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Abstract
Diffusion models have demonstrated excellent po-
tential for generating diverse images. However,
their performance often suffers from slow genera-
tion due to iterative denoising. Existing distilla-
tion methods either require significant amounts
of offline computation for generating synthetic
training data, or need to perform expensive on-
line learning with the help of real data. In this
work, we present a novel technique called BOOT,
that overcomes these limitations with an efficient
data-free distillation algorithm. The core idea
is to learn a time-conditioned model that pre-
dicts the output of a pre-trained diffusion model
teacher given any time-step. Such a model can
be efficiently trained based on bootstrapping from
two consecutive sampled steps. Furthermore, our
method can be easily adapted to large-scale text-
to-image diffusion models, which are challenging
for conventional methods given the fact that the
training sets are often large and difficult to ac-
cess. We demonstrate the effectiveness of our
approach on several benchmarks, achieving com-
parable generation quality while being orders of
magnitude faster than the diffusion teacher. The
text-to-image results show that BOOT is able to
handle highly complex distributions, shedding
light on efficient generative modeling. Please
check our project page: https://jiataogu.
me/boot/ for more results.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Nichol & Dhariwal, 2021; Song et al., 2020b) have be-
come the de-facto tools for various generative applications,
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Figure 1. Curated samples of our distilled single-step model.

including images (Dhariwal & Nichol, 2021; Rombach et al.,
2021; Ramesh et al., 2022; Saharia et al., 2022), videos (Ho

https://jiataogu.me/boot/
https://jiataogu.me/boot/


Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Figure 2. Comparison of Consistency Model (Song et al., 2023)
(red ↑) and BOOT (black ↓) highlighting the opposing pathways.

et al., 2022b;a), 3D (Poole et al., 2022; Watson et al., 2022;
Gu et al., 2023), audio (Liu et al., 2023) and text (Li et al.,
2022) generation. Compared to many alternative generative
approaches such as GANs (Goodfellow et al., 2014a; Karras
et al., 2021) or VAEs (Kingma & Welling, 2013), diffusion
models are arguably much more stable to train without the
need of balancing two modules, and thus less prone to issues
such as mode collapse or posterior collapse. Despite the
empirical success, inference from standard diffusion models
are often time-consuming (50 ∼ 1000× slower than single-
step models like GANs), causing challenges to deploy on
consumer devices. The reason is that diffusion models, by
design, employ an iterative sampling process.

Previous studies proposed using knowledge distillation to
improve the inference speed (Hinton et al., 2015). Specifi-
cally, a faster student model can be trained to replicate the
output of a pre-trained diffusion model. In this work, we fo-
cus on learning single-step models that require only one neu-
ral function evaluation (NFE). However, conventional meth-
ods, such as (Luhman & Luhman, 2021), necessitate execut-
ing the full teacher sampling to generate synthetic targets
for every student update, which is not practical for distilling
large diffusion models, such as StableDiffusion (SD, Rom-
bach et al., 2021). Recently, several techniques have been
proposed to avoid sampling using the concept of “bootstrap”.
For example, (Salimans & Ho, 2022) gradually halves the
inference steps based on the student of the previous stage,
while (Song et al., 2023) and (Berthelot et al., 2023) train
single-step denoisers by enforcing self-consistency between
adjacent student outputs along the same diffusion trajec-
tory. However, these approaches rely on the availability
of real data to simulate the intermediate diffusion states as
input. This exposes significant limitations when applying
these methods to scenarios where the desired real data is not
accessible or very large.

In this paper, we present BOOT, a data-free distillation
method for denoising diffusion models based on bootstrap-
ping. BOOT is partially motivated by the observation made

by (Song et al., 2023) that all points on the same diffusion
trajectory (also known as PF-ODE (Song et al., 2020b)) have
a deterministic mapping between each other. Different from
(Song et al., 2023) that sought self-consistency from any xt

to x0, BOOT predicts all possible xt given the same noise
point xT and a time-indicator t. Since our model gθ always
reads pure Gaussian noise, it eliminates the need to sample
from real data. Learning all xt from the same xT enables
bootstrapping: it is easier to predict xt if the model has
already learned to generate xt′ where t′ > t. Formulating
the bootstrapping in this way poses additional challenges,
such as noisy sample prediction, which is non-trivial for
neural networks. To tackle this, we learn the student model
from a novel Signal-ODE which is derived from the original
PF-ODE. We further design the objectives and boundary
conditions to enhance the sampling quality. In this way,
we enable efficient inference of large diffusion models in
scenarios where the original training corpus is inaccessible
due to privacy or other concerns.

In the experiments, we first demonstrate the efficacy of
BOOT on various challenging image generation bench-
marks, including unconditional and class-conditional set-
tings. Next, we show that the proposed method can be easily
adopted to distill text-to-image diffusion models.

2. Method
2.1. Signal-ODE

We consider a time-conditioned generative model gθ(ϵ, t),
which takes random noise ϵ as input, and approximates
the intermediate output of a pretrained diffusion model:
gθ(ϵ, t) ≈ ODE-Solver(fϕ, ϵ, T → t), where ϵ ∼
N (0, I) and fϕ is the teacher denoising network. This
approach eliminates the need to sample from real data
during training. The final sample can be obtained as
gθ(ϵ, 0) ≈ x0. However, it poses a challenge to train gθ
effectively, as neural networks struggle to predict partially
noisy images (Berthelot et al., 2023), leading to out-of-
distribution (OOD) problems and additional complexities
in learning gθ accurately. To overcome the aforementioned
challenge, we propose an alternative approach where we
predict yt = (xt − σtϵ)/αt. In this case, yt represents the
low-frequency "signal" component of xt, which is easier
for neural networks to learn. The initial noise for diffusion
is denoted by ϵ. This prediction target is reasonable since
it aligns with the boundary condition of the teacher model,
where y0 = x0. Furthermore, we can derive an iterative
equation from Eq. (6) for consecutive timesteps:

ys =
(
1− eλs−λt

)
fϕ(xt, t) + eλs−λtyt, (1)

where xt = αtyt + σtϵ, and λt = − log(αt/σt) represents
the "negative half log-SNR." Notably, the noise term ϵ auto-
matically cancels out in Eq. (1), indicating that the model
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Figure 3. Training pipeline of BOOT. s and t are two consecutive timesteps where s < t. From a noise map ϵ, the objective of BOOT
minimizes the difference between the output of a student model at timestep s, and the output of stacking the same student model and a
teacher model at an earlier time t. The whole process is data-free.

