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Abstract

Foundation models have transformed AI by reducing reliance on task-specific
data through large-scale pretraining. While successful in language and vision,
their adoption in EEG has lagged due to the heterogeneity of public datasets,
which are collected under varying protocols, devices, and electrode configurations.
Existing EEG foundation models struggle to generalize across these variations,
often restricting pretraining to a single setup, resulting in suboptimal performance,
in particular under linear probing. We present REVE (Representation for EEG with
Versatile Embeddings), a pretrained model explicitly designed to generalize across
diverse EEG signals. REVE introduces a novel 4D positional encoding scheme
that enables it to process signals of arbitrary length and electrode arrangement.
Using a masked autoencoding objective, we pretrain REVE on over 60,000 hours of
EEG data from 92 datasets spanning 25,000 subjects, representing the largest EEG
pretraining effort to date. REVE achieves state-of-the-art results on 10 downstream
EEG tasks, including motor imagery classification, seizure detection, sleep staging,
cognitive load estimation, and emotion recognition. With little to no fine-tuning,
it demonstrates strong generalization, and nuanced spatio-temporal modeling.
We release code, pretrained weights, and tutorials2 to support standardized EEG
research and accelerate progress in clinical neuroscience.

1 Introduction

Electroencephalography (EEG) is a non-invasive technique widely used to study brain activity,
with applications spanning brain-computer interfaces (BCIs), clinical diagnostics, and neuroscience
research. Despite its potential, the adoption of EEG-based technologies remains limited (Lotte et al.,
2018). A key challenge is developing models that generalize effectively to new subjects. EEG
data varies widely in electrode configurations, recording conditions, and subject-specific factors,
complicating model transferability. This heterogeneity has led to a fragmented ecosystem of datasets
and task-specific models, many of which struggle to generalize across settings.

Foundation models have transformed natural language processing (Achiam et al., 2023; Dubey et al.,
2024; Warner et al., 2024) and computer vision (Radford et al., 2021; Caron et al., 2021; Kirillov
et al., 2023) by leveraging large-scale pretraining to enable transfer with minimal supervision. Their

∗Corresponding authors: yassine.elouahidi@mistral.ai, giulia.lioi@imt-atlantique.fr
2Project page: https://brain-bzh.github.io/reve/

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://brain-bzh.github.io/reve/


ability to produce general-purpose representations has sparked growing interest in building similar
models for EEG (Yang et al., 2024; Wang et al., 2024b; Jiang et al., 2024; Cui et al., 2024; Yuan
et al., 2024b; Wang et al., 2024a). Yet, EEG poses unique challenges including data heterogeneity,
low signal-to-noise ratio, and the lack of standardized positional encoding to accommodate varying
electrode configurations.

Recent EEG foundation models such as BIOT (Yang et al., 2024), Labram (Jiang et al., 2024),
CBraMod (Wang et al., 2024b), and NeuroGPT (Cui et al., 2024) adopt self-supervised learning
(SSL) techniques for pretraining. While promising, many of these models rely solely on the TUH
database (Obeid and Picone, 2016) which uses a fixed 19 or 21-channel montage. As a result, they
often fail to generalize to datasets with different electrode layouts or recording setups. Furthermore,
existing positional encoding schemes, whether absolute (Yang et al., 2024; Jiang et al., 2024) or
convolutional (Wang et al., 2024b), lack the flexibility to accommodate spatial diversity, often
necessitating full fine-tuning for transfer.

To address the limitations in current EEG foundation models, we consider three core contributions
that enable scalable, generalizable representation learning across diverse, large-scale EEG datasets.

First, we propose a novel 4D positional encoding scheme that enables flexible modeling of EEG
signals with varying temporal lengths and electrode configurations. Unlike existing absolute or con-
volutional encodings, our formulation naturally supports spatial and temporal variability, eliminating
the need for fixed montages or fine-tuning of positional priors.

Thanks to this flexible positional encoding method, we are able to train with a wider range of EEG
configurations, allowing to scale to larger and more heterogeneous datasets. To this end, we curate the
largest and most diverse EEG corpus to date, comprising over 60,000 hours of data from 92 datasets
and 25,000 subjects. This diverse collection spans clinical, BCI, and research domains, providing the
scale and diversity necessary for robust pretraining.

Combining architectural flexibility with large-scale data results in REVE (Representation for EEG
with Versatile Embeddings), a spatio-temporal transformer model trained with a modified masked
autoencoder (MAE) (He et al., 2022) objective that promotes learning better representations in the
model. REVE learns general-purpose EEG representations that transfer effectively across a wide
range of downstream tasks.

REVE achieves state-of-the-art performance across numerous benchmarks, including BCI and clinical
datasets, outperforming prior EEG foundation models. Our scaling studies further show improved
generalization with larger model sizes, reinforcing the benefits of large-scale pretraining. To support
adoption, we release open-source code, pretrained models of multiple sizes, and detailed tutorials for
applying REVE to various EEG tasks. By addressing the unique challenges of EEG with scalable
architectures and flexible spatial encoding, REVE establishes a unified foundation for EEG analysis
and paves the way for new advances in neuroscience and clinical applications.

2 Methods

We pretrain our encoder using a masked autoencoder objective. The REVE encoder consists of a patch
embedding module, a 4D position encoding module, and a transformer backbone. During pretraining,
we apply spatio-temporal contiguous masking to the patch embeddings and jointly train the encoder
and decoder to reconstruct the missing segments of EEG, enabling the encoder to learn robust feature
representations. Subsequent hyperparameter values are listed in Table 5 in the Appendix.

2.1 EEG Representation and Block Masking strategy

We represent multi-channel EEG data as X ∈ RC×T , where C is the number of electrodes and T
the number of time samples, electrode positions are given by P ∈ RC×3, corresponding to their 3D
coordinates. To process the data, we segment each channel into patches of size w with overlap o,
following BIOT (Yang et al., 2024). This yields p =

⌈
T−w
w−o

⌉
+ 1 [(T − w) mod (w − o) ̸= 0] non-

overlapping patches (discarding any incomplete ones), and reshapes X into Xp ∈ RC×p×w. Each
patch is linearly embedded, resulting in E ∈ RC×p×DE , where DE is the embedding dimension.
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Figure 1: Overview of the REVE pretraining framework. The model processes multi-channel
EEG data through a linear Patch Embedding where signals are divided into overlapping temporal
patches for each channel and embedded with a linear layer. 4D Spatio-Temporal Position Encoding
combines spatial coordinates of electrodes with temporal patch indices, augmented with noise for
robust generalization. A Block Masking Strategy masks contiguous regions across spatial and
temporal dimensions to simulate realistic disruptions. The transformer encoder processes unmasked
embeddings. Updated embeddings are joined with learnable placeholders for the masked tokens, from
which raw EEG is reconstructed using the decoder. The Primary Task predicts raw EEG signals
directly, while the Secondary Task trains a single global token via attention pooling to summarize
the input. Both tasks minimize an L1 reconstruction loss.

To enhance learning during pretraining, we apply a joint spatio-temporal block masking strategy that
masks structured regions across both spatial and temporal dimensions. Random masking, proposed
for EEG by Chien et al. (2022), was later improved through spatial masking (Mohammadi Foumani
et al., 2024; Guetschel et al., 2024). In this work, we extend the masking strategy to the temporal
domain. This builds on insights from image modeling, where structured masking outperforms random
masking (Xie et al., 2022), a trend also supported by our ablation results (Table 18, Appendix). As
neighboring segments of EEG, in both spatial and temporal domain, are typically similar, naive
random masking could leave redundant information exposed, reducing the difficulty of reconstruction.
In contrast, block masking better disrupts these patterns, encouraging more effective learning.

Our block masking strategy is governed by the following parameters: The masking Ratio Mr controls
the overall proportion of masked tokens. The spatial Masking Radius Rs and Temporal Masking
Radius Rt respectively define the spatial extent (around a selected channel) and the time window
(around a selected token) to be masked. Similarly, the Dropout Ratio Dr sets the fraction of masked
tokens for which the entire time series of the corresponding channel is dropped, while the dropout
Radius Rd determines the spatial neighborhood affected by dropout. For tokens not dropped, temporal
masking is applied within radius Rt. This process yields a binary mask B ∈ RC×p, containing
Nm = ⌊(1−Mr) · C · p⌋ masked entries (zeros) and Nm̄ = C · p−Nm unmasked entries (ones).

2.2 4D Position Encoding Strategy

Unlike prior works that rely on learned embedding tables for spatial encoding vectors (Jiang et al.,
2024; Wang et al., 2024b), we directly generate position encodings from the spatio-temporal coor-
dinates of the tokens, allowing the processing of signals of any length or EEG layout and enabling
better generalization to unseen setups. More specifically, our method uses a transformation applicable
to each position, utilizing the actual 3D coordinates and timestep of each EEG patch, enabling the
model to handle arbitrary electrode configurations and sequence lengths without relying on learned
embeddings.

4D Positional Encoding and Spatial Augmentation. We start with the spatial positions of the
EEG electrodes P ∈ RC×3, where each row of P contains the (x, y, z) coordinates of a channel,
to which we add Gaussian noise with standard deviation σnoise. This improves generalization to
diverse electrode positions and ensures robustness to variability in head size or electrode placement.
We extend P with a temporal component, resulting in Pext ∈ RC×p×4, where p is the number of
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patches obtained from segmenting EEG signal, as defined in Section 2.1. The temporal dimension is
represented as discrete values from 1 to p, scaled by a factor st to ensure a scale similar to the spatial
dimensions.

4D Fourier-Based Position Encoding. Building on the 2D approach proposed by Défossez et al.
(2023), we extend the Fourier positional encoding method to 4D in our encoding strategy, as follows.
Each positional component (x, y, z, t) of Pext is projected into a multi-frequency space, using nfreq
frequencies per dimension. The frequency assignment follows a Cartesian product structure, i.e., all
combinations of frequencies across the four dimensions contribute to the encoding, resulting in a
flattened vector of dimension n4

freq. A hierarchical periodicity emerges: the period of x is n1
freq, of

y is n2
freq, of z is n3

freq, and of t is n4
freq. Then, applying sine and cosine transformations doubles the

embedding size, producing a positional vector of dimension 2 · n4
freq. We ensure that the embedding

dimension matches the hidden size required by the 4DPE module, with nfreq ∈ {3, 4, 5} resulting
in the final embedding Fpe ∈ RC×p×DE . The 4D encoding adds minimal compute overhead, with
sinusoidal computations and a small linear layer. Computational cost scales linearly with the number
of input tokens (channels × temporal patches) and is negligible relative to the transformer backbone.

