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Abstract

We study the convergence to local Nash equilibria of gradient methods for two-
player zero-sum differentiable games. It is well-known that such dynamics converge
locally when S ≻ 0 and may diverge when S = 0, where S ⪰ 0 is the symmetric
part of the Jacobian at equilibrium that accounts for the “potential” component of
the game. We show that these dynamics also converge as soon as S is nonzero
(partial curvature) and the eigenvectors of the antisymmetric part A are in general
position with respect to the kernel of S. We then study the convergence rates when
S ≪ A and prove that they typically depend on the average of the eigenvalues
of S, instead of the minimum as an analogy with minimization problems would
suggest. To illustrate our results, we consider the problem of computing mixed
Nash equilibria of continuous games. We show that, thanks to partial curvature,
conic particle methods – which optimize over both weights and supports of the
mixed strategies – generically converge faster than fixed-support methods. For
min-max games, it is thus beneficial to add degrees of freedom “with curvature”:
this can be interpreted as yet another benefit of over-parameterization.

1 Introduction

Min-max optimization is notoriously subtler than minimization, even in convex-concave settings.
While many of the proof techniques for minimization have a natural equivalent in the min-max
world, some common intuitions fail to transfer. The picture is clear for strongly convex-strongly
concave (SC-SC) min-max games: all the classical gradient methods converge exponentially (for
small enough step-sizes) with worst-case convergence rates dependent on the strong convexity and
strong concavity parameters µx, µy. But, most famously perhaps, for bilinear min-max games the
last iterate of simultaneous Gradient Descent-Ascent (GDA) diverges, while the Proximal Point (PP)
method converges, and alternating GDA and the continuous-time limit of all of these algorithms –
Gradient Flow (GF) – exhibit a cycling behavior.

Based on those two extreme cases, it still seems that part of our intuition from minimization, where
the last-iterate convergence rate is indeed determined by the strong convexity parameter, is preserved.
In this paper, we argue that this intuition is in fact overly pessimistic, and that gradient methods
behave in general more favorably in the min-max setting than in the minimization setting.

Let us first look at a basic example. Consider a bilinear min-max game regularized by a quadratic
term only in one scalar variable:

min
x∈Rd

max
y∈Rd

x⊤Py +
α

2
x2
1.
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(a) Local convergence of the GF iterates for a fixed draw of P ∈ R2×2 and various values of α. Only the final
phase of the dynamics is shown, so here we see the iterates evolve along the “dominant” eigenspace of M (the
subspace along which convergence is the slowest).

(b) Observed and predicted (µ̃M ) normalized conver-
gence rate r/η of GDA with a small step-size η, i.e.,∥∥xk

∥∥ +
∥∥yk

∥∥ = Θ((1 − r)k), vs. regularization
strength α (the higher the faster). Each color rep-
resents one draw of P ∈ R2×2.

(c) Spectrum of the Jacobian M for a fixed draw of
P ∈ R3×3 (green) and its approximation by Equa-
tion (3.1) (gray)

Figure 1: Convergence of gradient methods on a random bilinear game regularized by α
2 x

2
1 for small

step-sizes. The fact that µ̃M , and so r/η, scale linearly with α (for small α) is explained by Prop. 3.1.

Here there is no strong convexity in either player (so µx = µy = 0), yet as observed on Fig. 1a, Fig. 1b,
when P ∈ Rd×d is random with independent standard normal entries, GDA (with a small step-size)
typically converges at an exponential rate that scales linearly with α.1

As we will see, this phenomenon is a consequence of the existing theory for general smooth min-max
games

min
x∈Rn

max
y∈Rm

f(x, y) (1.1)

with a local Nash equilibrium (NE), or local saddle point, z∗ = (x∗, y∗). It is well-known from the
dynamical systems literature that GF converges locally to z∗ if

µ̃M := min
λ∈Sp(M)

ℜ(λ) > 0, with M =

[
∇2

xxf ∇2
xyf

−∇2
xyf

⊤ −∇2
yyf

]
(z∗) ∈ R(n+m)×(n+m)

the Jacobian of the skewed gradient field at z∗, and where Sp(·) denotes the spectrum, i.e., the set of
eigenvalues. For our starting basic example, this quantity2 can be visualized in Fig. 1c. Moreover, µ̃M

also characterizes the convergence behavior of gradient methods in the leading order in the step-size
η: they all converge to z∗ with the rate ηµ̃M +O(η2), see the Appendix for a review.3

While the condition µ̃M > 0 is very general and tight, it is not obvious how to control or interpret it.
Our purpose with this paper is to explore what this condition entails and to emphasize some of its
surprising consequences.

