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Abstract

A basic question within the emerging field of mechanistic interpretability is the degree to
which neural networks learn the same underlying mechanisms. In other words, are neural
mechanisms universal across different models? In this work, we study the universality of
individual neurons across GPT2 models trained from different initial random seeds, motivated
by the hypothesis that universal neurons are likely to be interpretable. In particular, we
compute pairwise correlations of neuron activations over 100 million tokens for every neuron
pair across five different seeds and find that 1-5% of neurons are universal, that is, pairs
of neurons which consistently activate on the same inputs. We then study these universal
neurons in detail, finding that they usually have clear interpretations and taxonomize them
into a small number of neuron families. We conclude by studying patterns in neuron weights
to establish several universal functional roles of neurons in simple circuits: deactivating
attention heads, changing the entropy of the next token distribution, and predicting the next
token to (not) be within a particular set.

1 Introduction

As large language models (LLMs) become more widely deployed in high-stakes settings, our lack of under-
standing of why or how models make decisions creates many potential vulnerabilities and risks (Bommasani
et al., 2021; Hendrycks et al., 2023; Bengio et al., 2023). While some claim deep learning based systems are
fundamentally inscrutable, artificial neural networks seem unusually amenable to empirical science compared
to other complex systems: they are fully observable, (mostly) deterministic, created by processes we control,

∗Corresponding Author; † Senior Author

1

https://openreview.net/forum?id=ZeI104QZ8I&noteId=k3hwQgKrsg


Published in Transactions on Machine Learning Research (06/2024)

Figure 1: Universal neurons in GPT2 models, interpreted via their activations (a-d), weights (e), and causal
interventions (f). (a) Neurons which activate primarily on a specific individual letter and secondarily on
tokens which begin with the letter; (b) Neuron which activates approximately if and only if the previous
token contains a comma; (c) Neurons which activate as a function of absolute token position in the context
(shaded area denotes standard deviation around the mean); (d) A neuron which activates in medical contexts
(e.g. pubmed abstracts) but not in non-medical distributions; (e) a neuron which decreases the probability of
predicting any integer tokens between 1700 and 2050 (i.e., years); (f) Neurons which change the entropy of
the next token distribution when causally intervened.

admit complete mathematical descriptions of their form and function, can be run on any input with arbitrary
modifications made to their internals, all at low cost and on computational timescales (Olah, 2021). An
advanced science of interpretability enables a more informed discussion of the risks posed by advanced AI
systems and lays firmer ground to engineer systems less likely to cause harm (Doshi-Velez and Kim, 2017;
Bender et al., 2021; Weidinger et al., 2022; Ngo et al., 2023; Carlsmith, 2023).

Olah et al. (2020b) propose three speculative claims regarding the interpretation of artificial neural networks:
that features—directions in activation space representing properites of the input—are the fundamental unit
of analysis, that features are connected into circuits via network weights, and that features and circuits are
universal across models. That is, analogous features and circuits form in a diverse array of models and that
different training trajectories converge on similar solutions (Li et al., 2015). Taken seriously, these hypotheses
suggest a strategy for discovering important features and circuits: look for that which is universal. This line
of reasoning motivates our work, where we leverage different notions of universality to identify and study
individual neurons that represent features or underlie circuits.

Beyond discovery, the degree to which neural mechanisms are universal is a basic open question that informs
what kinds of interpretability research are most likely to be tractable and important. If the universality
hypothesis is largely true in practice, we would expect detailed mechanistic analyses (Cammarata et al.,
2021; Wang et al., 2022a; Olsson et al., 2022; Nanda et al., 2023; McDougall et al., 2023) to generalize across
models such that it might be possible to develop a periodic table of neural circuits which can be automatically
referenced when interpreting new models (Olah et al., 2020b). Conversely, it becomes less sensible to dedicate
substantial manual labor to understand low-level details of circuits if they are completely different in every
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model, and instead more efficient to allocate effort to engineering scalable and automated methods that
can aid in understanding and monitoring higher-level representations of particular interest (Burns et al.,
2022; Conmy et al., 2023; Bills et al., 2023; Zou et al., 2023; Bricken et al., 2023). However, even in the case
that not all features or circuits are universal, those which are common across models are likely to be more
fundamental (Bau et al., 2018; Olsson et al., 2022), and studying them should be prioritized accordingly.

In this work, we study the universality of individual neurons across GPT2 language models (Radford et al.,
2019) trained from five different random initializations (Karamcheti et al., 2021). While it is well known
that individual neurons are often polysemantic (Nguyen et al., 2016; Olah et al., 2020b; Elhage et al., 2022b;
Gurnee et al., 2023) i.e., represent multiple unrelated concepts, we hypothesized that universal neurons
were more likely to be monosemantic (see §A.1), potentially giving an approximation on the number of
independently meaningful neurons. We choose to study models of the same architecture trained on the same
data to have the most favorable experimental conditions for measuring universality to establish a rough
bound for the universality over larger changes. We begin by operationalizing neuron universality in terms of
activation correlations, that is, whether there exist pairs of neurons across different models which consistently
activate on the same inputs. We compute pairwise correlations of neuron activations over 100 million tokens
for every neuron pair across the different seeds and find that only 1-5% of neurons pass a target threshold of
universality compared to random baselines (§ 4.1). We then study these universal neurons in detail, analyzing
various statistical properties of both weights and activations (§ 4.2), and find that they usually have clear
interpretations and taxonomize them into a small number of neuron families (§ 4.3).

In Section 5 we study a more abstract form of universality in terms of neuron weights rather than activations.
That is, rather than understand a neuron in terms of the inputs which cause it to activate, understand a
neuron in terms of the effects the neuron has on later model components or directly on the final prediction.
Specifically, we analyze patterns in the compositional structure of the weights and find consistent outliers in
how neurons affect other network components, constituting very simple circuits. In Section 5.1, we show there
exists a large family of late layer neurons which have clear roles in predicting or suppressing a coherent set of
tokens (e.g., second-person pronouns or single digit numbers), where the suppression neurons typically come
in later layers than the prediction neurons. We then investigate a small set of neurons that leverage the final
layer-norm operation to modulate the overall entropy of the next token prediction distribution (§ 5.2). We
conclude with an analysis of neurons which control the extent to which an attention head attends to the first
token, which empirically controls the output norm of the head, effectively turning a head on or off (§ 5.3).