Final Adjusted Position Encoding. To complement the fixed Fourier features, we also process Pext
through a linear layer followed by GELU (Hendrycks and Gimpel, 2016) and LayerNorm (Lei Ba
et al., 2016), producing a learnable representation Flin ∈ RC×p×DE . This component adapts the
positional encoding to the specific dataset and task, and can compensate for any truncation in the
Fourier basis. The final positional encoding is given by Penc = LayerNorm(Fpe + Flin), combining
the structured inductive bias of Fourier features with the flexibility of learned adaptation. This
vector is added to the non-masked patch embeddings before being passed to the transformer encoder
similarly to MAE (He et al., 2022), and is consistent with standard absolute positional encoding
practices (Vaswani, 2017). The ablation study in Table 19 confirms that this method outperforms
both fixed learnable and purely MLP-based positional encoding schemes.

2.3 Transformer

Our model extends the standard Transformer architecture (Vaswani, 2017) with enhancements that
improve efficiency and stability. We use RMSNorm (Zhang and Sennrich, 2019) in lieu of LayerNorm
as a normalization layer for better training stability, and choose GEGLU (Shazeer, 2020) as the
activation function in the feed-forward network (FFN) layers as it outperforms standard GELU
through more expressive gating mechanisms (Geiping and Goldstein, 2023). This choice is further
supported by the ablation results in Table 20. Our FFN layers follow a two-layer structure with
an expansion ratio of 8

3 , consistent with designs from LLaMA (Touvron et al., 2023), Qwen (Bai
et al., 2023) or Mistral (Jiang et al., 2023). Following Dayma et al. (2021), we remove bias terms
from all linear layers except the final decoder layer. This reallocates the parameter budget to linear
transformations, improving efficiency. We use Flash Attention v2 (Dao, 2024) for memory and
computational efficiency in the attention as it reduces the softmax overhead and ensures scalability to
long sequences, while maintaining the core transformer formulation.

2.4 Masked EEG Reconstruction Methodology

During pretraining, our model reconstructs EEG signal of masked patches using information from
the visible, unmasked patches. The overall pretraining framework is illustrated in Figure 1.

Let Pm ∈ RNm×w, and Pm ∈ RNm×w denote the masked and visible patches, respectively, with Nm
and Nm as defined in Section 2.1. The associated patch embeddings are denoted as Em for masked
patches and Em for visible patches.

We adopt the MAE structure from He et al. (2022), with a larger encoder and a lighter decoder each
following the architecture described in Section 2.3. Only the embeddings of the visible patches
Em, enriched with their positional encodings are passed through the encoder, to produce latent
representations Fm. Masked patches are represented using a learned embedding, repeated Nm times
and also augmented with positional encodings. Before entering the decoder, positional encodings
are re-added to both visible and masked latent patches. Together, they form the decoder input from
which the raw EEG signal of the masked patches is reconstructed.
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Unlike the original MAE, which uses a separate set of fixed positional encodings for the decoder,
we reuse the same encoding for both the encoder and decoder. This design ensures flexibility for
processing EEG signals with varying temporal lengths and electrode configurations.

The output of the decoder transformer, is passed through a linear projection layer that maps latent
patches back into the signal space, reconstructing the raw EEG signal of the masked patches.
Reconstructed patches minimize the L1 loss relative to the original raw EEG patches:

L =
1

|Pm|
∑
i∈Pm

∥∥∥P̂(i)
m −P(i)

m

∥∥∥
1

(1)

where P̂
(i)
m represents the reconstructed signal for patch i, and P

(i)
m is the original signal. We chose

L1 loss over L2 due to the inherently noisy nature of EEG signals. While L2 amplifies the influence
of noise, L1 loss offers greater robustness by reducing the impact of outliers.

In addition to the main reconstruction loss, we introduce a secondary task that reconstructs masked
patches from a compact global representation. We apply attention pooling over the outputs of all
Multi-Head Attention (MHA) layers in the encoder: the output tokens (after FFN) from each MHA
block are concatenated and attended by a learned query token. This pooled token is then repeated,
enriched with positional encodings, and passed through a 2-layer FFN to reconstruct the masked
patches. As with the primary loss, we use L1 loss for reconstruction. The total loss is a weighted
sum: Loss = Primary Loss + λ · Secondary Loss

This secondary loss encourages the encoder to distribute useful information across all layers, mitigat-
ing over-specialization in the final layer and yielding more generalizable representations.

The secondary loss mitigates a limitation of the MAE framework: the final encoder layer can overfit
to the reconstruction task, especially with a shallow decoder (He et al., 2022). By pooling features
across all transformer layers (Alkin et al., 2024), the learned token captures a compact, global EEG
representation, encouraging more balanced use of the encoder depth. This leads to stronger, more
generalizable features for downstream tasks like linear probing, few-shot learning, and transfer
without fine-tuning.

After the pretraining phase, the decoder is discarded, and only the encoder is used. In this case, no
embeddings are masked, i.e., Pm = Em = ∅. All patches are processed as usual by retaining their
associated positional encoding.

To avoid confusion regarding terminology, we clarify that the terms “encoder” and “decoder” are
used here in the context of masked auto-encoders (MAE), not in the autoregressive Transformer
sense. All Transformer blocks in REVE are non-causal and operate within a standard encoder-style
attention pattern; no autoregressive training is involved. The “decoder” refers solely to the lightweight
reconstruction head used to recover masked EEG segments during self-supervised pretraining.

3 Experiments

3.1 Pretraining

This section outlines the data sources and preprocessing steps used for pretraining, followed by our
strategy for scalable and effective representation learning across diverse datasets.

3.1.1 Dataset Collection & Preprocessing

To enable large-scale pretraining, we assembled a massive and diverse collection of EEG recordings
from open-source or request-accessible datasets. It comprises 19 TB of raw data, spanning 24,274
subjects, 150,833 unique sessions, and 61,415 hours of recordings drawn from 92 different sources,
including OpenNeuro (Markiewicz et al., 2021), MOABB (Aristimunha et al., 2023), and TUH (Obeid
and Picone, 2016). To our knowledge, this is the largest and most diverse EEG dataset assembled
for training a foundation model. The most extensive prior effort, by Yuan et al. (2024a), comprised
approximately 40,000 hours of recordings, but primarily relied on intracranial EEG (iEEG) rather
than non-invasive EEG. A summary of the dataset composition and a full list of included sources are
provided in Appendix B. While the majority of the data consists of clinical EEG recordings, we also
include a substantial subset of cognitive and BCI-related data which, although smaller in proportion,
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tend to be cleaner and more diverse. We also collected electrode positional information for each
recording. When 3D coordinates were available, they were used directly; otherwise, positions were
inferred from standard labels. Channels without identifiable names or positional data were excluded.
The dataset spans a wide range of EEG systems and formats—including BrainVision, BioSemi, EDF,
GDF, and EEGLAB, with most recordings adhering to the 10-5 system (Oostenveld and Praamstra,
2001). In total, the dataset includes 396 unique electrode names.

Our preprocessing pipeline is designed to preserve signal diversity and prioritize robustness when
scaling. We only removed recordings shorter than 10 seconds, and those used in downstream tasks.
Remaining signals were resampled to 200 Hz, band-pass filtered (0.5–99.5 Hz), and converted to
float32, resulting in a 6 TB dataset. To address amplitude variations across recordings, we applied
Z-score normalization with statistics computed across the recording sessions to ensure robust statistics.
After normalization, values exceeding 15 standard deviations were clipped, as in Défossez et al.
(2023). Unlike CBraMod (Wang et al., 2024b), which excluded signals above 100 µV, our approach
retains them, resulting in about 60,000 hours of EEG, compared to 9,000 in CBraMod and 2,534 in
LaBraM.

3.1.2 Pretraining Strategy & Scaling

3.2 Training and Scaling Strategy

We present the training procedure used for pretraining the Small model and detail how it scales to
larger architectures under constrained resources. Our training framework builds upon recent advances
in state-of-the-art NLP methodologies (Warner et al., 2024). We use the StableAdamW (Wortsman
et al., 2023) optimizer, designed for low precision frameworks and improved stability, thanks to
the Adafactor-style gradient clipping (Shazeer and Stern, 2018). Table 5 of the Appendix lists the
optimizer hyperparameters.
The learning rate follows a Warmup Stable Decay (trapezoidal) schedule (Hu et al., 2024), known for
its robustness to learning rate variations (Hägele et al., 2024). We use a linear warmup over 10% of the
first epoch, followed by 80% at peak LR, and a linear decay to 1% of the maximum. Unlike one-cycle
schedules that reset every epoch, our cyclic trapezoidal variant allows multiple cooldown phases
across epochs, particularly beneficial for EEG training where masked token sampling introduces
variability. We apply Megatron-style initialization (Shoeybi et al., 2019) with a standard deviation of
0.02 for all transformer layers and the mask token, ensuring stable dynamics. Other parameters use
PyTorch’s default initializations.

A key factor for the success of foundation models is the simultaneous scaling of both training datasets
and model architectures (Touvron et al., 2023). We describe our scaling methodology to maximize
computational efficiency and accommodate larger models within constrained resources. To scale
model capacity, we adjust depth, width, and number of attention heads while maintaining a fixed
FFN ratio. Table 6 of the Appendix summarizes these configurations. This scaling strategy enables
efficient capacity expansion while preserving architectural consistency across model sizes.
Recent advances in NLP provide strong theoretical and empirical evidence for the existence of scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022), which govern the relationship between model
size, training dynamics, optimization and initialization hyperparameters. We follow the power law
η ∝ DαD , with αD = −0.90 and D the model dimension, for the learning rate, as derived in Everett
et al. (2024). The optimal LR is first swept on the small model and then scaled accordingly.
To efficiently train models, we use data parallelism, maintaining a constant batch size by reducing
per-GPU loads for large models. A load-aware data-shuffling strategy groups samples by electrode
count, shuffles within and across buckets, and balances batches across GPUs to avoid bottlenecks, for
constant optimization steps and maximized throughput.
Although scaling laws exist for adjusting AdamW momentum terms (Malladi et al., 2022), our use
of a constant effective batch size across models allows us to fix β1 and β2. Regarding initialization,
while Hägele et al. (2024) suggests scaling σinit ∝ D−0.5, our width increase (from 200 to 1, 216)
leads us to keep σinit = 0.02 fixed across scales.