1Julia code for the numerical experiments is available at https://github.com/guillaumew16/
local_cvgce_minmax.

2In numerical analysis and stability theory, the quantity −µ̃M is known as the spectral abscissa of −M .
3More precisely, gradient methods converge locally (for small enough step-sizes) if minλ∈Sp(M) ℜ(λ) > 0,

and only if minλ∈Sp(M)\{0} ℜ(λ) ≥ 0. Throughout this paper we will assume for simplicity M invertible so
that those two quantities are equal.

2

https://github.com/guillaumew16/local_cvgce_minmax
https://github.com/guillaumew16/local_cvgce_minmax


The rest of the paper is organized as follows. In Sec. 2 we show that, generically, µ̃M > 0 as long
as the problem has partial curvature, i.e. the diagonal blocks of M are non-zero. In Sec. 3, we
study more precisely the case of games where the “interaction” component dominates the “potential”
component, i.e., when ∇2

xxf(z
∗),∇2

yyf(z
∗) ≪ ∇2

xyf(z
∗). For such games, in a certain random

setting, we show that µ̃M scales as the average of the eigenvalues of the potential part, instead of
the minimum as an analogy with minimization problems would suggest. In Sec. 4 we consider the
computation of mixed Nash equilibria of continuous games using particle methods, a setting where
the convergence under partial curvature has a striking consequence. By optimizing over both the
weights and supports of the mixed strategies, one obtains dynamics that generically converge faster
than fixed-support methods, even when the latter are using the optimal supports.

For ease of exposition, in most of the paper we focus on the local convergence of GF. We discuss the
convergence of discrete time algorithms in Sec. 3.2.

1.1 Related work

Throughout this paper, by “convergence” we mean convergence of the last iterate to a (local) NE,
while a different line of work also considers convergence of the averaged iterate [Nem04], and another
considers convergence to any critical point [ALW21]. Also to prevent possible confusion, let us
mention a related but distinct line of work [DH19; Doa22] that considers using different step-sizes to
update the x and the y variables. The resulting two-timescale dynamics can be analyzed globally
assuming a min-max analog of the Polyak-Łojasiewicz inequality, using quite different considerations
than the ones developed in this paper.

Analysis of GDA and PP for SC-SC, bilinear or convex-SC games. The fact that PP converges
for SC-SC and bilinear min-max games is well-established since at least [Roc76]; for a modern
reformulation, see e.g. [MOP20]. The convergence of simultaneous GDA for SC-SC games and its
divergence for bilinear games is also a classical fact, see e.g. [LS19; Lu22]. The cycling behavior of
alternating GDA for bilinear games is proved in [BGP20, Theorem 4].

As shown more recently in [NK17, Appendix G] and [ZWLG22, Theorem 6], convexity in x,
strong concavity in y and non-degeneracy of the interaction component are in fact sufficient to
ensure µ̃M > 0, and so local convergence of GDA. The setting of the former work corresponds
to ∇2

xxf(z
∗) = 0, −∇2

yyf(z
∗) ≻ 0 and ∇2

xyf(z
∗) full-row-rank, extended in the latter work to

∇2
xxf(z

∗) ⪰ 0. Those two works also provide bounds on µ̃M for those specific cases in terms of the
least eigenvalues of −∇2

yyf(z
∗) and of ∇2

xyf(z
∗)∇2

xyf(z
∗)⊤.

Spectral analysis-based convergence analyses. Our approach to analyzing min-max algorithms

is to directly study the properties of the update operator (e.g., of T (z) = z −
(

∇xf
−∇yf

)
(z) for

simultaneous GDA). Specifically, by a classical result on discrete-time dynamical systems, the local
exponential convergence is characterized by the spectral radius of that operator’s Jacobian. This
approach is used for example in [Gid+19] to analyze the local convergence behavior of alternating
GDA with negative momentum, and in [AMLG20] to derive tight convergence bounds – dependent
explicitly on η and Sp(M) – for simultaneous GDA and multi-step Extra-Gradient.

Average-case analysis of the (local) convergence rate. In [PS20; DPS21], the authors analyze
the convergence of gradient methods for affine operator problems – i.e., for finding z such that
M(z − z∗) = 0 – when M is a random normal matrix with a known spectral distribution. They
derive average-case optimal methods for this setting. Our analysis in Sec. 3 also has an average-case
flavor, but our random model is different: we assume that the symmetric S and antisymmetric parts
A of M are independent and that S ≪ A. In particular we do not require M to be normal (i.e., S and
A do not commute a priori, which is the typical case in min-max optimization).