always learns from the signal space. We can further obtain a
continuous version of Eq. (1) by letting s→ t− as follows:

dyt

dt
= −λ′

t · (fϕ(xt, t)− yt) , yT ∼ pϵ (2)

where λ′
t = dλ/dt, and pϵ epresents the boundary distribu-

tion of yt. It’s important to note that Eq. (2) differs from the
PF-ODE, which directly relates to the score function of the
data. In our case, the ODE, which we refer to as "Signal-
ODE," is specifically defined for signal prediction. At each
timestep t, a fixed noise ϵ is injected and denoised by the
diffusion model fϕ. The Signal-ODE implies a "ground-
truth" trajectory for sampling new data. For example, one
can initialize a reasonable yT = ϵ ∼ N (0, I) and solve
the Signal-ODE to obtain the final output y0. Although the
computational complexity remains the same as conventional
DDIM, we will demonstrate in the next section how we can
efficiently approximate yt using bootstrapping objectives.

2.2. Learning with Bootstrapping

Our objective is to learn yθ(ϵ, t) ≈ yt as a single-step
prediction model using neural networks, rather than solving
the signal-ODE with Eq. (2). By matching both sides of
Eq. (2), we can readily obtain the loss function:

LDE
θ = Eϵ,t

∣∣∣∣∣∣∣∣dyθ(ϵ, t)

dt
+ λ′

t · (fϕ(x̂t, t)− yθ(ϵ, t))

∣∣∣∣∣∣∣∣2
2

.

(3)
In Eq. (3), we use yθ(ϵ, t) to estimate yt, and x̂t =
αtyθ(ϵ, t) + σtϵ represents the corresponding noisy im-
age. Instead of using forward-mode auto-differentiation,
which can be computationally expensive, we can approx-
imate the above equation with finite difference due to the
1-dimensional nature of t:

dyθ(ϵ, t)

dt
≈ yθ(ϵ, t)− yθ(ϵ, s)

δ
(4)

where s = t−δ and δ is the discrete step size. In practise, we
apply stop-gradient operator over fϕ for training stability.

Different from CM-based methods (Song et al., 2023; Berth-
elot et al., 2023), we do not require an exponential moving
average (EMA) copy of the student parameters to avoid
collapsing. This avoids potential slow convergence and sub-
optimal solutions. The proposed objective is unlikely to
degenerate because there is an incremental improvement
term in the training target, which is mostly non-zero. In
other words, we can consider yθ as an exponential moving
average of fϕ, with a decaying rate of 1 − δλ′

t. This en-
sures that the student model always receives distinguishable
signals for different values of t.

Error Accumulation A critical challenge in learning
BOOT is the "error accumulation" issue, where imper-
fect predictions of yθ on large t can propagate to sub-
sequent timesteps. While similar challenges exist in
other bootstrapping-based approaches, it becomes more
pronounced in our case due to the possibility of out-of-
distribution inputs x̂t for the teacher model, resulting from
error accumulation and leading to incorrect learning signals.
To mitigate this, we employ two methods: (1) We uniformly
sample t throughout the training time, despite the potential
slowdown in convergence. (2) We use a higher-order solver
(e.g., Heun’s method (Ascher & Petzold, 1998)) to compute
the bootstrapping target with better estimation.

Boundary Condition In theory, the boundary yT can
have arbitrary values since αT = 0, and the value of yT

does not affect the value xT = ϵ. However, λ′
t is un-

bounded at t = T , leading to numerical issues in opti-
mization. As a result, the student model must be learned
within a truncated range t ∈ [tmin, tmax]. This necessi-
tates additional constraints at the boundaries to ensure that
αtmaxyθ(ϵ, tmax) + σtmaxϵ follows the same distribution as
the diffusion model. In this work, we address this through
an auxiliary boundary loss:

LBC
θ = Eϵ∼N (0,I)

[
∥fϕ(ϵ, tmax)− yθ(ϵ, tmax)∥22

]
. (5)

Here, we enforce the student model to match the initial
denoising output. In our early exploration, we found that
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Figure 4. Comparison between the outputs of DDIM/Signal-ODE
and our distilled model given the same prompt and initial noise
input. By definition, signal-ODE converges to the same final
sample as the original DDIM, while the distilled single-step model
does not necessarily follow.

the boundary condition is crucial for the single-step student
to fully capture the modeling space of the teacher, especially
in text-to-image scenarios. Failure to learn the boundaries
tends to result in severe mode collapse problems.

2.3. Distillation of Text-to-Image Models

Distillation with Guidance Our approach can be readily
applied for distilling conditional diffusion models, such as
text-to-image generation (Ramesh et al., 2022; Rombach
et al., 2021; Balaji et al., 2022), where a conditional de-
noiser fϕ(xt, t, c) is learned. Inference of these models
requires necessary post-processing steps. For instance, one
can perform classifier-free guidance (CFG, Ho & Salimans,
2022) to amplify the conditioning. We directly use the CFG
modified output to replace the original fϕ in the training ob-
jectives. Optionally, similar to (Meng et al., 2022), we can
also learn student model condition on both t and w (CFG
weight) to reflect different guidance strength.

