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ABSTRACT

Sharpness-aware Minimization (SAM) improves generalization in large-scale
model training by linking loss landscape geometry to generalization. However,
challenges such as mislabeled noisy data and privacy concerns have emerged as
significant issues. Data attribution, which identifies the contributions of specific
training samples, offers a promising solution. However, directly rendering exist-
ing data influence evaluation tools such as influence functions (IF) to SAM will
be inapplicable or inaccurate as SAM utilizes an inner loop to find model pertur-
bations that maximize loss, which the outer loop then minimizes, resulting in a
doubled computational structure. Additionally, this bilevel structure complicates
the modeling of data influence on the parameters. In this paper, based on the IF,
we develop two innovative data valuation methods for SAM, each offering unique
benefits in different scenarios: the Hessian-based IF and the Gradient Trajectory-
based IF. The first one provides a comprehensive estimation of data influence us-
ing a closed-form measure that relies only on the trained model weights. In con-
trast, the other IF for SAM utilizes gradient trajectory information during training
for more accurate and efficient data assessment. Extensive experiments demon-
strate their effectiveness in data evaluation and parameter tuning, with applications
in identifying mislabeled data, model editing, and enhancing interpretability.

1 INTRODUCTION

Over the past decade, deep neural networks have advanced significantly due to increased model pa-
rameter sizes and improved training algorithms that enhance generalization. However, larger models
often memorize training data, leading to overfitting and poor generalization. In order to address this
issue, considerable effort has been invested in the development of a range of strategies, including reg-
ularization techniques (Wu et al.}|2021;|Yoshida & Miyato,|2017)), adversarial training (Madry et al.,
2017;Shafahi et al.}[2019), model uncertainty (Gal & Ghahramani), 2016; Blundell et al., 2015)), and
neural architecture search (Zophl [2016)). Recent work has observed that sharp local minima in the
loss landscape can significantly impair the generalization performance of deep networks (Keskar
et al., 2016} [Hochreiter & Schmidhuber, [1994; [Neyshabur et al., [2017). To make loss landscape
flatter to improve models’ generalization ability, [Foret et al.| (2020) introduced a general framework
called Sharpness-aware Minimization (SAM). SAM improves generalization by penalizing sharp
minima and encouraging convergence to flatter regions. Intuitively, SAM is a bilevel optimization
problem, where the inner level seeks weight perturbations that can lead to the maximum loss, which
is a measure of local sharpness. On the outer level, the model is trained to minimize both loss and
local sharpness simultaneously. Thus, it can also be formulated as a minimax optimization problem.
SAM has achieved state-of-the-art results across various tasks (Foret et al., [2020; |Chen et al., |[2021;
Liu et al., [2022)).

While SAM has been applied in various real-world applications (Du et al., |2021; |Andriushchenko
et al., 2023} |Qu et al., 2022} [Bahri et al.l [2021), the presence of noisy data in the training set,
including mislabeled or poisoned data, has become a significant concern. A critical approach to
tackling this issue involves identifying the contributions of training samples in SAM-trained models
by assessing their impact on model performance, a process referred to as (training data) attribution.
Data attribution plays a critical role in tracing model outputs back to significant training examples,
thereby providing insights into how individual data points influence model performance.
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Data attribution has been used in various tasks to enhance model transparency and understanding of
how training data influences model behavior (Ribeiro et al.,[2016} |[Lundberg, [2017)). Generally, data
attribution methods (Jia et al., 2019; (Ghorbanmi & Zou, [2019; |Yoon et al., [2020; [Han et al., [2020)
assign higher contribution scores to training instances that significantly improve model performance
when included, which can be divided into two types. The first one, such as Shapley Value (Winter,
2002)), is based on sampling (Lundbergl |2017;|Kwon & Zou, |2022)), which requires multiple retrain-
ing with different data subsets. This is computationally expensive and impractical for large models.
To address this challenge, the second approach—namely, influence function-based methods (Koh
& Liang| |2017; |[Feldman & Zhang, |2020)—estimates data contributions using gradient information,
thereby facilitating accurate assessments without the need for retraining. Recent advancements have
led to innovative estimators utilizing the training gradient trajectory (Pruthi et al.l 2020} Schioppa
et al.} 2024), which estimate the influence of training data on model predictions by tracing gradi-
ent descent, providing better insights into and improvements of training examples in deep learning
models. These methods do not depend on the convexity assumption of the loss function, nor do they
require computationally intensive Hessian inversions. Instead, they perform calculations based on
the training gradient and have achieved good results in many tasks (Liu & Yang, [2024).