2 Related Work

Universal Neural Mechanisms Features and circuits like high-low frequency detectors (Schubert et al.,
2021a) and curve circuits (Cammarata et al., 2021) have been found to reoccur in vision models, with some
features even reappearing in biological neural networks (Goh et al., 2021). In language models, recent research
has found similarly universal circuits and components like induction heads (Olsson et al., 2022) and successor
heads (Gould et al., 2023) and that models reuse certain circuit components to implement different tasks
(Merullo et al., 2023). There has also been a flurry of recent work on studying more abstract universal
mechanisms in language models like function vectors (Todd et al., 2023; Hendel et al., 2023), variable binding
mechanisms (Feng and Steinhardt, 2023), and long context retrieval (Variengien and Winsor, 2023). Studying
universality in toy models has provided “mixed evidence” on the universality hypothesis (Chughtai et al.,
2023) and shown that multiple algorithms exist to implement the same tasks (Zhong et al., 2023; Liao et al.,
2023).

Representational Similarity Preceding the statement of the universality hypothesis in mechanistic
interpretability, there has been substantial work measuring representational similarity (Klabunde et al., 2023).
Common methods include canonical correlation analysis-based measures (Raghu et al., 2017; Morcos et al.,
2018), alignment-based measures (Hamilton et al., 2018; Ding et al., 2021; Williams et al., 2022; Duong et al.,
2023), matrix-based measures (Kornblith et al., 2019; Tang et al., 2020; Shahbazi et al., 2021; Lin, 2022;
Boix-Adsera et al., 2022; Godfrey et al., 2023), neighborhood-based measures (Hryniowski and Wong, 2020;
Gwilliam and Shrivastava, 2022), topology-based measures (Khrulkov and Oseledets, 2018; Barannikov et al.,
2022), and descriptive statistics (Wang and Isola, 2022; Lu et al., 2022; Lange et al., 2022). Previous work,
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mostly in vision models, has yielded mixed conclusions on whether networks with the same architecture learn
similar representations. Some studies have found that networks with different initializations “exhibit very low
similarity” (Wang et al., 2018) and “do not converge to a unique basis” (Brown et al., 2023), while others
have shown that networks learn the same low-dimensional subspaces but not identical basis vectors (Li et al.,
2016) and that different models can be linearly stitched together with minimal loss suggesting they learn
similar representations (Bansal et al., 2021).

Analyzing Individual Neurons Many prior interpretability studies have analyzed individual neurons. In
vision models, researchers have found neurons which activate for specific objects (Bau et al., 2020), curves at
specific orientations (Cammarata et al., 2021), high frequency boundaries (Schubert et al., 2021b), multimodal
concepts (Goh et al., 2021), as well as for facets (Nguyen et al., 2016) and compositions (Mu and Andreas,
2020) thereof. Moreover, many of these neurons seem universal across models Dravid et al. (2023). In
language models, neurons have been found to correspond to sentiment (Radford et al., 2017; Donnelly and
Roegiest, 2019), knowledge (Dai et al., 2021), skills (Wang et al., 2022b), de-/re-tokenization (Elhage et al.,
2022a), contexts (Gurnee et al., 2023; Bills et al., 2023), position (Voita et al., 2023), space and time (Gurnee
and Tegmark, 2023), and many other linguistic and grammatical features (Bau et al., 2018; Xin et al., 2019;
Dalvi et al., 2019; 2020; Durrani et al., 2022; Sajjad et al., 2022). More generally, it is hypothesized that
neurons in language models form key-value stores (Geva et al., 2020) that facilitate next token prediction by
promoting concepts in the vocabulary space (Geva et al., 2022). However, many challenges exist in studying
individual neurons, especially in drawing causal conclusions (Antverg and Belinkov, 2021; Huang et al., 2023).

3 Conceptual and Empirical Preliminaries

3.1 Universality

Notions of Universality Universality can refer to many different notions of similarity, each at a different
level of abstraction and with differing measures and methodologies. Similar to Marr’s levels of analysis in
neuroscience (Hamrick and Mohamed, 2020; Marr, 2010), relevant notions of universality are: computational or
functional universality regarding whether a (sub)network implements a particular input-output-behavior (e.g.,
whether the next token predictions for two different networks are the same); algorithmic universality regarding
whether or not a particular function is implemented using the same computational steps (e.g., whether a
transformer trained to sort strings always learns the same sorting algorithm); representational universality,
or the degree of similarity of the information contained within different representations (Kornblith et al.,
2019) (e.g., whether every network represents absolute position in the context); and finally implementation
universality, i.e., whether individual model components learned by different models implement the same
specialized computations (e.g., induction heads (Olsson et al., 2022), successor heads (Gould et al., 2023),
French neurons (Gurnee et al., 2023), inter alia). None of these notions of universality are usually binary, and
the universality between components or computations can range from being formally isomorphic to simply
sharing a common high-level conceptual or statistical motif.

In this work, we are primarily concerned with implementation universality in the form of whether individual
neurons learn to specialize and activate for the same inputs across models. If such universal neurons do exist,
then this is also a simple form of functional universality, as the distinct neurons constitute the final node of
distinct subnetworks which compute the same output.

Dimensions of Variations Universality must be measured over some independent dimension of variation,
i.e., some change in the model, data or, training. For example, model variables include random seed,
model size, hyperparameters, and architectural changes; data variables include the data size, ordering, and
distribution contents; training variables include loss function, optimizer, regularization, finetuning, and
hyperparameters thereof. Assuming that changing random seed is the smallest change, this work primarily
focuses on initialization universality in an attempt to bound the expected similarity of larger changes.
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3.2 Models

We restrict our scope to transformer-based auto-regressive language models (Radford et al., 2018) that
currently power the most capable AI systems (Bubeck et al., 2023). Given an input sequence of tokens
x = [x1, . . . , xt] ∈ X ⊆ Vt from the vocabulary V, a language model M : X → Y outputs a probability
distribution over the vocabulary to predict the next token in the sequence.

