly-
defined terms for processing and execution of transactions.

Revise: Include formal definitions of transaction execution (all involved replicas reaching the
commit or abort state of that transaction) and processing (validation and execution), and related
terms. Clarify which steps of the protocols correspond to the above terms (the workflow).

Review: (#2) Sec. 4, “cross-shard exchange”: since it doesn’t completely trust other shards (it
verifieas that I(S’,7) = D(S’,7) after all) and in order to ensure that no inputs are unmatched,
shard S should also verify that each input of T appears in exactly one m(S’, 7) message.

Proof of Theorem 4.1, par. 1: If I understand correctly, without the verification of (#2), shard-
applicability does not hold.

The check I(S’,7) = D(S’,) verifies that all necessary inputs requested by the transaction are available
(necessary, as an object can be used only once). As each object O belong to a single shard S, only the
message of that shard S can contain O and all other messages would not be well-formed.

Assuming that the cross-shard exchange step is performed with a cluster-sending step that only allows
well-formed messages, which would be the only messages agreed-upon by all good replicas in a shard, to
be exchanged by that shard, we do not further need to consider whether messages are well-formed after a
successful exchange.

We note that this reliance on the correctness of the cross-shard exchange step is necessary: otherwise, if
faulty replicas would be able to successfully exchange messages to other shards without agreement of good
replicas, they would even be able to exchange well-formed messages that lie about which objects are available
and which are not.

Revise: In response to reviewer #1, we will already include a full definition of cluster-sending.
Furthermore, we will clarify that we require the guarantees of cluster-sending for assuring that
well-formed (and truthful) messages are exchanged during the cross-shard exchange step.

Review: Sec. 4, last par.: This optimisation severely limits the usability of the blockchain.
As mentioned earlier, it precludes protocols in which honest parties sign various alternative
transactions that spend the same output. It additionally precludes techniques like Bitcoin’s
Replace-by-fee. Also, since agreement with other shards is anyway needed to securely construct
the output objects, the bottleneck of communication still exists. Therefore the benefit of the
optimization is unclear. Given the drawbacks, it must be argued that this approach is supported
by the strong experimental efficiency improvements.

The reviewer is correct that CCHIMERA is limited to a subset of all possible use-cases, as it puts restric-
tions on how owners can behave. The resultant benefit is that transaction processing can be handled by
only a single round of per-shard consensus. Due to this, CCHIMERA has a lower cost (and higher perfor-
mance) than other protocols. Due to the usage of logarithmic scales, the performance differences between
the CHIMERA protocols are not that clear, however.

Revise: Rework the presentation of the experimental results to further underline the perfor-
mance differences between the CHIMERA protocols.

Review: Sec. 4: Communication complexity is entirely missing. Is it quadradic in the number of
parties of the biggest shard? Do other factors (number of shards, total number of parties, number
of inputs/outputs, size of blockchain) influence it? This possibly needs its own subsection.

Sec. 8: There is extensive discussion on the number of phases and steps of each protocol, but the
efficiency of each such step is not extensively discussed. If each Chimera step is very expensive,
the total latency could be worse than other protocols with more steps.

The exact complexity will depend on the choice of protocols that provide the consensus and cluster-
sending primitives. We have already provided a breakdown of the complexity in terms of these primitives
(Figure 8). CCHIMERA indeed performs the cross-shard exchange step as an all-to-all communication step,
as this is the fastest way to perform this step (in terms of latency).

At the cost of latency, one can change this step into an all-to-one-to-all communication step. Such a
change would only be of real benefit if typical transactions each affect many shards. Hence, we have not
included details on such a protocol.

Revise: We expand on the analysis of Figure 8 by including the full message complexity for
a reasonable choice of consensus and cluster-sending primitives. For PBFT (consensus), the cost
of the consensus step (per shard) will be quadratic in the number of replicas in that shard. The
size of transactions will play a role in both the consensus step and the cross-shard exchange step.
In typical cluster-sending protocols, the complexity of an exchange between shards depends on
the number of replicas in each shard.

Review: Sec. 5, p. 6, Modified PBFT: How does this protocol differ from PBFT between all
parties of shards(tau)?

The main difference is that PBFT has a single primary, whereas OCHIMERA has a single primary per
shard. This difference affects the capability of individual replicas to detect the root cause of failures of the
normal-case operations (as several primaries could be the root cause).

Review: Sec. 5, p. 7, second-last par. & Fig. 5, line 10: What if an honest party receives
fs+ 1 or more VCRecoveryRQ messages but it can respond with a valid VCLocalSCR message?
It seems that this case would be problematic, as it would trigger an unneeded local state recovery.
Is there something preventing this?

This would trigger a local state recovery, as in normal situations this case only happens if a primary is
malicious (for which replacement is always a good thing, even if we can fix up the issues with a VSLocalSCR
message.

Review: Sec. 5. Fig. 4, line 1: How much time does R wait before concluding this event
happened?

Sec. 5. Fig. 4 & 5: This code seems to assume that the preprepare phase has completed
successfully, because in the case of need for local recovery in Fig. 4, Fig. 5 assumes that there is
some M for round p. Discuss what happens when no such M exists.

Sec. 5, Prop. 5.1: “every successful future view of S will recover M” undefined

Sec. 5, Prop. 5.1: M refers only to a single tx (c.f. def. in “Global preprepare”). How can a
replica “recover” M in every future view, even in views that refer to future transactions? I think
you need to specify that you refer to future views of the same round.

For brevity, we focused only on the case of a single transaction (to be recovered) in the case of a multi-
shard consensus, as the recovery of multi-shard transactions is the part where OCHIMERA significantly differs
from PBFT. Based on the detailed feedback of this reviewer, we believe that our description became too
brief.

Revise: We will revise the presentation of the view-change algorithms to include a full treatment
of all necessary details and on how to adjust the mechanisms described to deal with the recovery
of any number of transactions.

Review: Sec. 5, Thm. 5.2 proof: The proof is persuasive in the accept & commit case, but the
argument is not clear in the abort case.

An unfortunate choice of terminology does not help interpret Theorem 5.2, as the term commit has two
distinct and unrelated roles: namely the commit phase of the consensus step, and the commit decision on
transaction execution. Any transaction (whether its execution results in a commit or an abort) is processed
by consensus step in the same way, the difference only being on how replicas execute the transaction after
consensus is reached (on when to execute and on what the inputs are).

Revise: We will disambiguate the terminology used in Theorem 5.2

Review: Subsec. 8.1: It would be better to add clearly distinct use-cases for each of the three
protocol variations. Especially the difference of Core and Resilient Chimera elude me.

Due to other comments by the reviewer, we will already further clarify the limitations of CCHIMERA (it
provides no guarantees when dealing with conflicting transactions). Due to the limitations of CCHIMERA,
it can outperform the other protocols, which we shall further underline with the extended experiments.

Review: Subsec. 8.3, par. 2: Why did you choose only AHL for comparison? Justify.

We originally opted not to include CHAINSPACE, as it will roughly perform the same as RCHIMERA (just
with slightly higher latencies). Due to the linear design of RINGBFT, which is completely optimized for
reducing bandwidth usage by eliminating any all-to-all cross-shard exchange steps between shards, it has
the potential to outperform the CHIMERA protocols in terms of transaction throughput. This comes at the
cost of exceptionally high latencies, however.

The design of SHARPER excludes running the massively multi-shard workloads we envision, as it places
shard-wide locks on shards while processing any multi-shard transactions. Hence, data on SHARPER with the
workloads we use will not yield useful results. Finally, BYSHARD is a framework in which many protocols can
be modeled and specific variants of BYSHARD match the behavior of AHL, CHAINSPACE, and RINGBFT.

Revise: We extend the experiments to include CHAINSPACE and RINGBFT. To make such
experiments insightful, we will also include simulations to determine minimum processing laten-
cies; this to show the differences in design approach between, on the one hand RINGBFT and
CHAINSPACE, and, on the other hand, the CHIMERA protocols.

Review: Subsec. 8.3, par. 3: In Fig. 9 the number of objects is not that interesting by itself.
It would be better to know how many shards are involved in each (i.e. in the average) tx.

Subsec. 8.3, par. 3: The simulation of Fig. 10 is poorly explained. How many txs have been
handled? What exactly does the simulation involve? Which of the three protocols was run?

The breakdown in Figure 10 provides the number of shards affected by each of the entire workloads (given
the object distribution used in the experiments). Hence, this number is independent of the protocol used,
and will impact the cost of all CHIMERA protocols in the same way.

Revise: Further clarify what is exactly shown in Figure 10, how it relates to the workloads of
Figure 9, how this figure correlates to the CHIMERA protocols, and provide a table with workload
statistics for each experimental case (number of replicas/number of objects per transaction).

Review: Subsec. 8.3: The simulations assume a very large number of very small shards. Under
such circumstances, the per-shard honest supermajority assumption is unreasonable. Please add
simulations with a much larger number of parties per shard — a smaller total number of shards
is OK.

This is a great suggestion and will further underline the differences between the CHIMERA variants, as
larger clusters sizes will increase the impact of consensus (as part of the overall cost of transaction processing).

Revise: Rework the experiments to include larger clusters.

Review: Subsec. 8.3, “A closer look at the data does reveal excellent scalability of AHL”: Are
you referring to the experiments of [17]?

10

Both [17] and [34] and our own results show that AHL has excellent scalability in some environments:
namely when workloads consist mainly of single-shard transactions. Due to the design of AHL, processing of
all multi-shard transactions passes through a reference committee (e.g., implemented by a separate shard),
however. Hence, this reference committee itself becomes the bottleneck as soon as the reference committee
cannot process multi-shard transactions as fast as the other shards process their share of the single-shard
transactions. Indeed, in AHL deployments with a high amount of multi-shard transactions (which is the case
in our experiments), the reference committee will see a 100% load, while all other shards are underutilized
(and could easily process many more single-shard transactions at the same time).

Revise: Further clarify the behavior of AHL in the experiments.

Review #3 (reviewer TgEp)

Review: 1-In the paper, it says that, “Due to this, CCHIMERA will not undo any pledges of
objects to the execution of any transactions.” So let’s say I submit a transaction with inputs I1,
12 where I1 resides in S1, and where 12 is an invalid input, doesn’t exist in any shard.=S1 will
locally run consensus, and broadcast m(I1,S1). However, it is not going to receive m(12,52),
and will abort. What does this abort do exactly? If I later submit tx <I1, O1> to send only 11,
am I not able to do so? If so, what exactly is the benefit of this? Or am I understanding this
incorrectly?

In the situation sketched by the reviewer, the original transaction 7 that uses both I; and Iy must be a
well-formed transaction and valid (the owners of I; and Iy expressed their support for the transaction), as
otherwise the transaction got discarded without further processing.

Hence, to arrive at the situation sketched, the object I must already been used by some transaction and,
hence, no longer exist. In this case, shard S; will pledge I; to 7 and never release this pledge. Hence, the
owner of I; (who signed off on 7) will loose access to I; and no future transactions can process I; (Theorem
4.1).

The main benefit of this drastic consequence of trying to use objects in several transactions is protocol
simplicity: as well-behaved owners are required to only try to perform a single transaction with a particular
object as an input, a shard S that is affected by transaction 7 can permanently pledge any input objects
at S required by 7 to 7 before shard S can even verify whether the other shards participating in 7 can
make all required pledges for 7. Indeed, in CCHIMERA shards decide to commit 7 before any coordination
between shards happens, and only use coordination to figure out the end result of that commit decision (if
they wrongfully decided to commit, execution of T gets stuck and objects used by 7 are lost).

Both OCHIMERA and RCHIMERA allow for a more general-purpose environment in which the system
can abort transactions if it turns out that not all their inputs are available. This comes at the cost of more
coordination between shards (and, hence, less throughput), however.

Revise: Further clarify the strengths and limitations of CCHIMERA at the end of Section 4.

Review: 2- There are some cross-shard transactions that are not considered in paper, but
introduced in sharded blockchain papers such as: https://eprint.iacr.org/2017/406.pdf,
https://eprint.iacr.org/2018/460.pdf, https://eprint.iacr.org/2022/413.pdf. A brief
compare/contrast with these methods would be helpful. Especially the third papers cross-shard
method also seem to be particularly suited to UTXO model.

We are familiar with OMNILEDGER and RAPIDCHAIN and both use rather different approaches to shard-
ing than the CHIMERA protocols and the other protocols we compare with. We can outline the difference
between our approach and theirs in the related work section, however. As the third paper is rather recent,
we are not yet familiar with the details of that paper, and we have to study it in a bit more depth before we
can conclusively outline their approach.

