
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ATTRIBUTING DATA FOR SHARPNESS-AWARE MINI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sharpness-aware Minimization (SAM) improves generalization in large-scale
model training by linking loss landscape geometry to generalization. However,
challenges such as mislabeled noisy data and privacy concerns have emerged as
significant issues. Data attribution, which identifies the contributions of specific
training samples, offers a promising solution. However, directly rendering exist-
ing data influence evaluation tools such as influence functions (IF) to SAM will
be inapplicable or inaccurate as SAM utilizes an inner loop to find model pertur-
bations that maximize loss, which the outer loop then minimizes, resulting in a
doubled computational structure. Additionally, this bilevel structure complicates
the modeling of data influence on the parameters. In this paper, based on the IF,
we develop two innovative data valuation methods for SAM, each offering unique
benefits in different scenarios: the Hessian-based IF and the Gradient Trajectory-
based IF. The first one provides a comprehensive estimation of data influence us-
ing a closed-form measure that relies only on the trained model weights. In con-
trast, the other IF for SAM utilizes gradient trajectory information during training
for more accurate and efficient data assessment. Extensive experiments demon-
strate their effectiveness in data evaluation and parameter tuning, with applications
in identifying mislabeled data, model editing, and enhancing interpretability.

1 INTRODUCTION

Over the past decade, deep neural networks have advanced significantly due to increased model pa-
rameter sizes and improved training algorithms that enhance generalization. However, larger models
often memorize training data, leading to overfitting and poor generalization. In order to address this
issue, considerable effort has been invested in the development of a range of strategies, including reg-
ularization techniques (Wu et al., 2021; Yoshida & Miyato, 2017), adversarial training (Mądry et al.,
2017; Shafahi et al., 2019), model uncertainty (Gal & Ghahramani, 2016; Blundell et al., 2015), and
neural architecture search (Zoph, 2016). Recent work has observed that sharp local minima in the
loss landscape can significantly impair the generalization performance of deep networks (Keskar
et al., 2016; Hochreiter & Schmidhuber, 1994; Neyshabur et al., 2017). To make loss landscape
flatter to improve models’ generalization ability, Foret et al. (2020) introduced a general framework
called Sharpness-aware Minimization (SAM). SAM improves generalization by penalizing sharp
minima and encouraging convergence to flatter regions. Intuitively, SAM is a bilevel optimization
problem, where the inner level seeks weight perturbations that can lead to the maximum loss, which
is a measure of local sharpness. On the outer level, the model is trained to minimize both loss and
local sharpness simultaneously. Thus, it can also be formulated as a minimax optimization problem.
SAM has achieved state-of-the-art results across various tasks (Foret et al., 2020; Chen et al., 2021;
Liu et al., 2022).

While SAM has been applied in various real-world applications (Du et al., 2021; Andriushchenko
et al., 2023; Qu et al., 2022; Bahri et al., 2021), the presence of noisy data in the training set,
including mislabeled or poisoned data, has become a significant concern. A critical approach to
tackling this issue involves identifying the contributions of training samples in SAM-trained models
by assessing their impact on model performance, a process referred to as (training data) attribution.
Data attribution plays a critical role in tracing model outputs back to significant training examples,
thereby providing insights into how individual data points influence model performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Data attribution has been used in various tasks to enhance model transparency and understanding of
how training data influences model behavior (Ribeiro et al., 2016; Lundberg, 2017). Generally, data
attribution methods (Jia et al., 2019; Ghorbani & Zou, 2019; Yoon et al., 2020; Han et al., 2020)
assign higher contribution scores to training instances that significantly improve model performance
when included, which can be divided into two types. The first one, such as Shapley Value (Winter,
2002), is based on sampling (Lundberg, 2017; Kwon & Zou, 2022), which requires multiple retrain-
ing with different data subsets. This is computationally expensive and impractical for large models.
To address this challenge, the second approach—namely, influence function-based methods (Koh
& Liang, 2017; Feldman & Zhang, 2020)—estimates data contributions using gradient information,
thereby facilitating accurate assessments without the need for retraining. Recent advancements have
led to innovative estimators utilizing the training gradient trajectory (Pruthi et al., 2020; Schioppa
et al., 2024), which estimate the influence of training data on model predictions by tracing gradi-
ent descent, providing better insights into and improvements of training examples in deep learning
models. These methods do not depend on the convexity assumption of the loss function, nor do they
require computationally intensive Hessian inversions. Instead, they perform calculations based on
the training gradient and have achieved good results in many tasks (Liu & Yang, 2024).

However, it is essential to note that influence functions were initially designed for M-estimators (Hu-
ber, 1981) (i.e., minimizing the summation of loss on all data), which limits their direct applicability
to the bilevel structure in SAM. Specifically, the influence of data on perturbations, and conse-
quently on model parameters, is indirect manner and has not been considered in classical influence
functions. Due to the coupled outer-inner optimization process involved in SAM, any changes to the
model parameters will necessitate further updates to the inner perturbations and consequently alter
the outer model parameters. Furthermore, in the actual training of SAM, the inner perturbations
are not derived through the optimization process but are instead obtained via approximation. To
further accelerate computations, the outer gradient descent is also approximated, resulting in minor
deviations in the inner perturbations from the original SAM model. These complicate our ability to
evaluate the influence of data in SAM accurately.

In this paper, we propose two data valuation methods based on influence functions for SAM, fo-
cusing on two distinct scenarios. Firstly, we derive a closed form of the Hessian-based Influence
Function (SAM-HIF) from the mathematical formulation of SAM through theoretical derivation.
SAM-HIF fully considers the impact of data on the model’s local sharpness. In the absence of gradi-
ent trajectory information, SAM-HIF serves as a comprehensive estimation method. However, when
gradient trajectory information during training is accessible, we can focus on the specific training
algorithm to derive a more accurate evaluation method. Inspired by Pruthi et al. (2020), we propose
the Gradient Trajectory-based Influence Function (SAM-GIF). This method utilizes checkpoints to
evaluate the influence of data within SAM, leading to accurate data assessment while reducing im-
plementation and computational costs. SAM-GIF proves to be highly effective due to its simplicity,
high scalability, and accuracy. To sum up, our contributions are listed as follows:

• We present data evaluation methods using influence functions (IF) for SAM and its training
algorithms. First, we derive SAM-HIF, which allows for precise modeling of data influence
in SAM by effectively capturing influences on both model parameters and model pertur-
bations. Second, we present SAM-GIF, which showcases exceptional precision and scala-
bility when training gradient trajectories are accessible. We also discuss some downstream
applications and strategies to accelerate the computation of our influence functions.

• Our method has potential applications in several real-world scenarios, including the auto-
matic identification and removal of potentially harmful data points, SAM model editing,
and enhancing the interpretability of SAM-trained models. We validate the effectiveness
and efficiency of SAM-HIF and SAM-GIF through comprehensive experimental evalua-
tions. Experimental results indicate that our framework performs well in data evaluation
and the tuning of SAM-trained models.