Hypocoercivity. In the context of partial differential equations (PDEs), the phenomenon that a linear
PDE ∂tut = −Lut may exhibit linear convergence to 0 even when the generator L is not coercive, is
called hypocoercivity and is studied in detail in [Vil09]. This is precisely the infinite-dimensional
analog of the phenomenon studied in the present paper: still denoting by S,A the symmetric resp.
antisymmetric parts of M , coercivity of L corresponds to S ≻ 0, while hypocoercivity corresponds to
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µ̃M > 0. Specifically, [Vil09] shows how to construct Lyapunov functions to establish hypocoercivity
and convergence rates of certain PDEs, by exploiting properties of the iterated commutators of S
and A. By contrast our focus is on the finite-dimensional case, where it is easier and more natural to
directly study the spectrum of M .

1.2 Notation

For any matrix T ∈ Rd×d or Cd×d, denote by Sp(T ) ⊂ C its spectrum, i.e., the set of its eigenvalues,
and by ρ(T ) = maxλ∈Sp(T ) |λ| its spectral radius. Recall that the spectral radius is distinct from the
operator norm, which is the largest singular value, although they coincide for Hermitian matrices.
Denote eigenspaces as Eλ(T ) =

{
z ∈ Cd; Tz = λz

}
and let Eigvecs(T ) =

⋃
λ∈Sp(T ) Eλ(T ) the

set of all (complex) eigenvectors. ∥·∥ denotes Euclidean or Hermitian norm. For a collection of
square matrices (resp. scalars) (Ck)k, Diag((Ck)) denotes the (block-)diagonal matrix with blocks
(resp. coefficients) (Ck)k.

2 Characterization of local convergence

Consider the general smooth min-max game of Equation (1.1) and assume M is invertible. We
decompose M into its symmetric and antisymmetric parts as

M =

[
∇2

xxf ∇2
xyf

−∇2
xyf

⊤ −∇2
yyf

]
(z∗) =:

[
Q P

−P⊤ R

]
, S :=

[
Q 0
0⊤ R

]
, A :=

[
0 P

−P⊤ 0

]
.

By the second-order optimality condition in the definition of NE, Q ⪰ 0 and R ⪰ 0.

Following [Let+19], S and A can be thought of intuitively as the “potential” resp. “interaction” (or
Hamiltonian) components of the two-player zero-sum game (1.1). Indeed, consider the quadratic

game minx∈Rn maxy∈Rm

{
1
2

(
x
y

)⊤

∇2f(z∗)

(
x
y

)
= 1

2x
⊤Qx− 1

2y
⊤Ry + x⊤Py

}
, which is

essentially sufficient to understand the local behavior of GF for (1.1) around z∗. Then we can interpret
the terms in Q and R as quadratic potentials to be optimized independently by each player, with the
bilinear term in P capturing all of the interaction between the players.

Partial curvature generically suffices. Let us recall that µ̃M = minλ∈Sp(M) ℜ(λ) governs the
local convergence of GF around the local NE z∗. It is a general fact that this quantity is nonnegative
(the proof is included below). In the following theorem, we give necessary and sufficient conditions
for it to be positive, in terms of geometric conditions on Q,R and P .
Theorem 2.1. The following conditions are equivalent:

(i) µ̃M > 0.

(ii) Eigvecs(A) ∩KerS = {0}.

(iii) For any eigenvector x of PP⊤ (i.e., left-singular vector of P ), x ̸∈ KerQ or P⊤x ̸∈ KerR.

(iv) For any eigenvector y of P⊤P (i.e., right-singular vector of P ), Py ̸∈ KerQ or y ̸∈ KerR.

As a consequence of Thm. 2.1, the condition µ̃M > 0 holds generically in the following sense: for
any fixed S ̸= 0, the set of matrices P such that µ̃M > 0 is dense and open in Rn×m. In particular,
this property holds with probability 1 if P is drawn from an absolutely continuous distribution and is
independent from Q and R, as in the experiment of Fig. 1.

Proof. Let λ ∈ Sp(M) and z ∈ Cn+m non-zero such that Mz = (S + A)z = λz. Since S and A
are real and symmetric resp. antisymmetric,

z⊤Sz = z⊤Sz = (z⊤Sz)⊤ = z⊤Sz, so z⊤Sz ∈ R

and z⊤Az = z⊤Az = (z⊤Az)⊤ = −z⊤Az, so z⊤Az ∈ iR.

So by taking the real part in z⊤(S +A)z = λ ∥z∥2,

ℜ(λ) ∥z∥2 = z⊤Sz = ℜ(z)⊤Sℜ(z) + ℑ(z)⊤Sℑ(z) ≥ 0

4



since S = Diag(Q,R) ⪰ 0. This shows that µ̃M ≥ 0.