However, it is essential to note that influence functions were initially designed for M-estimators (Hu-
ber,|1981) (i.e., minimizing the summation of loss on all data), which limits their direct applicability
to the bilevel structure in SAM. Specifically, the influence of data on perturbations, and conse-
quently on model parameters, is indirect manner and has not been considered in classical influence
functions. Due to the coupled outer-inner optimization process involved in SAM, any changes to the
model parameters will necessitate further updates to the inner perturbations and consequently alter
the outer model parameters. Furthermore, in the actual training of SAM, the inner perturbations
are not derived through the optimization process but are instead obtained via approximation. To
further accelerate computations, the outer gradient descent is also approximated, resulting in minor
deviations in the inner perturbations from the original SAM model. These complicate our ability to
evaluate the influence of data in SAM accurately.

In this paper, we propose two data valuation methods based on influence functions for SAM, fo-
cusing on two distinct scenarios. Firstly, we derive a closed form of the Hessian-based Influence
Function (SAM-HIF) from the mathematical formulation of SAM through theoretical derivation.
SAM-HIF fully considers the impact of data on the model’s local sharpness. In the absence of gradi-
ent trajectory information, SAM-HIF serves as a comprehensive estimation method. However, when
gradient trajectory information during training is accessible, we can focus on the specific training
algorithm to derive a more accurate evaluation method. Inspired by [Pruthi et al.|(2020), we propose
the Gradient Trajectory-based Influence Function (SAM-GIF). This method utilizes checkpoints to
evaluate the influence of data within SAM, leading to accurate data assessment while reducing im-
plementation and computational costs. SAM-GIF proves to be highly effective due to its simplicity,
high scalability, and accuracy. To sum up, our contributions are listed as follows:

* We present data evaluation methods using influence functions (IF) for SAM and its training
algorithms. First, we derive SAM-HIF, which allows for precise modeling of data influence
in SAM by effectively capturing influences on both model parameters and model pertur-
bations. Second, we present SAM-GIF, which showcases exceptional precision and scala-
bility when training gradient trajectories are accessible. We also discuss some downstream
applications and strategies to accelerate the computation of our influence functions.

* Our method has potential applications in several real-world scenarios, including the auto-
matic identification and removal of potentially harmful data points, SAM model editing,
and enhancing the interpretability of SAM-trained models. We validate the effectiveness
and efficiency of SAM-HIF and SAM-GIF through comprehensive experimental evalua-
tions. Experimental results indicate that our framework performs well in data evaluation
and the tuning of SAM-trained models.

2 RELATED WORK

Sharpness Aware Minimization. The concept of flat minima and its link to reducing overfitting
and enhancing model generalization was first explored by Hochreiter & Schmidhuber| (1997), estab-
lishing a foundation for understanding why models that converge to flatter regions tend to generalize
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better. Additionally, Keskar et al.| (2016) experimentally examined the relationship between batch
size, sharp minima, and generalization. Their findings provided empirical support for SAM’s theo-
retical foundations and highlighted the importance of sharpness in optimization and model training.
Overall, sharp local minima can significantly influence the generalization capabilities of deep net-
works (Chaudhari et al.| 2019; Izmailov et al.l 2018). Building on these insights, one of the founda-
tional works on SAM is by [Foret et al.| (2020), who proposed a bi-level optimization framework that
seeks perturbations around model parameters to maximize loss and guide the model towards flatter
minima. Recent studies have further explored the behavior SAM. For example, /Andriushchenko
& Flammarion| (2022) investigated the geometric properties of loss landscapes, demonstrating that
SAM’s perturbation-based approach offers insights into model behavior. Their findings indicate that
SAM not only improves generalization but also enhances understanding of models’ sensitivity to
input perturbations. |[Zhao et al.| (2022) assert that SAM (Foret et al.| 2020) is effectively equivalent
to applying a gradient norm regularization through the approximation of the Hessian matrix. Kwon
et al.| (2021) introduce adaptive SAM, which can dynamically adjust the maximization region based
on the weight scale. To minimize computational costs associated with SAM, |Du et al.[(2021) intro-
duced Efficient SAM, which randomly computes perturbations.

Influence Function. The influence function(IF), initially developed in robust statistics (Cook,2000;
Cook & Weisberg), [1980), has become essential in machine learning since its introduction by |[Koh &
Liang| (2017). IFs have been used in various fields, including interpreting model outputs, reducing
model bias (Wang et al.,2019), and facilitating machine unlearning (Liu et al.,|2024; |Golatkar et al.},
2020; 2021)). Its versatility spans various fields, including natural language processing (Han et al.,
2020) and image classification (Basu et al., |2021), while also addressing biases in classification
models (Wang et al., 2019), word embeddings (Brunet et al., |2019), and model fine-tuning (Chen
et al.,[2020). A recent innovative influence function that leverages the training gradient trajectory
has been proposed and investigated (Pruthi et al.l [2020; [Schioppa et al.| [2024)), and has been suc-
cessfully applied in instructional fine-tuning (Xia et al., 2024)). Despite the numerous studies related
to influence functions, we are the first to use this concept for the data evaluation of models trained
for SAM. This provides us with a completely new perspective on understanding the training process
of SAM.