2 RELATED WORK

Sharpness Aware Minimization. The concept of flat minima and its link to reducing overfitting
and enhancing model generalization was first explored by Hochreiter & Schmidhuber (1997), estab-
lishing a foundation for understanding why models that converge to flatter regions tend to generalize

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

better. Additionally, Keskar et al. (2016) experimentally examined the relationship between batch
size, sharp minima, and generalization. Their findings provided empirical support for SAM’s theo-
retical foundations and highlighted the importance of sharpness in optimization and model training.
Overall, sharp local minima can significantly influence the generalization capabilities of deep net-
works (Chaudhari et al., 2019; Izmailov et al., 2018). Building on these insights, one of the founda-
tional works on SAM is by Foret et al. (2020), who proposed a bi-level optimization framework that
seeks perturbations around model parameters to maximize loss and guide the model towards flatter
minima. Recent studies have further explored the behavior SAM. For example, Andriushchenko
& Flammarion (2022) investigated the geometric properties of loss landscapes, demonstrating that
SAM’s perturbation-based approach offers insights into model behavior. Their findings indicate that
SAM not only improves generalization but also enhances understanding of models’ sensitivity to
input perturbations. Zhao et al. (2022) assert that SAM (Foret et al., 2020) is effectively equivalent
to applying a gradient norm regularization through the approximation of the Hessian matrix. Kwon
et al. (2021) introduce adaptive SAM, which can dynamically adjust the maximization region based
on the weight scale. To minimize computational costs associated with SAM, Du et al. (2021) intro-
duced Efficient SAM, which randomly computes perturbations.

Influence Function. The influence function(IF), initially developed in robust statistics (Cook, 2000;
Cook & Weisberg, 1980), has become essential in machine learning since its introduction by Koh &
Liang (2017). IFs have been used in various fields, including interpreting model outputs, reducing
model bias (Wang et al., 2019), and facilitating machine unlearning (Liu et al., 2024; Golatkar et al.,
2020; 2021). Its versatility spans various fields, including natural language processing (Han et al.,
2020) and image classification (Basu et al., 2021), while also addressing biases in classification
models (Wang et al., 2019), word embeddings (Brunet et al., 2019), and model fine-tuning (Chen
et al., 2020). A recent innovative influence function that leverages the training gradient trajectory
has been proposed and investigated (Pruthi et al., 2020; Schioppa et al., 2024), and has been suc-
cessfully applied in instructional fine-tuning (Xia et al., 2024). Despite the numerous studies related
to influence functions, we are the first to use this concept for the data evaluation of models trained
for SAM. This provides us with a completely new perspective on understanding the training process
of SAM.

3 PRELIMINARIES

Sharpness-Aware Minimization (SAM). SAM presents a novel approach to optimizing machine
learning models with the primary objective of enhancing generalization by mitigating the sharpness
of the loss landscape. Given a dataset S = {(xi, yi)}ni=1, we define the training loss associated with
model parameters ω and a perturbation ϵ as:

LS(ω + ϵ) =
1

n

n∑
i=1

ℓ(xi, yi;ω + ϵ) ≜
n∑

i=1

Li
S(ω + ϵ). (1)

Then SAM optimization framework seeks parameters that lie in neighborhoods having uniformly
low loss by the following procedure. Firstly, seeking the model perturbation maximizing the loss
ϵ̂(ω) = argmax||ϵ||p≤ρ LS(ω + ϵ). Then minimize the uniform loss:

ω∗ = argmin
ω

LS(ω + ϵ̂(ω)) +
λ

2
· ||ω||22. (2)

where λ is the regularization parameter. Here, SAM takes model loss sharpness into consideration
via including the perturbation process. The loss function for SAM can be formed into one equation
as follows:

LSAM
S (ω) =LS(ω + ϵ̂(ω)) +

λ

2
· ||ω||22

= max
||ϵ||p≤ρ

LS(ω + ϵ) +
λ

2
· ||ω||22.

In essence, SAM seeks to minimize the worst-case loss by enforcing a level of robustness against
perturbations in the parameter space, thereby promoting smoother loss landscapes. Besides, the
gradient of LSAM

S is calculated by

∇LSAM
S (ω) = ∇LS(ω + ϵ̂(ω)) +

dϵ̂(ω)

dω
∇LS(ω + ϵ̂(ω)). (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Influence Function. The influence function (Huber, 1981) quantifies how an estimator relies on the
value of each individual point in the sample. Consider a neural network θ̂ = argminθ L(θ,D) =∑n

i=1 ℓ(zi; θ) with loss function ℓ and dataset D = {zi}ni=1. When an individual data point zm
is removed from the training set, the retrained optimal retrained model is denoted as θ̂−zm . The
influence function method provides an efficient way to approximate θ̂−zm without the need of re-
training. By increasing the weight of the zm loss term by δ, define a series of δ-parameterized op-
timal models by θ̂−zm,δ = argminθ [L(θ,D) + δ ℓ(zm; θ)]. Consider the term ∇L(θ̂−zm,δ, D) +

δ · ∇ℓ(zm; θ̂−zm,δ) = 0, we perform a Taylor expansion at θ̂ and incorporate the optimal gradient
condition at θ̂−zm and θ̂:

n∑
i=1

∇ℓ(zi; θ̂) + δ · ∇ℓ(zm; θ̂) +Hθ̂ ·
(
θ̂−zm,δ − θ̂

)
≈ 0

where Hθ̂ =
∑n

i=1∇2
θ̂
ℓ(zi; θ̂) is the Hessian matrix. Consequently, the Influence Function is de-

fined as the derivative of the change in parameters of the retrained model due to perturbation with
respect to the perturbation:

IF(zm) =
dθ̂−zm,δ − θ̂

dδ

∣∣∣∣∣
δ=0

≈ −H−1

θ̂
· ∇ℓ(zm; θ̂).

When setting δ = −1, this results in the complete removal of zm from the retraining process. Then,
θ̂−zm can be approximated by a linear approximation formula as θ̂ − IF(zm). Additionally, for a
differentiable evaluation function, such as one used to calculate the total model loss over a test set,
the change resulting from up-weighting ϵ to zm in the evaluation results can be approximated as
−∇f(θ̂) · IF(zm).

4 EVALUATING DATA ATTRIBUTION IN SAM

To evaluate the influence of an individual data point for SAM, we utilize assessing model differences
after leave-one-out (LOO) retraining.

4.1 DATA ATTRIBUTION IN SAM VIA HESSIAN IF

To evaluate the influence of an individual data point for the model trained via SAM, we first provide
an estimation of the leave-one-out (LOO) retrained model. Then we can quantify the parameter-level
influence of the excluded data point by analyzing the differences in model parameters before and
after the retraining process. Due to the unique architecture of SAM, the form of the corresponding
loss function differs from that of traditional IF. This is because SAM includes an additional step to
find parameter perturbations that maximize the loss, which will also change as a result of the LOO
retraining process. We provide details in the following.
Definition 4.1 (LOO Retrained Parameter). For (xk, yk) to be evaluated, let ϵ̂k(ω) be the perturba-
tion maximizing the loss after removing (xk, yk), defined as ϵ̂k(ω) = argmax||ϵ||p≤ρ

∑n
i ̸=k L

i
S(ω+

ϵ). The retrained model is defined as ωk = argminω
∑

i ̸=k L
i
S(ω + ϵ̂k(ω)) +

λ
2 · ||ω||

2
2.