Now let us show the equivalence of the conditions.

(ii) =⇒ (i): By contraposition, suppose there exists λ ∈ Sp(M) with ℜ(λ) = 0, and let z non-zero such
that Mz = λz. Then z⊤Sz = ℜ(λ) ∥z∥2 = 0, so z ∈ KerS. So Mz = Az = λz, and
z ∈ (Eλ(A) ∩KerS) \ {0}.

(i) =⇒ (ii): By contraposition, suppose there exists λ ∈ Sp(A) and a non-zero z ∈ Eλ(A) ∩ KerS.
Since A is antisymmetric, then ℜ(λ) = 0. On the other hand, Mz = (S+A)z = Az = λz,
i.e., λ ∈ Sp(M). So µ̃M ≤ ℜ(λ) = 0.

(i) =⇒ (iii), (iv): By contraposition, suppose there exists an eigenvector x of PP⊤ such that x ∈ KerQ and
P⊤x ∈ KerR, and denote σ ∈ R such that PP⊤x = σ2x (since PP⊤ ⪰ 0). Then

M

(
iσ x
P⊤x

)
=

[
Q P

−P⊤ R

](
iσ x
P⊤x

)
=

(
σ2x

−iσP⊤x

)
= −iσ

(
iσ x
P⊤x

)
and so −iσ ∈ Sp(M). This shows (i) =⇒ (iii), and (i) =⇒ (iv) follows analogously.

(iii), (iv) =⇒ (ii): By contraposition, suppose there exists λ = iσ ∈ Sp(A) and a non-zero z = (x, y) ∈
Eλ(A) ∩KerS. Expanding the blocks in Az = λz,{

Py = iσx

−P⊤x = iσy
and so

{
P⊤Py = σ2y

PP⊤x = σ2x.

Moreover, this implies that x = 0 ⇐⇒ y = 0, and since z ̸= 0, then both x ̸= 0 and
y ̸= 0. So x is an eigenvector of PP⊤ and, since Sz = 0, x ∈ KerQ and P⊤x = −iσy ∈
KerR, which contradicts (iii). Likewise, y is an eigenvector of P⊤P and y ∈ KerR and
Py = iσx ∈ KerQ, which contradicts (iv).

Geometric interpretation using real vectors. We draw the attention of the reader to the fact
that (ii) involves complex eigenvectors. For a rephrasing in terms of real objects, note that if

z ∈ Eiσ(A) with σ ∈ R, then A [ℜ(z) ℑ(z)] = [ℜ(z) ℑ(z)]
[
0 σ
−σ 0

]
; geometrically, Fiσ(A) =

span(ℜ(z),ℑ(z)) is a “rotation plane” of the GF for the bilinear game minx maxy x
⊤Py, in the

sense that the projection of GF on Fiσ(A) is a circular motion with constant speed σ. Condition (ii)
expresses that for each such Fiσ(A), there exists an eigenspace Eµ(S) of S (for a µ > 0) that is
not orthogonal to it. This causes the GF for minx maxy

1
2x

⊤Qx − 1
2y

⊤Ry + x⊤Py projected on
Fiσ(A) to spiral down to 0 instead of cycling around it.

One may naturally wonder whether a notion of non-orthogonality between the potential (S) and
interaction components (A) can be used to bound the convergence quantitatively; this is developed in
the next section in the particular case S ≪ A.

3 Convergence rate when interaction dominates (S ≪ A)

Let us now discuss the case of games with a small symmetric part, that is, whose Jacobian at optimum

is Mα = A+ αS for some symmetric S =

[
Q 0
0⊤ R

]
, antisymmetric A =

[
0 P

−P⊤ 0

]
and some

small α > 0. In this section we assume n = m (the general case is technically more challenging as
Prop. 3.1 requires A to have distinct eigenvalues, which requires |n−m| ≤ 1).

3.1 Convergence rate of Gradient Flow

As discussed previously, the normalized local exponential convergence rate r/η of gradient methods
in the asymptotic regime η → 0 – or equivalently, the convergence rate of GF – for a game with
Jacobian at optimum Mα is equal to µ̃Mα . We can estimate this quantity using the standard formula
for the asymptotic expansion of the eigenvalues of a perturbed matrix, which takes an interesting
form in our context.
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Proposition 3.1. Suppose that P is full-rank and has distinct singular values, and let P = UΣV ⊤ =∑n
j=1 σjujv

⊤
j be its singular value decomposition. Then it holds

µ̃Mα
=

1

2
α
(

min
1≤j≤n

u⊤
j Quj + v⊤j Rvj

)
+O(α3).