Pixel or Latent Our method can be easily adopted in
either pixel (Saharia et al., 2022) or latent space (Rom-
bach et al., 2021) models without specific code change.
Pixel-space models (Saharia et al., 2022) typically involve
learning cascaded models (one base model + a few super-
resolution (SR) models) to increase the output resolutions
progressively. We can also distill the SR models with BOOT
into one step by conditioning both the SR teacher and the
student with the output of the distilled base model.

3. Experiments
3.1. Experimental Setups

Implementation Details We first validate the results of
the proposed BOOT on diffusion models trained on standard

Steps FFHQ LSUN ImageNet
FID fps FID fps FID fps

DDPM 250 5.4 0.2 8.2 0.1 11.0 0.1

DDIM
50 7.6 1.2 13.5 0.6 13.7 0.6
10 18.3 5.3 31.0 3.1 18.3 3.3
1 225 54 308 31 237 34

Ours 1 9.0 54 23.4 32 16.3 34

Table 1. Comparison for image generation benchmarks on FFHQ,
LSUN and class-conditioned ImageNet. For ImageNet, numbers
are reported without using CFG (w = 1).

image generation benchmarks: FFHQ 64×64 (Karras et al.,
2017), class-conditional ImageNet 64 × 64 (Deng et al.,
2009) and LSUN Bedroom 256 × 256 (Yu et al., 2015).
For controlled comparison, we train all teacher diffusion
models by ourselves separately on each dataset with the
signal prediction objective. Moreover, for ImageNet, we
also test the performance of CFG where the student models
are trained with random conditioning on w ∈ [1, 5].

For text-to-image generation scenarios, we directly apply
BOOT on open-sourced diffusion models in both pixel-
space (IF, Saharia et al., 2022) and latents space (SD, Rom-
bach et al., 2021). Thanks to the data-free nature, we don’t
need to access the original training set. Instead, we only
need the prompt conditions to distill both models. In this
work, we consider general purpose prompts generated by
users. Specifically, we adopt the text prompts from diffu-
siondb (Wang et al., 2022), a large-scale prompt dataset.

Following Song et al. (2023), student models have similar
architecture as the teacher, with nearly identical number of
parameters. We include additional details in the appendix.

Evaluation Metrics For image generation, results are
compared according to Fréchet Inception Distance (FID,
(Heusel et al., 2017), lower is better), over 50, 000 real
samples from the corresponding datasets. For text-to-image
tasks, we measure the zero-shot CLIP score (Radford et al.,
2021) for measuring the faithfulness of generation given
5000 randomly sampled captions from COCO2017 (Lin
et al., 2014) validation set. In addition, we also report the
inference speed in fps on single A100 GPU.

3.2. Results

Quantitative Results We first evaluate the proposed
method on standard image generation benchmarks. The
quantitative comparison with the standard diffusion infer-
ence methods like DDPM (Ho et al., 2020) and the deter-
ministic DDIM (Song et al., 2020a) are shown in Table 1.
Despite lagging behind the 50-step DDIM inference, BOOT
significantly improves the performance 1-step inference,
and achieves better performance against DDIM with around
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Figure 5. Uncurated samples of {50, 10, 1} DDIM sampling steps
and the proposed BOOT from (a) FFHQ (b) LSUN (c) ImageNet
benchmarks, respectively, given the same set of initial noise input.

Figure 6. Uncurated samples of {50, 10, 1} DDIM sampling steps
and the proposed BOOT from the SD teacher, given the same set
of initial noise input and random prompts.

10 denoising steps, while maintaining ×10 speed-up. Note
that, the speed advantage doubles if CFG is considered.

We also conduct quantitative evaluation on text-to-image
tasks. Using the SD teacher, we obtain a CLIP-score of
0.254 on COCO2017, a slight degradation compared to the
50-step DDIM results (0.262), while it generates 2 orders
of magnitude faster, rendering real-time applications.

Visual Results We show the qualitative comparison in
Figures 5 and 6 for image generation and text-to-image,
respectively. For both cases, navïe 1-step inference fails
completely, and the diffusion generally outputs grey and
ill-structured images with fewer than 10 NFEs. In contrast,
BOOT is able to synthesize high-quality images that are
visually close (Figure 5) or semantically similar (Figure 6)
to teacher’s results with much more steps. Unlike the stan-
dard benchmarks, distilling text-to-image models (e.g., SD)
typically leads to noticeably different generation from the
original diffusion model, even starting with the same initial
noise. We hypothesize it is a combined effect of highly
complex underlying distribution and CFG. We show more

Figure 7. Ablation Study. (a) vs. (b): The additional boundary loss
in § 2.2 alleviates the mode collapsing issue and prompts diversity
in generation. (c) vs. (d): Uniform time training yields better
generation compared with progressive time training.

results including pixel-space models in the appendix.

3.3. Analysis

Importance of Boundary Condition We demonstrate the
necessity of incorporating the boundary loss in Figure 7 (a)
(b) where given the same noise inputs, we show the student
outputs based on various target timesteps. As yθ(ϵ, t) tracks
the signal-ODE output which gets more averaged results for
t approaching 1. Yet, without proper boundary constraints,
the results get the same sharpness across timesteps, produc-
ing over-saturated and non-realistic images. This indicates
the learned student model has completely failed to capture
the teacher distribution, yielding serious mode collapse.