We focus on a replication of the GPT2 series of models (Radford et al., 2019) with some supporting experiments
on the Pythia family (Biderman et al., 2023). For a GPT2-small and GPT2-medium architecture (see § B.3
for hyperparameters) we study five models trained from different random seeds, referred to as GPT2-{small,
medium}-[a-e] (Karamcheti et al., 2021).

Anatomy of a Neuron Of particular importance to this investigation is the functional form of the neurons
in the feed forward (also known as multi-layer perceptron (MLP)) layers in the transformer. The output of
an MLP layer given a normalized hidden state x ∈ Rdmodel is

MLP(x) = Woutσ(Winx + bin) + bout (1)

where WT
out, Win ∈ Rdmlp×dmodel are learned weight matrices, bin and bout are learned biases, and σ is

an elementwise nonlinear activation function. For all models we study, σ is the GeLU activation function
σ(x) = xΦ(x) (Hendrycks and Gimpel, 2016). One can analyze an individual neuron j in terms of its
activation σ(wj

inx + bj
in) for different inputs x, or its weights—row j of Win or WT

out which respectively
dictate for what inputs a neuron activates and what effects it has downstream.

We refer the reader to (Elhage et al., 2021) for a full description of the transformer architecture. We employ
standard weight preprocessing techniques described further in B.1.

4 The Search for Universal Neurons

4.1 How Universal are Individual Neurons?

Experiment Inspired by prior work studying common neurons in neural networks (Li et al., 2015; Bau
et al., 2018; Dravid et al., 2023), we compute maximum pairwise correlations of neuron activations across five
different models GPT2-{a, b, c, d, e} to find pairs of neurons across models which activate on the same inputs.
Let N(a) be the set of neurons in model a. For each neuron i ∈ N(a), we compute the Pearson correlation

ρa,m
i,j =

E
[
(vi − µi)(vj − µj)

]
σiσj

(2)

with all neurons j ∈ N(m) in every model m ∈{b, c, d, e}, where µi and σi are the mean and standard
deviation of a vector of neuron activations vi computed across a dataset of 100 million tokens from the Pile
test set (Gao et al., 2020). For a baseline, we also compute ρ̄a,m

i,j , where instead of taking the correlation of
ρ(vi, vj), we compute ρ(vi, (RV)j) for a random dmlp ×dmlp Gaussian matrix R and the matrix of activations
V for all neurons in a particular layer Nℓ(m). In other words, we compute the correlation between neurons
and elements within a random (approximate) rotation of a layer of neurons to establish a baseline correlation
for the case where there does not exist a privileged basis (Elhage et al., 2021; Brown et al., 2023) to verify
the importance of the neuron basis.

For a set of models M we define the excess correlation of neuron i as the difference between the mean
maximum correlation across models and the mean maximum baseline correlation in the rotated basis:

ϱi = 1
|M |

∑
m∈M

(
max

j∈N(m)
ρa,m

i,j − max
j∈NR(m)

ρ̄a,m
i,j

)
(3)
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Figure 2: Summary of neuron correlation experiments in GPT2-medium-a. (a) Distribution of the mean
(over models b-e) max (over neurons) correlation, the mean baseline correlation, and the difference (excess).
(b) The max (over models) max (over neurons) correlation compared to the min (over models) max (over
neuron) correlation for each neuron. (c) Percentage of layer pairs with most similar neuron pairs.

Results Figure 2 summarizes our results. In Figure 2a, we depict the average of the maximum neuron
correlations across models [b-e], the average of the baseline correlations, and the excess correlation i.e., the
left term, the right term, and the difference in (3). While there is no principled threshold at which a neuron
should be deemed universal, only 1253 out of the 98304 neurons in GPT2-medium-a have an excess correlation
greater than 0.5. In Figure 14, we report the (complement) cumulative distribution of these correlation
metrics to show how the number of universal neurons changes with threshold.

To understand if high (low) correlation in one model implies high (low) correlation in all the models, in
Figure 2b we report maxm maxj∈N(x) ρa,m

i,j compared to minm maxj∈N(m) ρa,m
i,j for every neuron i ∈ N(a).

Figure 2b suggests there is relatively little variation in the correlations, as the mean difference between the
max-max and min-max correlation is 0.049 for all neurons and 0.105 for neurons with ϱ > 0.5. Another
natural hypothesis is that neurons specialize into roles based on how deep they are within the network (as
suggested by (Olah et al., 2020b; Elhage et al., 2022a)). In 2c, for each layer l of model a, we compute the
fraction of neurons in layer l that have their most correlated neuron in layer l′ for all ℓ′ in models [b-e].
Averaging across the different models, we observe significant depth specialization, suggesting that neurons do
perform depth specific computations, which we explore further in § 4.3.

We repeat these experiments on GPT2-small and Pythia-160m displayed in Figures 12 and 13 respectively. A
rather surprising finding is that while the percentage of universal neurons (ϱi > 0.5) within GPT2-medium
and Pythia-160M are quite consistent (1.23% and 1.26% respectively), the number in GPT2-small-a is far
higher at 4.16%. We offer additional results and speculations in § C.3.

4.2 Properties of Universal Neurons

We now seek to understand whether there are statistical proprieties associated with whether a neuron is
universal or not, defined as having an excess correlation ϱi > 0.5. For all neurons in GPT2-medium-a,
GPT2-small-a, and Pythia-160m, we compute various summary statistics of their weights and activations.
For activations, we compute the mean, skew, and kurtosis of the pre-activation distribution over 100 million
tokens, as well as the fraction of activations greater than zero, termed activation sparsity. For weights, we
record the input bias bin, the cosine similarity between the input and output weight cos(win, wout), the
weight decay penalty ∥win∥2

2 + ∥wout∥2
2, and the kurtosis of the neuron output weights with the unembedding

kurt(cos(wout, wU )) to measure the composition with the unembedding (Geva et al., 2022; Dar et al., 2022).