This expansion explains in particular why the normalized convergence rate r/η ∼ µ̃Mα
is approx-

imately proportional to α in Fig. 1. Interestingly, the error term is O(α3), which suggests that the
approximation can be reasonably accurate even for quite large values of α, as illustrated in Fig. 1c.

Proof. Here M0 = A has distinct eigenvalues {isσj , s ∈ {−1, 1}, 1 ≤ j ≤ n}, with unit-norm

eigenvectors A
(
−isuj/

√
2

vj/
√
2

)
= isσj

(
−isuj/

√
2

vj/
√
2

)
. By the calculation of the eigenvalue deriva-

tives from [Tao08], we obtain the following expansion for Sp(Mα):

Sp(Mα) =

{
isσj+

1

2
α
(
u⊤
j Quj + v⊤j Rvj

)
+
1

4
α2

∑
(s′,j′ )̸=(s,j)

1

isσj − is′σj′

(
ss′u⊤

j′Quj + v⊤j′Rvj
)2

+O(α3), s ∈ {−1, 1}, 1 ≤ j ≤ n

}
. (3.1)

Now the zeroth- and second-order terms are all in iR, hence the announced expansion for µ̃Mα
.

Estimate of the leading term under a probabilistic model. Assuming the singular vectors
(u1, ..., un), (v1, ..., vn) of P are distributed uniformly at random – which is the case for example if
P has i.i.d. Gaussian entries by rotational invariance4 –, the leading term in the expansion of µ̃Mα

can
be estimated in expectation as follows. The proof is placed in the Appendix, where we also include a
high-probability version of the estimate.

Proposition 3.2. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Then

Tr(S)

n

(
1− 2

∥S∥F
Tr(S)

√
log n

)
≤ E

[
min

1≤j≤n
u⊤
j Quj + v⊤j Rvj

]
≤ Tr(S)

n

where ∥·∥F denotes the Frobenius norm. In particular, provided that Tr(S)
∥S∥F

≥ 2
√
log n(1 + c) for

some fixed c > 0, we have E
[
min1≤j≤n u

⊤
j Quj + v⊤j Rvj

]
≍ Tr(S)

n as n → ∞.

Note that Tr(S)
∥S∥F

, which always lies in the interval [1,
√
2n], is a measure of the effective sparsity of

the spectrum of S (larger meaning less sparse), so the condition Tr(S)
∥S∥F

≥ 2
√
log n(1 + c) means the

spectrum of S is well spread-out. So the proposition shows that the exponential convergence rate
depends on the average of the eigenvalues of S, when αS ≪ A and the spectrum of S is well
spread-out. This fact should be contrasted with the case of minimization, where the convergence rate
scales as the minimum eigenvalue of the Hessian.

Interestingly, when the spectrum of S is sparse, the typical behavior of the leading term in the
expansion of µ̃Mα

, minj u
⊤
j Quj + v⊤j Rvj , is quite different. In this case, that quantity depends on

the geometric mean of the non-zero eigenvalues of S, rather than the arithmetic mean, as formalized
in the following proposition. The proof is placed in the Appendix, along with a high-probability
version of the estimate.

Proposition 3.3. Suppose Q,R are fixed and U, V are independently distributed uniformly on the
set of n× n orthonormal matrices. Let s1 ≥ ... ≥ sr > 0 = sr+1 = ... = s2n the eigenvalues of S.

4If P = UΣV ⊤ has i.i.d. Gaussian entries, then P has the same law as Ũ⊤PṼ , for any Ũ , Ṽ ∈ On the
set of n× n orthonormal matrices. So (U, V ) has the same law as (Ũ⊤U, Ṽ ⊤V ). This shows that (U, V ) is
distributed according to the Haar measure on the product group On ×On, that is, U and V are independently
distributed uniformly on On.
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Table 1: Expansions of ρ(∇T (z∗)) in α and η for classical gradient methods

Algorithm T (z) ∇T (z∗)
ρ(∇T (z∗))2 = maxj≤2n[...]

+O(ηα3 + η2α2)

Sim-GDA z − ηg(z) I − ηM 1− 2αη
(
w⊤

j Swj

)
+ η2σ2

j

Alt-GDA see text I − η(I − η
2A)M +O(η3) 1− 2αη

(
w⊤

j Swj

)
+O(η3)

EG z − ηg(z − ηg(z)) I − η(I − ηM)M 1− 2αη
(
w⊤

j Swj

)
− η2σ2

j +O(η3)

Then

E
[
min
j≤n

u⊤
j Quj + v⊤j Rvj

]
≥ max

S⊂{1,...,r}

1

e

|S|
n

n− 2
|S|

[∏
l∈S

sl

] 1
|S|

.