Progressive v.s. Uniform Time Training We also show
comparison of training strategies in Figure 7 (c) (d). Com-
pared to the proposed way of sampling t uniformly, one
may gain additional efficiency with a fixed schedule – pro-
gressively decreasing t while the training proceeds. While
such method is reasonable given the fact that the student is
always initialized from tmax, and gradually learns to pre-
dicts the clean signals (small t) during training. However,
progressive training tends to produce more artifacts than
the navïve sampling approach (see visual comparison in
Figure 7). We conjecture that it is more likely to accumulate
unfixable errors in progressive training.

4. Conclusion
In summary, this paper introduced a novel technique BOOT
to distill diffusion models into single step. The method did
not require the presence of any real or synthetic data by
learning a time-conditioned student model with bootstrap-
ping objectives. The proposed approach achieved compara-
ble generation quality while being significantly faster than
the diffusion teacher, and was also applicable to large-scale
text-to-image generation, showcasing its versatility.
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Appendices

Figure 8. Curated samples of our distilled single-step model from DeepFloyd IF with the prompts from diffusiondb (Wang et al., 2022).



Data-free Distillation of Denoising Diffusion Models with Bootstrapping

Appendices

Figure 9. Curated samples of our distilled single-step model from DeepFloyd IF with the prompts from diffusiondb (Wang et al., 2022).
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Figure 10. Curated samples of our distilled single-step model from DeepFloyd IF with the prompts from diffusiondb (Wang et al., 2022).



Data-free Distillation of Denoising Diffusion Models with Bootstrapping

A. Preliminaries
A.1. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are a class of deep generative models
that generate data by progressively removing noise from the initial input. In this work, we consider continuous-time diffusion
models (Song et al., 2020b; Kingma et al., 2021; Karras et al., 2022) in the variance preserving formulation (Salimans & Ho,
2022). One can perform ancestral sampling (Ho et al., 2020) to synthesize new data from the learned model. While the
conventional method is stochastic, (Song et al., 2020a) shows that one can follow a deterministic DDIM sampler to generate
the final sample x0, which follows the update rule:

xs = (σs/σt)xt + (αs − αtσs/σt)fϕ(xt, t), s < t. (6)

As noted in previous studies (Lu et al., 2022), Eq. (6) is equivalent to the first-order ODE solver for the underlying
probability-flow (PF) ODE (Song et al., 2020b). Therefore, the step size δ = t − s has to be small to mitigate the error
accumulation. Additionally, using higher-order solvers such as Runge-Kutta (Süli & Mayers, 2003), Heun (Ascher &
Petzold, 1998) and other solvers (Lu et al., 2022; Jolicoeur-Martineau et al., 2021) are able further to reduce the number of
function evaluations (NFEs). Yet, these approaches are unable to work in single-step scenarios.

A.2. Distillation of Diffusion Models

Orthogonal to the development of ODE solvers, distillation-based techniques have been proposed to learn faster student
models from the pre-trained diffusion teacher. The most straightforward way is to perform direct distillation (Luhman &
Luhman, 2021) where a student model gθ is forced to learn from the diffusion model output, which itself is computationally
expensive:

LDirect
θ = Eϵ∼N (0,I)∥gθ(ϵ)− ODE-Solver(fϕ, ϵ, T → 0)∥22, (7)

where ODE-solver stands for any solvers like DDIM as mentioned above. While this naive approach shows promising
results, it usually requires over 50 steps of evaluations to get reasonable distillation targets, which itself becomes a bottleneck
in learning large-scale models.

Alternatively, recent studies (Salimans & Ho, 2022; Song et al., 2023; Berthelot et al., 2023) have been proposed to avoid
running the full diffusion path during distillation. Take the consistency model (CM, Song et al., 2023) as an example. A
time-conditioned student model gθ(xt, t) is trained to predict self-consistent outputs along the diffusion trajectory in a
bootstrap fashion:

LCM
θ = Ext∼q(xt|x),s,t∼[0,T ],s<t∥gθ(xt, t)− gθ−(x̂s, s)∥22, (8)

where x̂s = ODE-Solver(fϕ,xt, t→ s), typically with single step evaluation using Eq. (6).

Here, θ− is typically an exponential moving average (EMA) of the student parameters θ, which is important for these
approaches, as the self-consistency objectives are likely to collapse to trivial solutions by always predicting similar outputs.
After the training is done, one can generate samples by executing gθ(xT , T ) with a single NFE. Note that, Eq. (8) requires
sampling xt from the real data sample x, which is the core of bootstrapping: the model learns to denoise more and more
noisy input until xT . However, the original training data x for distillation is inaccessible in many tasks, for example,
text-to-image generation models that require billions of paired data for training. A possible solution is using a different
dataset for distillation; however, the mismatch in the distributions of the two datasets would result in suboptimal distillation
performance.

B. Algorithm Details
B.1. Notations

In this paper, we use fϕ(x, t) to represent the diffusion model that denoises the noisy sample x into its clean version, and
we derive the DDIM sampler (Eq. (6)) following the definition of Song et al. (2020a): we deterministically synthesize xs
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based on the following update rule:

xs = ODE-Solver(fϕ, ϵ, T → s)

= αsfϕ(xt, t) + σs

(
xt − αtfϕ(xt, t)

σt

)
=

σs

σt
xt +

(
αs − αt

σs

σt

)
fϕ(xt, t)

(9)

where 0 ≤ s < t ≤ T . Here we use ODE-Solver to represent the DDIM sampling from a random noise xT = ϵ ∼
N (0, I), and iteratively obtain the sample at step s. In practice, we can generalize to higher-order ODE-solvers for better
efficiency.

For distillation, we define the student model with gθ(ϵ, t) which approximates xt along the diffusion trajectory above. To
avoid directly predicting the noisy samples xt with neural networks, we re-parameterize gθ(ϵ, t) = αtyθ(ϵ, t) + σtϵ where
the noise part is constant throughout t except the scale factor σt. In this way, the learning goal yθ(ϵ, t) is to predict a new
variable yt: the “signal” part of the original variable yt = (xt − σtϵ)/αt.