3.3 Downstream tasks

Downstream task datasets To evaluate the performance and generalizability of our EEG founda-
tion model, we perform extensive assessments across 10 diverse downstream tasks, selected to ensure
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comparability with existing models in the field. These tasks span a variety of EEG-based applications,
including sleep staging, emotion and event classification, detection of stress and mental disorder ,
across the following datasets: PhysioNet-MI (Goldberger et al., 2000), BCIC-IV-2a (Tangermann
et al., 2012), TUEV (Obeid and Picone, 2016), TUAB (Obeid and Picone, 2016), HMC (Alvarez-
Estevez and Rijsman, 2021), ISRUC (Khalighi et al., 2016), FACED (Chen et al., 2023), Mum-
taz (Mumtaz, 2016), Mental Arithmetic (MAT) (Zyma et al., 2019), and BCI2020-IV-3 (Jeong et al.,
2022). A summary of these datasets is provided in Table 1, with a more detailed description available
in the Appendix.

Table 1: Overview of downstream tasks and datasets.

Task Dataset # Channels Duration # Samples Rate # Classes

Motor Imagery PhysioNet-MI 64 4s 9,837 160Hz 4
BCIC-IV-2a 22 4s 5,184 250Hz 4

Event Type TUEV 16 5s 112,491 256Hz 6
Abnormal detection TUAB 16 10s 409,455 256Hz 2

Sleep staging HMC 4 30s 137,243 256 Hz 5
ISRUC 6 30s 89,240 200Hz 5

Emotion recognition FACED 32 10s 10,332 250Hz 9
Mental disorder Mumtaz 19 5s 7,143 256Hz 2

Mental stress MAT 20 5s 1,707 500Hz 2
Imagined speech BCIC2020-3 64 3s 6,000 256Hz 5

Our evaluation process maintains strict consistency with prior works by adhering to the same
train/val/test splits used in earlier studies, ensuring that our results are directly comparable to baseline
models. Specifically, we follow the protocols from CBraMod (Wang et al., 2024b), LaBraM (Jiang
et al., 2024), and BIOT (Yang et al., 2024), guaranteeing fair comparisons across tasks. For fairness
in preprocessing, we adopt the same pipeline as the baselines. A notable correction was made for the
ISRUC dataset, where we identified and removed a bug in the baseline code involving the inclusion
of a chin electrode instead of an EEG electrode. Our results for REVE exclude the chin electrode,
aligning with proper electrode placement.

Finetuning Fine-tuning EEG-based models presents unique challenges due to the small size of
available datasets and the high noise levels in EEG recordings. Unlike large-scale vision datasets, EEG
datasets are often limited in size, subject-dependent, and prone to distribution shifts across different
recording setups. Effective fine-tuning must therefore maximize generalization while mitigating the
risk of overfitting. To address this, we adopt a two-step fine-tuning strategy, incorporating techniques
specifically designed to enhance stability and adaptability. This includes the use of parameter-efficient
fine-tuning techniques (Suzumura et al., 2024) tailored to this domain.

For downstream classification tasks, the two-step strategy, inspired by Kumar et al. (2022), goes as
follow: We first train a linear probe while keeping the encoder frozen, aligning the classifier with
the pretrained feature space. Next, we unfreeze the encoder and fine-tune the entire network for
task-specific adaptation, preserving the robustness of the pretrained model. Importantly, this two-step
strategy is implemented as a single continuous training run, where the backbone is initially frozen
(i.e., only the head is trained) and later unfrozen. This approach is well-suited for EEG data, where
distributions can shift significantly across datasets. We employ dropout and Mixup (Zhang et al.,
2018) as data augmentation for improved robustness. To further mitigate catastrophic forgetting and
improve efficiency, we integrate Low-Rank Adaptation (LoRA) into the attention blocks, within the
query, key, value, and output (QKVO) projection layers. Instead of fine-tuning the entire model,
LoRA introduces trainable low-rank matrices that enable effective adaptation while preserving the
integrity of the pretrained model’s knowledge (Hu et al., 2022).

Each training step includes a warmup phase (Kalra and Barkeshli, 2024) followed by a cooldown
phase. The cooldown phase employs a Reduce-on-Plateau learning rate scheduler, which dynamically
lowers the learning rate when training convergence slows to preventing overfitting.

To further enhance robustness, we explore model souping (Wortsman et al., 2022), which averages
the weights of multiple fine-tuning runs to improve accuracy. Given the stochasticity and noise
inherent in EEG datasets, souping smooths gradients and reduces variance across different fine-tuning
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trajectories. Our experiments confirm that this approach enhances generalization and produces more
stable performance across diverse EEG tasks.

By integrating structured fine-tuning with data augmentation, LoRA and model souping, our approach
effectively addresses the small-scale and noisy nature of EEG datasets. These techniques effectively
ensure robust and generalized adaptation to downstream tasks.

4 Results and Discussion

We evaluate REVE against non-foundation and foundation model baselines on the previously dis-
cussed datasets.

Non-Foundation Models: We compare to EEGNet (Lawhern et al., 2018), EEGConformer (Song
et al., 2022), SPaRCNet (Jing et al., 2023), ContraWR (Yang et al., 2021), CNN-Transformer (Peh
et al., 2022), FFCL (Li et al., 2022), and ST-Transformer (Song et al., 2021).

Foundation Models: We compare to BIOT (Yang et al., 2024), LaBraM (Jiang et al., 2024) and
CBraMod (Wang et al., 2024b). We report results displayed in existing studies.

We report the balanced accuracy for each dataset and provide additional evaluation metrics in the
appendix.

Table 2: Balanced accuracy (± std) of different methods across 9 EEG classification task

Methods TUAB TUEV PhysioNetMI BCI-IV-2a FACED

EEGNet 0.7642 ± 0.0036 0.3876 ± 0.0143 0.5814 ± 0.0125 0.4482 ± 0.0094 0.4090 ± 0.0122
EEGConformer 0.7758 ± 0.0049 0.4074 ± 0.0164 0.6049 ± 0.0104 0.4696 ± 0.0106 0.4559 ± 0.0125
SPaRCNet 0.7896 ± 0.0018 0.4161 ± 0.0262 0.5932 ± 0.0152 0.4635 ± 0.0117 0.4673 ± 0.0155
ContraWR 0.7746 ± 0.0041 0.4384 ± 0.0349 0.5892 ± 0.0133 0.4678 ± 0.0125 0.4887 ± 0.0078
CNN-Transformer 0.7777 ± 0.0022 0.4087 ± 0.0161 0.6053 ± 0.0118 0.4600 ± 0.0108 0.4697 ± 0.0132
FFCL 0.7848 ± 0.0038 0.3979 ± 0.0104 0.5726 ± 0.0092 0.4470 ± 0.0143 0.4673 ± 0.0158
ST-Transformer 0.7966 ± 0.0023 0.3984 ± 0.0228 0.6035 ± 0.0081 0.4575 ± 0.0145 0.4810 ± 0.0079

BIOT 0.7959 ± 0.0057 0.5281 ± 0.0225 0.6153 ± 0.0154 0.4748 ± 0.0093 0.5118 ± 0.0118
LaBraM-Base 0.8140 ± 0.0019 0.6409 ± 0.0065 0.6173 ± 0.0122 0.4869 ± 0.0085 0.5273 ± 0.0107
CbraMod 0.8289 ± 0.0022 0.6671 ± 0.0107 0.6417 ± 0.0091 0.5138 ± 0.0066 0.5509 ± 0.0089

REVE-Base 0.8315 ± 0.0014 0.6759 ± 0.0229 0.6480 ± 0.0140 0.6396 ± 0.0095 0.5646 ± 0.0164

ISRUC Mumtaz MAT BCI-2020-3 Average
EEGNet 0.7154 ± 0.0121 0.9232 ± 0.0104 0.6770 ± 0.0116 0.4413 ± 0.0096 0.5941 ± 0.0037
EEGConformer 0.7400 ± 0.0133 0.9308 ± 0.0117 0.6805 ± 0.0123 0.4506 ± 0.0133 0.6128 ± 0.0044
SPaRCNet 0.7487 ± 0.0075 0.9316 ± 0.0095 0.6879 ± 0.0107 0.4426 ± 0.0156 0.6156 ± 0.0047
ContraWR 0.7402 ± 0.0126 0.9195 ± 0.0115 0.6631 ± 0.0097 0.4257 ± 0.0162 0.6119 ± 0.0053
CNN-Transformer 0.7363 ± 0.0087 0.9305 ± 0.0068 0.6779 ± 0.0268 0.4533 ± 0.0092 0.6133 ± 0.0045
FFCL 0.7277 ± 0.0182 0.9314 ± 0.0038 0.6798 ± 0.0142 0.4678 ± 0.0197 0.6085± 0.0044
ST-Transformer 0.7381 ± 0.0205 0.9135 ± 0.0103 0.6631 ± 0.0173 0.4126 ± 0.0122 0.6071 ± 0.0048

BIOT 0.7527 ± 0.0121 0.9358 ± 0.0052 0.6875 ± 0.0186 0.4920 ± 0.0086 0.6438 ± 0.0044
LaBraM-Base 0.7633 ± 0.0102 0.9409 ± 0.0079 0.6909 ± 0.0125 0.5060 ± 0.0155 0.6653 ± 0.0031
CBraMod 0.7865 ± 0.0110 0.9560 ± 0.0056 0.7256 ± 0.0132 0.5373 ± 0.0108 0.6898 ± 0.0031

REVE-Base 0.7819 ± 0.00783 0.9644 ± 0.0097 0.7660 ± 0.0355 0.5635 ± 0.0123 0.7150 ± 0.0057

Table 2 shows that REVE achieves state-of-the-art performance on the downstream tasks in this study,
with an average gain of 2.5%, compared to CBraMod the highest performing baseline. The results on
ISRUC and HMC (Appendix C.6) show that the model effectively generalizes beyond the 10-second
segments it was pretrained on, performing well on tasks with 30-second inputs, which highlights
the strength of our positional encoding method. The results on TUEV highlight the model’s ability
to generalize to unseen electrode configurations, including bipolar setups never encountered during
training.