In particular, E
[
minj≤n u

⊤
j Quj + v⊤j Rvj

]
≳ n− 2

r−1 when n → ∞ and r and s ∈ Rr are fixed.

Numerically, the quantity minj≤n u
⊤
j Quj + v⊤j Rvj indeed scales as n− 2

r−1 under the conditions of
the proposition, suggesting that our lower estimate could be tight.

3.2 Convergence rate of discrete-time algorithms

Prop. 3.1 gave an expansion of the normalized convergence rate r/η of gradient methods (for a game
with Jacobian at optimum Mα), non-asymptotically in α and in the asymptotic limit η → 0. In this
subsection, we give expansions of the convergence rate r that are non-asymptotic in α and η.

The algorithms we will consider can be written in the form zk+1 = T (zk) with the update oper-
ator T dependent only on ∇f and on step-size η, and satisfying z∗ = T (z∗). It is well-known
that local convergence of such methods is determined by ρ(∇T (z∗)), where ∇T is the Jacobian
of T and ρ(·) denotes spectral radius. Namely, if ρ(∇T (z∗)) < 1 then the iterates converge lo-
cally with

∥∥zk − z∗
∥∥ = O

(
(ρ(∇T (z∗)) + ε)k

)
, with ε > 0 an arbitrarily small constant [Ber97,

Proposition 4.4.1].

In Table 1 we give an expansion for ρ(∇T (z∗)) for three classical gradient methods: simultaneous
GDA (Sim-GDA), alternating GDA (Alt-GDA), and Extra-Gradient (EG). Let us clarify immediately
that throughout this paper, statements made about “GDA” without further specification apply to both

Sim-GDA and Alt-GDA. In the second column we denoted by g(z) =

(
∇xf
−∇yf

)
(z) the skewed

gradient field of the game, and in the third column we wrote M instead of Mα for concision. In
the fourth column, ±iσj denotes the eigenvalues of A assumed distinct and wj are the associated
eigenvectors – equivalently, the singular value decomposition of P is P =

∑n
j=1 σjujv

⊤
j and for

each j ≤ n, w⊤
j Swj = w⊤

j+nSwj+n = 1
2

(
u⊤
j Quj + v⊤j Rvj

)
. We refer to the Appendix for the

derivation of this table and for explicit bounds on the “O(·)” terms.

Informally, as one can directly see from the fourth column, Sim-GDA requires a very small step-size
for the first term in η to overcome the terms +η2σ2

j , while for EG those terms actually appear with a
favorable sign, and Alt-GDA neither benefits nor suffers from those terms. We also see that Alt-GDA
is quite faithful to GF, in that their normalized convergence rates coincide up to terms of order η3+α4.
All of these insights are in line with common intuition in the min-max optimization literature [BGP20;
Lu22], as well as with our numerical experiments for the next section, Fig. 2.

A symmetrized formulation of Alt-GDA. In order to derive the rate for Alt-GDA, we used the
following symmetrized formulation of it: we let (x0, y

1/2) ∈ Rd × Rd and{
∀k ∈ N, xk+1 = xk − η∇xf(x

k, yk+
1/2)

∀k ∈ N+ 1/2, yk+1 = yk + η∇yf(x
k+1/2, yk)

and

{
∀k ∈ N, xk+1/2 = xk+1+xk

2

∀k ∈ N+ 1/2, yk+
1/2 = yk+1+yk

2 .

That is, x gets updated with the gradient rule at integer time-steps, y at half-integer time-steps, and
we define xk, yk at non-updating time-steps as the average of the preceding and following updating
time-steps. Assuming η ≤

∥∥∇2
xxf

∥∥−1

∞ ∧
∥∥∇2

yyf
∥∥−1

∞ , we show in the Appendix that zk+1 is indeed
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entirely determined by zk = (xk, yk) for each k ∈ N, and that the associated update operator T
satisfies

T (z) = z − ηg(z) +
η2

2
A(z)g(z) +O(η3 ∥g(z)∥) where A(z) =

∇g(z)−∇g(z)⊤

2
.

For comparison, the usual formulation of Alt-GDA considers as the iterates (x̃k, ỹk) = (xk, yk+
1/2).

We emphasize that (x̃k, ỹk) and (xk, yk) have the same convergence rate if they converge exponen-
tially, as one can check directly from the definition.