From the preceding discussion, we denote the influence of the data point (xk, yk) on the SAM-
trained model as ωk − ω∗. To avoid retraining, we utilize the influence function method to approx-
imate this difference. We begin by transforming the optimality condition of (2) into a simpler form
via Danskin’s Theorem (Danskin, 2012).
Lemma 4.2. The optimal solution w∗ of SAM, as represented in (2), satisfies ∇LS(ω

∗ + ϵ̂(ω∗)) +
dϵ̂(ω∗)
dω∗ ∇LS(ω

∗ + ϵ̂(ω∗)) + λω∗ = 0, which is equivalent to∇LS(ω
∗ + ϵ̂(ω∗)) = 0.

Follow the idea of influence function, we up-weigh the k-th term in the loss function by a factor of
δ. This adjustment allows us to derive a series of model parameters ωk,δ obtained by training the
models via SAM:

ωk,δ = argminLTotal,δ(ω) ≜ LS,δ(ω)+
λ

2
· ||ω||22 = LS(ω+ ϵ̂δ(ω))+δ ·Lk

S(ω+ ϵ̂δ(ω))+
λ

2
· ||ω||22

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The δ-related term in the loss function captures the influence of (xk, yk) on ω (where ωk,−1 = ωk).
Moreover, δ also affects the worst-case perturbation through the modified objective for ϵ: ϵ̂k,δ(ω) =
argmax||ϵ||p≤ρ

[∑n
i=1 L

i
S(ω + ϵ) + δ · Lk

S(ω + ϵ)
]
. This modification in the objective function, in

turn, indirectly influences the optimal parameters learned through SAM. Starting from a simplified
case, we neglect the indirect influence of the perturbation and introduce the simplified version of
SAM-IF.
Theorem 4.3. For the k-th data point (xk, yk) and a SAM-trained model ω∗, ϵ̂(ω∗) represents the
model weight perturbation that results in the largest loss, the corresponding SAM-IF is given by:
SAM-IF(xk, yk) = −H−1

ω ·∇Lk
S(ω

∗+ ϵ̂(ω∗)) where Hω is defined as Hω = ∇2LS (ω∗ + ϵ̂(ω∗))+
λ. ωk can be approximated by ωk ≈ ω∗ − SAM-IF(xk, yk).

We can see that in SAM-IF we still use ϵ̂(ω∗) in both Hessian matrix and gradient, while the optimal
perturbation should be ϵ̂k,−1(ωk). However, neglecting the term related to the perturbation can
lead to an incomplete and inaccurate evaluation of data influence. In fact, it implies that while the
influence of this data point on the model’s loss function is considered, the impact of removing this
data point on the computation of model sharpness is not taken into account. This will lead to an
incomplete evaluation of data influence. To take this into consideration, ϵ̂k,δ (ωk,δ) − ϵ̂(ω∗) also
need to be estimated, which is given in the following lemma.

Lemma 4.4. ϵ̂k,δ (ωk,δ)− ϵ̂(ω∗) ≈ ϵ̂k,δ(ω
∗)− ϵ̂(ω∗) +

dϵ̂k,δ(ω)
dω

∣∣∣
ω=ω∗

· (ωk,δ − ω∗).

When ϵ→ 0, ϵ̂k,δ(ω∗)− ϵ̂(ω∗)→ 0, then ϵ̂k,δ(ωk,δ)− ϵ̂(ω∗) can be bounded by ωk,δ − ω∗, which
is especially useful for the following derivation.
Theorem 4.5. For the k-th data point (xk, yk) and a SAM-trained model ω∗, the SAM-HIF is given

by −
(
Hω +Hω

dϵ̂(ω∗)
dω

)−1

∇Lk
S (ω∗ + ϵ̂(ω∗)). Then ωk ≈ ω∗ − SAM-HIF(xk, yk).

Note that in general, there is no closed-form solution for the term dϵ̂(ω∗)
dω , to address the issue, we

can use the method in (Foret et al., 2020) to approximate ϵ̂:

ϵ̂(ω) = ρ · sign(∇wLS(ω, 0)) ·
|∇wLS(ω, 0)|q−1

(∥∇wLS(ω, 0)∥qq)
1/p

, (4)

where p satisfies 1
p + 1

q = 1. Assuming the sign of the gradient ∇wLS(ω, 0) remains unchanged

when one data point is removed, dϵ̂(ω∗)
dω∗ can be calculated easily.

4.2 IMPROVING DATA VALUATION VIA GRADIENT TRAJECTORY

In Theorem 4.5, we have to know the exact worst perturbation ϵ̂(ω). However, according to (Foret
et al., 2020), to accelerate the training, the training algorithm for SAM uses the following closed-
form estimation of ϵ̂(ω∗) in (4) to replace the procedure of finding the model perturbation that results
in the largest loss. Besides, for the outer-level gradient descent, the second term in (3) is intentionally
dropped during training for simplification, and the final gradient approximation they use is actually
∇LS(w + ε̂(w)). See Algorithm 1 for details. Therefore, the SAM-HIF we proposed based on the
minimization condition represents an idealized case, which sometimes proves insufficiently reliable
in practical applications where we cannot find the optimal minimizer. To bridge the gap, we will next
focus on the SAM model trained via the canonical training algorithm in (Foret et al., 2020), where
we have the training trajectory stored in checkpoints. To measure the influence of the k-th data in
the training dataset, similar to HIF, we firstly define a loss function with the k-th term up-weighted
by δ as:

LS(ω; δ) = LS(w) + δ · Lk
S(ω). (5)

Consider the model trained based on loss function (5) using a gradient descent optimizer in (Foret
et al., 2020). At training step t, model parameters ωt,δ are updated as

ωt−1,δ − ηt−1 · ∇ωLS (ωt−1 + ϵ̂(ωt−1)) − δ · ηt−1∇ωL
k
S (ωt−1,δ + ϵ̂(ωt−1,δ)) ,

where ηt−1 is the learning rate at step t − 1, and ϵ̂(ωt−1, δ) is defined in (4). Then, the model
trained after T steps becomes ωT,δ = ω0 −

∑T−1
t=0 ηt · ∇ωLS (ωt,δ + ϵ̂(ωt,δ); δ). Based on the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

above discussion, we derive the Gradient-based Influence Function (SAM-GIF) by calculating the
derivative of the up-weighted retrained parameter ωT,δ for the k-th data point with respect to δ.

dωT,δ

dδ

∣∣∣∣
δ=0

= −
T−1∑
t=0

ηt ·
d∇ωLS (ωt,δ + ϵ̂(ωt,δ); δ)

dδ

∣∣∣∣
δ=0

−
T−1∑
t=0

ηt ·Ht,0 ·
d(ωt,δ + ϵ̂(ωt,δ))

dδ

∣∣∣∣
δ=0

,

where Ht,0 is the Hessian matrix of LS(ωt). To reduce the calculation complexity, we omit the sec-
ond Hessian term and thus have the following approximation:SAM-GIFGD(xk, yk) = −

∑T−1
t=0 ηt ·

∇ωL
k
S(ωt+ ϵ̂(ωt)). This definition is consistent with (Pruthi et al., 2020). However, compared with

gradient descent, SAM is more often carried out under the framework of SGD optimizer. Under this
setting, it is possible that (xk, yk) may not be used in some updating steps. Therefore, we utilize
Bk,t to indicate whether (xk, yk) is used in the t-th gradient descent step. Finally, we have the
following result.
Theorem 4.6. Assume the model is trained by SGD with the worst perturbation ϵ̂(·) in each iteration
is calculated via (4). For the data (xk, yk), it Gradient trajectory-based IF (SAM-GIF) is given by
SAM-GIFSGD(xk, yk) =

∑T−1
t=0 ηtBk,t∇ωL

k
S(ωt+ϵ̂(ωt)). Then, the LOO retrained model ωk under

SAM can be estimated by ωk ≈ ω∗ − SAM-GIFSGD(xk, yk).