In addition to the detailed evaluation metrics provided in Appendix C, we report the performance
of the Large model across our downstream tasks in Table 4. We observe that the Large model
consistently produces richer embeddings, leading to improved linear probing performance compared
to the Base model. Model souping consistently improved performance, averaging a 1.5% gain when

3NB: our preprocessing pipeline is different from the baseline and fixes a potential bug
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Table 3: Impact of pretraining (PT) and weight freezing on REVE and baselines for PhysioNet-MI

PhysioNet-MI, 4-class

Settings Balanced Accuracy Cohen’s Kappa Weighted F1

CBraMod (w/ PT) 0.6417 ± 0.0091 0.5222 ± 0.0169 0.6427 ± 0.0100
BIOT (w/ PT) 0.6153 ± 0.0154 0.4875 ± 0.0272 0.6158 ± 0.0197
LaBraM-Base (w/ PT) 0.6173 ± 0.0122 0.4912 ± 0.0192 0.6177 ± 0.0141
REVE-Base (w/ PT) 0.6480 ± 0.0140 0.5306 ± 0.0187 0.6484 ± 0.0170

CBraMod (w/o PT) 0.6196 ± 0.0143 0.4994 ± 0.0289 0.6289 ± 0.0179
REVE-Base (w/o PT) 0.5409 ± 0.0094 0.3879 ± 0.0125 0.5421 ± 0.0101

Cbramod (Frozen) 0.3845 ± 0.0345 0.2983 ± 0.0498 0.3946 ± 0.0378
BIOT (Frozen) 0.3698 ± 0.0318 0.2703 ± 0.0472 0.3723 ± 0.0364
LaBraM (Frozen) 0.3715 ± 0.0458 0.2814 ± 0.0586 0.3796 ± 0.0472
REVE-Base (Frozen) 0.5371 ± 0.0052 0.3827 ± 0.0070 0.5376 ± 0.0033

Table 4: Linear probing results on downstream tasks for REVE and CBraMod models with (Pool)
and without pooling across multiple EEG downstream tasks. Best results are highlighted in bold. To
ensure a fair comparison, we reproduced CBraMod (Wang et al., 2024b) using their official code
and pretrained checkpoint, carefully following their classification pipeline (notably, no pooling) and
matched architectural details to avoid any bias.

Dataset REVE-B (Pool) REVE-B REVE-L (Pool) REVE-L CBraMod (Pool) CBraMod
Mumtaz 0.962 ± 0.003 0.931 ± 0.021 0.985 ± 0.006 0.980 ± 0.009 0.859 ± 0.009 0.907 ± 0.027
M. Arithmetic 0.725 ± 0.010 0.740 ± 0.073 0.712 ± 0.008 0.665 ± 0.103 0.500 ± 0.000 0.605 ± 0.020
TUAB 0.810 ± 0.007 0.809 ± 0.004 0.821 ± 0.004 0.809 ± 0.004 0.500 ± 0.000 0.500 ± 0.000
PhysioNetMI 0.537 ± 0.005 0.510 ± 0.012 0.551 ± 0.001 0.617 ± 0.000 0.256 ± 0.002 0.531 ± 0.015
BCIC-IV-2a 0.432 ± 0.004 0.517 ± 0.015 0.534 ± 0.001 0.603 ± 0.011 0.287 ± 0.023 0.376 ± 0.006
ISRUC 0.697 ± 0.011 0.662 ± 0.030 0.743 ± 0.004 0.758 ± 0.001 0.407 ± 0.049 0.430 ± 0.043
HMC 0.647 ± 0.008 0.604 ± 0.008 0.703 ± 0.003 0.710 ± 0.007 0.368 ± 0.001 0.538 ± 0.009
BCIC2020-3 0.234 ± 0.009 0.390 ± 0.017 0.274 ± 0.001 0.378 ± 0.021 0.214 ± 0.003 0.374 ± 0.007
TUEV 0.592 ± 0.008 0.508 ± 0.073 0.630 ± 0.003 0.550 ± 0.014 0.219 ± 0.009 0.482 ± 0.037
Faced 0.240 ± 0.010 0.422 ± 0.028 0.283 ± 0.003 0.469 ± 0.007 0.117 ± 0.005 0.261 ± 0.013

Avg. 0.586 0.609 0.623 0.654 0.373 0.501

combining at least 5 Base or Large models. For example, REVE-Base achieved 69.6% balanced
accuracy on TUEV using the 10 models from Table 2. However, souping showed limited benefits for
the small models and sometimes led to negative outcomes.

Table 3 highlights the importance of REVE’s pretraining phase. Without pretraining, CBraMod
outperforms REVE by at least 8%. However, pretraining improves REVE-Base by 11%, while
CBraMod gains only 2%, a trend also observed in the LaBraM paper. This suggests that REVE
benefits more significantly from pretraining, whereas other models derive most of their performance
from architectural design rather than pretraining learned representations. A key advantage of REVE
is its ability to produce high-quality latent spaces without heavy fine-tuning, as evidenced by linear
probing results in Table 4: REVE consistently outperforms CBraMod across all downstream tasks
and model sizes, with REVE-Large achieving nearly 17% higher performance. These results also
highlight REVE’s ability to scale effectively with model size, yielding richer and more generalizable
embeddings as capacity increases. Providing rich, ready-to-use embeddings is crucial for enabling
zero-shot analysis, faster BCI calibration, and improved performance in low-data or sparsely annotated
settings. REVE also benefits from its spatial encoding strategy, which enables transfer across diverse
EEG configurations. In Appendix D, we further demonstrate the contribution of our secondary
loss function, a novel component of our framework, which proves particularly effective in frozen-
feature scenarios. The secondary objective reconstructs masked tokens using a compressed, global
representation from attention pooling. This pooling acts as an information bottleneck, forcing the
model to distill key information from the entire input sequence into a single vector. As shown by
Table 17, the secondary loss mainly improves the quality of the frozen embeddings of the model.
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5 Limitations and Future Work

The model has some limitations, requiring signals to be at least one second and multiples of one
second. A way to address this could be to leverage padding with causal masking.

While the focus has been on collecting large EEG datasets for pretraining, an important next step could
be to curate this data more selectively. This includes removing low-quality recordings, balancing
distributions, and identifying representative subsets, especially given the inherently noisy nature of
EEG signals. Our current pretraining corpus aggregates 92 publicly available EEG datasets spanning
over 25,000 subjects, which helps reduce overfitting to any single source. However, most public
EEG data originates from North America and Europe, resulting in limited demographic diversity—a
key limitation that calls for broader, more equitable data collection efforts. To partially mitigate
such imbalances, we leverage self-supervised learning (MAE), which has been shown to be robust
to long-tailed and heterogeneous data distributions (Xu et al., 2023). Targeted selection strategies,
combined with robust SSL objectives, could help focus on the most informative and complementary
data for building stronger, fairer, and more efficient foundation models. Thanks to its flexibility in
handling any EEG configuration, REVE could itself guide this curation process.

We also plan to extend our study to diverse tasks, including zero-/few-shot regimes. This first
iteration uses a simple MAE approach and a standard transformer, but future improvements could
leverage more advanced SSL techniques and architectures. We release the model’s code, weights
and guidelines for adapting it to mainstream EEG tasks. In parallel, our findings point toward the
presence of scaling effects in EEG foundation models. Identifying precise scaling laws that capture
how model size, data volume, and downstream performance interact would be valuable for future
work.

6 Conclusion

EEG research has lacked a foundation model that transfers robustly across devices, montages, and
tasks—especially under linear probing. REVE contributes to bridging this gap. Trained on 60,000
hours from 92 datasets and 25,000 subjects, REVE combines a 4D Fourier positional encoding that
natively supports arbitrary electrode layouts and sequence lengths with masked autoencoding en-
hanced by spatio-temporal block masking and a global-token secondary loss. Across 10 benchmarks,
it sets a new state of the art (average +2.5% balanced accuracy over prior foundation models), delivers
up to 17% gains in linear probing, and generalizes to unseen/bipolar montages and longer inputs
than used in pretraining. These properties enable faster BCI calibration, more reliable cross-site
clinical deployment, and standardized embeddings for downstream analytics. We release code,
weights, loaders for arbitrary 3D coordinates, and training/eval recipes. We invite the community
to extend REVE to broader populations and modalities (MEG/iEEG/OPM-MEG), and to co-build a
cross-montage benchmark for fair, scalable EEG evaluation.
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Appendix

A Configurations

We report the hyperparameters used to train the REVE suite of models, including data preprocessing
steps, self-supervised masking configurations, and optimizer settings governing the training dynamics.
Notations are consistent with those in the main text.

Table 5: Exhaustive list of all hyperparameter values

Variable Meaning Value
Data preprocessing

w Window size 1s
o Overlap 0.1s
σnoise Position noise std 0.25cm

Masking parameters
Mr Total masking ratio 55%
Rs Spatial masking radius 3 cm
Rt Temporal masking radius 3 seconds
Dr Dropout ratio 10%
Rd Dropout spatial radius 4 cm

Training dynamics
Optimizer StableAdamW
Scheduler Warmup Stable Decay

η Peak learning rate η = 2.4 · 10−4

β1, β2 Momentum constants 0.9, 0.95
ε Numerical stability bias 10−9

σinit Initialization std 0.02
Batch size 4, 096

λ Secondary loss multiplier 0.1

We report how the scaled number of parameters is allocated across our models. We also indicate the
number of Fourier frequencies encoded (see Section 2.2). Note that no frequency truncation was
required, as we closely matched the hidden dimension of our models to the number of components
generated by the 4D PE module.