Revise: Review these three approaches and include relevant details in the related work.

11

Review: 3- Is there a particular reason to only include AHL in the experimental analysis as
the baseline? Could it be expanded to some other cross-shard methods mentioned in the paper?

As stated in response to the previous reviewer, we originally opted not to include CHAINSPACE, as it will
roughly perform the same as RCHIMERA (just with slightly higher latencies). Due to the linear design of
RINGBFT, which is completely optimized for reducing bandwidth usage by eliminating any all-to-all cross-
shard exchange steps between shards, it has the potential to outperform the CHIMERA protocols in terms of
transaction throughput. This comes at the cost of exceptionally high latencies, however.

The design of SHARPER excludes running the massively multi-shard workloads we envision, as it places
shard-wide locks on shards while processing any multi-shard transactions. Hence, data on SHARPER with the
workloads we use will not yield useful results. Finally, BYSHARD is a framework in which many protocols can
be modeled and specific variants of BYSHARD match the behavior of AHL, CHAINSPACE, and RINGBFT.

Revise: We extend the experiments to include CHAINSPACE and RINGBFT. To make such ex-
periments insightful, we will also include simulations to determine minimum processing latencies;
this to show the differences in design approach between, on the one hand RINGBFT and, on the
other hand, the CHIMERA protocols.

12

PROBLEM: SHARDED RESILIENT TRANSACTION PROCESSING WITH MINIMAL
CoSTS

Anonymous authors
Paper under double-blind review

Abstract

To enable scalable resilient blockchain systems, several pow-
erful general-purpose approaches toward sharding such sys-
tems have been demonstrated. Unfortunately, these ap-
proaches all come with substantial costs for ordering and
execution of multi-shard transactions.

In this work, we ask whether one can achieve significant
cost reductions for processing multi-shard transactions by
limiting the type of workloads supported. To initiate the study
of this problem, we propose core-CHIMERA (CCHIMERA).
CCHIMERA uses strict UTXO-based environmental require-
ments to enable powerful multi-shard transaction processing
with an absolute minimum amount of coordination between
shards. In the environment we designed CCHIMERA for,
CCHIMERA will operate perfectly with respect to all trans-
actions proposed and approved by well-behaved clients, but
does not provide any other guarantees.

To illustrate that CCHIMERA-like protocols can be of use
in non-UTXO environments, we also demonstrate two gener-
alizations of CCHIMERA, optimistic-CHIMERA and resilient-
CHIMERA, that make different tradeoffs in complexity and
costs when dealing with faulty behavior and attacks. Fi-
nally, we compare these three protocols and show their poten-
tial scalability and performance benefits over state-of-the-art
general-purpose systems. These results underline the impor-
tance of the study of specialized approaches toward sharding
in resilient systems.

1 Introduction

The advent of blockchain applications and technology has re-
juvenated interest of companies, governments, and developers
in resilient distributed fully-replicated systems and the dis-
tributed ledger technology (DLT) that powers them. Indeed,
in the last decade we have seen a surge of interest in reimag-
ining systems and build them using DLT networks. Examples
can be found in the financial and banking sector [15, 38, 50],
IoT [43], health care [28,39], supply chain tracking, advertis-
ing, and in databases [5,23,30,31,47,48]. This wide interest is
easily explained, as blokchains promise to improve resilience
against both failures and malicious behavior, while enabling
the federated management of data by many participants.

To illustrate this, we look at the financial sector. Current
traditional banking infrastructure is often rigid, slow, and

creates substantial frictional costs. It is estimated that the
yearly cost of transactional friction alone is $71 billion [8] in
the financial sector, creating a strong desire for alternatives.
This sector is a perfect match for DLT, as it enables systems
that manage digital assets and financial transactions in more
flexible, fast, and open federated infrastructures that eliminate
the friction caused by individual private databases maintained
by banks and financial services providers. Consequently, it
is expected that a large part of the financial sector will move
towards DLT [18].

At the core of DLT is the replicated state maintained by
the network in the form of a ledger of transactions. In tradi-
tional blockchains, this ledger is fully replicated among all
participants using consensus protocols [14,30,36,43,46]. For
many practical use-cases, one can choose to use either permis-
sionless consensus solutions that are operated via economic
self-incentivization through cryptocurrencies (e.g., Nakamoto
consensus [45, 55]), or permissioned consensus solutions
that require vetted participation (e.g, PBFT, POE, and HOT-
STUFF [16,32,57]). Unfortunately, the design of consensus
protocols are severely limited in their ability to provide the
high transaction throughput that is needed to address prac-
tical needs, e.g., in the financial sector. Indeed, on the one
hand, we see that permissionless solutions can easily scale
to thousands of participants, but are severely limited in their
transaction processing throughput. E.g., in Ethereum, a popu-
lar public permissionless DLT platform, the rapid growth of
decentralized finance applications [12] causes its network fees
to rise precipitously as participants bid for limited network ca-
pacity [7], while Bitcoin can only process a few transactions
per second [50]. On the other hand, permissioned solutions
can reach much higher throughputs, but still lack scalabil-
ity as their performance is bound by the speed of individual
participants.

Recently, several general-purpose sharded consensus-based
systems have been proposed to combat the limitations of fully-
replicated consensus-based systems [1,3,4,17,34,51]. In
these systems, one partitions the data among several shards
that each can potentially operate mostly-independent on their
data, while only requiring inter-shard coordination to process
multi-shard transactions that affect data on several shards (see
Figure 1).

The choice of protocol for such multi-shard transaction pro-
cessing determines greatly the scalability benefits of sharding
and the overhead costs incurred by sharding, however. In prac-

2022

Request on 03,05 Request on 02,014 Request on 012,017
(via PBFT) (via CHIMERA) (via PBFT)

¥ ¥ v

Al «<——> Ay By «<—> B;

CHIMERA

PBFT PBFT
Ay «———> Ay B3 «——> By

(Objects o1, ...,010) (Objects 011, ...,020)

Figure 1: A sharded design in which two resilient blockchains
each hold only a part of the data. Local decisions within a
cluster are made via traditional PBFT consensus, whereas
multi-shard transactions are processed via CHIMERA (pro-
posed in this work).

tice, existing proposals for sharding consensus-based systems
have taken a general-purpose approach aiming at serving any
workload. Unfortunately, such genericity comes at a cost, and
existing proposals either have high coordination costs, have
high latencies, or have severe bottlenecks with multi-shard
workloads.

In this work, we ask whether one can improve on the state-
of-the-art proposals by limiting the type of workloads sup-
ported by the systems. In specific, we propose the following
problem for further study:

Problem. Can one reduce the cost of coordination
in the design of sharded consensus-based systems
by limiting the types of workloads supported?

In this paper, we give a preliminary positive answer for the
above problem. In specific, we put forward the CHIMERA
family of multi-shard transaction processing protocols that
can process UTXO-transactions and uses properties of these
transactions to minimize coordination. To be able to adapt to
the needs of specific use-cases, we propose three variants of
CHIMERA:

1. In Section 4, we propose Core-CHIMERA (CCHIMERA),
a design specialized for processing UTXO-like transac-
tions. CCHIMERA uses strict environmental assumptions
on UTXO-transactions to its advantage to yield a min-
imalistic design that only requires local consensus in
affected shards and does not require any coordination
between shards beyond a single round of information
sharing, a minimal amount. Even with this minimalistic
design, CCHIMERA will operate perfectly with respect to
all transactions proposed and approved by well-behaved
clients (although it may fail to process transactions orig-
inating from malicious clients).

To also support more general-purpose environments, we pro-
pose Optimistic-CHIMERA and Resilient-CHIMERA, two gen-
eralizations of CCHIMERA that each deal with the strict envi-

ronmental assumptions of CCHIMERA while preserving the
minimalistic design of CCHIMERA:

2. In Section 5, we propose Optimistic-CHIMERA. In the
design of Optimistic-CHIMERA (OCHIMERA), we as-
sume that malicious behavior is rare and we optimize the
normal-case operations. We do so by keeping the normal-
case operations as minimalistic as possible by utilizing
a single multi-shard consensus step to execute multi-
shard transactions in the normal case. When compared
to CCHIMERA, this step does not require any additional
coordination phases in the well-behaved optimistic case,
while still being able to lift the environmental assump-
tions of CCHIMERA. In doing so, OCHIMERA does
require intricate coordination when recovering from at-
tacks, however.

3. In Section 6, we propose Resilient-CHIMERA. In the
design of Resilient-CHIMERA, we assume that mali-
cious behavior is common and we add sufficient coor-
dination to the normal-case operations of CCHIMERA
to enable a simpler and localized recovery path, allow-
ing RCHIMERA to operate in a general-purpose fault-
tolerant environments without significant costs to recover
from attacks.

In Section 7, we show that all three variants of CHIMERA
provide strong ordering guarantees based on their usage of
UTXO-transactions. Finally, in Section 8, we compare the
three CHIMERA protocols and show their potential scalabil-
ity and performance benefits over state-of-the-art general-
purpose systems

2 Preliminaries

As permissioned blockchains already have much higher
throughputs than permissionless blockchains, we will focus
on permissioned blockchains in this paper.

First, we introduce the system model, the sharding model,
the data model, the transaction model, and the terminology
and notation used throughout this paper.

If S is a set of replicas, then G(S) denotes the non-faulty
good replicas in S that always operate as intended, and
F(S) =S\ G(S) denotes the remaining replicas in S that
are faulty and can act Byzantine, deviate from the intended
operations, or even operate in coordinated malicious manners.
We write ng = |S|, gs = |G(S)|, and fs = |S\ G(S)| =ns—gs
to denote the number of replicas in §, good replicas in S, and
faulty replicas in S, respectively.

Let R be a set of replicas. In a sharded fault-tolerant system
over ‘R, the replicas are partitioned into sets shards(R) =
{So,...,5z} such that the replicas in S;, 0 < i < z, operate as
an independent Byzantine fault-tolerant system. As each §;
operates as an independent Byzantine fault-tolerant system,

2022

we require ng, > 3f,, a minimal requirement to enable Byzan-
tine fault-tolerance in an asynchronous environment [20,21].
We assume that every shard § € shards(9R) has a unique
identifier 1d(S).

We assume asynchronous communication: messages can
get lost, arrive with arbitrary delays, and in arbitrary order.
Consequently, it is impossible to distinguish between, on the
one hand, a replica that is malicious and does not send out
messages, and, on the other hand, a replica that does send out
proposals that get lost in the network. As such, CHIMERA
can only provide progress in periods of reliable bounded-
delay communication during which all messages sent by good
replicas will arrive at their destination within some maximum
delay [25,27]. Further, we assume that communication is
authenticated: on receipt of a message m from replica R € ‘R,
one can determine that R did sent m if R € G(R). Hence,
faulty replicas are able to impersonate each other, but are
not able to impersonate good replicas. To provide authenti-
cated communication under practical assumptions, we can
rely on cryptographic primitives such as digital signatures
and threshold signatures [40, 52].

Assumption 2.1. We assume coordinating adversaries that
can, at will, choose and control any replica R € § in any
shard § € shards(fR) in the sharded fault-tolerant system as
long as, for each shard §’ € shards(R), the adversaries only
control up to f replicas in 5.

We use the object-dataset model in which data is modeled
as a collection of objects. Each object o has a unique identifier
id(0) and a unique owner owner(o). In the following, we
assume that all owners are clients of the system that manages
these objects. The only operations that one can perform on an
object are construction and destruction. An object cannot be
recreated, as the attempted recreation of an object o will result
in a new object o’ with a distinct identifier (1d(0) # 1d(0')).

Changes to object-dataset data are made via transactions
requested by clients. We write (T). to denote a transac-
tion T requested by a client c. We assume that all transac-
tions are UTXO-like transactions: a transaction 7T first pro-
duces resources by destructing a set of input objects and
then consumes these resources in the construction of a set
of output objects. We do not rely on the exact rules re-
garding the production and consumption of resources, as
they are highly application-specific. Given a transaction
T, we write Inputs(t) and Outputs(t) to denote the input
objects and output objects of T, respectively, and we write
Objects(t) = Inputs(t)UOutputs(t).

Assumption 2.2. Given a transaction T, we assume that one
can determine Inputs(t) and Outputs(t) a-priori. Further-
more, we assume that every transaction has inputs. Hence,
|Inputs(t)| > 1.

Owners of objects o can express their support for transac-
tions 7 that have o as their input. To provide this functionality,
we can rely on digital signatures [40].