B.2. Derivation of Signal-ODE

Based on the definition of yt = (xt − σtϵ)/αt, we can derive the following equations from Eq. (9):

xs =
σs

σt
xt +

(
αs − αt

σs

σt

)
fϕ(xt, t)

⇒ αsys + σsϵ =
σs

σt
(αtyt + σtϵ) +

(
αs − αt

σs

σt

)
fϕ(xt, t)

⇒ αsys +��σsϵ = αt
σs

σt
yt +��σsϵ+

(
αs − αt

σs

σt

)
fϕ(xt, t)

⇒ ys =
αtσs

σtαs
yt +

(
1− αtσs

σtαs

)
fϕ(xt, t)

=
(
1− eλs−λt

)
fϕ(xt, t) + eλs−λtyt,

(10)

where we use the auxiliary variable λt = − log(αt/σt) for simplifying the equations. As mentioned in § 2.1, we can further
obtain the continuous form of Eq. (10) by assigning t− s→ 0. That is, Eq. (10) is equivalent to that shown in the following:

ys =
(
1− eλs−λt

)
fϕ(xt, t) + eλs−λtyt

⇒ yt − ys = −
(
1− eλs−λt

)
(fϕ(xt, t)− yt)

⇒ yt − ys

t− s
= −eλt − eλs

t− s
· e−λt (fϕ(xt, t)− yt)

⇒ dyt

dt
= −��eλt · λ′

t ·���e−λt (fϕ(xt, t)− yt)

(11)

where λ′
t = dλt/dt. Given a fixed noise input ϵ, Eq. (11) defines an ODE over yθ w.r.t t, which we call Signal-ODE, as

both sides of the equation only operate in “low-frequency” signal space.
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B.3. Bootstrapping Objectives

The bootstrapping objectives in Eq. (3) can be easily derived by taking the finite difference of Eq. (8). Here we use yθ(ϵ, t)
to estimate yt, and use x̂t to represent the noisy image obtained from yθ(ϵ, t).

Lθ = Eϵ,t

[
ω̃t

∣∣∣∣∣∣∣∣dyθ(ϵ, t)

dt
+ λ′

t · (fϕ(x̂t, t)− yθ(ϵ, t))

∣∣∣∣∣∣∣∣2
2

]

≈ Eϵ,t

[
ω̃t∥

yθ(ϵ, s)− yθ(ϵ, t)

δ
− λ′

t (fϕ(x̂t, t)− yθ(ϵ, t)) ∥22
]

= Eϵ,t

[
ω̃t

δ2
∥yθ(ϵ, s)− [yθ(ϵ, t) + δλ′

t (fϕ(x̂t, t)− yθ(ϵ, t))] ∥22
]

= Eϵ,t

[
ω̃t

δ2
∥yθ(ϵ, s)− ŷθ(ϵ, s)∥22

]
,

(12)

where s = t− δ, and ŷθ(ϵ, s) is the approximated target. ω̃t is the additional weight, where by default ω̃t = 1. To stabilize
training, a stop-gradient operation SG(.) is typically included:

Lθ = Eϵ,t

[
ω̃t

δ2
∥yθ(ϵ, s)− SG(ŷθ(ϵ, s))∥22

]
. (13)

In our experiments, we also find that it helps use ω̃t = 1/λ′2
t for text-to-image generation.

We can take advantage of higher-order solvers for a more accurate target that reduces the discretization error. For example,
one can use Heun’s method (Ascher & Petzold, 1998) to first calculate the intermediate value ỹθ(ϵ, s), and then the final
approximation ŷθ(ϵ, s):

ỹθ(ϵ, s) = yθ(ϵ, t) + δλ′
t (fϕ(x̂t, t)− yθ(ϵ, t)) , x̃s = αsỹθ(ϵ, s) + σsϵ

ŷθ(ϵ, s) = yθ(ϵ, t) +
δλ′

t

2
[(fϕ(x̂t, t)− yθ(ϵ, t)) + (fϕ(x̃s, s)− ỹθ(ϵ, s))] .

(14)

Using Heun’s method essentially doubles the evaluations of the teacher model during training, while the add-on overheads
are manageable as we stop the gradients to the teacher model.

B.4. Training Algorithm

We summarize the training algorithm of BOOT in Algorithm 1, where by default we assume conditional diffusion model
with classifier-free guidance and DDIM solver. Here, for simplicity, we write λ′

t ≈ (1− αtσs

σtαs
)/δ. For unconditional models,

we can simply remove the context sampling part.

C. Connections to Existing Literature
C.1. Physics Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs, Raissi et al., 2019) are powerful approaches that combine the strengths of
neural networks and physical laws to solve ODEs. Unlike traditional numerical methods, which rely on discretization and
iterative solvers, PINNs employ machine learning techniques to approximate the solution of ODEs. The key idea behind
PINNs is to incorporate physics-based constraints directly into the training process of neural networks. By embedding the
governing equations and available boundary or initial conditions as loss terms, PINNs can effectively learn the underlying
physics while simultaneously discovering the solution. This ability makes PINNs highly versatile in solving a wide range of
ODEs, including those arising in fluid dynamics, solid mechanics, and other scientific domains.