4.3 COMPUTATION ACCELERATION

The SAM-HIF outlined in Section 4.1 requires calculations of the inverse Hessian-vector product
(iHVP). To enhance the scalability of SAM-HIF, we will introduce one efficient acceleration tech-
nique to expedite the computation of iHVP.

Neumann Series Approximation Method. The calculation in Proposition 4.3 and Theorem 4.5 is
expressed as −H−1 ·G, where H denotes the Hessian and G is the gradient. Then, with the help of
the Neumann series: H−1 · G = (I − (I −H))

−1 · G = G +
∑+∞

j=1(I −H)j · G. By truncating
this series at order J , we derive approximation as H−1 ·G ≈ G+(I−H) ·G+ · · · (I−H)J ·G. It
is important to clarify that we did not specifically focus on accelerating the inversion of the Hessian
matrix; instead, we optimized the iHVP directly. This approach eliminates the need to store Hessian
matrix, which significantly reduces the memory requirements of our method.

4.4 PRACTICAL APPLICATIONS

This section presents downstream tasks leveraging SAM-HIF and SAM-GIF in diverse scenarios.

Model Editing. We can use IFs to update the model under the removal of certain data. Specifi-
cally, the model after removing the k-th data point can be estimated as ω∗ − SAM-HIF(xk, yk;ω

∗).
Additionally, if the training gradient trajectory is available, we can obtain an efficient and accurate
estimate as ω∗ − SAM-GIF(xk, yk;ω

∗).

Data Evaluation. By appropriately selecting the model evaluation function, we can define influence
scores (ISs) for individual data points. These scores can then be applied to data selection to enhance
SAM performance.
Definition 4.7. (Evaluation Function) Given a validation dataset defined as Dval = {(xt, yt)}nt=1.
the SAM learned parameter ω∗ performance on the test task is defined as

∑
(x,y)∈Dval

ℓ(x, y;ω∗).

Thus, we propose an influence evaluation method.
Theorem 4.8. Given a validation dataset defined as Dval = {(xt, yt)}nt=1. Denote the SAM-
retrained model after the removal of (xk, yk) as ω∗

−k, then∑
(x,y)∈Dval

ℓ(x, y;ω∗)−
∑

(x,y)∈Dval

ℓ(x, y;ω∗
−k) ≈

∑
(x,y)∈Dval

∇ℓ(x, y;ω∗) · IF(x, y) ≜ IS(x, y),

where IF can be SAM-HIF or SAM-GIF. We define the right hand of the above equation as the
Influence Score (IS).

A positive IS indicates that removing the data point will deteriorate the model’s performance on the
test dataset. Thus, this data point is valuable for model performance. Assigning an IS to each training
data point allows us to identify useful and harmful data for the model’s performance. Detailed
theoretical derivations are provided in the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on CIFAR-10, CIFAR-100, and MINI-Imagenet.

Method
CIFAR-10 CIFAR-100 MINI-Imagenet

Accuracy RT (s) Accuracy RT (s) Accuracy RT (s)
Retrain 0.9500(61) 3516.74(845) 0.7890(311) 3244.25(218) 0.6835(460) 682.56(791)
SAM-HIF(Fast) 0.9323(110) 11.07(341) 0.7208(142) 13.07(416) 0.6478(125) 11.32(243)
SAM-HIF 0.9443(121) 41.50(321) 0.7213(239) 42.41(324) 0.6516(213) 39.21(309)
SAM-GIF 0.9497(142) 4.89(142) 0.7227(469) 6.89(231) 0.6446(122) 5.89(112)

5 EXPERIMENTS

In this section, we demonstrate our main experimental results on utility, efficiency, effectiveness,
and the abilities to identify harmful data and enhance interpretability. Details and additional results
are in Appendix due to space limit.

5.1 EXPERIMENTAL SETTINGS

Dataset. We evaluated our algorithm on seven datasets: CIFAR-10, CIFAR-100 (Alex, 2009), Mini-
ImageNet (Deng et al., 2009), MNIST (LeCun et al., 1998), HAM10000 (Tschandl et al., 2018),
CUB (Wah et al., 2011), and Food101 (Bossard et al., 2014). CIFAR-10/100 are benchmarks for
small-scale image classification, MiniImageNet is widely used for few-shot learning, and MNIST
comprises handwritten digits. HAM10000, CUB, and Food101 assess generalization on skin lesions,
bird species, and food recognition, respectively.

Baselines. We use retraining as the ground truth: removing a data point and retraining the model
with SAM. Baselines include TRAK (Park et al., 2023), a projection-based kernel approximation
for large-scale data attribution, and IF-EKFAC (Grosse et al., 2023), which leverages EKFAC to
efficiently approximate Hessian-based influence functions.

When the training trajectory is unavailable, we use SAM-HIF and SAM-HIF (fast), implementing
Theorems 4.3 and 4.5, respectively, and accelerate both with the Neumann Series approximation
(Section 4.3). When the trajectory is available, we use SAM-GIF, implementing Theorem 4.6. De-
tailed algorithms are provided in the Appendix.

Evaluation Metric. We used two primary evaluation metrics to assess our models: accuracy and
runtime (RT). Accuracy evaluates the model’s performance by measuring the proportion of correctly
classified instances out of the total instances. Runtime(RT), measured in seconds, assesses the time
required for each method to update the model.

Implementation Details. We conducted experiments using the Nvidia RTX 4090-24G GPU. For
all experiments, we selected the WideResNets architecture as the backbone network for the clas-
sification task. For utility evaluation, we randomly selected samples at different proportions from
four datasets. For valuable (or harmful) samples, we removed 0-10 % of the data identified as valu-
able (or harmful) by the algorithm. Additionally, the removal process was repeated five times using
different random seeds to obtain experimental results.

5.2 EVALUATION OF UTILITY AND EDITING EFFICIENCY

We first demonstrate the results on accuracy and time consumption of three algorithms, SAM-HIF
(fast), SAM-HIF, and SAM-GIF, against the retrain method. Our experimental results are presented
in Table 1. It is evident that our three proposed algorithms significantly improve computational ef-
ficiency without sacrificing accuracy. On the CIFAR-10 dataset, the time cost of retraining reached
3516.74, while our methods notably enhance computational efficiency, with SAM-HIF (fast), SAM-
HIF, and SAM-GIF reducing the time to 11.0698, 41.4960, and 4.894 seconds, respectively. The
accuracy differences between SAM-HIF (fast), SAM-HIF, and SAM-GIF compared to retrain are
0.0177, 0.0057, and 0.0003, respectively. These findings suggest that SAM-HIF (fast), SAM-HIF,
and SAM-GIF can save substantial computational time required for retraining while achieving com-
parable accuracy.