Assumption 2.3. If an owner is well-behaved, then an ex-
pression of support cannot be forged or provided by any other
party. Furthermore, a well-behaved owner of o will only ex-
press its support for a single transaction T with o € Inputs(t),
as only one transaction can consume the object o, and the
owner will only do so after the construction of o.

Let o be an object. We assume that there is a well-
defined function shard(o) that maps object o to the single
shard § € shards(fR) that is responsible for maintaining o.
Given a transaction T, we write shards(t) = {shard(o)|o €
Objects(t)} to denote the shards that are affected by T. We
say that T is a single-shard transaction if |shards(t)| = 1 and
is a multi-shard transaction otherwise.

3 Multi-Shard Transaction Processing

Before we introduce CHIMERA, we put forward the correct-
ness requirements we want to maintain in a multi-shard trans-
action system in which each shard is itself a set of repli-
cas operated as a Byzantine fault-tolerant system. We say
that a shard .§ performs an action if every good replica in
G (S) performs that action. Hence, any processing decision
or execution step performed by S requires the usage of a
consensus protocol [14,16,30,42,43] that coordinates the
operations of individual replicas in the system, e.g., a Byzan-
tine fault-tolerant system driven by PBFT [16], POE [32],
or HOTSTUFF [57], or a crash fault-tolerant system driven
by PAXOS [42]. As these systems are fully-replicated, each
replica holds exactly the same data, which is determined by
the sequence of transactions—the journal—agreed upon via
consensus:

Definition 3.1. A consensus protocol coordinate decision
making among the replicas of a resilient cluster § by pro-
viding a reliable ordered replication of decisions. To do so,
consensus protocols provide the following guarantees:

1. If good replica R € § makes a p-th decision, then all
good replicas R’ € § will make a p-th decision (whenever
communication becomes reliable).

2. If good replicas R, Q € .S make p-th decisions, then they
make the same decisions.

3. Whenever a good replica learns that a decision D needs
to be made, then it can force consensus on D.

Let T be a transaction processed by a sharded fault-tolerant
system. Processing of T does not imply execution: the transac-
tion could be invalid (e.g., the owners of affected objects did
not express their support) or the transaction could have inputs
that no longer exists. We say that the system commits to T if
it decides to apply the modifications prescribed by 7, and we
say that the system aborts T if it decides to not do so. Using
this terminology, we put forward the following requirements
for any sharded fault-tolerant system:

2022

R1 Validity. The system must only processes transaction
T if, for every input object 0 € Inputs(t) with a well-
behaved owner owner (o), the owner owner(o) supports
the transaction.

R2 Shard-involvement. The shard § only processes transac-
tion T if § € shards(t).

R3 Shard-applicability. Let D(S) be the dataset maintained
by shard § at time . The shards shards(t) only commit
to execution of transaction T at ¢ if T consumes only
existing objects. Hence, Tnputs(t) C U{D(S) | S €
shards(T)}.

R4 Cross-shard-consistency. If shard § commits (aborts)
transaction T, then all shards §’ € shards(t) eventually
commit (abort) T.

R5 Service. If client ¢ is well-behaved and wants to request
a valid transaction 7, then the sharded system will even-
tually process (t).. If T is shard-applicable, then the
sharded system will eventually execute (T)..

R6 Confirmation. If the system processes (). and ¢ is well-
behaved, then ¢ will eventually learn whether T is com-
mitted or aborted.

We notice that shard-involvement is a local requirement, as
individual shards can determine whether they need to process
a given transaction. In the same sense, shard-applicability and
cross-shard-consistency are global requirements, as assuring
these requirements requires coordination between the shards
affected by a transaction.

4 Core-CHIMERA:
Simple Yet Efficient Transaction Processing

The core idea of CHIMERA is to minimize the coordination
necessary for multi-shard ordering and execution of trans-
actions. To do so, CHIMERA combines the semantics of
transactions in the object-dataset model with the minimal
coordination required to assure shard-applicability and cross-
shard consistency. This combination results in the following
high-level three-step approach towards processing any trans-
action T:

1. Local inputs. First, every affected shard S € shards(t)
locally determines whether it has all inputs from S that
are necessary to process 7.

2. Cross-shard exchange. Then, every affected shard §
exchanges these inputs to all other shards in shards(t),
thereby pledging to use their local inputs in the execution
of 1.

3. Decide outcome. Finally, every affected shard .S decides
to commit 7 if all affected shards were able to provide
all local inputs necessary for execution of 1.

Te

Si \ Consensus on (T), - it for Commit/Abor /
S5 Consensus on {T). - ait for Commit/Abor

S3 Consensus on (T), - ait for Commit/Abort!

Local Inputs Decide Outcome Inform

(Consensus)
Cross-Shard Exchange
(Cluster-Sending)

Figure 2: The message flow of CCHIMERA for a 3-shard
client request (t), that is committed.

Next, we describe how these three high-level steps are
incorporated by CHIMERA into normal consensus steps at
each shards. Let shard § € shards(R) receive client request
(T)¢. The good replicas in S will first determine whether T
is valid and applicable. If T is not valid or § ¢ shards(t),
then the good replicas discard t. Otherwise, if 7T is valid
and § € shards(t), then the good replicas utilize consensus
to force the primary P(S) to propose in some consensus
round p the message m(S,7)p = ((T)c,1(S,7),D(S,7)), in
which 1($,7) = {0 € Inputs(t) | $ = shard(o)} is the set
of objects maintained by .S that are input to T and D(S,1) C
1(S,7) is the set of currently-available inputs at §. Only if
I1(S8,7) = D(S,7) will § pledge to use the local inputs 7(.5, 1)
in the execution of T.

The acceptance of m(S,T), in round p by all good replicas
completes the local inputs step. Next, during execution of
T, the cross-shard exchange and decide outcome steps are
performed. First, the cross-shard exchange step. In this step,
S broadcasts m(S,7)p to all other shards in shards(t). To as-
sure that the broadcast arrives, we rely on a reliable primitive
for cross-shard exchange, e.g., via an efficient cluster-sending
protocol [33]. Then, the replicas in § wait until they receive
messages m(S’, 1)y = ((T)c,1(S5',7),D(S', 7)) from all other
shards §' € shards(T).

After cross-shard exchange comes the final decide out-
come step. After S receives m(S’,7)y from all shards §' €
shards(t), it decides to commit whenever I(S',T) = D(S', 1)
for all §' € shards(t). Otherwise, it decides abort. If S
decides commit, then all good replicas in .S destruct all ob-
jects in D(S,t) and construct all objects o € Outputs(T)
with § = shard(o). Finally, each good replica informs ¢
of the outcome of execution. If ¢ receives, from every shard
S" € shards(t), identical outcomes from gg» — f¢r distinct
replicas in §”, then it considers T to be successfully executed.
In Figure 2, we sketched the working of CCHIMERA.

The cross-shard exchange step of CCHIMERA at § involves
waiting for other shards §’. Hence, there is the danger of
deadlocks if the other shards §’ never perform their cross-
shard exchange steps. To assure that such situations do not
lead to a deadlock, we employ two techniques.

1. Internal propagation. To deal with situations in which

2022

some shards § € shards(t) did not receive (T). (e.g.,
due to network failure or due to a faulty client that fails
to send (7). to S), we allow each shard to learn T from
any other shard. In specific, § will start consensus on
(1), after receiving cross-shard exchange related to (T),.

2. Concurrent resolution. To deal with concurrent trans-
actions that content for the same objects, we allow
each shard to accept and execute transactions for dif-
ferent rounds concurrently. To assure that concurrent
execution does not lead to inconsistent state updates,
each replica implements the following first-pledge and
ordered-commit rules. Let T be a transaction with
S € shards(t) and R € S. The first-pledge rule states
that S pledges o, constructed in round p, to transaction
T only if 7 is the first transaction proposed after round
p with o € Inputs(t). The ordered-commit rule states
that § can abort T in any order, but will only commit T
that is accepted in round p after previous rounds finished
execution.

Abort decisions at shard § on a transaction T can often be
made without waiting for all shards §’ € shards(t): shard
S can decide abort after it detects 1(5,T) # D(S,1) or af-
ter it receives the first message ({t)¢,1(S”,7),D(S”,1)) with
1(8",7) # D(S",1), S” € shards(t). For efficiency, we al-
low S to abort in these cases.

Theorem 4.1. If, for all shards S*, gg+ > 2f¢+, and Assump-
tions 2.1, 2.2, and 2.3 hold, then Core-CHIMERA satisfies
Requirements R1-R6 with respect to all transactions that are
not requested by malicious clients and do not involve objects
with malicious owners.

Proof. Let 1 be a transaction. As good replicas in § discard
T if it is invalid or if § ¢ shards(t), CCHIMERA provides
validity and shard-involvement. Next, shard-applicability
follow directly from the decide outcome step.

If a shard § commits or aborts transaction T, then it must
have completed the decide outcome and cross-shard exchange
steps. Hence, all shards §’ € shards(t) must have exchanged
the necessary information to §. By relying on cluster-sending
for cross-shard exchange, S’ requires cooperation of all good
replicas in S’ to exchange the necessary information to .
Hence, we have the guarantee that these good replicas will
also perform cross-shard exchange to any other shard §” €
shards(t). As such, every shard §” € shards(t) will receive
the same information as .§, complete cross-shard exchange,
and make the same decision during the decide outcome step,
providing cross-shard consistency.

Due to internal propagation and concurrent resolution, ev-
ery valid transaction T will be processed by CCHIMERA as
soon as it is send to any shard § € shards(t). Hence, ev-
ery shard in shards(t) will perform the necessary steps to
eventually inform the client. As all good replicas R € S,
S € shards(t), will inform the client of the outcome for T,

the majority of these inform-messages come from good repli-
cas, enabling the client to reliably derive the true outcome.
Hence, CCHIMERA provides service and confirmation. [

Notice that in the object-dataset model in which we oper-
ate, each object can be constructed once and destructed once.
Hence, each object o can be part of at-most two committed
transactions: the first of which will construct o as an output,
and the second of which has o as an input and will consume
and destruct o. This is independent of any other operations on
other objects. As such these two transactions cannot happen
concurrently. Consequently, we only have concurrent transac-
tions on o if the owner owner (o) expresses support for several
transactions that have o as an input. By Assumption 2.3, the
owner owner (o) must be malicious in that case. As such,
transactions of well-behaved clients and owners will never
abort.

In the design of CCHIMERA, we take full advantage of the
above observation: CCHIMERA effectively eliminates all co-
ordination when deciding to process a multi-shard transaction
due to which all involved shards can process a transaction in-
dependently with a single consensus step: all communication
between shards in CCHIMERA is dedicated to exchange exe-
cution state after individual shards reach consensus. We can
do so as any aborts, which could have been prevented with
additional coordination, are always due to malicious behavior
by clients and owners of objects. Due to this, CCHIMERA
will not undo any pledges of objects to the execution of any
transactions. This implies that objects that are involved in
malicious transactions can get lost for future usage, while not
affecting any transactions of well-behaved clients.

5 Optimistic-CHIMERA:
Robust Transaction Processing

In the previous section, we introduced CCHIMERA, a mini-
malistic multi-shard transaction processing protocol that relies
on properties of UTXO-like transactions to maximize perfor-
mance. Although the design of CCHIMERA is simple yet
effective, we see two shortcomings that limits its use. First,
CCHIMERA operates under the assumption that any issues
arising from concurrent transactions is due to malicious be-
havior of clients. As such, CCHIMERA chooses to lock out
objects affected by such malicious behavior for any future
usage. Second, CCHIMERA requires consecutive consen-
sus and cluster-sending steps, which increases its transaction
processing latencies. Next, we investigate how to deal with
these weaknesses of CCHIMERA without giving up on the
minimalistic nature of CCHIMERA.

To do so, we propose Optimistic-CHIMERA (OCHIMERA),
which is optimized for the optimistic case in which we have
no concurrent transactions, while providing a recovery path
that can recover from concurrent transactions without locking
out objects. At the core of OCHIMERA is assuring that any

2022

issues due to malicious behavior, e.g., concurrent transactions,
are detected in such a way that individual replicas can recover.
At the same time, we want to minimize transaction processing
latencies. To bridge between these two objectives, we inte-
grate detection and cross-shard coordination within a single
consensus round that runs at each affected shard.

Let (1), be a multi-shard transaction, let § € shards(t)
be an affected shard with primary P(S), and let m(S,7),p =
((t)e,1(S,7),D(S,7)) be the round-p proposal of P(S) of
view v of S. To enable detection of concurrent transactions,
OCHIMERA modifies the consensus-steps of the underlying
consensus protocol by applying the following high-level idea:

AreplicaR € S, S € shards(t), only accepts pro-
posal m(S, 1), for transaction 7 if it gets confirma-
tion that replicas in each other shard §” € shards(t)
are also accepting proposals for T. Otherwise,
replica R detects failure.