Table 6: Summary of encoder configurations for different sizes

Size depth n_heads dim params (M) nfreq

Small 4 8 512 12 4
Base 22 8 512 69 4
Large 22 19 1250 408 5

B Pretraining dataset

We include a summarized description of the pretraining dataset composition, grouped by category,
platform of origin and number of channels. The final dataset spans 61,415 hours of recordings from
92 datasets encompassing 24,274 subjects.
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Table 7: Detailed overview of the pretraining datasets.

Group Subjects Duration (hours) Datasets
Category
BCI 791 457 28
Cognition 4,193 10,376 56
Clinic 19,290 50,581 8

Platform
TUH 14,987 26,847 1
Physionet 607 22,707 2
OpenNeuro 4153 10,194 56
MOABB 711 384 27
Other 3,802 1,250 6

Channels
[3− 30[ 19,871 50,870 31
[30− 80[ 1,781 1,516 48
[80− 129] 2,622 9,027 13

Total 24,274 61,415 92

We provide and exhaustive list of the datasets in the pretraining set, along with their respective
licenses.

MOABB (Aristimunha et al., 2023): AlexMI (Barachant, 2012), BNCI2014004 (Leeb et al.,
2007), BNCI2015001 (Faller et al., 2012), BNCI2015004 (Scherer et al., 2015), Cho2017 (Cho et al.,
2017), Lee2019MI (Lee et al., 2019), Liu2024 (Liu et al., 2024), Ofner2017 (Ofner et al., 2017),
Shin2017A (Shin et al., 2016), Weibo2014 (Yi et al., 2014), Zhou2016 (Zhou et al., 2016), Schirrmeis-
ter2017 (Schirrmeister et al., 2017), Kalunga2016 (Kalunga et al., 2015), Lee2019SSVEP (Lee et al.,
2019), Nakanishi2015 (Nakanishi et al., 2015), BI2014a (Korczowski et al., 2019b), BI2014b (Ko-
rczowski et al., 2019c), BNCI2014008 (Riccio et al., 2013), BNCI2014009 (Aricò et al., 2014),
BNCI2015003 (Guger et al., 2009), EPFLP300 (Hoffmann et al., 2008), BI2015a (Korczowski et al.,
2019a), BI2015b (Korczowski et al., 2019c), Sosulski2019 (Sosulski et al., 2021), Lee2019ERP (Lee
et al., 2019)
MOABB is under a BSD 3-Clause License.

Physionet (Goldberger et al., 2000): Siena (Detti, 2020; Detti et al., 2020), under the Creative
Commons Attribution 4.0 International Public License, ICARE (Amorim et al., 2023) under the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License,

OpenNeuro: ds004706 (Rudoler et al., 2023), ds004582 (Makowski et al., 2023), ds004356 (Shan
et al., 2022), ds004817 (Grootswagers et al., 2023b), ds005189 (Helbing et al., 2024),
ds003887 (Shatek et al., 2023), ds004043 (Moerel et al., 2022), ds003885 (Shatek et al., 2021),
ds004357 (Grootswagers et al., 2024), ds003825 (Grootswagers et al., 2022), ds004816 (Grootswa-
gers et al., 2023a), ds004840 (Cordoba-Silva et al., 2023), ds005262 (Metwalli et al., 2024),
ds004477 (Papastylianou et al., 2023), ds005273 (Esteban et al., 2024), ds004561 (Veillette
et al., 2023), ds004951 (Haupt et al., 2024), ds004324 (Chacón and Wriessnegger, 2023),
ds005095 (Zhozhikashvili et al., 2024), ds005509 (Shirazi et al., 2025), ds005505, ds005506,
ds005507, ds005510, ds005511, ds005512, ds005514 (Shirazi et al., 2024b; Alexander et al.,
2017) ds001787 (Delorme and Brandmeyer, 2024), ds003690 (Ribeiro and Castelo-Branco, 2021),
ds004603 (Lowe et al., 2023), ds003969 (Delorme and Braboszcz, 2021), ds004147 (Hassall
et al., 2024), ds003004 (Onton and Makeig, 2022), ds002721 (Daly et al., 2020), ds004152 (Has-
sall et al., 2022a) , ds005089 (Aguado-Lopez et al., 2024), ds004264 (Hassall et al., 2022b),
ds004315 (Cavanagh and Jackson, 2022), ds004408 (Bialas et al., 2023), ds005121 (Siefert
et al., 2024), ds003775 (Hatlestad-Hall et al., 2022), ds004572 (Kekecs and Farahzadi, 2024),
ds002778 (Rockhill et al., 2020), ds003846 (Gehrke et al., 2024), ds004279 (Araya et al.,
2023), ds004148 (Wang et al., 2022), ds004902 (Xiang et al., 2024), ds002680 (Delorme
and Fabre-Thorpe, 2020), ds004284 (Veillette et al., 2022), ds004395 (Kahana et al., 2023),
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ds005508 (Shirazi et al., 2024a), ds005697 (Li and Zhao, 2024), ds005620 (Bajwa1 et al., 2024),
ds005594 (Taylor et al., 2024), ds005586 (Baykan and Schütz, 2024). OpenNeuro is under the
Creative Commons CC0 license.

Other sources: NMT (Khan et al., 2022) under the Creative Commons Attribution License (CC
BY), HMS (Ram et al., 2024) under the Attribution-NonCommercial 4.0 International (CC-BY-NC-
4.0), SparrKULee (Accou et al., 2023) under the Attribution-Non Commercial 4.0 International
(CC-BY-NC-4.0), Inria Large (Dreyer et al., 2023) the data on Zenodo being under the Creative
Commons Attribution 4.0 International, THINGS2 (Gifford et al., 2022), under the CC-By Attribution
4.0 International license, TDBRAIN (Van Dijk et al., 2022), under the GPL-3.0 license, TUH (Obeid
and Picone, 2016), freely available with registration required.

C Detailed results

This section presents detailed results on downstream tasks along with concise descriptions of the
datasets.

C.1 Emotion Recognition

FACED (Chen et al., 2023) We evaluate on the FACED dataset, which contains 32-channel EEG
recordings (originally at 250 Hz, resampled to 200 Hz) from 123 subjects across nine emotion classes.
The data is segmented into 10,332 samples of 10 seconds each. We follow the standard split: subjects
1–80 for training, 81–100 for validation, and 101–123 for testing.

Table 8: The results of different methods on emotion recognition (FACED, 9-class).

Methods Balanced Accuracy Cohen’s Kappa Weighted F1
EEGNet 0.4090 ± 0.0122 0.3342 ± 0.0251 0.4124 ± 0.0141
EEGConformer 0.4559 ± 0.0125 0.3858 ± 0.0186 0.4514 ± 0.0107
SPaRCNet 0.4673 ± 0.0155 0.3978 ± 0.0289 0.4729 ± 0.0133
ContraWR 0.4887 ± 0.0078 0.4231 ± 0.0151 0.4884 ± 0.0074
CNN-Transformer 0.4697 ± 0.0132 0.4017 ± 0.0168 0.4720 ± 0.0125
FFCL 0.4673 ± 0.0158 0.3987 ± 0.0383 0.4699 ± 0.0145
ST-Transformer 0.4810 ± 0.0079 0.4137 ± 0.0133 0.4795 ± 0.0096

BIOT 0.5118 ± 0.0118 0.4476 ± 0.0254 0.5136 ± 0.0112
LaBraM-Base 0.5273 ± 0.0107 0.4698 ± 0.0188 0.5288 ± 0.0102
CBraMod 0.5509 ± 0.0089 0.5041 ± 0.0122 0.5618 ± 0.0093

REVE-Base (ours) 0.5646 ± 0.0164 0.5080 ± 0.0191 0.5659 ± 0.0172

C.2 Mental Disorder Diagnosis

Mumtaz (Mumtaz, 2016) We use the Mumtaz2016 dataset, which includes EEG recordings from
34 individuals with major depressive disorder (MDD) and 30 healthy controls, acquired from 19
electrodes (10–20 system) at 256 Hz. Only the eyes-open and eyes-closed sessions are used. Signals
are band-pass filtered (0.3–75 Hz), notch filtered at 50 Hz, resampled to 200 Hz, and segmented into
7,143 samples of 5 seconds each. The split includes 24 MDD and 19 control subjects for training, 5
MDD and 4 controls for validation, and 5 MDD and 5 controls for testing. The dataset is under CC
BY 4.0.
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Table 9: The results of different methods on mental disorder diagnosis (Mumtaz2016, 2-class).

Methods Balanced Accuracy AUC-PR AUROC

EEGNet 0.9232 ± 0.0104 0.9626 ± 0.0095 0.9639 ± 0.0093
EEGConformer 0.9308 ± 0.0117 0.9684 ± 0.0105 0.9702 ± 0.0101
SPaRCNet 0.9316 ± 0.0095 0.9754 ± 0.0065 0.9781 ± 0.0083
ContraWR 0.9195 ± 0.0115 0.9589 ± 0.0102 0.9621 ± 0.0092
CNN-Transformer 0.9305 ± 0.0068 0.9757 ± 0.0074 0.9742 ± 0.0059
FFCL 0.9314 ± 0.0038 0.9717 ± 0.0021 0.9753 ± 0.0033
ST-Transformer 0.9135 ± 0.0103 0.9578 ± 0.0086 0.9594 ± 0.0059

BIOT 0.9358 ± 0.0052 0.9736 ± 0.0034 0.9758 ± 0.0042
LaBraM-Base 0.9409 ± 0.0079 0.9798 ± 0.0093 0.9782 ± 0.0057
CBraMod 0.9560 ± 0.0056 0.9923 ± 0.0032 0.9921 ± 0.0025

REVE-Base (ours) 0.9644 ± 0.0097 0.9961 ± 0.0013 0.9957 ± 0.0015

C.3 Mental Stress Detection

MAT (Zyma et al., 2019) The MentalArithmetic dataset contains EEG recordings from 36 subjects,
labeled as “with” or “without” mental stress depending on whether a mental arithmetic task was
being performed. Signals were recorded from 20 electrodes (10–20 system) at 500 Hz, band-pass
filtered (0.5–45 Hz), resampled to 200 Hz, and segmented into 1,707 samples of 5 seconds. Subjects
1–28 are used for training, 29–32 for validation, and 33–36 for testing. The MentalArithmetic dataset
is under the Open Data Commons Attribution License v1.0.