In Figure 3, we report these statistics for universal neurons as a percentile compared to all neurons within the
same layer; we choose this normalization to enable comparison across different layers, models, and metrics (a
breakdown per metric and layer for GPT2-medium-a is given in Figure 15). Our results show that universal
neurons do stand out compared to non-universal neurons. Specifically, universal neurons typically have large
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Figure 3: Properties of activations and weights of universal neurons for three different models, plotted as a
percentile compared to neurons in the same layer.

weight norm (implying they are important because the model was trained with weight decay) and have
a large negative input bias, resulting in a large negative pre-activation mean and hence lower activation
frequency. Furthermore, universal neurons have very high pre-activation skew and kurtosis, implying they
usually have negative activation, but occasionally have very positive activation, proprieties we would expect of
monosemantic neurons (Olah et al., 2020b; Elhage et al., 2022b; Gurnee et al., 2023) which only activate when
a specific feature is present in the input. In contrast, non-universal neurons usually have skew approximately
0 and kurtosis approximately 3, identical to a Gaussian distribution. We will discuss the meaning of high
WU kurtosis in § 5.1 and high cos(win, wout) in § C.

4.3 Universal Neuron Families

Motivated by the observation that universal neurons have distributional statistics suggestive of monosemantic-
ity, we zoom-in on individual neurons with ϱ > 0.5 and attempt to group them into a partial taxonimization
of neuron families (Olah et al., 2020a; Cammarata et al., 2021). After manually inspecting many such neurons,
we developed several hundred automated tests to classify neurons using algorithmically generated labels
derived from elements of the vocabulary (e.g., whether a token is_all_caps or contains_digit) and from
the NLP package spaCy (Honnibal et al., 2020). Specifically, for each neuron with activation vector v, and
each test explanation which is a binary vector y over all tokens in the input, we compute the reduction in
variance when conditioned on the explanation:

1 − (1 − β)σ2(v|y = 0) + βσ2(v|y = 1)
σ2(v) (4)

where β is the fraction of positive labels and σ2(·) is the variance of a vector or subset thereof. In words,
Eq 4 measures the change in variance between the original activation distribution, and the weighted (by β)
variance of the distribution slices where yi = 1 and yi = 0. As a useful intuition, this is the same metric used
to decide how to split in a regression tree, where the goal is to find a split which most reduces the variance
in the prediction target. Below, we qualitatively describe the most common families, and find our results
replicate many findings previously documented in the literature.

Unigram Neurons The most common type of neuron we found were unigram neurons, which simply
activate approximately if and only if the current token is a particular word or part of a word. These neurons
often have many near duplicate neurons activating for the same unigram (Figure 16) and appear predominately
in the first two layers (Figure 17). We breakdown activations of neurons responding to alphabetical unigrams
based on the unigram’s position in a word, as common words often have four tokenizations, and find that
duplicate neurons can respond differently to unigram variations (Figures 4a and 16). Such neurons illustrate
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(a) Similar “on” unigram neurons (b) Syntax neuron (c) Place Neurons

Figure 4: Additional examples of universal neuron families in GPT2-medium.

that the token (un)embeddings may not contain all of the relevant token-level information, and that the
model uses neurons to create an “extended” embedding of higher capacity.

Alphabet Neurons A particularly fun subclass of unigram neurons are alphabet neurons (Figure 1a),
which activate most strongly on tokens corresponding to an individual letter, and secondarily on tokens
which begin with the respective letter. For 18 of 26 English letters there exist alphabet neurons with ϱ > 0.5
(Figure 18), with some letters also having several near duplicate neurons.

Previous Token Neurons After finding an example of one neuron which seemed to activate purely as a
function of the previous token (e.g., if it contains a comma; Figure 1b), we decided to rerun our unigram tests
with the labels shifted by one—that is, with the label given by the previous token. These tests surfaced many
more previous token neurons occurring most often in layers 4-6 (see Figure 19 for an additional 25 universal
previous token neurons). Such neurons illustrate the many potentially redundant paths of computations that
can occur which complicates ablation based interpretability studies.

Position Neurons Inspired by the recent work of (Voita et al., 2023), we also run evaluations for position
neurons, neurons which activate as a function of absolute position rather than token or context (Figure 1c).
We follow the procedure of (Voita et al., 2023) (who run their experiments on OPT models with ReLU
activation (Zhang et al., 2022)) by computing the mutual information between activation and context position,
and find similar results, with neurons that have a variety of positional patterns concentrated in layers 0-2 (see
Figure 20 for 20 more neurons). Similar to the unigram neurons, the presence of these neurons is potentially
unexpected given their outputs could be learned directly by the positional embedding at the beginning of the
model with less variance in activation.

Syntax Neurons Using the NLP package spaCy (Honnibal et al., 2020), we label our input data with part-
of-speech, dependency role, and morphological data. We find many individual neurons that selectively activate
for basic linguistic features like negation, plurals, and verb forms (Figure 4b) which are not concentrated to
any part of the network and resemble past findings on linguistic properties (Dalvi et al., 2019; Durrani et al.,
2022). Figure 21 includes 25 more examples.

Semantic Neurons Finally, we found a large number of neurons which activate for semantic features
corresponding to coherent topics (Lim and Lauw, 2023), concepts (Elhage et al., 2022a), or contexts (Gurnee
et al., 2023). Such features are naturally much harder to algorithmically supervise. We use the subdistribution
label from the Pile dataset (Gao et al., 2020) and manually labeled topics from an SVD based topic model as
a best attempt, but this leaves many interpretable neurons undiscovered and uncategorized. In Figure 4c, we
show three regions neurons which activate most strongly on tokens corresponding to places in Canada, Japan,
or Latin America respectively. Figure 22 depicts 30 additional context neurons which activate on specific
subdistributions, with many neurons which always activate for non-english text.
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Figure 5: Example prediction neurons in GPT2-medium-a. Depicts the distribution of logit effects on the
output vocabulary (WU wout) split by token property for 3 different neurons. (a) Prediction neuron increasing
logits of integer tokens between 1700 and 2050 (i.e. years; high kurtosis), (b) Suppression neuron decreasing
logits for tokens containing an open parenthesis (high kurtosis and negative skew), and (c) Partition neuron
boosting tokens beginning with a space and suppressing tokens which do not (high variance).