Next, we illustrate how to integrate the above idea in the
three-phase design of PBFT, thereby turning PBFT into a
multi-shard aware consensus protocol:

1. Global preprepare. Primary P(S) must send m(S,7),,p
to all replicas R’ € §/, §' € shards(t). ReplicaR € §
only finishes the global preprepare phase after it re-
ceives a global preprepare certificate consisting of a
set M = {m(S", 1) o | §” € shards(t)} of preprepare
messages from all primaries of shards affected by 7.

2. Global prepare. After R € S, S € shards(t), finishes
the global preprepare phase, it sends prepare messages
for M to all other replicas in R' € §', §' € shards(t).
Replica R € S only finishes the global prepare phase
for M after, for every shard §’ € shards(t), it receives
a local prepare certificate consisting of a set P(S’) of
prepare messages for M from gy distinct replicas in
S'. We call the set {P(S5") | §” € shards(t)} a global
prepare certificate.

3. Global commit. After replicaR € S, S € shards(t), fin-
ishes the global prepare phase, it sends commit messages
for M to all other replicas in R’ € §/, §’ € shards(t).
Replica R € S only finishes the global commit phase for
M after, for every shard S’ € shards(t), it receives a
local commit certificate consisting of a set C(S’) of com-
mit messages for M from g distinct replicas in §'. We
call the set {P(S") | §” € shards(t)} a global commit
certificate.

To minimize inter-shard communication, one can utilize
threshold signatures and cluster-sending to carry over local
prepare and commit certificates between shards via a few
constant-sized messages. The above three-phase global-PBFT
protocol already takes care of the local input and cross-shard
exchange steps. Indeed, areplica R € S that finishes the global

Te
Si \ WM_DCCMS Commit/Abort /
S Decide Commit/Abort
S3 "Decide Commit/Abort

Preprepare Prepare Commit Decide Outcome Inform

Local Inputs and Cross-Shard Exchange
(Global Consensus)

Figure 3: The message flow of OCHIMERA for a 3-shard
client request (1), that is committed.

commit phase has accepted global preprepare certificate M,
which contains all information of other shards to proceed
with execution. At the same time, R also has confirmation
that M is prepared by a majority of all good replicas in each
shard §’ € shards(t) (which will eventually be followed by
execution of T within S"). With these ingredients in place,
only the decide outcome step remains.

The decide outcome step at shard S is entirely de-
termined by the global preprepare certificate M. Shard
S decides to commit whenever I1(S',T) = D(S',1) for all
((T)e,1(S',7),D(S',7)) € M. Otherwise, it decides abort. If
S decides commit, then all good replicas in .S destruct all
objects in D(S,7) and construct all objects o € Outputs(T)
with § = shard(o). Finally, each good replica informs ¢ of
the outcome of execution. If ¢ receives, from every shard
S’ € shards(t), identical outcomes from gg — f¢ distinct
replicas in S’, then it considers T to be successfully executed.
In Figure 3, we sketched the working of OCHIMERA.

We note that OCHIMERA is not the only multi-shard aware
consensus protocol recently proposed (e.g., [3,4]). What
sets OCHIMERA apart is how it guarantees correctness in
all environments, which is determined by how OCHIMERA
deals with non-optimistic cases in which failure is detected
and recovery is necessary. We will detail recovery next. As
a first step, we illustrate the ways in which the normal-case
of OCHIMERA can fail (e.g., due to malicious behavior of
clients, failing replicas, or unreliable communication).

Example 5.1. Consider a transaction T proposed by client ¢
and affecting shard § € shards(t). First, we consider the
case in which P(S) is malicious and tries to set up a coor-
dinated attack. To have maximum control over the steps of
OCHIMERA, the primary sends the message m(S,7),,p to only
g —f g good replicas in each shard S” € shards(t). By do-
ing so, P($) can coordinate the faulty replicas in each shard
to assure failure of any phase at any replicaR’ € §/, §' € T:

1. To prevent R’ from finishing the global preprepare phase
(and start the global prepare phase) for an M with
m(S',7)y o € M, P(S) simply does not send m(S,7),,p
to R’.

2. To prevent R’ from finishing the global prepare phase
(and start the global commit phase) for M, P(S) instructs

2022

the faulty replicas in F (S) to not send prepare messages
for M to R’. Hence, R’ will receive at-most gg — fs
prepare messages for M from replicas in §, assuring that
it will not receive a local prepare certificate P(S) and
will not finish the global prepare phase for M.

3. Likewise, to prevent R’ from finishing the global commit
phase (and start execution) for M, P(S) instructs the
faulty replicas in F (§) to not send commit messages
to R’. Hence, R’ will receive at-most g5 — f5 commit
messages for M from replicas in .S, assuring that it will
not receive a local commit certificate C($) and will not
finish the global commit phase for M.

None of the above attacks can be attributed to faulty behavior
of (S) as unreliable communication can result in the same
outcomes for R’. Furthermore, even if communication is reli-
able and P(S) is good, replica R’ can see the same outcomes
due to malicious behavior of the client or of primaries of other
shards in shards(t):

1. The client ¢ can be malicious and not send T to . At
the same time, all other primaries P(S") of shards S €
shards(t) can be malicious and not send anything to §
either. In this case, P(S) will never be able to send any
message m(S,T),p to R, as no replica in § is aware of
T.

2. If any primary P(S") of §” € shards(t) is malicious,
then it can prevent some replicas in S from starting the
global prepare phase, thereby preventing these replicas
to send prepare messages to R". If P(S") prevents suffi-
cient replicas in § from starting the global prepare phase,
R’ will be unable to finish the global prepare phase.

3. Likewise, any malicious primary P(S”) of S €
shards(T) can prevent replicas in § from starting the
global commit phase, thereby assuring that R’ will be
unable to finish the global commit phase.

To deal with malicious behavior, OCHIMERA needs a ro-
bust recovery mechanism. We cannot simply build that mech-
anism on top of traditional view-change approaches: these tra-
ditional view-change approaches require that one can identify
a single source of failure (when communication is reliable),
namely the current primary. As Example 5.1 already showed,
this property does not hold for OCHIMERA. To remedy this,
the recovery mechanisms of OCHIMERA has components
that perform local view-change and that perform global state
recovery. The pseudo-code for this recovery protocol can
be found in Figure 4. Next, we describe the working of this
recovery protocol in detail. Let R € S be a replica that deter-
mines that it cannot finish a round p of view v.

First, R determines whether it already has a guarantee
on which transaction it has to execute in round p. This is
the case when the following conditions are met: R finished

1: event R € S is unable to finish round p of view v do
2: if R finished in round p the global prepare phase for M,
but is unable to finish the global commit phase then
3 Let P be the global prepare certificate of R for M.
4 if R has a local commit certificate C(S"”) for M then
5 for §' € shards(t) do
6: if R did not yet receive a local commit certificate C(.S”) then
7 Broadcast (VCGlobalSCR: M, P,C(S")) to all replicas in §'.
8 else Detect the need for local state recovery of round p of view v (Figure 5).
9 else Detect the need for local state recovery of round p of view v (Figure 5).
0; (Eventually repeat this event if R remains unable to finish round p.)

11: event R’ € §' receives message (VCGlobalSCR: M,P,C(S")) fromR € S do

12: if R’ did not reach the global commit phase for M then
13: Use M, P, and C(S") to reach the global commit phase for M.
14: else Send a commit message for M to R.

Figure 4: The view-change global short-cut recovery path
that determines whether R already has the assurance that the
current transaction will be committed. If this is the case,
then R requests only the missing information to proceed with
execution. Otherwise, R requires at-least local recovery (Fig-
ure 5).

the global prepare phase for M with m(S$,7),,, € M and has
received a local commit certificate C(S”) for M from some
shard §” € shards(t). In this case, R can simply request all
missing local commit certificates directly, as C(S”) can be
used to prove to any involved replica R’ € §', S’ € shards(t),
that R’ also needs to commit to M. To request such missing
commit certificates of §’, replica R sends out VCGlobalSCR
messages to all replicas in S’ (Line 7 of Figure 4). Any
replica R’ that receives such a VCG1obalSCR message can use
the information in that message to reach the global commit
phase for M and, hence, provide R with the requested commit
messages (Line 11 of Figure 4).

If R does not have a guarantee itself on which transac-
tion it has to execute in round p, then it needs to determine
whether any other replica (either in its own shard or in any
other shard) has already received and acted upon such a guar-
antee. To initiate such local and global state recovery, R
simply detects the current view as faulty. To do so, R broad-
casts a VCRecoveryRQ message to all other replicas in § that
contains all information R collected on round p in view v
(Line 4 of Figure 5). Other replicas Q € S that already have
guarantees for round p can help R by providing all missing
information (Line 6 of Figure 5). On receipt of this informa-
tion, R can proceed with the round (Line 7 of Figure 5). If no
replicas can provide the missing information, then eventually
all good replicas will detect the need for local recovery, this
either by themselves (Line | of Figure 5) or after receiving
VCRecoveryRQ messages of at-least fs + 1 distinct replicas in
S, of which at-least a single replica must be good (Line 10 of
Figure 5).

Finally, if a replica R receives g VCRecoveryRQ messages,
then it has the guarantee that at least gs —fs > f5 4 1 of
these messages come from good replicas in §. Hence, due
to Line 10 of Figure 5, all g5 good replicas in § will send

2022

. event R € § detects the need for local state recovery of round p of view v do
Let M be any latest global preprepare certificate accepted for round p by R.
Let S be M and any prepare and commit certificates for M collected by R.
Broadcast (VCRecoveryRQ : v,p,S).

Hw N

5. event Q € S receives messages (VCRecoveryRQ : v,p,S) of R € § and Q has

1. started the global prepare phase for M with m(S, 7)., € M;
2. a global prepare certificate for M;
3. alocal commit certificate C(S5") for M

do
6. Send (VCLocalSCR:M,P,C(S"))toR € S.

. event R € S receives message (VCLocalSCR: M,P,C(S")) from Q € S do
if R did not reach the global commit phase for M then
9: Use M, P, and C to reach the global commit phase for M.

% =

10: event R € S receives messages (VCRecoveryRQ : v;,p,S;), 1 <i<fg+1,

from fs + 1 distinct replicas in S do
R detects the need for local state recovery of round p of view min{v; | 1 <i <
fo+1}.

. event R € S receives messages (VCRecoveryRQ : v,p,S;), 1 <i<gs,
from distinct replicas in S do
132 if id(R) # (v+ 1) mod n; then

)

14: (R awaits the NewView message of the new primary, Line 14 of Figure 6.)
15: else
16: Broadcast (NewView : (VCRecoveryRQ : v,p,S;) | 1 <i < gs) to all replicas
inS.
17: if there exists a S; that contains global preprepare certificate M,
but no §; contains a local commit certificate for M then
18: R initiates global state recovery of round p (Line | of Figure 6).

Figure 5: The view-change local short-cut recovery path that
determines whether some Q can provide R with the assurance
that the current transaction will be committed. If this is the
case, then R only needs this assurance, otherwise .§ requires a
new view (Figure 6).

VCRecoveryRQ, and, when communication is reliable, also
receive these messages. Consequently, at this point, R can
start the new view by electing a new primary and awaiting the
NewView proposal of this new primary (Line 12 of Figure 5).
If R is the new primary, then it starts the new view by propos-
ing a NewView. As other shards could have already made final
decisions depending on local prepare or commit certificates
of S for round p, we need to assure that such certificates are
not invalidated. To figure out whether such final decisions
have been made, the new primary will query other shards S’
for their state whenever the NewView message contains global
preprepare certificates for transactions T, S’ € shards(t), but
not a local commit certificate to guarantee execution of T
(Line 17 of Figure 5).