4 Illustration: sparse mixed Nash equilibria of continuous games

In this section we apply the above considerations to a particular class of min-max problems, which is
of its own interest in game theory. Namely we consider the classical problem of finding the mixed
Nash equilibria (MNE) of two-player zero-sum games, that is, given strategy spaces X , Y and a
payoff function f : X × Y → R, solving the min-max problem

min
µ∈P(X )

max
ν∈P(Y)

{F (µ, ν) = Ex∼µ,y∼ν [f(x, y)]} .

Here P(X ) denotes the space of probability measures – representing mixed strategies – over X .
Let us focus on cases where X and Y are continuous sets, say, X = Y = T1 the one-dimensional
Euclidean torus,5 and f : T1 × T1 → R is smooth. The above min-max problem is then infinite-
dimensional, and algorithms to solve it explicitly must be based on reparameterized formulations.
More specifically, suppose that the MNE (µ∗, ν∗) is unique and “sparse”, i.e., has finite supports:
supp(µ∗) = {x∗

I , 1 ≤ I ≤ N}, supp(ν∗) = {y∗J , 1 ≤ J ≤ M} (this is the case for example if f is
a sum of separable functions [SOP08]).

In this setting there are two natural reparameterizations and associated algorithms:

1. If the optimal support points {x∗
I}I , {y∗J}J are known, then we may reparameterize by

µ =
∑N

I=1 aIδx∗
I
, ν =

∑M
J=1 bJδy∗

J
and optimize over the aI , bJ . The problem reduces to

a constrained bilinear game

min
a∈∆N

max
b∈∆M

{
F1(a, b) =

N∑
I=1

M∑
J=1

aIbJ f(x∗
I , y

∗
J) =: a

⊤Pb

}
where ∆N denotes the standard simplex. A classical approach is then to apply Mirror Prox (MP)
with entropy link function [Nem04] (MP is the Bregman-geometry analog of EG).

2. If only the number of optimal support points is known, then we may reparameterize by µ =∑N
I=1 aIδxI

, ν =
∑M

J=1 bJδyJ
and optimize over both the weights (aI , bJ ) and the support

points (xI , yJ ). The problem reduces to

min
(a,x)∈∆N×(T1)N

max
(b,y)∈∆M×(T1)M

{
F2(a, x, b, y) =

N∑
I=1

M∑
J=1

aIbJ f(xI , yJ)

}
.

A possible approach is to iteratively update (simultaneously) the a, b using MP steps with step-size
η and the x, y using EG steps with step-size γη, for some parameter γ > 0. This algorithm is
called Conic Particle Mirror Prox in [WC22], but for concision we will refer to it simply as “EG”
in this section. Note that the main challenge in that reference is to deal with the case where N
and M are unknown, but here we assume they are known for the sake of simplicity.

In Fig. 2, we show the dependency on η and γ of the local convergence rate of MP and EG, as well as
that of the analogs of Sim-GDA and Alt-GDA and GF for the problem min(a,x) max(b,y) F2(a, x, b, y)
in order to illustrate the insights from Sec. 3.2. We used a randomly generated payoff function f , and
the convergence is measured by the iterates’ ℓ2 distance to the solution; see the Appendix for details.

5The choice of X = Y = T1 is made for simplicity of exposition. The discussion below extends straightfor-
wardly to toruses of any dimension, and could be extended to X ,Y Riemannian manifolds without boundaries at
the cost of more technical notation.
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(a) Convergence rate r vs. γ (fixed η = 10−2) (b) Convergence rate vs. η (fixed γ = 10−2)

Figure 2: Observed local convergence rates r (i.e.,
∥∥zk − z∗

∥∥ = Θ((1 − r)k)) for various conic
particle methods using step-size η for the weights (a, b) and γη for the positions (x, y) and for a fixed
random draw of f . (left) Fixing η = 10−2, we observe a rate for GF (we plot η · µ̃γ) scaling as γ2 as
predicted in Prop. 4.1. Interestingly, Alt-GDA has exactly the same behavior, while the behavior of
Sim-GDA and EG differ for small γ, due to the corrective terms shown in Table 1. (right) Fixing
γ = 10−2, we observe a rate scaling as η for EG and its variants, and as η2 for MP; the convergence
of EG is mostly faster than MP.

MP (the algorithm based on the reparameterization F1) converges to the MNE for any small enough
η with an exponential rate at least proportional to η2 [WLZL21], and this scaling is tight numerically
(green dots in Fig. 2b). Its explicit variant (Mirror Descent-Ascent) and its continuous-time flow are
known to diverge for any η [BP18] [MPP18].