5 Universal Functional Roles of Neurons

While the previous discussion was primarily focused on analyzing the activations of neurons, and by extension
the features they represent, this section is dedicated to studying the weights of neurons to better understand
their downstream effects. The neurons in this section are examples of action mechanisms (Anthropic, 2023)—
model components that are better thought of as implementing an action rather than purely extracting or
representing a feature, analogous to motor neurons in neuroscience.

5.1 Prediction Neurons

A simple but effective method to understand weights is through logit attribution techniques (Nostalgebraist,
2020; Geva et al., 2022; Dar et al., 2022). Because the final residual stream is the sum of all previous layers,
we can approximate a neuron’s effect on the final prediction logits by simply computing the product between
the unembedding matrix and a neuron output weight WU wout and hence interpret the neuron based on how
it promotes concepts in the vocabulary space (Geva et al., 2022).

When we apply our automated tests from § 4.3 on WU wout rather than the activations for our universal
neurons, we found several general patterns (Figure 5), many individual neurons with extremely clear
interpretations (Figure 24), and clusters of neurons which all affect the same tokens (Figure 25). Specifically,
we find many examples of prediction neurons that positively increase the predicted probability of a coherent
set of tokens while leaving most others approximately unchanged (Fig 5a); suppression neurons that are
similar, except decrease the probability of a group of related tokens (Fig 5b); and partition neurons that
partition the vocabulary into two groups, increasing the probability of one while decreasing the probability
of the other (Fig 5c). The prediction, suppression, and partition motifs can be automatically detected
by studying the moments of the distribution of vocabulary effects given by WU wout. In particular, both
prediction and suppression neurons will have high kurtosis (the fourth moment—a measure of how much
mass is in the tails of a distribution), but prediction neurons will have positive skew and suppression neurons
will have negative skew. Partition neurons will shift the probability of most tokens and have high variance in
overall logit effect. From this, we see almost all universal neurons (ϱ > 0.5) in later layers are one of these
prediction neuron variants (Figure 15).

To better understand the number and location of these prediction neurons, we compute the moment metrics
of cos(WU , wout) for all neurons in all five GPT2-medium models, and show how these statistics vary over
model depth in Figure 6. We find a striking pattern which is quite consistent across the different seeds: after
about the halfway point in the model, prediction neurons become increasingly prevalent until the very end of
the network where there is a sudden shift towards suppression neurons. To ensure this is not just an artifact

9



Published in Transactions on Machine Learning Research (06/2024)

Figure 6: Summary statistics of cosine similarity between neuron output weights (Wout) and token unembed-
ding (WU ) for GPT2-medium-[a-e]. (a,b) Percentiles of kurtosis and skew by layer averaged over [a-e]. (c)
Distribution of skews for neurons with kurtosis greater than 10 in last four layers. Shaded area denotes range
across all five models.

of the tied embeddings (WE = WT
U ) in the GPT2 models, we also run this analysis on five Pythia models

ranging from 410M to 6.9B parameters and find the results are largely the same (Figure 23).

We observed an interesting pattern when examining the activations of suppression neurons: they activate
much more frequently when the next token actually belongs to the set of tokens they suppress the probability
of predicting. In other words, neurons which decrease the probability that the next token is a year (e.g.
“1970”), activate much more often when the next token is actually a year compared to not. We intuit that
these suppression neurons fire when it is plausible but not certain that the next token is from the relevant set.
Combined with the observation that there exist many suppression and prediction neurons for the same token
class (Figure 25), we take this as evidence of an ensemble hypothesis where the model uses multiple neurons
with some independent error that combine to form a more robust and calibrated estimate of whether the
next token is in fact a year.

In addition to being a clean example of an action mechanism (Anthropic, 2023), these results are interesting
as they refine a conjecture made by (Geva et al., 2022). Specifically, rather than “feed-forward layers build
predictions by promoting concepts in the vocabulary space,” we claim late feed-forward (MLP) layers build
predictions by both promoting and suppressing concepts in the vocabulary space. Moreover, it suggests
there are different stages in the iterative inference pipeline (Belrose et al., 2023; Jastrzębski et al., 2017),
where first affirmative predictions are made, and then the distribution is sharpened or made more calibrated
by suppression neurons at the very end. The existence of suppression neurons also sheds light on recent
observations of individual neurons (Bills et al., 2023) and MLP layers (McGrath et al., 2023) suppressing the
maximum likelihood token and being a mechanism for self-repair.

5.2 Entropy Neurons

Because models are trained with weight decay (ℓ2 regularization) we hypothesized that neurons with large
weight norms would be more interesting or important because they come at a higher cost. While most turned
out to be relatively uninteresting (mostly neurons which activate for the beginning of sequence token), the
15th largest norm neuron in GP2-medium-a (L23.945) had an especially interesting property: it had the
lowest variance logit effect WU wout of any neuron in the model; i.e., it only has a tiny effect on the logits. To
understand why a final layer neuron, which can only affect the final logit distribution, has high weight norm
while performing an approximate no-op on the logits, recall the final decoding formula for the probability of
the next token given a final residual stream vector x

p(y|x) = Softmax(WU LayerNorm(x)), LayerNorm(x) = x − E[x]√
Var[x] + ϵ

. (5)
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Figure 7: Summary of (anti-)entropy neurons in GPT2-medium-a compared to 20 random neurons from
final two layers. Entropy neurons have high weight norm (a) with output weights mostly orthogonal to the
unembedding matrix (b). Fixing the activation to larger values causes the final layer norm scale to increase
dramatically (c) while leaving the ranking of the true next token prediction mostly unchanged (d). Increased
layer norm scale squeezes the logit distribution, causing a large increase in the prediction entropy (e; or
decrease for anti-entropy neuron) and an increase or decrease in the loss depending on the model’s baseline
level of under- or over-confidence (f). Legend applies to all subplots.

We hypothesize that the function of this neuron is to modulate the model’s uncertainty over the next token
by using the layer norm to squeeze the logit distribution, in a manner quite similar to manually increasing the
temperature when performing inference. To support this hypothesis, we perform a causal intervention, fixing
the neuron in question to a particular value and studying the effect compared to 20 random neurons from the
last two layers that are not in the top decile of norm or in the bottom decile of logit variance (Figure 7).
We find that intervening on this entropy neuron indeed causes the layer norm scale to increase dramatically
(because of the large weight norm) while largely not affecting the relative ordering of the vocabulary (because
of the low composition), having the effect of increasing overall entropy by dampening the post-layer norm
component of x in the row space of WU .