The new-view process has three stages. First, the new
primary P proposes the new-view via a NewView message
(Line 12 of Figure 5). If necessary, the new primary P also
requests the relevant global state from any relevant shard
(Line | of Figure 6). The replicas in other shards will respond
to this request with their local state (Line 9 of Figure 6).
The new primary collects these responses and sends them
to all replicas in § via a NewViewGlobal message. Then,
after P sends the NewView message to R € S, R determines
whether the NewView message contains sufficient information

1: event P € S initiates global state recovery of round p using (NewView: V) do
2: Let T be the transactions with global preprepare certificates for round p of S in
view V.
Let S be the shards affected by transactions in 7'.
Broadcast (VCGlobalStateRQ: v, p,V) to all replicas in §" € S.
for 5’ € S do
Wait for VCGlobalStateRQ messages for V from g distinct replicas in S’
Let W(S’) be the set of received VCGLOBALSTATERQ messages.
Broadcast (NewViewGlobal: V,{W(S’) | S’ € §}) to all replicas in S.

e A

9: event R’ € §' receives message (VCGlobalStateRQ:v,p,V) from P € S do
10: if R’ has a global preprepare certificate M with m(S,7),p € M
and reached the global commit phase for M then
11 Let P be the global prepare certificate for M.
Send (VCGlobalStateR: v,p,V,M,P) to P.
13: else Send (VCGlobalStateR:v,p,V) to P.

5

4: event R € § receives valid (NewView : V) message from replica P do

15: if there exists a (VCRecoveryRQ : v;,p,S;) € V that contains

a global preprepare certificate M with m(S,7),.p € M,

a global prepare certificate P for M, and a local commit certificate C(S")

for M then
16: Use M, P, and C to reach the global commit phase for M.
17: else if there exists a (VCRecoveryRQ : v;,p,S;) € V that contains

a global preprepare certificate M,
but no (VCRecoveryRQ: v;,p,S;) € V contains a local commit certificate

for M then
18: R detects the need for global state recovery of round p (Line 20 of Figure 6).
19: else (P must propose for round p.)

20: event R € S receives valid (NewViewGlobal : V,W) from P € S do

21 if any message in W is of the form (VCGlobalStateR :v,p,V,M,P) then

22: Select (VCGlobalStateR : v,p,V,M,P) € W with latest view w,
m(S,7)yp €M.

23: Use M and P to reach the global commit phase for M.

24: else (P must propose for round p.)

Figure 6: The view-change new-view recovery path that re-
covers the state of the previous view based on a NewView
proposal of the new primary. As part of the new-view recov-
ery path, the new primary can construct a global new-view
that contains the necessary information from other shards to
reconstruct the local state.

to recover round p (Line 15 of Figure 6), contains sufficient
information to wait for any relevant global state (Line 17 of
Figure 6), or to determine that the new primary must propose
for round p (Line 19 of Figure 6). If R determines it needs
to wait for any relevant global state, then R will wait for this
state to arrive via a NewViewGlobal message. Based on the
received global state, R determines to recover round p (Line 2 |
of Figure 6), or determines that the new primary must propose
for round p (Line 24 of Figure 6).

Next, we will prove the correctness of the view-change of
OCHIMERA. First, using a standard quorum argument, we
prove that in a single round of a single view of S, only a single
global preprepare message affecting § can get committed by
any other affected shards:

Lemma 5.1. Let ty and 1, be transactions with § €
(shards(t1) N shards(t2)). If gs > 2fs and there exists
shards S; € shards(t;), i € {1,2}, such that good repli-
cas R; € G(S;) reached the global commit phase for global
preprepare certificate M; with m(S,7;),,p € M;, then | = Ty.

Proof. We prove this property using contradiction. We as-
sume T| # Tp. Let P;(S) be the local prepare certificate pro-

2022

vided by .S for M; and used by R; to reach the global commit
phase, let S; C S be the g replicas in S that provided the
prepare messages in P;(S), and let 7; = S; \ F (§) be the good
replicas in S;. By construction, we have |T;| > g5 —fs. As all
replicas in 71 U T» are good, they will only send out a single
prepare message per round p of view v. Hence, if 1| # 1o,
then 7y N T, = 0, and we must have 2(gs —fs) < |T1 UT|. As
all replicas in 7y U T, are good, we also have |T1 UT| < gs.
Hence, 2(gs —fs) < gg, which simplifies to g5 < 2f;, a con-
tradiction. Hence, we conclude T; = 1. O

Next, we use Lemma 5.1 to prove that any global prepre-
pare certificate that could have been accepted by any good
affected replica is preserved by OCHIMERA:

Proposition 5.1. Let T be a transaction and m(S,7),.p be a
preprepare message. If, for all shards S*, g¢+ > 2f¢+, and
there exists a shard S’ € shards(t) such that g5 —f s good
replicas in S' reached the global commit phase for M with
m(S,7)vp € M, then every successful future view of S will
recover M and assure that the good replicas in S reach the
commit phase for M.

Proof. Let v* <v be the first view in which a global prepare
certificate M* with m(S,7*),+ o € M* satisfied the premise of
this proposition. Using induction on the number of views after
the first view v*, we will prove the following two properties
on M*:

1. every good replica that participates in view w, v* < w,
will recover M* upon entering view w and reach the
commit phase for M*; and

2. no replica will be able to construct a local prepare certifi-
cate of $ for any global preprepare certificate M' # M*
with m($,t")wp € M7, v <w.

The base case is view v* + 1. Let S C G(S’) be the setof g —
fs good replicas in §’ that reached the global commit phase
for M*. Each replica R’ € §’ has a local prepare certificate
P(S) consisting of g5 prepare messages for M* provided
by replicas in S. We write S(R') C G(S) to denote the at-
least g5 —fs good replicas in § that provided such a prepare
message to R’.

Consider any valid new-view proposal (NewView : V') for
view v* + 1. If the conditions of Line 15 of Figure 6 hold for
global preprepare certificate M" with m(S§,1%),,, € M*, then
we recover M*. As there is a local commit certificate for M* in
this case, the premise of this proposition holds on M*. As v* is
the first view in which the premise of this proposition hold, we
can use Lemma 5.1 to conclude that w = v, M¥ = M*, and,
hence, that the base case holds if the conditions of Line 15
of Figure 6 hold. Next, we assume that the conditions of
Line 15 of Figure 6 do not hold, in which case M* can only
be recovered via global state recovery. As the first step in
global state recovery is proving that the condition of Line 17

of Figure 6 holds. Let T C G(.5) be the set of at-least g —fs
good replicas in § whose VCRecoveryRQ message is in V
and let R € §'. We have |S(R')| > g5 —fs and |T| > g5 —
fs. Hence, by a standard quorum argument, we conclude
S(R)YNT #£0. LetQ € (S(R")NT). As Q is good and send
prepare messages for M*, it must have reached the global
prepare phase for M*. Consequently, the condition of Line 17
of Figure 6 holds and to complete the proof, we only need
to prove that any well-formed NewViewGlobal message will
recover M*.

Let (NewViewGlobal : V,W) be any valid global new-view
proposal for view v* + 1. As Q reached the global prepare
phase for M*, any valid global new-view proposal must in-
clude messages from §' € shards(t). Let U’ C S’ be the
replicas in §’ of whom messages VCGlobalStateR are in-
cludedin W. Let V/ =U'\ F(S'). We have |§'| > g5 —fg
and |V'| > g —f . Hence, by a standard quorum argument,
we conclude S'NV’ £ 0. Let Q' € (S'NV’). As Q' reached
the global commit phase for M*, it will meet the conditions of
Line 23 of Figure 6 and provide both M* and a global prepare
certificate for M*. Let M* be any other global preprepare cer-
tificate in W accompanied by a global prepare certificate. Due
to Line 22 of Figure 6, the global preprepare certificate for
the newest view of § will be recovered. As v* is the newest
view of S, M* will only prevent recovery of M* if it is also
a global preprepare certificate for view v* of §. In this case,
Lemma 5.1 guarantees that M* = M*. Hence, any replica R
will recover M* upon receiving (NewViewGlobal : V,W).

Now assume that the induction hypothesis holds for all
views j, v* < j <i. We will prove that the induction hypothe-
sis holds for view i+ 1. Consider any valid new-view proposal
(NewView: V) for view i+ 1 and let M* with m(S,t%),,, € M*
be any global preprepare certificate that is recovered due to the
new-view proposal (NewView : V). Hence, M* is recovered
via either Line 16 of Figure 6 or Line 23 of Figure 6. In both
cases, there must exist a global prepare certificate P for M*.
As (NewView : V) is valid, we must have w < i. Hence, we
can apply the second property of the induction hypothesis to
conclude that w < v*. If w = v*, then we can use Lemma 5.1
to conclude that M* = M*. Hence, to complete the proof,
we must show that w = v*. First, the case in which M? is
recovered via Line 16 of Figure 6. Due to the existence of a
global commit certificate C for M, M* satisfies the premise
of this proposition. By assumption, v* is the first view for
which the premise of this proposition holds. Hence, w > v*,
in which case we conclude M¥ = M*. Last, the case in which
M?* is recovered via Line 23 of Figure 6. In this case, M* is
recovered via some message (NewViewGlobal : V,W). Anal-
ogous to the proof for the base case, V will contain a message
VCRecoveryRQ from some replica Q € S(R’). Due to Line 2
of Figure 5, Q will provide information on M*. Consequently,
a prepare certificate for M* will be obtained via global state
recovery, and we also conclude M =M, O

2022

Lemma 5.1 and Proposition 5.1 assure that no transaction
that could-be-committed by any replica will ever get lost by
the system. Next, we bootstrap these technical properties to
prove that all good replicas can always recover such could-
be-committed transactions.

Proposition 5.2. Let T be a transaction and m(S,7),p be a
preprepare message. If, for all shards S*, gs+ > 2f¢+, and
there exists a shard S' € shards(t) such that g — s good
replicas in S’ reached the global commit phase for M with
m(S,7)vp € M, then every good replica in S will accept M
whenever communication becomes reliable.

Proof. Let R € S be a good replica that is unable to accept
M. At some point, communication becomes reliable, after
which R will eventually trigger Line | of Figure 4. We have
the following cases:

1. If R meets the conditions of Line 4 of Figure 4, then R has
a local commit certificate C(S”), S” € shards(t). This
local commit certificate certifies that at least g¢» —fgn
good replicas in §” finished the global prepare phase for
M. Hence, the conditions for Proposition 5.1 are met
for M and, hence, any shard in shards(t) will maintain
or recover M. Replica R can use C(S") to prove this
situation to other replicas, forcing them to commit to M,
and provide any commit messages R is missing (Line 11
of Figure 4).

2. If R does not meet the conditions of Line 4 of Figure 4,
but some other good replica Q € § does, then Q can
provide all missing information to R (Line 6 of Figure 5).
Next, R uses this information (Line 7 of Figure 5), after
which it meets the conditions of Line 4 of Figure 4.

3. Otherwise, if the above two cases do not hold, then all g¢
good replicas in S are unable to finish the commit phase.
Hence, they perform a view-change. Due to Proposi-
tion 5.1, this view-change will succeed and put every
replica in § into the commit phase for M. As all good
replicas in S are in the commit phase, each good replica
in S will be able to make a local commit certificate C(S)
for M, after which they meet the conditions of Line 4 of
Figure 4. O

Finally, we use Proposition 5.2 to prove cross-shard-
consistency.

Theorem 5.2. Optimistic-CHIMERA maintains cross-shard
COnsistency.

Proof. Assume a single good replica R € § commits or aborts
a transaction T. Hence, it accepted some global preprepare
certificate M with m(S,71),,, € M. Consequently, R has local
commit certificates C(S’) for M of every S’ € shards(t).
Hence, at least g —f ¢ good replicas in S’ reached the global
commit phase for M, and we can apply Proposition 5.2 to

10

conclude that any good replica R” € §”, §” € shards(t) will
accept M. As R” bases its commit or abort decision for T
on the same global prepare certificate M as R, they will both
make the same decision, completing the proof. O

Due to the similarity between OCHIMERA and CCHIMERA,
one can use the details of Theorem 4.1 to prove that
OCHIMERA provides validity, shard-involvement, and shard-
applicability. Via Theorem 5.2, we proved cross-shard-
consistency. We cannot prove service and confirmation, how-
ever. The reason for this is simple: even though OCHIMERA
can detect and recover from accidental faulty behavior and
accidental concurrent transactions, OCHIMERA is not de-
signed to gracefully handle targeted attacks: OCHIMERA
is optimistic in the sense that it is optimized for the situa-
tion in which faulty behavior (including concurrent transac-
tions that content for the same objects) is rare. Still, in all
cases, OCHIMERA maintains cross-shard consistency, how-
ever. Moreover, in the optimistic case in which shards have
good primaries and no concurrent transactions exist, progress
is guaranteed whenever communication is reliable:

Proposition 5.3. [f, for all shards §*, g5« > 2f¢+, and As-
sumptions 2.1, 2.2, and 2.3 hold, then Optimistic-CHIMERA
satisfies Requirements R1—-R6 in the optimistic case.