5.3 HELPFUL DATA REMOVAL: TASK-RELATED IS ACCURACY

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Cifar10 (b) Cifar100

(c) Mnist (d) Miniimagenet
Figure 1: Helpful Data Removal: Task-Related IS Accuracy

Furthermore, we observe that by
avoiding the computation of the Hes-
sian matrix, SAM-GIF requires less
time than both SAM-HIF (Fast) and
SAM-HIF. Besides, SAM-GIF not
only surpasses SAM-HIF and SAM-
HIF (Fast) in speed but also achieves
accuracy comparable to retraining.
This corroborates our previous dis-
cussion: compared to the SAM
model, gradient trajectories can more
accurately reflect the training of the
SAM model, leading to a more pre-
cise estimation result. By avoiding
the computation of the Hessian ma-
trix, SAM-GIF demonstrates better
time efficiency than other methods while also showing improved accuracy on CIFAR-10. These
findings indicate that utilizing gradient information effectively enhances both training efficiency
and predictive accuracy. Moreover, we can see SAM-HIF achieves higher accuracy than SAM-
HIF (Fast) by incorporating perturbation-related components into the Hessian matrix; however, this
comes at the cost of a 2-3× increase in runtime. Mathematically, as we mentioned in Theorem 4.5,
SAM-HIF further considers the change of perturbations due to the data removal. This can make it
evaluate data influence more accurately but with additional computation time.

5.4 EVALUATION OF EFFECTIVENESS

(a) Test Accuracy (b) Identified Ratio
Figure 2: Harmful Data Removal Experiment.

Here, we aim to show that our proposed
influence functions can be used to attribute
data. To achieve this, we traverse the train-
ing samples by calculating the IS value for
each sample to select the most valuable
data. We then remove these samples and
update the model through retraining or us-
ing the SAM-HIF (Fast), SAM-HIF, and
SAM-GIF, and analyzing the changes in
accuracy relative to the accuracy before re-
moval. In detail, we first calculate the in-
fluence scores of all samples and select the
most valuable ones by ranking them. Then, the top k most valuable data points are removed, where
k ranges from 2% to 10% of the data size. Next, the model is retrained multiple times using different
random seeds or updated using our different methods. The test set accuracy is then calculated after
updating the parameters. Additionally, we randomly delete the same proportion of samples as a
control experiment. Our experimental results, as shown in the Figure 1, indicate that after remov-
ing the most valuable training data, the accuracy of the updated model decreases across different
datasets. For instance, for the CIFAR-10 dataset, when the removal ratios are 0.02, 0.05, 0.07, and
0.10, the accuracy scores for retraining and the SAM-HIF (Fast), SAM-HIF, and SAM-GIF algo-
rithms gradually decrease. At the 0.10 removal ratio, the accuracy for the four methods drops to
0.8432, 0.8212, 0.8412, and 0.8311, respectively. The accuracy of different approaches is similar
to that of retraining (with a maximum difference of 0.022), which demonstrates that our algorithm
significantly reduces computational time while maintaining accuracy. In contrast, random deletion
exhibits greater variability, and although a higher deletion ratio can improve accuracy, the results are
less stable.

5.5 RESULTS OF IDENTIFYING HARMFUL DATA

To evaluate our algorithm’s ability to identify harmful data, we introduce noise into CIFAR-10 by
randomly inverting labels for 10% of the training set. Models are trained with SAM using the same
setup as previous experiments. We compute each sample’s IS with SAM-GIF and label samples
with low IS as harmful. We then retrain models while removing increasing proportions of these

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

r Figure 4: Helpful/Harmful Training Data

harmful samples and report test accuracy (Figure 2a). As more harmful data are removed, accuracy
improves; at a 25% removal rate, accuracy increases by about 0.06. In contrast, random removal
leads to unstable or reduced accuracy. As shown in Figure 2b, our method detects over 90% of noisy
data when the detection rate reaches 0.4, outperforming random deletion. Results on additional
datasets and baseline comparisons are provided in the Appendix D.2. We further conduct the same
harmful data removal experiments on the CUB and FOOD-101 datasets, as shown in Figure 3.

0.00 0.05 0.10 0.15 0.20
Removal Ratio

0.630

0.635

0.640

0.645

0.650

0.655

Ac
cu

ra
cy

(%
)

CUB Dataset
Strategy

TARK
SAM-GIF
IF
IF-EKFAC
SAM-HIF

0.00 0.05 0.10 0.15 0.20
Removal Ratio

0.740

0.745

0.750

0.755

0.760

Ac
cu

ra
cy

(%
)

FOOD-101 Dataset
Strategy

TARK
SAM-GIF
IF
IF-EKFAC
SAM-HIF

Figure 3: Baselines for Harmful Data Removal

As the removal ratio increases, the ac-
curacy of all methods improves, but
our methods (SAM-GIF and SAM-HIF)
consistently outperform the baseline ap-
proaches, including TARK, IF, and IF-
EKFAC. Notably, when 20% of the data is
removed, SAM-GIF achieves about 65.5%
accuracy on CUB and around 76.5% on
FOOD-101, which are both higher than
those achieved by the baseline methods.

5.6 RESULTS ON INTERPRETABILITY

We apply SAM-GIF to identify the training samples that are most relevant to specific prediction
errors in the test samples. In this process, we select samples from the test data where the model
misclassifies. By calculating the IS of the samples, we identify and visualize harmful data with
a negative IS that leads to erroneous predictions, namely. Figure 4 presents the visualization of
this error prediction tracing process for the CIFAR-10 dataset (more visualization results are in
Appendix). The first row displays examples of misclassified test samples, the second row shows the
most influential training data for classifying this sample, and the third row shows the most harmful
training data for this classification. We can trace the outcomes of the error prediction process through
the visualization results. Please see Appendix D.3 for more results. We also conduct an ablation
study (see Appendix D.4).

6 CONCLUSION

In conclusion, we addressed data attribution challenges in the SAM framework with two novel meth-
ods: SAM-HIF and SAM-GIF. SAM-HIF employs a comprehensive closed-form data influence es-
timation. SAM-GIF utilizes gradient trajectory information for efficient, scalable evaluation. Exper-
iments on four datasets indicated the effectiveness and scalability of these methods. Our approach
aids in mislabeled data detection, model editing, and interpretability in SAM-trained models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Krizhevsky Alex. Learning multiple layers of features from tiny images. https://www. cs. toronto.
edu/kriz/learning-features-2009-TR. pdf, 2009.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pp. 639–668. PMLR, 2022.

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
minimization leads to low-rank features. Advances in Neural Information Processing Systems, 36:
47032–47051, 2023.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. arXiv preprint arXiv:2110.08529, 2021.

S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
ponents with random forests. In European Conference on Computer Vision, 2014.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel. Under-
standing the origins of bias in word embeddings. In International conference on machine learn-
ing, pp. 803–811. PMLR, 2019.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient
descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):
124018, 2019.

Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane Boning, and Cho-Jui Hsieh.
Multi-stage influence function. Advances in Neural Information Processing Systems, 33:12732–
12742, 2020.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 42(1):
65–68, 2000.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

John M Danskin. The theory of max-min and its application to weapons allocation problems, vol-
ume 5. Springer Science & Business Media, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural net-
works. arXiv preprint arXiv:2110.03141, 2021.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 792–801, 2021.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. arXiv preprint arXiv:2005.06676, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
Advances in neural information processing systems, 7, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Peter J Huber. Robust statistics. Wiley Series in Probability and Mathematical Statistics, 1981.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, pp. 5905–5914. PMLR, 2021.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation frame-
work for machine learning. In Proceedings of The 25th International Conference on Artificial
Intelligence and Statistics, 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jiaqi Liu, Jian Lou, Zhan Qin, and Kui Ren. Certified minimax unlearning with generalization rates
and deletion capacity. Advances in Neural Information Processing Systems, 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinxin Liu and Zao Yang. Tracing privacy leakage of language models to training data via adjusted
influence functions. arXiv preprint arXiv:2408.10468, 2024.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022.

Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. stat, 1050(9), 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. arXiv preprint arXiv:2303.14186, 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
via sharpness aware minimization. In International conference on machine learning, pp. 18250–
18280. PMLR, 2022.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. Advances in Neural Information Processing Systems,
36, 2024.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Ad-
vances in neural information processing systems, 32, 2019.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1):1–9,
2018.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. California Institute of Technology, 2011.

Hao Wang, Berk Ustun, and Flavio Calmon. Repairing without retraining: Avoiding disparate
impact with counterfactual distributions. In International Conference on Machine Learning, pp.
6618–6627. PMLR, 2019.

Eyal Winter. The shapley value. Handbook of game theory with economic applications, 3:2025–
2054, 2002.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, Tie-Yan Liu, et al.
R-drop: Regularized dropout for neural networks. Advances in Neural Information Processing
Systems, 34:10890–10905, 2021.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Se-
lecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Jinsung Yoon, Sercan Arik, and Tomas Pfister. Data valuation using reinforcement learning. In
International Conference on Machine Learning, pp. 10842–10851. PMLR, 2020.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving gener-
alization in deep learning. In International Conference on Machine Learning, pp. 26982–26992.
PMLR, 2022.

B Zoph. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to refine grammar and improve language fluency. The authors reviewed and edited
all LLM-generated content and assume full responsibility for the final text.

B OMITTED PROOFS

B.1 DATA ATTRIBUTION IN SAM VIA HESSIAN IF

Theorem B.1. Consider the data (xk, yk) along with a SAM-trained model ω∗, ϵ̂(ω∗) represents
the model weight perturbation that results in the largest loss. Then the corresponding SAM-IF is
defined as:

SAM-IF(xk, yk) = −H−1
ω · ∇Lk

S(ω
∗ + ϵ̂(ω∗))

where Hω is defined as Hω = ∇2LS (ω∗ + ϵ̂(ω∗)) + λ · I . ωk can be approximated by

ωk ≈ ω∗ − SAM-IF(xk, yk).

Proof. Recalling the definition ϵ̂(ω) = argmax||ϵ||p≤ρ LS(ω + ϵ) and

ω∗ = argmin
ω

LS(ω) +
λ

2
· ||ω||22

= argmin
ω

LS(ω + ϵ̂(ω)) +
λ

2
· ||ω||22

= argmin
ω

n∑
i=1

ℓ(xi, yi;ω + ϵ̂(ω)) +
λ

2
· ||ω||22

= argmin
ω

n∑
i=1

Li
S(ω + ϵ̂(ω)) +

λ

2
· ||ω||22

(6)

Now we consider removing the k-th data (xk, yk). The retrained parameter after the removal is
denoted as ωk:

ωk = argmin
ω

n∑
i=1,i̸=k

Li
S(ω + ϵ̂(ω)) +

λ

2
· ||ω||22

To estimate this ωk, we can firstly up-weigh the loss term Lk
S(ω + ϵ̂(ω)) by δ in the original loss

function defined in (6), then a series of optimization problem can be defined as:

ωδ = argmin
ω

LS(ω + ϵ̂δ(ω)) + δ · Lk
S(ω + ϵ̂δ(ω)) +

λ

2
· ||ω||22 (7)

Noting here ϵ̂δ(ω) will change according to δ and is defined as

ϵ̂δ(ω) = argmax
||ϵ||p≤ρ

[
LS(ω + ϵ) + δ · Lk

S(ω + ϵ)
]

From the minimizing condition in Equation (6) and (7) and Lemma 4.2, we have

∇LS(ω
∗ + ϵ̂(ω∗)) = 0,∇LS(ωδ + ϵ̂δ(ωδ)) + δ · ∇Lk

S(ωδ + ϵ̂δ(ωδ)) = 0. (8)

To estimate ωδ − ω∗, we perform a Taylor expand at ω∗ for the first equation in (8).:

0 = ∇LS (ω∗ + ϵ̂(ω∗)) + δ · ∇Lk
S (ω∗ + ϵ̂(ω∗)) +∇2LS (ω∗ + ϵ̂(ω∗)) · (ωδ − ω∗)

+∇2LS (ω∗ + ϵ̂(ω∗)) · (ϵ̂δ (ωδ)− ϵ̂(ω∗))
(9)

In the above expansion, the first term equals 0 from (8). And to make thing easier, we can neglect
the last term and deduce a simple influence function for SAM.

SAM-IF(xk, yk) =
dωδ

dδ

∣∣∣∣
δ=0

= −H−1
ω · ∇Lk

S(ω
∗ + ϵ̂(ω∗)),

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where Hω is defined as Hω = ∇2LS (ω∗ + ϵ̂(ω∗)) + λ · I .

When δ = −1, ωδ becomes ωk. Then ωk can be approximated by a first-order Taylor expansion:

ωk ≈ ω∗ − SAM-IF(xk, yk).

Lemma B.2. The term ϵ̂k,δ (ωk,δ)− ϵ̂(ω∗) can be approximated by

ϵ̂k,δ(ωk,δ)− ϵ̂(ω∗)

=ϵ̂k,δ(ω
∗)− ϵ̂(ω∗) +

dϵ̂k,δ(ω)

dω

∣∣∣∣
ω=ω∗

· (ωk,δ − ω∗).
(10)

Proof. Now, we begin to estimate ϵ̂k,δ(ωk,δ)− ϵ̂(ω∗). Recalling the definitions as following:

ϵ̂k,δ (ωk,δ) = argmax
||ϵ||p≤ρ

[
LS(ωk,δ + ϵ) + δ · Lk

S(ωk,δ + ϵ)
]
,

ϵ̂(ω∗) = argmax
||ϵ||p≤ρ

.LS(ω
∗ + ϵ)

We will use ϵ̂k,δ(ω
∗) as an intermediate variable to simplify the approximation, which is defined as

ϵ̂k,δ(ω
∗) = argmin

||ϵ||p≤ρ

[
LS(ω

∗ + ϵ) + δ · Lk
S(ω

∗ + ϵ)
]

Firstly, we perform a Taylor expansion for ϵ̂k,δ (ωk,δ) at ω∗ as follows:

ϵ̂k,δ (ωk,δ) ≈ ϵ̂k,δ (ω
∗) +

dϵ̂k,δ (ωk,δ)

dω

∣∣∣∣
ω=ω∗

· (ωk,δ − ω∗)

Then the objective to estimate becomes

ϵ̂k,δ(ωk,δ)− ϵ̂(ω∗)

=ϵ̂k,δ(ωk,δ)− ϵ̂k,δ(ω
∗) + ϵ̂k,δ(ω

∗)− ϵ̂(ω∗)

=ϵ̂k,δ(ω
∗)− ϵ̂(ω∗) +

dϵ̂k,δ (ωk,δ)

dω

∣∣∣∣
ω=ω∗

· (ωk,δ − ω∗)

Theorem B.3. Consider the k-th data (xk, yk) along with a SAM-trained model ω∗. Define the
Hessian-based influence function for SAM(SAM-HIF) as:

SAM-HIF(xk, yk)

=−
(
Hω +Hω ·

dϵ̂(ω∗)

dω

)−1

· ∇Lk
S (ω∗ + ϵ̂(ω∗)) .