Additionally, we observed a neuron (L22.2882) with cos(w23.945
out , w22.2882

out ) = −0.886 (i.e., a neuron that writes
in the opposite direction forming an antipodal pair (Elhage et al., 2022b)) that also has high weight norm.
Repeating the intervention experiment, we find this neuron decreases the layer norm scale and decreases the
mean next token entropy, forming an anti-entropy neuron. These results suggest there may be one or more
global uncertainty directions that the model maintains to modulate its overall confidence in its prediction.
However, our experiments with fixed activation value do not necessarily imply the model uses these neurons
to increase the entropy as a general uncertainty mechanism, and we did notice cases in which increasing the
activation of the entropy neuron decreased entropy, suggesting the true mechanism may be more complicated.

We repeat these experiments on GPT2-small-a and find an even more dramatic antipodal pair of (anti-)entropy
neurons in Figure 26. To our knowledge, this is the first documented mechanism for uncertainty quantification
in language models and the second example of a mechanism involving layer norm (Brody et al., 2023).
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Figure 8: Summary of attention (de-)activation neuron results in GPT2-medium-a. (a) Distribution of
heuristic score hn for every pair of neurons and heads compared to random neuron directions R. (b;c) path
ablations effect of neuron L4.3594 on head L5.H0: ablating positive activation reduces attention to BOS (b)
causing the norm to increase (c).

5.3 Attention Deactivation Neurons

In autoregressive models, attention heads frequently place all of their attention on the beginning of sequence
(BOS) token (Xiao et al., 2023). We hypothesise that the model uses the attention to the BOS token as a
kind of (de-)activation for the head, where fully attending to BOS implies the head is deactivated and has
minimal effect. Moreover, we hypothesize that there are individual neurons which control the extent to which
heads attend to BOS.

Recall the output of an attention head od for a destination token d from source tokens s is given by

qd = WQrd, ks = WKrs, Sds = qT
d ks, Ads = softmaxs(M(Sds)√

dh

), vs = WV rs, od = WO

∑
s

Adsvs

where rs/d is the residual stream at the source / destination token, dh is the bottleneck dimension of the
head, and M(·) applies the causal attention mask to the attention scores. The calculation of the attention
pattern Ads via a softmax across the source positions means that the attention given to the source tokens by
a given destination token sums to one.

Assuming the BOS token is always the first token in the context, the vector WOvBOS is constant for all
prompts and contains no semantic information. If it has a low norm, attending to BOS scales down the
outputs of attending to other source positions while maintaining their relative attention because the attention
scores must sum to one. If the BOS output norm is near zero, the head can effectively turn off by only
attending to the BOS token. In practice, the median head in GPT-2-medium-a has a WOvBOS with norm
19.4 times smaller than the average for other tokens.

We can identify neurons which may use this mechanism by a heuristic score hn = WT
outWT

QkBOS for unit
normalized Wout. Positive scores suggest activation of the neuron will increase the attention placed on
BOS, decreasing the output norm of the head, and the opposite for negative scores. Figure 8a shows the
distribution of the scores for all heads in GPT2-medium-a compared to a unit normalized Gaussian matrix R.

For a given neuron, we can measure the effect of activation on the attention to BOS and output norm of a
given head by path ablation (Wang et al., 2022a) of the neuron at a particular destination token. Specifically,
we can measure the difference in BOS attention and norm of the output of the head between the original run
and a forward pass where the contribution of a neuron is deleted (i.e, zero path ablated) from the input of a
particular head at the current token position. We perform this procedure over a random subset of tokens
in the second half of the context to avoid spurious effects stemming from short contexts. Figure 8b and 8c
depict the results of these path ablations for the highest scoring neuron in layer 4 for head 0 in attention
layer 5. This is an example of an attention deactivation neuron—increasing the activation of the neuron
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increases the attention to BOS reducing the output norm of the head ∥od∥. See Figure 27 for 5 additional
examples of attention (de-)activating neurons.

6 Discussion and Conclusion

Findings In this work, we explore the universality of individual neurons in GPT2 language models, and
find that only about 1-5% of neurons pass a certain threshold of universality across models. We have shown
that leveraging universality is an effective unsupervised approach to identify interpretable model components
and important motifs. In particular, those few neurons which are universal are often interpretable, can be
grouped into a smaller number of neuron families, and often develop with near duplicate neurons in the same
model. Some universal neurons also have clear functional roles, like modulating the next token prediction
entropy, controlling the output norm of an attention head, and predicting or suppressing elements of the
vocabulary in the prediction. Moreover, these functional neurons often form antipodal pairs, potentially
enabling collections of neurons to ensemble to improve robustness and calibration. These findings raise useful
lessons and motifs for further interpretability research (§A.2).

Limitations Compared to frontier LLMs, we study small models of only hundreds of million parameters
and tens of thousands of neurons due to the expense of training multiple large scale language models from
different random initializations. We also study a relatively narrow form of universality: neuron universality
over random seeds within the same model family. Studying universality across different model families is
made difficult by tokenization discrepancies, and studying models across larger sizes is difficult due to the
expense of computing all pairwise neuron correlations over a sufficiently sized text corpus. Additionally,
many of our interpretations rely on manual analysis or algorithmic supervision which restricts the scope and
generality of our methods. Moreover, our narrow focus on a subset of individual elements of the neuron basis
potentially obscures important details and ignores the vast majority of overall network computation.

Future Work Each of these limitations suggest avenues for future work. Instead of studying the neuron
basis, our experiments could be replicated on an overcomplete dictionary basis that is more likely to contain
the true model features (Cunningham et al., 2023; Bricken et al., 2023). Motivated by the finding that the
most correlated neurons occur in similar network depths, our experiments could be rerun on larger models
where pairwise correlations are only computed between adjacent layers to improve scalability. Additionally,
the interpretation of common units could be further automated using LLMs to provide explanations (Bills
et al., 2023). Finally, by uncovering interpretable footholds within the internals of the network, our findings
can form the basis of deeper investigations into how these components respond to stimulus or perturbation,
develop over training (Quirke et al., 2023), and affect downstream components to further elucidate general
motifs and specific circuits within language models.
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A Additional Discussion

A.1 Why expect universal neurons to be more monosemantic?