OCHIMERA cannot defend against denial-of-service at-
tacks targeted at blocking individual replicas and shards from
participating. Unfortunately, no existing consensus proto-
col is able to deal with such attacks. Furthermore, as is the
case for other multi-shard consensus protocols, coordinated
attempts can prevent OCHIMERA from making progress in
periods when the optimistic assumption does not hold. At
the core of such attacks is the ability for malicious clients
and malicious primaries to corrupt the operations of shards
coordinated by good primaries, as already shown in Exam-
ple 5.1. Due to Theorem 5.2, such attacks will never affect
consistency in OCHIMERA, however.

To further reduce the impact of targeted attacks, one can
make primary election non-deterministic, e.g., by using shard-
specific distributed coins to elect new primaries in individ-
ual shards [11, 13]. Finally, we remark that we have pre-
sented OCHIMERA with a per-round checkpoint and recovery
method. In this simplified design, the recovery path only has
to recover at-most a single round. Our approach can easily
be generalized to a more typical multi-round checkpoint and
recovery method, however. Furthermore, we believe that
the way in which OCHIMERA extends PBFT can easily be
generalized to other consensus protocols, e.g., POE [32] and
HOTSTUFF [57].

2022

c destruction construction or rollback
T)e
kY \ Consensus on (T), A Commit/Abort? /
S Consensus on (T). Commit/Abort?
$3 Consensus on (T), - Commit/Abort?

Decide Outcome Inform
(Consensus)
Cross-Shard Exchange

(Cluster-Sending)

Local Inputs
(Consensus)

Figure 7: The message flow of RCHIMERA for a 3-shard
client request (t), that is committed.

6 Resilient-CHIMERA:
Transaction Processing Under Attack

In the previous section, we introduced OCHIMERA, a general-
purpose minimalistic and efficient multi-shard transaction
processing protocol. OCHIMERA is designed with the as-
sumption that malicious behavior is rare, due to which it can
minimize coordination in the normal-case while requiring
intricate coordination when recovering from attacks. As an
alternative to the optimistic approach of OCHIMERA, we can
apply a pessimistic approach to CCHIMERA to gracefully re-
cover from concurrent transactions that is geared towards min-
imizing the influence of malicious behavior altogether. Next,
we explore such a pessimistic design via resilient-CHIMERA
(RCHIMERA).

The design of RCHIMERA builds upon the design of
CCHIMERA by adding additional coordination to the cross-
shard exchange and decide outcome steps. As in CCHIMERA,
the acceptance of m(S,7), in round p by all good replicas
completes the local inputs step. Before cross-shard exchange,
the replicas in § destruct the objects in D(.S,7), thereby fully
pledging these objects to T until the commit or abort deci-
sion. Then, .S performs cross-shard exchange by broadcasting
m(S,7)p to all other shards in shards(t), while the replicas
in § wait until they receive messages m(S’,t), from all other
shards §’ € shards(t).

After cross-shard exchange comes the final decide out-
come step. After § receives m(S’, 1)y from all shards §' €
shards(t), the replicas force a second consensus step that
determines the round p* at which .S decides commit (when-
ever I(§',7) = D(S8',7) for all §’' € shards(t)) or abort. If
S decides commit, then, in round p*, all good replicas in §
construct all objects o € Outputs(t) with § = shard(o). If
S decides abort, then, in round p*, all good replicas in S re-
construct all objects in D(S, 1) (rollback). Finally, each good
replica informs ¢ of the outcome of execution. If ¢ receives,
from every shard §’ € shards(t), identical outcomes from
gy —f¢ distinct replicas in ', then it considers T to be suc-
cessfully executed. In Figure 7, we sketched the working of
RCHIMERA.

We notice that processing a multi-shard transaction via

11

RCHIMERA requires two consensus steps per shard. In some
cases, we can eliminate the second step, however. First, if T is
a multi-shard transaction with § € shards(t) and the repli-
cas in § accept ((t),1(S,1),D(S,7)) with I(S,T) # D(S,7),
then the replicas can immediately abort whenever they ac-
cept ((T)¢,1(S,7),D(S,7)). Second, if T is a single-shard
transaction with shards(t) = {S}, then the replicas in .S can
immediately decide commit or abort whenever they accept
((t)e,1(S,7),D(S,7)). Hence, in both cases, processing of
T at S only requires a single consensus step at S. Next, we
prove the correctness of RCHIMERA:

Theorem 6.1. If, for all shards S*, gg+ > 2f s+, and Assump-
tions 2.1, 2.2, and 2.3 hold, then Resilient-CHIMERA satisfies
Requirements R1-R6.

Proof. Let 7 be a transaction. As good replicas in .S discard
T if it is invalid or if § ¢ shards(t), RCHIMERA provides
validity and shard-involvement. Next, shard-applicability
follow directly from the decide outcome step.

If a shard § commits or aborts transaction T, then it must
have completed the decide outcome and cross-shard exchange
steps. Hence, all shards §” € shards(t) must have exchanged
the necessary information to .S. By relying on cluster-sending
for cross-shard exchange, §’ requires cooperation of all good
replicas in §' to exchange the necessary information to
S. Hence, we have the guarantee that these good replicas
will also perform cross-shard exchange to any other shard
S" € shards(t). Consequently, every shard §” € shards(t)
will receive the same information as .S, complete cross-shard
exchange, and make the same decision during the decide
outcome step, providing cross-shard consistency.

A client can force service on a transaction T by choosing
a shard § € shards(t) and sending 7 to all good replicas in
G(S). By doing so, the normal mechanisms of consensus can
be used by the good replicas in G(S) to force acceptance on
Tin S and, hence, bootstrapping acceptance on T in all shards
S’ € shards(t). Due to cross-shard consistency, every shard
in shards(t) will perform the necessary steps to eventually
inform the client. As all good replicas R € S, S € shards(T),
will inform the client of the outcome for 7, the majority of
these inform-messages come from good replicas, enabling the
client to reliably derive the true outcome. Hence, RCHIMERA
provides service and confirmation. O

7 The Ordering of Transactions in CHIMERA

Having introduced the three variants of CHIMERA in Sec-
tions 4, 5, and 6, we will now analyze the ordering guaran-
tees provided by CHIMERA. We further refer to Section 8
for a detailed comparison of the three variants of CHIMERA.
Here, we will show that CHIMERA provides serializable exe-
cution [6,9].

The data model utilized by CCHIMERA, OCHIMERA, and
RCHIMERA guarantees that any object o can only be involved

2022

in at-most two committed transactions: one that constructs
o and another one that destructs o. Assume the existence
of such transactions T; and T, with o € Outputs(t;) and
0 € Inputs(ty). Due to cross-shard-consistency (Require-
ment R4), the shard shard(o) will have to execute both T;
and T,. From these observations, we can derive a serializable
order on all committed transactions:

Theorem 7.1. A sharded fault-tolerant system that uses the
object-dataset data model, processes UTXO-like transactions,
and satisfies Requirements R1-R5 commits transactions in a
serializable order.

Proof. Assume the existence of transactions T; and T
with o € Outputs(t;) and o € Inputs(tz). Due to shard-
applicability (Requirement R3), shard shard(o) will execute
T, strictly before t,. Now consider the relation

< :={(1,7) | (the system committed to T and ') A
(Outputs(t) N Inputs(t) #0)}.

Obviously, we have <(t1,72). To prove that all committed
transactions are executed in a serializable ordering, we first
prove the following:

If we interpret transactions as nodes and < as an
edge relation, then the resulting graph is acyclic.

The proof is by contradiction. Let G be the graph-
interpretation of <. We assume that graph G is cyclic. Hence,
there exists transactions To,...,T,—1 such that <(T;,Tiy1),
0<i<m-—1,and <(T,_1,T0). By the definition of <, we
can choose objects 0;, 0 < i < m, with 0; € (Outputs(t;) N
Inputs(T(is1) mod m))- Due to cross-shard-consistency (Re-
quirement R4), the shard shard(o;), 0 < i < m, executed
transactions T; and T(;4 1) mod m- Consider 0;, 0 <i < m, and
let#; be the time at which shard shard(o;) executed T; and con-
structed o;. Due to shard-applicability (Requirement R3), we
know that shard shard(o;) executed (4 1) mod m Strictly after
t;. Moreover, also shard shard(0(j; 1) mod m) Must have exe-
cuted T(;4 1) mod m Strictly after ; and we derive #; <7(;1 1) mod m-
Hence, we must have tp <1 < --- <ty <y, a contradiction.
Consequently, G must be acyclic.

To derive a serializable execution order for all committed
transactions, we simply construct a directed acyclic graph in
which transactions are nodes and < is the edge relation. Next,
we fopologically sort the graph to derive the searched-for
ordering. O

We notice that CHIMERA only provides serializability for
committed transactions: concurrent transactions that content
for the same objects will always be aborted and, hence, will
not be executed and will not affect the serializable order of
execution of transactions. It is this flexibility in dealing with
aborted transactions that allows all variants of CHIMERA to
operate with minimal and fully-decentralized coordination

12

between shards; while still providing strong isolation for all
committed transactions.

8 Analysis of the Three CHIMERA Variants

In the previous sections, we proposed three variants of
CHIMERA and showed their correctness. Next, we analyze the
benefits and costs of the three CHIMERA multi-shard transac-
tion processing protocols and compare them with state-of-the-
art multi-shard transaction processing protocols. A summary
of this analysis can be found in Figure 8.

8.1 A Comparison of CHIMERA Variants

First, Figure 8 provides a high-level comparison of the costs
of each of the three CHIMERA protocols to process a sin-
gle transaction 7 that affects s = |shards(t)| distinct shards.
For the normal-case behavior, we compare the complexity in
the number of sequential communication phases (which, in
the idle case, are the main determinant for client latencies),
the number of consensus steps per shard and cross-shard ex-
change steps between shards (which together determine the
bandwidth costs and put an upper bound on throughput). As
one can see, all three protocols have a low number of phases,
due to which all three can provide low latencies toward clients.
In environments in which cross-shard communication has low
latency, OCHIMERA will be able to provide lower latencies
than both CCHIMERA and RCHIMERA, as its optimistic de-
sign eliminates one phase of communication (at the cost of
requiring cross-shard communication in every phase).

Next, we compare how the three protocols deal with mali-
cious behavior by clients and by replicas. If no clients behave
malicious, then all transactions will commit. In all three pro-
tocols, malicious behavior by clients can lead to the existence
of concurrent transactions that affect the same object. Upon
detection of such concurrent transactions, all three protocols
will abort. The consequences of such an abort are different in
the three protocols.

In CCHIMERA, objects affected by aborted transactions re-
main pledged and cannot be reused. In practice, this loss
of objects can provide an incentive for clients to not be-
have malicious, but does limit the usability of CCHIMERA
in non-incentivized environments. Both OCHIMERA and
RCHIMERA deal with concurrent transactions by aborting
them via the normal-case of the protocol. The three CHIMERA
protocols are resilient against malicious replicas: only ma-
licious primaries can affect the normal-case operations of
these protocols. If malicious primaries behave sufficiently
malicious to affect the normal-case operations, their behavior
is detected, and the primary is replaced. In both CCHIMERA
and RCHIMERA, dealing with a malicious primary in a shard
can be done completely in isolation of all other shards. In
OCHIMERA, which is optimized with the assumption that
failures are rare, the failure of a primary while processing a

2022

Phases” Consensus Steps Cross-Shard ‘ Transaction Transaction Failure Recovery
Protocol Principle Technique (Cross-Shard) ~ Total ~ Sequential ~ Communication” Abort Causes Concurrency and Ordering (method and when)
CCnnERA otxoDuamoan 4O : ! I L Loca Primary Fatre
ocumrs N o 3@ s 1 3(ECAW Ry Only e o Py P
RCammRA UTXO Daa Model o w2 1(CS,A20) Faulty Only > avorn Loca primary Fatre
AHL [17] Non-Blocking Locks D@ 225 480 Rakdlodks NGEe TRe Loca rimry Fatre
cnasece 11 P HE 23 2eSAA) Rakdleks PPt SR Loca rimry Fetre
RINGBFT [51] é;g:ifn(;‘:’;?l: 85—5(2s—2) 2s—1 2s—1 25—2(CS,020) Invalid Only é;::i:n?:;?;i Loé?ﬁiiz;’v;;ymm
SHARPER [4] Multi-Shard Consensus 3(3) 5 1 3 (GC, A2A) Failed Locks Multi-Shard Consensus Global Recovery

Shard-Wide Blocking Locks

(Shard-Wide) Shard-Wide Locks & Aborts ~ Any Primary Failure, Concurrency

“Total number of consecutive communication phases. For protocols that use a local consensus protocol, we count three consecutive phases per consensus step

(e.g., using PBFT), and we count a single phase per cluster-sending step.

bWe write CS to indicate cluster-sending and MS to indicate multi-shard consensus; and we write A2A to denote all-to-all communication, O2A to denote
one-to-all or all-to-one communication, and O20 to denote one-to-one communication between involved shards.