Table 10: The results of different methods on mental stress detection (MAT, 2-class).

Methods Balanced Accuracy AUC-PR AUROC

EEGNet 0.6770 ± 0.0116 0.5763 ± 0.0102 0.7321 ± 0.0108
EEGConformer 0.6805 ± 0.0123 0.5829 ± 0.0134 0.7424 ± 0.0128
SPaRCNet 0.6879 ± 0.0107 0.5825 ± 0.0193 0.7418 ± 0.0132
ContraWR 0.6631 ± 0.0097 0.5787 ± 0.0164 0.7332 ± 0.0082
CNN-Transformer 0.6779 ± 0.0268 0.5777 ± 0.0285 0.7258 ± 0.0336
FFCL 0.6798 ± 0.0142 0.5786 ± 0.0266 0.7330 ± 0.0198
ST-Transformer 0.6631 ± 0.0173 0.5672 ± 0.0259 0.7132 ± 0.0174

BIOT 0.6875 ± 0.0186 0.6004 ± 0.0195 0.7536 ± 0.0144
LaBraM-Base 0.6909 ± 0.0125 0.5999 ± 0.0155 0.7721 ± 0.0093
CBraMod 0.7256 ± 0.0132 0.6267 ± 0.0099 0.7905 ± 0.0073

REVE-Base (ours) 0.7660 ± 0.0355 0.7470 ± 0.0807 0.8450 ± 0.0514

C.4 Imagined Speech

BCIC2020-3 (Jeong et al., 2022) BCIC2020-3 is an imagined speech EEG dataset from 15 subjects,
recorded with 64 channels at 256 Hz while subjects silently imagined five phrases (“hello”, “help
me”, “stop”, “thank you”, “yes”) without any articulation. Each phrase has 80 trials per subject,
totaling 6,000 3-second samples. The data is resampled to 200 Hz. The official split includes 60
trials per class for training, 10 for validation, and 10 for testing. BCIC2020-3 is under the Creative
Commons Attribution No Derivatives license (CC BY-ND 4.0).
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Table 11: The results of different methods on imagined speech classification (BCIC2020-3, 5-class).

Methods Balanced Accuracy Cohen’s Kappa Weighted F1

EEGNet 0.4413 ± 0.0096 0.3016 ± 0.0123 0.4413 ± 0.0102
EEGConformer 0.4506 ± 0.0133 0.3133 ± 0.0183 0.4488 ± 0.0154
SPaRCNet 0.4426 ± 0.0156 0.3033 ± 0.0233 0.4420 ± 0.0108
ContraWR 0.4257 ± 0.0162 0.3078 ± 0.0218 0.4407 ± 0.0182
CNN-Transformer 0.4533 ± 0.0092 0.3166 ± 0.0118 0.4506 ± 0.0127
FFCL 0.4678 ± 0.0197 0.3301 ± 0.0359 0.4689 ± 0.0205
ST-Transformer 0.4126 ± 0.0122 0.2941 ± 0.0159 0.4247 ± 0.0138

BIOT 0.4920 ± 0.0086 0.3650 ± 0.0176 0.4917 ± 0.0079
LaBraM-Base 0.5060 ± 0.0155 0.3800 ± 0.0242 0.5054 ± 0.0205
CBraMod 0.5373 ± 0.0108 0.4216 ± 0.0163 0.5383 ± 0.0096

REVE-Base (ours) 0.5635 ± 0.0123 0.4543 ± 0.0154 0.5633 ± 0.0124

C.5 Motor Imagery Classification

PhysioNet-MI (Goldberger et al., 2000) is used for motor imagery classification. It contains record-
ings with 64 channels at a 160 Hz sampling rate and includes 4 classes: left fist, right fist, both fists,
and feet. As in CBraMod, we select 4-second samples of the signals, resulting in 9,837 samples.
Following CBraMod’s protocol, subjects 1–70 are used for training, 71–89 for validation, and 90–109
for testing. We retain all subjects and use full 4-second windows to stay consistent with CBraMod. To
handle lower sampling rates in some recordings, we load all data at 128 Hz (using a 64 Hz low-pass
filter) before resampling to 200 Hz. Physionet-MI is under the Open Data Commons Attribution
License v1.0.

BCIC-IV-2a (Tangermann et al., 2012) is also used for motor imagery classification. It contains EEG
recordings from 9 subjects performing 4 motor imagery tasks: left hand, right hand, both feet, and
tongue. Data were collected over 2 sessions with 22 electrodes at 250 Hz. Each session includes 288
trials (72 per task). We use the [2,6] second window from each trial, apply a 0.5–99.5 Hz band-pass
filter, resample to 200 Hz, and apply Euclidean Alignment (He and Wu, 2019), proven to be effective
on this task (El Ouahidi et al., 2024), resulting in 5184 4-second samples.

Table 12: The results of different methods on Motor Imagery classification.

PhysioNet-MI, 4-class BCIC-IV-2a, 4-class

Methods Balanced Accuracy Cohen’s Kappa Weighted F1 Balanced Accuracy Cohen’s Kappa Weighted F1

EEGNet 0.5814 ± 0.0125 0.4468 ± 0.0199 0.5796 ± 0.0115 0.4482 ± 0.0094 0.2693 ± 0.0121 0.4226 ± 0.0108
EEGConformer 0.6049 ± 0.0104 0.4736 ± 0.0171 0.6062 ± 0.0095 0.4696 ± 0.0106 0.2924 ± 0.0141 0.4533 ± 0.0128
SPaRCNet 0.5932 ± 0.0152 0.4564 ± 0.0234 0.5937 ± 0.0147 0.4635 ± 0.0117 0.2847 ± 0.0147 0.4432 ± 0.0126
ContraWR 0.5892 ± 0.0133 0.4527 ± 0.0248 0.5918 ± 0.0116 0.4678 ± 0.0125 0.2905 ± 0.0160 0.4413 ± 0.0142
(CNN-Transformer 0.6053 ± 0.0118 0.4725 ± 0.0223 0.6041 ± 0.0105 0.4600 ± 0.0108 0.2800 ± 0.0148 0.4460 ± 0.0114
FFCL 0.5726 ± 0.0092 0.4323 ± 0.0182 0.5701 ± 0.0079 0.4470 ± 0.0143 0.2627 ± 0.0176 0.4238 ± 0.0139
ST-Transformer 0.6035 ± 0.0081 0.4712 ± 0.0199 0.6053 ± 0.0075 0.4575 ± 0.0145 0.2733 ± 0.0198 0.4471 ± 0.0142

BIOT 0.6153 ± 0.0154 0.4875 ± 0.0272 0.6158 ± 0.0197 0.4748 ± 0.0093 0.2997 ± 0.0139 0.4607 ± 0.0125
LaBraM-Base 0.6173 ± 0.0122 0.4912 ± 0.0192 0.6177 ± 0.0141 0.4869 ± 0.0085 0.3159 ± 0.0154 0.4758 ± 0.0103
CBraMod 0.6417 ± 0.0091 0.5222 ± 0.0169 0.6427 ± 0.0100 0.5138 ± 0.0066 0.3518 ± 0.0094 0.4984 ± 0.0085

REVE-Base (ours) 0.6480 ± 0.0140 0.5306 ± 0.0187 0.6484 ± 0.0170 0.6396 ± 0.0095 0.5194 ± 0.0126 0.6339 ± 0.0110

C.6 Sleep Staging

ISRUC (Khalighi et al., 2016) We use the sleep staging task on the ISRUC dataset (Subgroup 1),
which contains PSG recordings from 100 subjects. Only EEG signals are used (6 channels, sampled
at 200 Hz), segmented into 89,240 30-second epochs, each labeled with one of five sleep stages
following AASM standards. Subjects 1–80 are used for training, 81–90 for validation, and 91–100
for testing. As in prior work, the task is framed as a sequence-to-sequence classification problem,
using sequences of 20 consecutive epochs to model stage transitions. ISRUC is freely accessible
online.
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Table 13: The results of different methods on sleep staging (ISRUC, 5-class). * In the baseline code,
a chin electrode might have been used instead of an EEG one; REVE results are reported without it.

Methods Balanced Accuracy Cohen’s Kappa Weighted F1

EEGNet 0.7154 ± 0.0121 0.7040 ± 0.0173 0.7513 ± 0.0124
EEGConformer 0.7400 ± 0.0133 0.7143 ± 0.0162 0.7634 ± 0.0151
SPaRCNet 0.7487 ± 0.0075 0.7097 ± 0.0132 0.7624 ± 0.0092
ContraWR 0.7402 ± 0.0126 0.7178 ± 0.0156 0.7610 ± 0.0137
CNN-Transformer 0.7363 ± 0.0087 0.7129 ± 0.0121 0.7719 ± 0.0105
FFCL 0.7277 ± 0.0182 0.7016 ± 0.0291 0.7614 ± 0.0197
ST-Transformer 0.7381 ± 0.0205 0.7013 ± 0.0352 0.7681 ± 0.0175

DeepSleepNet 0.7419 ± 0.0144 0.7036 ± 0.0241 0.7643 ± 0.0122
USleep 0.7586 ± 0.0116 0.7209 ± 0.0143 0.7805 ± 0.0105

BIOT 0.7527 ± 0.0121 0.7192 ± 0.0231 0.7790 ± 0.0146
LaBraM-Base 0.7633 ± 0.0102 0.7231 ± 0.0182 0.7810 ± 0.0133
CBraMod 0.7865 ± 0.0110 0.7442 ± 0.0152 0.8011 ± 0.0099

REVE-Base* 0.7819 ± 0.0078 0.7500 ± 0.0156 0.8005 ± 0.0135

HMC (Alvarez-Estevez and Rijsman, 2021). The Haaglanden Medisch Centrum (HMC) Sleep
Staging Database is a sleep stage detection dataset, consisting of 151 full-night polysomnographic
(PSG) recordings collected from patients referred for sleep studies. The data includes EEG, EOG,
EMG, and ECG channels, with a sampling rate of 256 Hz, and annotations for five sleep stages
(Wake, N1, N2, N3, REM) manually scored by trained sleep technicians. HMC is under the Creative
Commons Attribution 4.0 International Public License.