EG is known to converge locally to the MNE for any small enough η (and any γ > 0) with
an exponential rate at least proportional to η2, despite the non-convexity of F2, under some non-
degeneracy assumptions [WC22, Sec. 3.1]. However numerically the convergence rate of EG typically
scales as η, not η2 (orange dots in Fig. 2b) – a fact which we will explain below. The explicit variant
of EG and its continuous-time flow have not previously been analyzed; the discussion below will
give a characterization of when they converge locally.

Note that, at least for the particular f and γ used for Fig. 2b, EG converges locally faster than MP for
the same η (in number of iterations, the per-iteration costs differing only by a constant factor), even
though the former does not use the knowledge of the {x∗

I}I , {y∗J}! In other words, even when the
optimal support points are known, it is beneficial to use the overparameterized formulation F2 where
we also vary the support points.

Overparameterization induces partial curvature. Let us inspect the “Jacobians” at optimum for
the two dynamics, MP vs. EG with parameter γ. Due to the simplex constraints and the non-Euclidean
nature of the updates for a, b, the relevant matrices are MMP and Mγ defined below, in the sense that
the exponential convergence rate of each algorithm is µ̃Mη +O(η2) (see the Appendix). Namely,
omitting half of the antisymmetric off-diagonals for readability,

MMP =

[
0 ΠaDaPDbΠ

⊤
b

−(∗)⊤ 0

]
where Da = Diag(

√
a∗) (square roots being taken component-wise) and Πa ∈ R(N−1)×N is

any matrix such that ΠaΠ
⊤
a = IN−1 and Π⊤

a Πa = IN −
√
a∗
√
a∗

⊤
, and likewise for Db and

Πb ∈ R(M−1)×M ; and for EG,

Mγ =


0 0 ΠaDaPDbΠ

⊤
b

√
γ ΠaDa[∂yP ]Db

0 γDiag(∂2
xxPb∗)

√
γDa[∂xP ]DbΠ

⊤
b γDa[∂

2
xyP ]Db

−(∗)⊤ − (∗)⊤ 0 0

− (∗)⊤ − (∗)⊤ 0 −γDiag(∂2
yyP

⊤a∗)


where [∂xP ]IJ = ∂xf(x

∗
I , y

∗
J), and likewise for ∂yP , ∂2

xxP , ∂2
yyP , ∂2

xyP .

For MP, it is clear that the equivalent conditions of Thm. 2.1 are violated for any payoff function f ,
and so µ̃MMP

= 0. For EG, depending on f and γ, they may or may not be violated. For all of the
random payoff functions we considered in our experiments, we observed that µ̃Mγ

> 0, suggesting
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that the conditions hold generically. They are violated for certain f ’s however, as shown in the
Appendix, so that the scaling in η2 of the convergence rate proved in [WC22] is tight in the worst
case.

More precisely as we show in the next proposition, assuming that the blocks of Mγ are in general
position, we expect µ̃Mγ to scale as γ2, which is indeed observed in the numerical experiment
reported in Fig. 2a. The proof, placed in the Appendix, relies on the same tools as Prop. 3.1, that is,
on the asymptotic expansions of the eigenvalues of perturbed matrices.
Proposition 4.1. Let S2 symmetric and A0, A1, A2 antisymmetric real matrices of the form

S2 =

 0
∗

0
∗

 , A0 =

 ∗ 0
0 0

∗ 0
0 0

 , A1 =

 0 ∗
∗ 0

0 ∗
∗ 0

 , A2 =

 0 0
0 ∗

0 0
0 ∗


and Mγ = γS2 +A0 +

√
γA1 + γA2 for all γ > 0. Then µ̃Mγ

= O(γ2) as γ → 0.

5 Conclusion

We have investigated the local convergence of gradient methods for min-max games and found
that they converge generically under partial curvature. In more specific settings, we have obtained
quantitative estimates of the local convergence rate which exhibit the average of the eigenvalues
of S as the driving quantity for typical problems. For the computation of mixed Nash equilibria of
continuous games, this leads to a behavior of conic particle gradient methods that is more favorable
than that described by the worst-case bounds.

More generally, our analysis leads to the following insights: (i) worst-case bounds might be looser
in min-max optimization (compared to minimization) as they fail to capture the interplay between
interaction and potential parts; (ii) the addition of new degrees of freedom with curvature typically
accelerates the local convergence, as we illustrated in Sec. 4.

We note that the phenomenon described in this paper is fundamentally a consequence of the fact
that the skewed gradient field’s Jacobian at optimum has a positive-semidefinite symmetric part.
This property is satisfied at local Nash equilibria of min-max games, i.e., of two-player zero-sum
differentiable games, but is not true for general differentiable games.
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