Figure 8: Comparison of the three CHIMERA protocols for processing a transaction that affects s shards. We compare the
normal-case complexity. the mechanism used to deal with concurrent transactions (due to malicious clients), and the mechanisms

used to provide failure recovery.

transaction T can lead to view-changes in all shards affected
by 7.

In conclusion, we see that the three CHIMERA variants
each make their own tradeoff between normal-case costs and
ability to deal with faulty behavior (by both clients and other
replicas), with RCHIMERA being robust against any attack at
the cost of 2 consensus decisions per transaction per involved
shard.

8.2 Comparison With the State-of-the-Art

Several recent papers have proposed specialized systems
that combine sharding with consensus-based resilient sys-
tems. Examples include systems such as AHL [17],
BYSHARD [34], CAPER [3], CHAINSPACE [1], RING-
BFT [51], and SHARPER [4], which all use sharding for
data management and transaction processing. Next, we
compare the design of CHIMERA in detail with AHL [17],
CHAINSPACE [1], RINGBFT [51], and SHARPER [4], and
briefly look at BYSHARD [34] and CAPER [3].

AHL [17]. AHL uses a centralized commit protocol to
order all multi-shard transactions. In specific, AHL [17]
uses a reference committee that leads a centralized two-phase
commit protocol (Centralized 2PC) [29, 49] that is imple-
mented via consensus steps and cluster-sending. Furthermore,
AHL uses non-blocking locks to provide transaction isolation
due to which valid transactions can be aborted, whereas in
CHIMERA only faulty transactions (e.g., by malicious clients)
are aborted. By using Centralized 2PC, AHL eliminates
any all-to-all communication between shards affected by a
transaction in favor of one-to-all communication between

13

the reference committee and the affected shards. Due to
this, AHL takes five consecutive consensus rounds, more
than twice the number of rounds required by the costliest
CHIMERA variants. As reported in the original evaluation
of AHL [17, Section 7.3], the reference committee will be-
come a bottleneck for performance when processing work-
loads heavy in multi-shard transactions (even if none of these
transactions are concurrent), while AHL shows excellent
performance when processing single-shard transactions [34].

CHAINSPACE [1]. CHAINSPACE uses a distributed two-
phase commit protocol (Distributed 2PC) [29, 49], that is
implemented via consensus steps and cluster-sending, to or-
der all multi-shard transactions. Furthermore, similar to AHL,
CHAINSPACE uses non-blocking locks to provide transaction
isolation due to which valid transactions can be aborted. The
operations of this commit protocol are similar to the design
of RCHIMERA, except that CHAINSPACE does not take ad-
vantage of any specific properties of the data model (e.g.,
to provide isolation). A further minor difference between
CHAINSPACE and RCHIMERA is that CHAINSPACE distin-
guishes between shards that are used as inputs and shards
that are used as outputs and only informs output shards after
the input shards finish processing a transaction, due to which
transaction processing in CHAINSPACE takes one more round
as in RCHIMERA.

RINGBFT [51]. RINGBFT uses a linear two-phase com-
mit protocol (Linear 2PC) [29,49], that is implemented via
consensus steps and cluster-sending, to order all multi-shard
transactions. Due to the usage of Linear 2PC, RINGBFT is
able to utilize blocking locks in a deadlock-free manner to

2022

provide transaction isolation. Due to this usage of locks,
RINGBFT is the only protocol besides CHIMERA that is
able to always process valid transactions without spurious
aborts. Furthermore, the usage of Linear 2PC minimizes
cross-shard communication costs, as all communication is be-
tween pairs-of-affected-shards (no all-to-all, one-to-all, or all-
to-one communication). The benefits of RINGBFT come at a
cost, however, as the linear design imposes a linear amount of
consecutive consensus and cross-shard communication steps
in terms of the shards affected by the transaction, whereas
all other proposals require a constant number of consecutive
steps.

SHARPER [4]. SHARPER uses a multi-shard consensus
protocol to order all multi-shard transactions. The opera-
tions of this multi-shard consensus protocol are conceptually
similar to the design of OCHIMERA, except that SHARPER
does not take advantage of any specific properties of the data
model (e.g., to provide isolation or to simplify recovery). Fur-
thermore, SHARPER requires that affected shards process
their multi-shard transactions in a common processing or-
der, due to which SHARPER can only processing a single
multi-shard transaction at a time. In effect, this imposes a
per-shard lock on multi-shard transaction processing, limiting
concurrent execution even in the absence of transactions that
content for the same data objects. Finally, the philosophy
of SHARPER is to serve as a single unified protocol that can
support both PAX0s-style crash fault-tolerance and malicious
behavior, and it remains an important research question as to
whether SHARPER can be extended to the general-purpose
unreliable communication and attack models supported by
OCHIMERA. In specific, we believe OCHIMERA improves
on the resilience of SHARPER by providing a robust local and
global view-change mechanism that can deal with per-shard
replica failures, per-shard primary failures, and coordinated
attacks by replicas and clients to disrupt global consensus
steps.

BYSHARD [34] and CAPER [3]. BYSHARD [34] proposes
a framework in which one can evaluate many distinct proto-
cols based on the application of two-phase commit and two-
phase locking in a consensus-based environment. Specific
instances of BYSHARD correspond with the approaches taken
by CHAINSPACE and RINGBFT, while AHL can be seen
as a restricted case of the BYSHARD protocols that utilize
distributed orchestration. The differences between, on the one
hand, CHIMERA and, on the other hand, AHL, CHAINSPACE,
and RINGBFT, extend to the BYSHARD framework. The
design of CAPER [3] shares similarities with the design of
SHARPER.

14

Throughput (txn/s)

—_ —_
S S
W [=))

—
(e}
Sy

_
S
=~
B
K

Throughput (txn/s)

—_
(e}
T

—_
(e}
=

_
()
[3%}
K

Throughput (txn/s)
S

—_
S
w

‘—.—CCHIMERA

OCHIMERA —— RCHIMERA —e— AHL ‘

Performance (2 ob] / txn)

Performance (4 obj/ txn)

N

107
106

10°

10* %

20 22 24 26 28 210212214
Shards
Performance (8 Ob_] /txn)

20 22 24 26 28 210212214
Shards
Performance (16 Ob] / txn)

4

10°¢

103;

20 22 24 26 28 210212214
Shards
Performance (32 obJ / txn)

20 22 24 26 28 210 212 214
Shards
Performance (64 obJ / txn)

103}

20 22 24 26 28 210212214
Shards

-
=~

20 22 24 26 28 2102122
Shards

Figure 9: Throughput of the three CHIMERA protocols as a
function of the number of shards.

| —e—20bj/txn

4 obj/txn —— 8 obj/txn —8— 16 obj/txn

32 0bj/txn 64 obj/txn

-10°

1.0
0.8
£0.6
0.4
0.2

0.0H

Total Steps

5.1()7 Steps per Shard

3.0/
25|
120/
1.5
1.0
0.5/
10.0L

r

20 2‘2 2‘4 2‘6 2‘8 2i02i22f4
Shards

20 22 24 26 28 210212214
Shards

Figure 10: Number of consensus steps (amount of work) in
terms of the number of transactions that affect a shard.

2022

8.3 The Performance Potential of CHIMERA

Finally, we modelled the performance benefits of CHIMERA.
To do so, we have modeled the maximum throughput of each
of these protocols in an environment where each shard has
seven replicas (of which two can be faulty) and each replica
has a bandwidth of 1 Gbits~!. We have chosen to optimize
CCHIMERA, OCHIMERA, and RCHIMERA to minimize pro-
cessing latencies over minimizing bandwidth usage, as reduc-
ing processing latencies is the goal of the design of CHIMERA.
In specific, we do not use request batching, we use a one-
phase broadcast-based cross-shard exchange steps, and we do
not use threshold signatures. In cases when one does not want
to optimize for processing latencies and individual replicas
have spare computational power, then one can utilize thresh-
old signatures to further boost throughput by a constant factor
(at the cost of the per-transaction processing latency).

As a baseline for comparison, we have also included
AHL [17]. For AHL, we used an additional shard as a refer-
ence committee (hence, if we use n shards in the experiment,
then AHL can use n+1).

In Figure 9, we have visualized the maximum attainable
throughput for each of the protocols as a function of the num-
ber of shards and as a function of the number of objects af-
fected by each transaction when processing a workload with
50% multi-shard transactions. In Figure 10, we have visual-
ized the number of per-shard steps performed by the system
(for CCHIMERA and OCHIMERA, this is equivalent to the
number of per-shard consensus steps, for RCHIMERA this is
half the number of per-shard consensus steps).

As one can see from these results, all three CHIMERA
protocols have excellent scalability: increasing the number
of shards will increase the overall throughput of the system.
Sharding does come with clear overheads, however, increas-
ing the number of shards also increases the number of shards
affected by each transaction, thereby increasing the overall
number of consensus steps. This is especially true for very
large transactions that affect many objects (that can affect
many distinct shards). Hence, as one can see from the results,
the benefits of sharding only truly add up for large multi-
shard transactions when scaling beyond the size of individual
transactions.

In comparison with AHL, we see a large improvement
in performance. Unfortunately, due to the high ratio of
multi-shard transactions, the performance of AHL is hin-
dered by the throughput of the reference committee used by
AHL. These findings are in line with the original evaluation
of AHL [17, Section 7.3]. A closer look at the data does
reveal excellent scalability of AHL with regards to single-
shard transactions: the load of all shards except the reference
committee drops drastically when increasing the number of
shards.

15

9 Related Work

Distributed systems are typically employed to either increase
reliability (e.g., via consensus-based fault-tolerance) or to in-
crease performance (e.g., via sharding). Consequently, there
is abundant literature on such distributed systems, distributed
databases, and sharding (e.g., [49,53,54]) and on consensus-
based fault-tolerant systems (e.g., [10, 14,19,30,53]). Further-
more, in Section 8.2, we reviewed related work on multi-shard
permissioned consensus-based systems. Next, we focus on
other works that deal with sharding in fault-tolerant systems.

A few fully-replicated consensus-based systems utilize
sharding at the level of consensus decision making, this to
improve consensus throughput without adopting a multi-shard
design [2,22,26,31]. In these systems, only a small subset
of all replicas, those in a single shard, participate in the con-
sensus on any given transaction, thereby reducing the costs
to replicate this transaction without improving storage and
processing scalability.

Recently, there has also been promising work on shard-
ing and techniques supporting sharding for permission-
less blockchains. Examples include techniques to enable
sidechains, blockchain relays, and atomic swaps [23, 24, 35,
37,41,56,58], which each enable various forms of cooperation
between blockchains (including simple cross-chain commu-
nication and cross-chain transaction coordination). Unfortu-
nately, these permissionless techniques are several orders of
magnitudes slower than comparable techniques for traditional
fault-tolerant systems, making them incomparable with the
design of CHIMERA discussed in this work.

10 Conclusion

In this paper, we took a new look at the problem of multi-
shard transaction processing in consensus-based systems. In
specific, we proposed the study of sharded consensus-based
systems that use restrictions on the workloads supported to
improve performance over general-purpose methods.

To initiate this study, we introduced Core-CHIMERA,
Optimistic-CHIMERA, and Resilient-CHIMERA, three fully
distributed approaches towards multi-shard fault-tolerant
transaction processing. The design of these approaches is
geared towards processing UTXO-like transactions in sharded
distributed ledger networks. Due to the usage of UTXO-like
transactions, the three CHIMERA variants can minimize cost
to an absolute minimum, while maximizing performance,
thereby showing the potential of restricting the types of sup-
ported workloads. This potential is further underlined by our
comparison with the state-of-the-art protocols, in which we
see that the three CHIMERA variants both have lower costs
and complexity.

Although the workloads supported by CHIMERA are min-
imalistic, we believe that our results can be generalized to
more-general settings. In specific, we believe that the combi-

2022

nation of sharding and Conflict-free Replicated Data Types
(CRDTs) [44] has great potential to provide high performance
in a consensus-based environment.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano,
Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform, 2017. URL: http:
//arxiv.org/abs/1708.03778.

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan
Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,
and David Zage. Steward: Scaling byzantine fault-
tolerant replication to wide area networks. IEEE Trans-
actions on Dependable and Secure Computing, 7(1):80—
93,2010. doi:10.1109/TDSC.2008.53.

Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. CAPER: A cross-application permis-
sioned blockchain. Proc. VLDB Endow., 12(11):1385-
1398, 2019. doi:10.14778/3342263.3342275.

Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. SharPer: Sharding permissioned
blockchains over network clusters. In Proceedings
of the 2021 International Conference on Management
of Data, page 76-88. ACM, 2021. doi:10.1145/
3448016.3452807.

Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolié, Sharon Weed Cocco, and Jason Yellick.
Hyperledger Fabric: A distributed operating system for
permissioned blockchains. In Proceedings of the Thir-
teenth EuroSys Conference, pages 30:1-30:15. ACM,
2018. doi:10.1145/3190508.3190538.

Vijayalakshmi Atluri, Elisa Bertino, and Sushil Jajodia.
A theoretical formulation for degrees of isolation in
databases. Inform. Software Tech., 39(1):47-53, 1997.
doi:10.1016/0950-5849(96)01109-3.

Paddy Baker and Omkar Godbole. Ethereum fees
soaring to 2-year high: Coin metrics. CoinDesk, 2020.
URL: https://www.coindesk.com/defi-hype-
has-sent-ethereum-fees-soaring-to-2-year-
high-coin-metrics.

Guillaume Bazot. Financial intermediation cost, rents,
and productivity: An international comparison. Tech-
nical report, European Historical Economics Society,
2018.

16

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of
ANSI SQL isolation levels. SIGMOD Rec., 24(2):1-10,
1995. doi:10.1145/568271.223785.

Christian Berger and Hans P. Reiser. Scaling byzantine
consensus: A broad analysis. In Proceedings of the 2nd
Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers, pages 13-18. ACM, 2018. doi:
10.1145/3284764.3284767.

Gabi Bracha and Ophir Rachman. Randomized consen-
sus in expected O((n*logn)) operations. In Distributed
Algorithms, pages 143—150. Springer Berlin Heidelberg,
1992. doi:10.1007/BFb0022443.

Christopher Brookins. DeFi boom has saved
bitcoin from plummeting. Forbes, 2020.
URL: https://www.forbes.com/sites/
christopherbrookins/2020/07/12/defi-boom—

has-saved-bitcoin-from-plummeting/.

Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524-541. Springer Berlin Heidelberg, 2001.
doi:10.1007/3-540-44647-8_31.

Christian Cachin and Marko Vukolic. Blockchain con-
sensus protocols in the wild (keynote talk). In 37st
International Symposium on Distributed Computing,
volume 91, pages 1:1-1:16. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
DISC.2017.1.

Michael Casey, Jonah Crane, Gary Gensler, Simon John-
son, and Neha Narula. The impact of blockchain tech-
nology on finance: A catalyst for change. Technical
report, International Center for Monetary and Bank-
ing Studies, 2018. URL: https://www.cimb.ch/
uploads/1/1/5/4/115414161/geneva2l_1.pdf.

Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398-461, 2002. doi:10.1145/
571637.571640.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin,
Ee-Chien Chang, Qian Lin, and Beng Chin Ooi. To-
wards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on
Management of Data, pages 123-140. ACM, 20109.
do1:10.1145/3299869.3319889.

Nikhilesh De. CFTC chair: ‘a large part’ of financial
system could end up in blockchain format. CoinDesk,
2020. URL: https://www.coindesk.com/cftc-

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1016/0950-5849(96)01109-3
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1007/BFb0022443
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3299869.3319889
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format

2022

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

chair-a-large-part-of-financial-system-
could-end-up-in-blockchain-format.

Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang
Chen, Beng Chin Ooi, and Ji Wang. Untangling
blockchain: A data processing view of blockchain sys-
tems. IEEE Trans. Knowl. Data Eng., 30(7):1366-1385,
2018. doi:10.1109/TKDE.2017.2781227.

D. Dolev. Unanimity in an unknown and unreliable
environment. In 22nd Annual Symposium on Founda-
tions of Computer Science, pages 159—168. IEEE, 1981.
doi:10.1109/SFCS.1981.53.

Danny Dolev. The byzantine generals strike again. J.
Algorithms, 3(1):14-30, 1982. doi:10.1016/0196-
6774 (82)90004-9.

Michael Eischer and Tobias Distler. Scalable byzan-
tine fault-tolerant state-machine replication on hetero-
geneous servers. Computing, 101:97-118, 2019. doi:
10.1007/s00607-018-0652-3.

Muhammad El-Hindi, Carsten Binnig, Arvind
Arasu, Donald Kossmann, and Ravi Ramamurthy.
BlockchainDB: A shared database on blockchains.
Proc. VLDB Endow., 12(11):1597-1609, 2019.
doi:10.14778/3342263.3342636.

Ethereum Foundation. BTC Relay: A bridge between
the bitcoin blockchain & ethereum smart contracts,
2017. URL: http://btcrelay.org.

Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374-382, 1985.
doi:10.1145/3149.214121.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scal-
ing byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP, pages 51-68. ACM, 2017.
doi:10.1145/3132747.3132757.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51-59, 2002. doi:
10.1145/564585.564601.

William J. Gordon and Christian Catalini. Blockchain
technology for healthcare: Facilitating the transition
to patient-driven interoperability. Computational and
Structural Biotechnology Journal, 16:224-230, 2018.
doi:10.1016/7.csbj.2018.06.003.

17

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

Jim Gray. Notes on data base operating systems. In
Operating Systems, An Advanced Course, pages 393—
481. Springer-Verlag, 1978. doi:10.1007/3-540-
08755-9_09.

Suyash Gupta, Jelle Hellings, and Mohammad
Sadoghi. Fault-Tolerant Distributed Transactions on
Blockchain. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool, 2021. doi:10.2200/
S01068ED1V01Y202012DTM065.

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mo-
hammad Sadoghi. ResilientDB: Global scale resilient
blockchain fabric. Proc. VLDB Endow., 13(6):868-883,
2020. doi:10.14778/3380750.3380757.

Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and
Mohammad Sadoghi. Proof-of-execution: Reaching
consensus through fault-tolerant speculation. In Pro-
ceedings of the 24th International Conference on Ex-
tending Database Technology (EDBT), pages 301-312.
OpenProceedings.org, 2021. doi:10.5441/002/edbt.
2021.27.

Jelle Hellings and Mohammad Sadoghi. Brief an-
nouncement: The fault-tolerant cluster-sending prob-
lem. In 33rd International Symposium on Distributed
Computing (DISC 2019), pages 45:1-45:3. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.DISC.2019.45.

Jelle Hellings and Mohammad Sadoghi. Byshard:
Sharding in a byzantine environment. Proceedings
of the VLDB Endowment, 14(11):2230-2243, 2021.
doi:10.14778/3476249.3476275.

Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, pages 245-254. ACM, 2018.
doi:10.1145/3212734.3212736.

Maurice Herlihy. Blockchains from a distributed com-
puting perspective. Commun. ACM, 62(2):78-85, 2019.
doi:10.1145/3209623.

Maurice Herlihy, Barbara Liskov, and Liuba Shrira.
Cross-chain deals and adversarial commerce. The VLDB
Journal, 2021. doi:10.1007/s00778-021-00686-1.

Matt Higginson, Johannes-Tobias Lorenz, Bjorn
Miinstermann, and Peter Braad Olesen. The
promise of blockchain. Technical report, McKin-
sey&Company, 2017. URL: https://www.mckinsey.
com/industries/financial-services/our-
insights/the-promise-of-blockchain.

https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1007/s00607-018-0652-3
https://doi.org/10.1007/s00607-018-0652-3
https://doi.org/10.14778/3342263.3342636
http://btcrelay.org
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1016/j.csbj.2018.06.003
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.1007/s00778-021-00686-1
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain

2022

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Maged N. Kamel Boulos, James T. Wilson, and
Kevin A. Clauson. Geospatial blockchain: promises,
challenges, and scenarios in health and healthcare. In-
ternational Journal of Health Geographics, 17(1):1211—
1220, 2018. doi:10.1186/s12942-018-0144-x.

Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography. Chapman and Hall/CRC, 2nd
edition, 2014.

Jae Kwon and Ethan Buchman. Cosmos whitepaper:
A network of distributed ledgers, 2019. URL: https:
//cosmos.network/cosmos-whitepaper.pdf.

Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4):51-58, 2001. Distributed Computing Col-
umn 5. doi:10.1145/568425.568433.

Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Song-
tao Guo, and Yuanyuan Yang. A survey of iot applica-
tions in blockchain systems: Architecture, consensus,
and traffic modeling. ACM Comput. Surv., 53(1), 2020.
doi:10.1145/3372136.

Mihai Letia, Nuno Preguica, and Marc Shapiro. Con-
sistency without concurrency control in large, dynamic
systems. SIGOPS Oper. Syst. Rev., 44(2):29-34, 2010.
doi:10.1145/1773912.1773921.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2009. URL: https://bitcoin.org/
bitcoin.pdf.

Arvind Narayanan and Jeremy Clark. Bitcoin’s aca-
demic pedigree. Commun. ACM, 60(12):36—45, 2017.
doi:10.1145/3132259.

Senthil Nathan, Chander Govindarajan, Adarsh Saraf,
Manish Sethi, and Praveen Jayachandran. Blockchain
meets database: Design and implementation of a
blockchain relational database. Proc. VLDB Endow.,
12(11):1539-1552, 2019. doi:10.14778/3342263.
3342632.

Faisal Nawab and Mohammad Sadoghi. Blockplane:
A global-scale byzantizing middleware. In 35th In-
ternational Conference on Data Engineering (ICDE),
pages 124-135. IEEE, 2019. doi:10.1109/ICDE.
2019.00020.

M. Tamer Ozsu and Patrick Valduriez. Principles of
Distributed Database Systems. Springer, 2020. doi:
10.1007/978-3-030-26253-2.

Michael Pisa and Matt Juden. Blockchain and economic
development: Hype vs. reality. Technical report,
Center for Global Development, 2017. URL: https:
//www.cgdev.org/publication/blockchain-and-
economic-development-hype-vs-reality.

18

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv
Krishnan, and Mohammad Sadoghi. RingBFT: Re-
silient consensus over sharded ring topology. In Pro-
ceedings of the 25st International Conference on Extend-
ing Database Technology, pages 298-311. OpenPro-
ceedings.org, 2022. doi:10.48786/edbt.2022.17.

Victor Shoup. Practical threshold signatures. In Ad-
vances in Cryptology — EUROCRYPT 2000, pages
207-220. Springer Berlin Heidelberg, 2000. doi:
10.1007/3-540-45539-6_15.

Gerard Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2nd edition, 2001.

Maarten van Steen and Andrew S. Tanenbaum. Dis-
tributed Systems. Maarten van Steen, 3th edition, 2017.
URL: https://www.distributed-systems.net/.

Gavin Wood. Ethereum: a secure decentralised gener-
alised transaction ledger, 2016. EIP-150 revision. URL:
https://gavwood.com/paper.pdf.

Gavin Wood. Polkadot: vision for a heteroge-
neous multi-chain framework, 2016. URL: https:
//polkadot.network/PolkaDotPaper.pdf.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 347-356. ACM, 2019.
doi1:10.1145/3293611.3331591.

Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi.
Atomic commitment across blockchains. Proc. VLDB
Endow., 13(9):1319-1331, 2020. doi:10.14778/
3397230.3397231.

https://doi.org/10.1186/s12942-018-0144-x
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/3372136
https://doi.org/10.1145/1773912.1773921
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3132259
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://doi.org/10.48786/edbt.2022.17
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://www.distributed-systems.net/
https://gavwood.com/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.14778/3397230.3397231

	Introduction
	Preliminaries
	Multi-Shard Transaction Processing
	Core-Chimera:Simple Yet Efficient Transaction Processing
	Optimistic-Chimera:Robust Transaction Processing
	Resilient-Chimera:Transaction Processing Under Attack
	The Ordering of Transactions in Chimera
	Analysis of the Three Chimera Variants
	A Comparison of Chimera Variants
	Comparison With the State-of-the-Art
	The Performance Potential of Chimera
	Chimera and Malicious Behavior

	Related Work
	Conclusion
	Introduction
	Preliminaries
	Multi-Shard Transaction Processing
	Core-Chimera:Simple Yet Efficient Transaction Processing
	Optimistic-Chimera:Robust Transaction Processing
	Resilient-Chimera:Transaction Processing Under Attack
	The Ordering of Transactions in Chimera
	Analysis of the Three Chimera Variants
	A Comparison of Chimera Variants
	Comparison With the State-of-the-Art
	The Performance Potential of Chimera

	Related Work
	Conclusion