Despite being motivated from different perspectives, BOOT is similar to PINNs at high level which shares the same goals of
learning ODE/PDE solvers directly through neural networks. In the PINNs domain, solving ODEs can also be simplified into
two objectives, i.e. the differential equation (DE) loss (Eq. (3)) and the boundary condition (BC) loss (Eq. (5)). The major
difference is that, PINNs are mainly focusing on learning complex ODEs/PDEs for single problems where neural networks
are used as the universal approximator to ease the discretization difficulties of traditional solvers, while the data space is
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Algorithm 1 Distillation using BOOT for Conditional Diffusion Models.
Require: pretrained diffusion model fϕ, initial student parameter from the teacher θ ← ϕ, step size δ, learning rate η, CFG

weight w, context dataset D, negative condition n = ∅, tmin, tmax, β.
1: while not converged do
2: Sample noise input ϵ ∼ N (0, I)
3: Sample context input c ∼ D
4: Sample t ∼ (tmin, tmax), s = min (t− δ, tmin))
5: Compute noise schedule αt, σt, αs, σs

6: Compute λ′
t ≈ (1− αtσs

σtαs
)/δ

7: Generate the model predictions:
8: yt = yθ(ϵ, t, c), ys = yθ(ϵ, s, c), ytmax

= yθ(ϵ, tmax, c)
9: Generate the noisy sample x̂t = αtyt + σtϵ

10: Compute the denoised target:
11: f̃t = fϕ(x̂t, t,n) + w · (fϕ(x̂t, t, c)− fϕ(x̂t, t,n))

12: f̃tmax
= fϕ(ϵ, tmax,n) + w · (fϕ(ϵ, tmax, c)− fϕ(ϵ, tmax,n))

13: Compute the bootstrapping loss LBS
θ =

1

(δλ′
t)

2
∥ys − SG(yt + δλ′

t(f̃t − yt))∥22

14: Compute the boundary loss LBC
θ = ∥ytmax

− f̃tmax
∥22

15: Update model parameters θ ← θ − η · ∇θ

(
LBS
θ + βLBC

θ

)
16: end while
17: return Trained model parameters θ

relatively low-dimensional. In contrast, in BOOT, we are trying to learn single-step generative models that can synthesize
data in high-dimensional space (e.g., millions of pixels) from random noise input and conditions (e.g., labels, prompts),
which, to the best of our knowledge, no existing work has applied similar methods in generative modeling. Besides, standard
PINNs usually compute the derivatives (Eq. (3)) directly with auto-differentiation, while in this paper, we take the finite
difference method and propose a bootstrapping-based algorithm.

C.2. Consistency Models / TRACT

The most related previous works to our work are Consistency Models (Song et al., 2023), and concurrently TRACT (Berthelot
et al., 2023), which propose bootstrapping-style algorithms that distill the diffusion models to map an intermediate noisy
training example at time step t to the teacher’s t-step denoising outputs following the DDIM inference procedure. The
student’s training target is constructed by first running the teacher model with one step, followed by the self-teacher with
t− 1 steps. As illustrated in Figure 2, BOOT adopts a different direction of performing bootstrapping, where it starts from
the Gaussian noise prior and maps it to an intermediate step t in one shot. This change makes a significant difference in the
modeling implications, as one does not require the presence of any training data and can achieve data-free distillation, which
none of the prior works are capable of.

C.3. Single-step Generative Models

BOOT is also related to other single-step generative models including VAEs (Kingma & Welling, 2013) and GANs (Good-
fellow et al., 2014b), which aims to synthesize data in a single forward pass. Compared to VAEs, BOOT does not require an
encoder network. Thanks to the power of the underlying diffusion model, BOOT can produce higher-contrast and more
realistic samples. Compared to GANs, BOOT does not require a discriminator or critic network. In addition, the distillation
process of BOOT enables better-controlled exploration of the text-image joint space, which is explored by the pretrained
diffusion models, resulting in more coherent and realistic samples in text-guided generation. BOOT is also more stable to
learn. By contrast, GANs are hard to train due to their adversarial nature.

C.4. Improving Efficiency of Diffusion Models

Speeding up inference of diffusion models is a broad area. Recent works and also our work (Luhman & Luhman, 2021;
Salimans & Ho, 2022; Meng et al., 2022; Song et al., 2023; Berthelot et al., 2023) aim at reducing the number of diffusion
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model inference steps via distillation. Aside from distillation methods, other representative approaches include advanced
ODE solvers (Karras et al., 2022; Lu et al., 2022), low-dimension space diffusion (Rombach et al., 2021; Vahdat et al., 2021;
Jing et al., 2022; Gu et al., 2022), and improved diffusion targets (Lipman et al., 2023; Liu et al., 2022). BOOT is orthogonal
and complementary to these approaches, and can theoretically benefit from improvements made in all these aspects.

C.5. Knowledge Distillation for Generative Models

Knowledge distillation (Hinton et al., 2015) has seen successful applications in learning efficient generative models, including
model compression (Kim & Rush, 2016; Aguinaldo et al., 2019; Fu et al., 2020; Hsieh et al., 2023) and non-autoregressive
sequence generation (Gu et al., 2017; Oord et al., 2018; Zhou et al., 2019). We believe that BOOT could inspire a new
paradigm of distilling powerful generative models without requiring access to the training data.

D. Additional Experimental Settings
D.1. Datasets

While the proposed method is data-free, we list the additional dataset information that used to train our teacher diffusion
models:

FFHQ (https://github.com/NVlabs/ffhq-dataset) contains 70k images of real human faces in resolution of
1024× 1024. In most of our experiments, we resize the images to a low resolution at 64× 64 for early-stage benchmarking.

LSUN (https://www.yf.io/p/lsun) is a collection of large-scale image dataset containing 10 scenes and 20 object
categories. Following previous works (Song et al., 2023), we choose the category Bedroom (3M images), and train an
unconditional diffusion teacher. All images are resized to 256× 256 with center-crop. We use LSUN to validate the ability
of learning in relative high-resolution scenarios.