Then ωk can be approximated by:

ωk ≈ ω∗ − SAM-HIF(xk, yk).

Proof. Based on the expansion in Equation (9) in Theorem B.1, we can further estimate the term
ϵ̂k,δ (ωk,δ)− ϵ̂(ω∗) by Lemma B.2:

0 = ∇LS (ω∗ + ϵ̂(ω∗)) + δ · ∇Lk
S (ω∗ + ϵ̂(ω∗)) +∇2LS (ω∗ + ϵ̂(ω∗)) · (ωδ − ω∗)

+∇2LS (ω∗ + ϵ̂(ω∗)) ·
(
ϵ̂δ(ω

∗)− ϵ̂(ω∗) +
dϵ̂δ (ωδ)

dω

∣∣∣∣
ω=ω∗

· (ωδ − ω∗)

)
(11)

The first term equals 0 from (8). Then we have

0 = δ · ∇Lk
S (ω∗ + ϵ̂(ω∗)) +

(
Hω +Hω ·

dϵ̂δ (ωδ)

dω

)
· (ωδ − ω∗) +Hω · (ϵ̂δ(ω∗)− ϵ̂(ω∗)) .

(12)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then

ωδ − ω∗ =−
(
Hω +Hω ·

dϵ̂δ (ωδ)

dω

)−1

·Hω · (ϵ̂δ(ω∗)− ϵ̂(ω∗))

− δ ·
(
Hω +Hω ·

dϵ̂δ (ωδ)

dω

)−1

· ∇Lk
S (ω∗ + ϵ̂(ω∗)) .

Then we can obtain the following equation:

dωδ

dδ

∣∣∣∣
δ=0

=−
(
Hω +Hω ·

dϵ̂ (ω∗)

dω

)−1

·Hω ·
dϵ̂δ(ω

∗)

dδ

∣∣∣∣
δ=0

−
(
Hω +Hω ·

dϵ̂ (ω∗)

dω

)−1

· ∇Lk
S (ω∗ + ϵ̂(ω∗)) .

To enhance the computation efficiency, we drop the first term, and obtain the SAM-HIF as

SAM-IF =
dωδ

dδ

∣∣∣∣
δ=0

= −
(
Hω +Hω ·

dϵ̂ (ω∗)

dω

)−1

· ∇Lk
S (ω∗ + ϵ̂(ω∗)) . (13)

B.2 COMPUTATION ACCELERATION

Theorem B.4. Given a validation dataset defined as Dval = {(xt, yt)}nt=1. Denote the SAM-
retrained model after the removal of (xk, yk) as ω∗

−k, then∑
(x,y)∈Dval

ℓ(x, y;ω∗)−
∑

(x,y)∈Dval

ℓ(x, y;ω∗
−k)

≈
∑

(x,y)∈Dval

∇ℓ(x, y;ω∗) · IF(x, y) ≜ IS(x, y),

where IF can be SAM-HIF or SAM-GIF. We define the right hand of the above equation as the
Influence Score (IS).

Proof. ∑
(x,y)∈Dval

ℓ(x, y;ω∗)−
∑

(x,y)∈Dval

ℓ(x, y;ω∗
−k)

≈
∑

(x,y)∈Dval

∇ℓ(x, y;ω∗) ·
(
ω∗ − ω∗

−k

)
=

∑
(x,y)∈Dval

∇ℓ(x, y;ω∗) · IF(x, y) ≜ IS(x, y).

C OMITTED ALGORITHMS

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 SAM Algorithm in (Foret et al., 2020)

Require: Training set S, Loss function L, Batch size b, Step size η > 0, Neighborhood size ρ > 0.
Ensure: Model trained with SAM

1: Initialize weights w0, t = 0;
2: while not converged do
3: Sample batch B = {(x1, y1), . . . , (xb, yb)};
4: Compute gradient∇wLB(wt) of batch’s training loss;
5: Compute ϵ̂(w) per Equation (4);
6: Compute gradient: g = ∇wLB(wt + ϵ̂(wt));
7: Update weights: wt+1 = wt − ηg; t = t+ 1;
8: end while

Algorithm 2 SAM-IF with gradient trajectory

1: Input:
data: Training Dataset S = {(xi, yi}ni=1, data point (xk, yk) to be evaluated.
Parameter: Parameter checkpoint set Ω = {ωc}sc=1, learning rate ηc at step c.

2: Compute the influence of (xk, yk) in the c-th checkpoint as

IFc = ηc · ∇Lk
S(ωc−1 + ϵ̂(ωc−1))

3: Sum up to obtain the final influence as

SAM-IFStep =

s∑
c=1

IFc

4: Return: SAM-IFStep. Final Parameter ω− = ω∗ − SAM-IF.

Algorithm 3 Simple SAM-IF

1: Input:
Data: Training Dataset S = {(xi, yi}ni=1, data point (xk, yk) to be evaluated.
Parameter: The learned SAM-parameter ω∗, the learned best perturbation ϵ̂.

2: Compute T k as:
T k = ∇Lk

S (ω∗ + ϵ̂)

3: Define the Hessian matrix H as:
∇2LS (ω∗ + ϵ̂)

4: Use EK-FAC to compute the Hessian-vector product of H and T k:

SAM-IF = −H−1 · T k

5: Obtain the estimated parameter by

ω− = ω∗ − SAM-IF.

6: Return: SAM-IF, ω−.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 4 SAM-IF with total Hessian

1: Input:
Data: Training Dataset S = {(xi, yi}ni=1, data point (xk, yk) to be evaluated.
Parameter: The learned SAM-parameter ω∗, the learned best perturbation ϵ̂.

2: Compute T k as:
T k = ∇Lk

S (ω∗ + ϵ̂)

3: Define the gradient of ϵ as

Cϵ = ∇ω
|∇wLS(ω

∗)|q−1

(∥∇wLS(ω∗)∥qq)1/p

4: Give the definition of H as

H =∇2LS (ω∗ + ϵ̂) +∇2LS (ω∗ + ϵ̂) · Cϵ.

5: j ←− 1
T k ←− I0

6: if ∥Ij − Ij−1∥1 > ζ then
7: Use EK-FAC to compute the Hessian-vector product Sj ≜ H · Ij .
8: Compute Ij+1 by

Ij+1 = Ij − δ · Ij + Sj + T k

9: j ←− j + 1
10: end if
11: SAM-IF← Ij+1.
12: Obtain the estimated parameter by ω− = ω∗ − SAM-IF.
13: Return: SAM-IF. ω−.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENT RESULTS

This section presents the additional experimental results for completeness and detailed analysis.

D.1 RESULTS OF EFFICIENCY AND ACCURACY

To further validate the effectiveness and generalizability of our approach, we conducted exten-
sive experiments across a range of datasets (MNIST, HAM, CUB, FOOD-101) and models (Wide-
Resnet (Zagoruyko & Komodakis, 2016), ViT (Dosovitskiy et al., 2020), and ResNet50 (He et al.,
2016)).