Table 14: The results of different methods on sleep staging (HMC, 5-class).

Methods Balanced Accuracy Cohen’s Kappa Weighted F1

SPaRCNet 0.4756±0.1109 0.3147±0.1315 0.4108±0.1310
ContraWR 0.4242±0.0541 0.2340±0.0554 0.2987±0.0288
CNN-Transformer 0.6573±0.0141 0.5961±0.0105 0.6896±0.0065
FFCL 0.4427±0.0702 0.2542±0.0654 0.2902±0.0485
ST-Transformer 0.2559±0.0141 0.0503±0.0183 0.1428±0.0122

BIOT 0.6862±0.0041 0.6295±0.0113 0.7091±0.0147
LaBraM-Base 0.7286±0.0101 0.6812±0.0073 0.7554±0.0024

REVE-Base 0.7401 ± 0.0075 0.6982 ± 0.0078 0.7638 ± 0.0074

C.7 Event Type Classification

TUEV (Obeid and Picone, 2016) is an EEG dataset with six annotated classes: spike and sharp
wave, generalized periodic epileptiform discharges, periodic lateralized epileptiform discharges, eye
movement, artifact, and background. The recordings use 23 channels at a 256 Hz sampling rate. For
consistency with CBraMod, BIOT, and LaBraM, we used BIOT’s processing scripts which preprocess
the dataset using 16 common bipolar montage channels in the 10-20 system, apply a 0.3–75 Hz
band-pass filter, remove power line noise with a 60 Hz notch filter, and resample to 200 Hz. The
dataset is split into 112,491 5-second samples. We follow the original training-test split and further
divide the training set into 80% training and 20% validation, matching BIOT setting. To provide our
model with the electrode positions, we used the average position of each bipolar montage. TUEV is
part of the TUH dataset, which is freely available with registration required.
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Table 15: The results of different methods on event type classification (TUEV, 6-class).

Methods Balanced Accuracy Cohen’s Kappa Weighted F1

EEGNet 0.3876 ± 0.0143 0.3577 ± 0.0155 0.6539 ± 0.0120
EEGConformer 0.4074 ± 0.0164 0.3967 ± 0.0195 0.6983 ± 0.0152
SPaRCNet 0.4161 ± 0.0262 0.4233 ± 0.0181 0.7024 ± 0.0104
ContraWR 0.4384 ± 0.0349 0.3912 ± 0.0237 0.6893 ± 0.0136
CNN-Transformer 0.4087 ± 0.0161 0.3815 ± 0.0134 0.6854 ± 0.0293
FFCL 0.3979 ± 0.0104 0.3732 ± 0.0188 0.6783 ± 0.0120
ST-Transformer 0.3984 ± 0.0228 0.3765 ± 0.0306 0.6823 ± 0.0190

BIOT 0.5281 ± 0.0225 0.5273 ± 0.0249 0.7492 ± 0.0082
LaBraM-Base 0.6409 ± 0.0065 0.6637 ± 0.0093 0.8312 ± 0.0052
LaBraM-Large 0.6581 ± 0.0156 0.6622 ± 0.0136 0.8315 ± 0.0040
LaBraM-Huge 0.6616 ± 0.0170 0.6745 ± 0.0195 0.8329 ± 0.0086
CBraMod 0.6671 ± 0.0107 0.6772 ± 0.0096 0.8342 ± 0.0064

REVE-Base (ours) 0.6759 ± 0.0229 0.6783 ± 0.0199 0.8451 ± 0.0129

C.8 Abnormal Detection

TUAB (Obeid and Picone, 2016) is used for abnormal EEG detection, where recordings are labeled
as normal or abnormal. It shares the same 23-channel, 256 Hz format as TUEV. The dataset is split
into 409,455 10-second samples for binary classification. We follow the provided training-test split
and apply an 80%-20% training-validation split, consistent with BIOT. We resampled at 200 Hz,
band-pass at 0.5-99.5 Hz, and directly used all channels and their positions. TUAB is part of the
TUH dataset, which is freely available with registration required.

Table 16: The results of different methods on abnormal detection (TUAB, 2-class).

Methods Balanced Accuracy AUC-PR AUROC

EEGNet 0.7642 ± 0.0036 0.8299 ± 0.0043 0.8412 ± 0.0031
EEGConformer 0.7758 ± 0.0049 0.8427 ± 0.0054 0.8445 ± 0.0038
SPaRCNet 0.7896 ± 0.0018 0.8414 ± 0.0018 0.8676 ± 0.0012
ContraWR 0.7746 ± 0.0041 0.8421 ± 0.0104 0.8456 ± 0.0074
CNN-Transformer 0.7777 ± 0.0022 0.8433 ± 0.0039 0.8461 ± 0.0013
FFCL 0.7848 ± 0.0038 0.8448 ± 0.0065 0.8569 ± 0.0051
ST-Transformer 0.7966 ± 0.0023 0.8521 ± 0.0026 0.8707 ± 0.0019

BIOT 0.7959 ± 0.0057 0.8792 ± 0.0023 0.8815 ± 0.0043
LaBraM-Base 0.8140 ± 0.0019 0.8965 ± 0.0016 0.9022 ± 0.0009
LaBraM-Large 0.8226 ± 0.0015 0.9130 ± 0.0005 0.9127 ± 0.0005
LaBraM-Huge 0.8258 ± 0.0011 0.9204 ± 0.0011 0.9162 ± 0.0016
CBraMod 0.8289 ± 0.0022 0.9258 ± 0.0008 0.9227 ± 0.0011

REVE-Base (ours) 0.8315 ±0.0014 0.9281±0.0009 0.9245 ±0.0013

D Ablation on the SSL Method

The final pretraining hyperparameters were selected based on a series of ablation studies, the results
of which are presented in this section.

Table 17 reports the impact of the secondary pretraining loss on eight downstream tasks using REVE-
Small, evaluated under frozen-backbone, linear probing (LP), and full fine-tuning (FT) settings.
Results obtained with both losses are compared to those using only the primary loss. The secondary
loss consistently improves performance across nearly all datasets, enhancing results in both LP and
FT settings, while its removal leads to a substantial drop, underscoring its importance for the model
to produce strong embeddings.

The results in Table 18 show that a block masking ratio of 55% yields the best overall performance,
providing stable results across both fine-tuned and frozen settings and eight datasets (Mumtaz,
TUAB, ISRUC, HMC, BCIC2020-3, TUEV, PhysioNetMI, and Faced). In contrast, random masking
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Table 17: Effect of 2nd loss during pretraining and finetuning. The reported metric is balanced
accuracy. Best results per dataset are in bold.

LP FT
Dataset No 2nd loss + 2nd loss No 2nd loss + 2nd loss
Mumtaz 0.818 ± 0.043 0.920 ± 0.018 0.818 ± 0.043 0.922 ± 0.018
TUAB 0.797 ± 0.004 0.802 ± 0.005 0.803 ± 0.003 0.810 ± 0.005
ISRUC 0.699 ± 0.006 0.625 ± 0.003 0.777 ± 0.002 0.770 ± 0.002
HMC 0.598 ± 0.008 0.591 ± 0.005 0.713 ± 0.011 0.723 ± 0.005
BCIC2020-3 0.234 ± 0.009 0.237 ± 0.008 0.390 ± 0.017 0.481 ± 0.008
TUEV 0.442 ± 0.060 0.520 ± 0.005 0.533 ± 0.024 0.623 ± 0.011
PhysioNetMI 0.379 ± 0.058 0.533 ± 0.019 0.563 ± 0.011 0.583 ± 0.009
Faced 0.220 ± 0.008 0.233 ± 0.004 0.302 ± 0.016 0.410 ± 0.004
Avg. 0.523 0.558 0.612 0.665

Table 18: Performance comparison across different masking ratios (0.25, 0.55, 0.75) between block
masking strategy and random masking, evaluated for full fine-tuning versus frozen embeddings. We
display the average balanced accuracy on the small model over eight downstream tasks.

Frozen Full Fine-Tuning
Masking Ratio Random Block Random Block

0.25 0.523 0.513 0.612 0.602
0.55 0.550 0.558 0.643 0.665
0.75 0.519 0.546 0.606 0.655

favors smaller ratios (25%), but its unstructured nature leads to highly redundant inputs, making the
reconstruction task artificially easier. These findings align with ablation results reported in Cbramod,
Labram, and BIOT.

Table 19: Ablation study on PhysioNetMI and Mental Arithmetic datasets. The reported metric is
balanced accuracy, with the average computed across both tasks, with the Base model.
*Note that the learnable positional encoding matches the baseline, but does not allow for the extension
to larger time windows or unseen spatial configurations.

Ablated component PhysionetMI Mental Arithmetic Average

Learnable PE* 0.650 ± 0.0113 0.752 ± 0.0421 0.701 ± 0.0218
MLP4D 0.637 ± 0.0056 0.717 ± 0.0425 0.677 ± 0.0214
Position noise 0.628 ± 0.0084 0.692 ± 0.0665 0.660 ± 0.0335
Dropout block masking 0.645 ± 0.0155 0.678 ± 0.0521 0.662 ± 0.0272
Temporal block masking 0.646 ± 0.0155 0.723 ± 0.0422 0.685 ± 0.0225

Base Performance 0.6480 ± 0.0140 0.7660 ± 0.0355 0.707 ± 0.0191

Table 19 presents an ablation study on two downstream tasks to assess the contribution of each
component in our SSL pipeline. All components appear to contribute positively to performance. The
“Learnable PE” line is not a true ablation, but rather a variant using learnable positional embeddings,
where a separate embedding is learned for each electrode and time index observed during pretraining.
Although this approach performs well, it is limited to the spatial and temporal configurations seen
during training (approximately 400 unique electrode names, over 10-second windows) and does not
generalize to longer sequences or unseen electrode layouts, unlike REVE’s 4D positional encoding.