The intuition for the connection comes from Elhage et al. (2022b) which showed that important features
(those that are constructed to have maximum effect on the loss) are the features which get their own dedicated
neuron (making the neuron monosemantic). Since these GPT2 models are training on the same data, the
important features should be similar across the networks. So if monosemantic neurons primarily represent
important features, and the important features are shared (i.e., universal) across the networks, then we would
expect the neurons which are universal across the networks to be representing the same set of important
features.

Another line of argument is to consider the probability of a polysemantic neuron being universal. It is
extremely unlikely that there would exist a pair of neurons which activates for the same k ≫ 0 unrelated
features, assuming unrelated features have roughly similar probabilities of being assigned to neurons. Moreover,
this simple model suggests that as k → 1 it is much more likely for there to exist a neuron which represents
the same set of features.

A.2 What are these observations useful for?

Our motivation here is primarily to improve our understanding of models for interpretability sake, rather than
make models more performant. Specifically, we think interpretability is largely an immature field, without
much grounding theory. Therefore, we think it’s inherently valuable to gain a lot of “empirical surface area”
on real networks to constrain the hypothesis space and develop the theory and practice of interpretability.

Example insights from our paper that might help future interpretability researchers

• Single neuron ablations can be misleading if there is an ensemble of similar neurons or there are
neurons which consistently cancel each other out.

• The depth specialization results and the prediction followed by suppression neuron transition
emphasize the sequential and residual nature or model processing.

• Our results on entropy neurons exemplify a concrete case where it would not be valid to linearize
layer norm.

• Our results on attention deactivation neurons show how certain features might be difficult to interpret,
because they are features which take internal actions rather than represent external inputs.
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B Additional Empirical Details

All of our code and data is available at https://github.com/wesg52/universal-neurons.

Most of our plots in the main text (and therefore neuron indices) correspond to the HuggingFace model
stanford-crfm/arwen-gpt2-medium-x21 with our additional correlation experiments being conducted on
stanford-crfm/alias-gpt2-small-x21 and EleutherAI/pythia-160m.

B.1 Weight Preprocessing

We employ several standard weight preprocessing techniques to simplify calculations (Nanda, 2022).

Folding in Layer Norm Most layer norm implementations also include trainable parameters γ ∈ Rn and
b ∈ Rn

LayerNorm(x) = x − E(x)√
Var(x)

∗ γ + b. (6)

To account for these, we can “fold” the layer norm parameters in to Win by observing that the layer norm
parameters are equivalent to a linear layer, and then combine the adjacent linear layers. In particular, we can
create effective weights

Weff = Win diag(γ) beff = bin + Winb (7)

Finally, we can center the reading weights because the preceding layer norm projects out the all ones vector.
Thus we can center the weights Weff becomes

W
′

eff(i, :) = Weff(i, :) − W̄eff(i, :)

Writing Weight Centering Every time the model interacts with the residual stream it applies a LayerNorm
first. Thus the components of Wout and bout that lie along the all-ones direction of the residual stream have
no effect on the model’s calculation. So, we again mean-center Wout and bout by subtracting the means of
the columns of Wout

W
′

out(:, i) = Wout(:, i) − W̄out(:, i)

Unembed Centering Additionally, since softmax is translation invariant, we modify WU into

W
′

U(:, i) = WU(:, i) − wi

For both of theses, see the transformer lens documentation for more details.

The purpose of all of these translations is to remove irrelevant components and other parameterization degrees
of freedom so that cosine similarities and other weight computations have mean 0.

B.2 Correlation Computations

We compute our correlations over a 100 million token subset of the Pile test set (Gao et al., 2020), tokenized
to a context length of 512 tokens. We compute correlations over all tokens that are not padding, beginning-
of-sequence, or new-line tokens.

Efficient Computation Because storing neuron activations for two models over 100M tokens would be 36
petabytes of data, we require a streaming algorithm. To do so, observe that given a pair of neuron activations
{(x1, y1) , . . . , (xn, yn)} consisting of n pairs, the correlation can be computed as

ρxy =
∑n

i=1 (xi − x̄) (yi − ȳ)√∑n
i=1 (xi − x̄)2

√∑n
i=1 (yi − ȳ)2

=
∑

i xiyi − nx̄ȳ√∑
i x2

i − nx̄2
√∑

i y2
i − nȳ2
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where x̄, ȳ are the sample mean. Therefore, instead of saving all neuron activations, we can maintain four
n_neuron dimensional vectors and one n_neuron × n_neuron matrix corresponding to the running neuron
activation means in model A and model B, a running sum of each neurons squared activation, and a running
sum of pairwise products. At the end of the dataset, we perform the appropriate arithmetic to combine the
results into pairwise correlations for all models.

B.3 Model Hyperparameters

Property GPT-2 Small GPT-2 Medium Pythia 160M
layers 12 24 12
heads 12 16 12
dmodel 768 1024 768
dvocab 50257 50257 50304
dMLP 3072 4096 3072
parameters 160M 410M 160M
context 1024 1024 2048
activation function gelu_new gelu_new gelu
pos embeddings absolute absolute RoPE
rotary percentage N/A N/A 25
precision Float-32 Float-32 Float-16
dataset OpenwebText OpenwebText Pile
pdropout 0.1 0.1 0

Table 1: Hyperparameters of models

C Additional Mysteries

We conclude our investigation by commenting on several miscellaneous results that we think are worth
reporting but that we do not fully understand.

C.1 Cosine and Activation Frequency

An unexpectedly strong relationship we observed is the correlation between activation frequency of a neuron
and the cosine similarity between its input and output weight vectors cos(win, wout) as shown in Figure 9.
Almost all neurons with a very high activation frequency have input and output weights in almost opposite
directions. These neurons are predominantly in the first quarter of network depth and have small excess
correlation, i.e., they are not universal as measured by activation. We also find it noteworthy that there
appears to be an approximate ceiling and floor on the cosine similarity of approximately ±0.8.