We first evaluate on MNIST and HAM datasets using Wide-Resnet. Beyond these, we extend our
comparison to the CUB and FOOD-101 datasets with both ViT and ResNet50 architectures. For
each setting, we compare the proposed SAM-GIF with baseline methods, including Retrain, SAM-
HIF, and SAM-HIF(Fast), reporting both test accuracy and runtime (RT in seconds).

Table 2: Performance comparison on MNIST and HAM.

Method
Mnist HAM

Accuracy RT (second) Accuracy RT (second)
Retrain 0.9927±0.0005 2304.24±7.91 0.7254±0.02 2300.00±10.00
SAM-HIF(Fast) 0.9876±0.0013 8.0698±2.91 0.7130±0.0150 15.00±2.00
SAM-HIF 0.9880±0.0011 18.2321±1.91 0.7212±0.0120 52.20±3.00
SAM-GIF 0.9884±0.0007 2.8212±1.91 0.7350±0.0110 4.320±1.50

Table 3: Performance comparison on ViT.

Method
CUB FOOD-101

Accuracy RT (s) Accuracy RT (s)
Retrain 0.7236±0.005 2876.23±12.47 0.8231±0.031 16310.24±25.32
SAM-HIF 0.7032±0.005 53.2310±3.78 0.7932±0.024 47.212±4.12
SAM-HIF(Fast) 0.7189±0.003 22.3211±5.16 0.8012±0.014 28.31±3.21
SAM-GIF 0.7214±0.003 14.3231±2.33 0.8123±0.047 15.214±3.23

Table 4: Performance comparison on Resnet50.

Method
CUB FOOD-101

Accuracy RT (s) Accuracy RT (s)
Retrain 0.6336±0.005 2197.33±12.47 0.7436±0.031 15900.24±25.32
SAM-HIF 0.6213±0.005 37.2590±3.78 0.7022±0.024 41.321±4.12
SAM-HIF(Fast) 0.6178±0.003 25.3214±5.16 0.6918±0.014 26.0698±3.21
SAM-GIF 0.6244±0.004 12.6789±2.33 0.7189±0.047 13.234±3.23

Across all datasets and model architectures, SAM-GIF achieves test accuracy very close to, or even
surpassing, that of full retraining. For example, on the HAM dataset (Wide-Resnet), SAM-GIF
reaches 0.7350 accuracy, outperforming Retrain (0.7254). On CUB and FOOD-101, both with ViT
and ResNet50, SAM-GIF maintains competitive accuracy relative to all baselines.

SAM-GIF consistently offers significant speedup over retraining. For instance, on MNIST and
HAM with Wide-Resnet, the runtime of SAM-GIF is just 2.8s and 4.3s respectively, compared to
over 2300s for retraining—about three orders of magnitude faster. Similar trends hold for ViT and
ResNet50, where SAM-GIF achieves the lowest runtime among all methods.

Overall, these results demonstrate that SAM-GIF achieves an excellent balance, providing high
accuracy nearly on par or superior to retraining, while drastically reducing computational costs
across diverse datasets and model architectures.

D.2 RESULTS OF IDENTIFYING HARMFUL DATA

We conduct additional harmful data identification experiments on the MNIST, CIFAR-100, and
Mini-ImageNet datasets. The results are listed as follows. Figures 5, 6, and 7 illustrate the effec-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

tiveness of the SAM-GIF algorithm in detecting and removing harmful data. The superiority of our
method is demonstrated across multiple datasets. We observe that, compared to random removal,
the harmful detection rate of the SAM-GIF algorithm reaches approximately 80% at a removal rate
of 0.4. Moreover, by removing harmful data, the model’s accuracy gradually improves.

(a) Test Accuracy (b) Harmful Removal

Figure 5: Harmful data removal experiment on CIFAR-100 dataset. IS: using the influence score to
determine which sample to remove. Random: randomly removing tasks.

(a) Test Accuracy (b) Harmful Removal

Figure 6: Harmful Removal on Mini-ImageNet. IS: using the influence score to determine which
sample to remove. Random: randomly removing tasks.

(a) Test Accuracy (b) Harmful Removal

Figure 7: Harmful data removal experiment on MNIST dataset. IS: using the influence score to
determine which sample to remove. Random: randomly removing tasks

D.3 ADDITIONAL RESULTS ON INTERPRETABILITY

Figures 8, 9, and 10 present additional visualization results of the error prediction tracing process on
the MNIST, CIFAR-100, and Mini-ImageNet datasets, respectively. The first row displays examples

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

of misclassified test samples, the second row shows the most influential training data for classifying
these samples, and the third row presents the most harmful training data for these classifications.
These visualization results allow us to trace the outcomes of the error prediction process effectively.

Figure 8: The most helpful and harmful training data tracked by misclassified data on MNIST dataset

Figure 9: The most helpful and harmful training data tracked by misclassified data on CIFAR-100
dataset

D.4 ADDITIONAL ABLATION STUDY

D.5 ABLATION STUDY

We conducted ablation experiments on above three methods, SAM-HIF (fast), SAM-HIF and
SAM-GIF. We randomly removed 1%-8% of the training samples from CIFAR-10 and CIFAR-
100 datasets, and evaluated the model parameters using SAM-HIF(fast) and SAM-HIF, with retrain
serving as the ground truth. The results, shown in Figure 11, clearly demonstrate that SAM-HIF
consistently outperforms SAM-HIF(Fast) during the process of data removal. Also, we can see

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 10: The most helpful and harmful training data tracked by misclassified data on Mini-
ImageNet dataset

both methods consistently have slight differences with the ground truth. Results for SAM-GIF are
included in the Appendix D.4.

(a) CIFAR-10 (b) CIFAR-100
Figure 11: Ablation studies on CIFAR-10 and CIFAR-100.

Figure 12 shows the ablation study
results of SAM-GIF. We primar-
ily tested the impact of different
numbers of checkpoint weights on
the SAM-GIF algorithm using the
CIFAR-10 dataset. From the figure,
we can observe that as the number
of checkpoints increases, the accu-
racy of SAM-GIF becomes closer to
that of retraining. When the num-
ber of checkpoints is 10, the accuracy
of SAM-GIF is 0.9497, while the re-
training accuracy is 0.9517. At the
same time, as the number of checkpoints increases, the running time of SAM-GIF also increases.

(a) Accuracy of SAM-GIF (b) Runtime of SAM-GIF

Figure 12: Ablation study of SAM-GIF on Cifar10 dataset

22

	Introduction
	Related Work
	Preliminaries
	Evaluating Data Attribution in SAM
	Data Attribution in SAM via Hessian IF
	Improving Data Valuation via Gradient Trajectory
	Computation Acceleration
	Practical Applications

	Experiments
	Experimental Settings
	Evaluation of Utility and Editing Efficiency
	Helpful Data Removal: Task-Related IS Accuracy
	Evaluation of Effectiveness
	Results of Identifying Harmful Data
	Results on Interpretability

	Conclusion
	The Use of Large Language Models (LLMs)
	Omitted Proofs
	Data Attribution in SAM via Hessian IF
	Computation Acceleration

	Omitted Algorithms
	Additional Experiment Results
	Results of Efficiency and Accuracy
	Results of Identifying Harmful Data
	Additional Results on Interpretability
	Additional Ablation Study
	Ablation Study