ImageNet-1K (https://image-net.org/download.php) contains 1.28M images across 1000 classes. We di-
rectly merge all the training images with class labels and train a class-conditioned diffusion teacher. All images are resized
to 64× 64 with center-crop. To support test-time classifier-free guidance, the teacher model is trained with 0.2 unconditional
probability.

As we do not need to train our own teacher models for text-to-image experiments, no additional text-image pairs are required
in this paper. However, our distillation still requires the text conditions for querying the teacher diffusion. To better capture
and generalize the real user preference of such diffusion models, we choose to adopt the collected prompt datasets:

DiffusionDB (https://poloclub.github.io/diffusiondb/) contains 14M images generated by Stable Dif-
fusion using prompts and hyperparameters specified by users. For the purpose of our experiments, we only keep the text
prompts and discard all model-generated images as well as meta-data and hyperparameters so that they can be used for
different teacher models. We use the same prompts for both latent and pixel space models.

D.2. Text-to-Image Teachers

We directly choose the recently open-sourced large-scale diffusion models as our teacher models. More specifically, we
looked into the following models:

StableDiffusion (SD) (https://github.com/Stability-AI/stablediffusion) is an open-source text-to-
image latent diffusion model (Rombach et al., 2021) conditioned on the penultimate text embeddings of a CLIP ViT-
H/14 (Radford et al., 2021) text encoder. Different standard diffusion models, SD performs diffusion purely in the
latent space. In this work, we use the checkpoint of SD v2.1-Base (https://huggingface.co/stabilityai/
stable-diffusion-2-1-base) as our teacher which first generates in 64 × 64 latent space, and then directly
upscaled to 512× 512 resolution with the pre-trained VAE decoder. The teacher model was trained on subsets of LAION-
5B (Schuhmann et al., 2022) with noise prediction objective.

DeepFloyd IF (IF) (https://github.com/deep-floyd/IF) is a recently open-source text-to-image model with
a high degree of photorealism and language understanding. IF is a modular composed of a frozen text encoder and three
cascaded pixel diffusion modules, similar to Imagen (Saharia et al., 2022): a base model that generates 64× 64 image based
on text prompt and two super-resolution models (256× 256, 1024× 1024). All stages of the model utilize a frozen text

https://github.com/NVlabs/ffhq-dataset
https://www.yf.io/p/lsun
https://image-net.org/download.php
https://poloclub.github.io/diffusiondb/
https://github.com/Stability-AI/stablediffusion
https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://huggingface.co/stabilityai/stable-diffusion-2-1-base
https://github.com/deep-floyd/IF
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Image Generation Text-to-Image
Hyperparameter FFHQ LSUN ImageNet SD-Base IF-I-L IF-II-M

Architecture
Denosing resolution 64× 64 256× 256 64× 64 64× 64 64× 64 256× 256
Base channels 128 128 192
Multipliers 1,2,3,4 1,1,2,2,4,4 1,2,3,4
# of Resblocks 1 1 2
Attention resolutions 8,16 8,16 8,16 – Default –
Noise schedule cosine cosine cosine
Model Prediction signal signal signal
Text Encoder - - - CLIP T5 T5

Training
Loss weighting uniform uniform uniform λ′−2

t λ′−2
t λ′−2

t

Bootstrapping step size 0.04 0.04 0.04 0.01 0.04 0.04
CFG weight - - 1 ∼ 5 7.5 7.0 4.0
Learning rate 1e-4 1e-4 3e-4 2e-5 2e-5 2e-5
Batch size 128 128 1024 64 64 32
EMA decay rate 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
Training iterations 500k 500k 300k 500k 500k 100k

Table 2. Hyperparameters used for training BOOT. The CFG weights for text-to-image models are determined based on the default value
of the open-source codebase.

Figure 11. The distilled student is able to trade generation quality with diversity based on CFG weights.

encoder based on the T5 (Raffel et al., 2020) to extract text embeddings, which are then fed into a UNet architecture enhanced
with cross-attention and attention pooling. Models were trained on 1.2B text-image pairs (based on LAION (Schuhmann
et al., 2022) and few additional internal datasets) with noise prediction objective. In this paper, we conduct experiments
on the first two resolutions (64× 64, 256× 256) with the checkpoints of IF-I-L-v1.0 (https://huggingface.co/
DeepFloyd/IF-I-L-v1.0) and IF-II-M-v1.0 (https://huggingface.co/DeepFloyd/IF-II-M-v1.0).

D.3. Model Architectures

We follow the standard U-Net architecture (Nichol & Dhariwal, 2021) for image generation benchmarks and adopt the
hyperparameters similar in f-DM (Gu et al., 2022). For text-to-image applications, we keep the default architecture setups
from the teacher models unchanged. As mentioned in the main paper, we initialize the weights of the student models directly
from the pretrained checkpoints and use zero initialization for the newly added modules, such as target time and CFG weight
embeddings. We include additional architecture details in the Table 2.

https://huggingface.co/DeepFloyd/IF-I-L-v1.0
https://huggingface.co/DeepFloyd/IF-I-L-v1.0
https://huggingface.co/DeepFloyd/IF-II-M-v1.0
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Figure 12. Latent space interpolation of the student model distilled from the IF teacher. We randomly sample two noises to generate
images (shown in red boxes) given the same text prompts, and then linearly interpolate the noises to synthesize images shown in the
middle. All images are generated at 64× 64 in a single step, and upscaled to 256× 256 in a single step given the input noise.

D.4. Training Details

All models for all the tasks are trained on the same resources of 8 NVIDIA A100 GPUs for 500K updates. Training roughly
takes 3 ∼ 7 days to converge depending on the model sizes. We train all our models with the AdamW (Loshchilov & Hutter,
2017) optimizer, with no learning rate decay or warm-up, and no weight decay. Standard EMA to the weights is also applied
for student models. Since our methods are data-free, there is no additional overhead on data storage and loading except for
the text prompts, which are much smaller and can be efficiently loaded into memory.