Table 20 presents an ablation study on the choice of activation and normalization functions, an
important design factor in transformer-based foundation models. We compare GEGLU + RMSNorm,
GELU + RMSNorm, and GEGLU + LayerNorm configurations during pretraining, and report
downstream performance after fine-tuning on three datasets using the REVE-Small model.
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Table 20: Ablation study on activation functions and normalization layers (GEGLU vs. GELU,
RMSNorm vs. LayerNorm). We report downstream balanced accuracy after pretraining the REVE-
Small model with each configuration.

Dataset GEGLU + RMSNorm GELU + RMSNorm GEGLU + LayerNorm
BCIC-IV-2a 0.581±0.012 0.560 ± 0.018 0.537 ± 0.018
TUEV 0.623 ± 0.011 0.592± 0.010 0.577±0.034
PhysioNetMI 0.583 ± 0.009 0.586 ±0.009 0.559 ±0.007

Avg. 0.596 0.579 0.558

The GEGLU + RMSNorm combination achieves the best average performance (0.596), outperforming
the others on BCIC-IV-2a and TUEV. GELU + RMSNorm performs similarly but only leads on
PhysioNetMI. In contrast, GEGLU + LayerNorm consistently underperforms, highlighting the
effectiveness of RMSNorm over LayerNorm and the benefits of gated activations like GEGLU in this
context.

E Additional results

This section presents supplementary experiments that further support the main results, focusing on
few-shot performance and evaluation under reduced-electrode configurations.

E.1 Sparse setups

Table 21: Performance of REVE-Base under sparse input configurations. Balanced accuracy is
reported for PhysionetMI (Left–Right) and imagined speech tasks as the number of EEG channels is
progressively reduced.

Channels PhysionetMI L-R Speech
64 0.824 ± 0.008 0.565 ±0.016
32 0.808 ± 0.007 0.490 ± 0.094
16 0.787 ± 0.008 0.469 ±0.014
8 0.781 ± 0.006 0.294 ± 0.063
4 0.728 ± 0.009 0.258 ± 0.019
2 0.700 ± 0.025 0.228 ± 0.006
1 0.660 ±0.019 0.209 ± 0.008

Table 21 reports REVE-Base’s performance under increasingly sparse input configurations. On the
Physionet MI L-R task, accuracy degrades gracefully from 0.824 with 64 channels to 0.660 with
a single channel, demonstrating robustness to reduced spatial coverage. In contrast, the imagined
speech task is more sensitive to channel sparsity, with performance dropping from 0.565 to 0.258
with four channels and 0.209 with one, close to random chance. These results confirm that while
REVE generalizes well under limited input, tasks requiring broad spatial information remain more
challenging.

E.2 Few-shot experiments

We conducted few-shot (FS) experiments to simulate realistic BCI usage scenarios. Tasks were
constructed from the BCI IV-2a dataset using two motor imagery classes (Left–Right). For each
subject, multiple inductive FS runs were performed. In each run, N labeled samples per class
(“shots”) were randomly selected within a session for training, while the remaining samples from
both sessions were used for evaluation.

Classification was done using a Nearest Class Mean (NCM) classifier. Each configuration was
repeated 20 times per subject, and we report the average balanced accuracy across subjects and runs.
We evaluated two configurations of REVE-Base:
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• REVE-Base (PT): directly after self-supervised pretraining, with no further supervised
adaptation.

• REVE-Base (XFT): after cross-dataset fine-tuning on multiple labeled Left–Right MI
datasets ((Schirrmeister et al., 2017), (Cho et al., 2017), (Goldberger et al., 2000), (Lee
et al., 2019), (Yi et al., 2014)). REVE’s 4D positional encoding enables joint training across
diverse electrode configurations without requiring channel alignment or selection.

Table 22: Few-shot performance of REVE-Base on BCI IV-2a dataset

N-shots 1 2 5 10 20

REVE-Base (PT) 0.588 ± 1.45 0.601 ± 0.001 0.652 ± 0.013 0.688 ± 0.010 0.723 ± 0.010

REVE-Base (XFT) 0.605 ± 1.12 0.645 ± 0.009 0.705 ± 0.009 0.768 ± 0.009 0.817 ± 0.004

Table 22 shows that REVE-Base achieves competitive accuracy even without supervised adaptation,
demonstrating that its pretrained embeddings can be effectively leveraged for downstream BCI tasks.
After cross-dataset fine-tuning, performance improves consistently across all shot counts, with gains
reaching +10% at 20 shots. This indicates that REVE transfers well across subjects and datasets,
while benefiting from minimal supervised adaptation. Such generalization is uncommon among BCI
embedding models, which typically require task or subject-specific retraining.

F Experiment details

F.1 Compute resources

We include details about the compute nodes that were used for pretraining.

• Compute Type: GPU-accelerated nodes
• GPU Model: NVIDIA A100
• CPU Model: Intel Cascade Lake SP 6248
• CPU Cores per Node: 40 cores
• Total Memory per Node: 192 GB
• Storage: Access to a shared full-flash parallel file system based on IBM Spectrum Scale
• Job Scheduler: Slurm

We also estimate the number of floating-point operations (FLOPs) required to train the REVE-Base
model, following the formulation from Chowdhery et al. (2023):

τ =
D · (6N + 12LHQT )

P · η

where τ denotes the training time (in seconds), D = 60k × 3600× 1.1× 68× 17 is the total number
of tokens seen during pretraining (corresponding to 60k hours of EEG, an overlap coefficient of
1.1, 68 average channels, and 17 epochs), N = 72M is the number of model parameters, L = 23
the number of encoder-decoder layers, H = 8 the number of attention heads, Q = 64 the head
dimension, and T = 68× 11 the average number of tokens per sequence (channels × patches).

The peak throughput is P = 312 TFLOPs at half precision, achievable on A100 GPUs, and the model
FLOPs utilization is set to η = 0.5 (50%).

This configuration yields an estimated 260 A100 GPU hours for a single pretraining run. The formula
can be directly adapted for other model sizes or hardware configurations.

F.2 Use of Existing Assets

We used Python (Python Software Foundation License), and some associated libraries for the
implementation:
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1. PyTorch (BSD-3 License)
2. NumPy (NumPy license)
3. scikit-learn (BSD license)
4. Pandas (BSD 3-Clause License)
5. Hugging Face’s Accelerate (Apache License 2.0)
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions. The introduction clearly states the goals of REVE: building a foundation
model for EEG that generalizes across datasets, durations, and electrode configurations.
These claims are supported by:

• A novel 4D positional encoding (Section 2.2), validated by transfer to unseen setups.
• Pretraining on 92 datasets (Section 3.1), the largest EEG corpus to date.
• Extensive evaluations across 10 downstream tasks, showing consistent gains in full

fine-tuning and linear probing (Section 4, Tables 2–16).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes a dedicated Limitations and Future Work section outlining
key constraints of REVE, such as fixed input duration requirements, positional encoding
limitations, and the limited dataset curation and selection. We also acknowledge that while
scaling effects are observed, identifying precise scaling laws remains future work. These
points reflect a clear understanding of the method’s current boundaries and opportunities for
improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results, as it is focused on applications
of a foundation model for EEG and does not delve into theoretical proofs or assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a comprehensive description of the model architecture, the
training data sources, and the routines for both pretraining and fine-tuning. The hyperparam-
eters of the model are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The authors provide full access to the code required for reproducing the
experiments. Detailed instructions are included, outlining the necessary commands and
environment settings to faithfully reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides all necessary details regarding the experimental setting,
including the data splits, the hyperparameters, and the type of optimizer used. These details
are provided in the main text, with further specifics available in the supplemental material
and the released code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper reports balanced accuracy as the primary metric, along with the
mean and standard deviation. These metrics are used to match the baselines, providing a
measure of variability in the results. This results in a 68% CI under normality assumption.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper discusses the use of NVIDIA A100 GPUs while estimating the
amount of GPU hours used for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research aligns with the NeurIPS Code of Ethics by ensuring respon-
sible and ethical practices in all aspects of the research process, as discussed in ethical
considerations section.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the potential positive and negative societal impacts
of the work. On the positive side, the model can greatly benefit healthcare by improving
the accuracy and efficiency of EEG-based applications such as brain-computer interfaces
and diagnostic tools. On the negative side, the model’s decoder, which could potentially
reconstruct raw EEG data, poses a privacy risk. To mitigate this, the decoder is not being
released, thus reducing the potential for misuse in generating sensitive or private information.
The paper emphasizes the responsible and ethical use of the technology, with awareness of
its potential risks.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: To mitigate privacy risks, the decoder of the MAE model, which could
reconstruct raw EEG data, is not being released. This safeguard reduces the potential for
misuse while allowing responsible access to the model’s embeddings.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See the section about existing assets in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: An anonymized repository containing the code for the model, its pretraining
and fine-tuning is released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve new crowdsourcing experiments or direct research
with human subjects. We use pre-existing EEG datasets, and as such, there are no instructions
or compensation details to report. The datasets used have been ethically sourced, with the
original collection protocols ensuring participant consent and privacy in line with ethical
guidelines.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve new research with human subjects, as it relies
on pre-existing EEG datasets. Therefore, no potential risks to participants were incurred,
and no new IRB approvals or equivalent reviews were required. The datasets used have
been ethically sourced, with the original studies obtaining necessary participant consent and
privacy protections.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	EEG Representation and Block Masking strategy
	4D Position Encoding Strategy
	Transformer
	Masked EEG Reconstruction Methodology

	Experiments
	Pretraining
	Dataset Collection & Preprocessing
	Pretraining Strategy & Scaling

	Training and Scaling Strategy
	Downstream tasks

	Results and Discussion
	Limitations and Future Work
	Conclusion
	Acknowledgments
	Configurations
	Pretraining dataset
	Detailed results
	Emotion Recognition
	Mental Disorder Diagnosis
	Mental Stress Detection
	Imagined Speech
	Motor Imagery Classification
	Sleep Staging
	Event Type Classification
	Abnormal Detection

	Ablation on the SSL Method
	Additional results
	Sparse setups
	Few-shot experiments

	Experiment details
	Compute resources
	Use of Existing Assets