C.2 Duplication and Universality

While neuron redundancy has been observed in models before (Casper et al., 2021; Dalvi et al., 2020) and
large models can be effectively pruned (Xia et al., 2023), we were surprised by the number of seemingly
duplicate universal neurons we observed (e.g., Figure 16 or the 105 BOS neurons we observed). Naively, this
is surprising, as it seems wasteful to dedicate multiple neurons to the same feature. Larger models have more
capacity and are empirically much more effective so why have redundant neurons when you could instead
have one neuron with twice the output weight norm?

A few potential explanations are (1) these models were trained with weight decay, creating an incentive to
spread out the computation. (2) Dropout—however, in these models dropout is applied to the output of the
MLP layer, rather than the MLP activations themselves. (3) These neurons are vestigial remnants that were
useful earlier in training (Quirke et al., 2023), but are potentially stuck in a local minima and are no longer
useful. (4) The duplicated neurons are only activating the same on common features, but are polysemantic
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Figure 9: Activation frequency of neuron (fraction of activation values greater than zero) versus cosine
similarity of neuron input and output weights for GPT2-small-a (left), GPT2-medium-a (center), and Pythia-
160M (right).

Figure 10: Distribution of cosine similarities of most similar neurons measured by input weights (top) and
output weights (bottom) for GPT2-small-a (left), GPT2-medium-a (middle), and Pythia-160M (right) colored
by universality (ϱ > 0.5).
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Figure 11: Empirical distribution of max neuron correlation averaged across models (left), max baseline
correlation averaged across models (middle), and the difference denoted as the excess correlation (right).

with different sets of rarer features. (5) Ensembling, where each neuron computes the same feature but with
some independent error, and together form an ensemble with lower average error.

By measuring redundancy in terms of similarity in weights (Figure 10), we find very few neurons which are
literal duplicates, providing more evidence for (4) and (5). Based on the much higher level of similarity for
universal neurons, it is possible this effect is relatively small in general.

C.3 Scale and Universality

As mentioned in § 4, GPT2-medium and Pythia-160M have a consistent number of universal neurons (1.23%
and 1.26% respectively), while GPT2-small-a has many more 4.16%. In Figure 11 we show the distribution of
max, baseline, and excess correlations for all models, where we see that GPT2-medium and Pythia-160M
have almost identical distributions while GPT2-small is an outlier. GPT2-small also has correspondingly
greater weight redundancy as shown in Figure 10. One explanation for this is the number of universal neurons
decreases in larger models. This is potentially implied by results from (Bills et al., 2023) who observe larger
models have fewer neurons which admit high quality natural language interpretations. However, without
additional experiments on larger models trained from random seeds, this remains an open question.

D Additional Results

Figure 12: Summary of neuron correlation experiments in GPT2-small-a. (a) Distribution of the mean (over
models b-e) max (over neurons) correlation, the mean baseline correlation, and the difference (excess). (b)
The max (over models) max (over neurons) correlation compared to the min (over models) max (over neuron)
correlation for each neuron. (c) Percentage of layer pairs with most similar neuron pairs.
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Figure 13: Summary of neuron correlation experiments in Pythia-160m. (a) Distribution of the mean (over
models b-e) max (over neurons) correlation, the mean baseline correlation, and the difference (excess). (b)
The max (over models) max (over neurons) correlation compared to the min (over models) max (over neuron)
correlation for each neuron. (c) Percentage of layer pairs with most similar neuron pairs.

Figure 14: Complement cumulative distribution function for correlation metrics across all model families.
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Figure 15: Distribution of neuron metrics for universal and non-universal neurons in GPT2-medium-a by
layer. From top to bottom: the kurtosis of cos(WU , wout), the skew of cos(WU , wout), cosine similarity
between input and output weight cos(win, wout), weight decay penalty ∥win∥2

2 +∥wout∥2
2, activation frequency

(percentage of activations greater than 0), the pre-activation skew, and the pre-activation kurtosis.
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Figure 16: Duplicate unigram neurons in GPT2-medium-a. Each subplot depicts several neurons which
activate on a particular token, broken down by whether this token exists as a standalone word, is the first
token in a multi-token word, or is a non-first token in a multi-token word, versus all other tokens (e.g., “an,”
“an|agram,” “Gig|an|tism”).
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Figure 17: Universal unigram neurons in GPT2-medium-a.
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Figure 18: Universal alphabet neurons in GPT2-medium-a.
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Figure 19: Universal previous token neurons in GPT2-medium-a.
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Figure 20: Universal position neurons in GPT2-small-a.
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Figure 21: Universal syntax neurons in GPT2-medium-a.
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Figure 22: Universal context neurons in GPT2-medium-a.
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Figure 23: Distribution of vocabulary composition statistics for five different Pythia models measured over
layers. Left shows percentiles of cos(WU , Wout) kurtosis. Right shows percentiles of cos(WU , Wout) skew
broken down by whether neuron has cos(WU , Wout) kurtosis greater than or less than 10.
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Figure 24: Universal prediction neurons in GPT2-medium-a.
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Figure 25: Prediction neurons for the same feature in GPT2-medium-a. Left column depicts logit effect
broken down by vocabulary item per neuron and right column shows activation value broken down by true
next token per neuron.
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Figure 26: Summary of (anti-)entropy neurons in GPT2-small-a compared to 20 random neurons from
final two layers. Entropy neurons have high weight norm (a) with output weights mostly orthogonal to the
unembedding matrix (b). When activated, this causes the final layer norm scale to increase dramatically
(c) while leaving the relative ordering over the next token prediction mostly unchanged (d). Increased layer
norm scale squeezes the logit distribution, causing a large increase in the prediction entropy (e; or decrease
for anti-entropy neuron) and an increase or decrease in the loss depending on the model’s baseline level of
under- or over-confidence (f). Legend applies to all subplots.
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Figure 27: Further examples of attention activation and deactivation neurons. Row 1: A15H8 with L14N411,
Row 2: A15H8 with L14N2335, Row 3: A15H8 with L14N1625, Row 4: A20H4 with L19N2509, Row 5:
A22H7 with L20N2114
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