Learning the boundary loss requires additional NFEs during each training step. In practice, we apply the boundary loss less
frequently (e.g., computing the boundary condition every 4 iterations and setting the loss to be 0 otherwise) to improve the
overall training efficiency. Note that distilling from the class-conditioned / text-to-image teachers requires multiple forward
passes due to CFG, which relatively slows down the training compared to unconditional models.

Distilling from the DeepFloyd IF teacher requires learning from two stages. In this paper, we can easily achieve that by first
distilling the first-stage model into single-step with BOOT, and then distilling the upscaler model based on the output of the
first-stage student. Following the original paper (Saharia et al., 2022), noise augmentation is also applied on the first-stage
output where we set the noise-level as 250 *. For more training hyperparameters, please refer to Table 2.

E. Additional Analysis
E.1. Comparison of Learned Trajectory

We show a comparison of the original diffusion path, the proposed signal ODE and the output of our single-step distilled
model with different target times in Figure 4.

E.2. Effect of CFG Weights

In Figure 11, we also show an example of the learned model with various CFG weight as inputs. Similar to the findings in
(Meng et al., 2022), the BOOT student can easily learn to adapt the teacher distribution based on the guidance strength (w).

*https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_
if/pipeline_if_superresolution.py#L715

https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py#L715
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py#L715
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Figure 13. With fixed noise, we can perform controllable generation by swapping the keywords from the prompts. The prompts are chosen
from the combination of portrait of a {owl, raccoon, tiger, fox, llama, gorilla, panda} wearing { a t-shirt, a jacket, glasses, a crown} {
drinking a latte, eating a pizza, reading a book, holding a cake} cinematic, hdr. All images are generated from the student distilled from
IF teacher given the same noise input at 64× 64 in a single step, and upscaled to 256× 256 in a single step given the same noise input.

E.3. Latent Space Interpolation

We show a visualization of latent space interpolation results in Figure 12, where the student model is distilled from the
pretrained IF teacher. The smooth transition of the results demonstrates that the distilled student model has learned a smooth
and continuous latent space, enabling potential applications such as video generation and semantic-level editing.

E.4. Text-controlled Generation

In Figure 13, we show an example of controllable generation by fixing the noise input and only edit on the prompts. Similar
to the original diffusion teacher model, the BOOT distilled student retains all abilities of disentangled representation which
supports fine-grained control with consistent styles.

F. Limitations and Future Work
BOOT is a knowledge distillation algorithm, which by nature requires a pre-trained teacher model. Also by design, the
sampling quality of BOOT is upper bounded by that of the teacher. Besides, BOOT may produce lower quality samples
compared to other distillation methods (Song et al., 2023; Berthelot et al., 2023) in settings where ground-truth data are easy
to use, which can potentially be remedied by combining methods. In future work, we would like to explore jointly training
the teacher and the student such that diffusion is “distillation aware”. Beyond that, it would be interesting to consider
training a single-step diffusion model from scratch with a similar form of BOOT.

G. Additional Samples from BOOT
Finally, we provide additional qualitative comparisons for the unconditional models of FFHQ 64× 64 (Figure 14), LSUN
256× 256 (Figure 15), the class-conditional model of ImageNet 64× 64 (Figure 16), and comparisons for text-to-image
generation based on DeepFloyd-IF (64× 64 in Figures 17 and 20, 256× 256 in Figure 1) and StableDiffusion (512× 512
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Figure 14. Uncurated samples from FFHQ 64× 64. All corresponding samples use the same initial noise for the DDIM teacher and the
single-step BOOT student.

in Figures 19 and 21).
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Figure 15. Uncurated samples from LSUN Bedroom 256 × 256. All corresponding samples use the same initial noise for the DDIM
teacher and the single-step BOOT student.
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Figure 16. Uncurated class-conditioned samples from ImageNet 64× 64. All corresponding samples use the same initial noise for the
DDIM teacher and the single-step BOOT student. Classes from top to bottom: cowboy boot, volcano, golden retriever, teapot, daisy. The
diffusion model uses CFG with w = 3, and our student model conditions on the same weight.
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Figure 17. Uncurated text-conditioned image generation distilled from DeepFloyd IF (the first stage model, images are at 64× 64). All
corresponding samples use the same initial noise for the DDIM teacher and the single-step BOOT student. The specific prompts are
shown above the images.
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Figure 18. Given the 64× 64 outputs from Figure 17, we also show comparison for the second-stage models which upscale the images to
256× 256. All corresponding samples use the same initial noise for the DDIM teacher and the single-step BOOT student.
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Figure 19. Uncurated text-conditioned image generation distilled from StableDiffusion (latent diffusion in 64× 64, images are upscaled
to 512× 512 with the pre-trained VAE decoder). All corresponding samples use the same initial noise for the DDIM teacher and the
single-step BOOT student. We use the same prompts as in Figure 17 for better comparison.
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Figure 20. Uncurated text-conditioned image generation distilled from DeepFloyd IF (the first stage model, images are at 64× 64) given
sampled text prompts from diffusiondb (Wang et al., 2022) randomly. All corresponding samples use the same initial noise for the DDIM
teacher and the single-step student. Besides, we also show curated examples from the two-stage distilled model at 256× 256 in Figure 1.
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Figure 21. Uncurated text-conditioned image generation distilled from StableDiffusion (latent diffusion in 64× 64, images are upscaled
to 512 × 512 with the pre-trained VAE decoder) given sampled text prompts from diffusiondb (Wang et al., 2022) randomly. All
corresponding samples use the same initial noise for the DDIM teacher and the single-step student.