3 PRELIMINARIES

Sharpness-Aware Minimization (SAM). SAM presents a novel approach to optimizing machine
learning models with the primary objective of enhancing generalization by mitigating the sharpness
of the loss landscape. Given a dataset S = {(z;, y;)}I;, we define the training loss associated with
model parameters w and a perturbation € as:

1 n n )
Lg(w—l—e):ﬁZE(x“yi;w—i—e)éZLg(w—i—e). (1)
i=1 =1

Then SAM optimization framework seeks parameters that lie in neighborhoods having uniformly
low loss by the following procedure. Firstly, seeking the model perturbation maximizing the loss
é(w) = argmax||| <, Ls(w + €). Then minimize the uniform loss:

. . A

w”* :argmlnLS(w+e(w))+§ - |w]|3. (2)
w

where A is the regularization parameter. Here, SAM takes model loss sharpness into consideration

via including the perturbation process. The loss function for SAM can be formed into one equation

as follows:

, ) A
LM (w) =Ls(w+éw)) + 5 - [lwlf3

= max Lg(w+e€)+ uy ||w]|2.
llello<p 2
In essence, SAM seeks to minimize the worst-case loss by enforcing a level of robustness against
perturbations in the parameter space, thereby promoting smoother loss landscapes. Besides, the
gradient of LgAM is calculated by
dé(w)

VLM (w) = VLg(w + é(w)) + WVLS(W + é(w)). 3)
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Influence Function. The influence function (Huber, |1981) quantifies how an estimator relies on the

value of each individual point in the sample. Consider a neural network 0 = arg min,y L(6, D) =
S €(zi;0) with loss function ¢ and dataset D = {z;}! ;. When an individual data point z,,

is removed from the training set, the retrained optimal retrained model is denoted as é,zm. The

influence function method provides an efficient way to approximate é_zm without the need of re-
training. By increasing the weight of the z,,, loss term by &, define a series of j-parameterized op-

timal models by 6_._ 5 = argming [L(6, D) + 6 £(z;0)]. Consider the term VL(0_., 5, D) +
§ - V(zm; G_ZW ) = 0, we perform a Taylor expansion at 0 and incorporate the optimal gradient
condition at 9_ . and 0:

ZVE 23 0 +5 VA(Zm; ) (9—zm —é) ~ 0

where H; = S V2€ (24 ) is the Hessian matrix. Consequently, the Influence Function is de-

fined as the derivatlve of the change in parameters of the retrained model due to perturbation with
respect to the perturbation:

do_.. ;-0 _ 5
IF(z,) = Z(y’# ~ —Hé LoVl(zm; 0).
5=0
When setting 6 = —1, this results in the complete removal of z,,, from the retraining process. Then,

_. »,, can be approximated by a linear approximation formula as 6 — IF(z,,). Additionally, for a
differentiable evaluation function, such as one used to calculate the total model loss over a test set,
the change resulting from up-weighting € to z,, in the evaluation results can be approximated as

—Vf(6) - IF(zp).

4 EVALUATING DATA ATTRIBUTION IN SAM

To evaluate the influence of an individual data point for SAM, we utilize assessing model differences
after leave-one-out (LOO) retraining.

4.1 DATA ATTRIBUTION IN SAM VIA HESSIAN IF

To evaluate the influence of an individual data point for the model trained via SAM, we first provide
an estimation of the leave-one-out (LOO) retrained model. Then we can quantify the parameter-level
influence of the excluded data point by analyzing the differences in model parameters before and
after the retraining process. Due to the unique architecture of SAM, the form of the corresponding
loss function differs from that of traditional IF. This is because SAM includes an additional step to
find parameter perturbations that maximize the loss, which will also change as a result of the LOO
retraining process. We provide details in the following.

Definition 4.1 (LOO Retrained Parameter). For (xy, ) to be evaluated, let é;(w) be the perturba-
tion maximizing the loss after removing (', yx ), defined as é(w) = arg max;;| <, Z;k Liy(w+
€). The retrained model is defined as wy = argmin,, >, Li(w+ ép(w)) + 5 - [|w] 3.

From the preceding discussion, we denote the influence of the data point (zy,yx) on the SAM-
trained model as wy — w*. To avoid retraining, we utilize the influence function method to approx-
imate this difference. We begin by transforming the optimality condition of (Z)) into a simpler form
via Danskin’s Theorem (Danskinl [2012).

Lemma 4.2. The optimal solution w* of SAM, as represented in (2)), satisfies VLg(w* + é(w*)) +
AU T Lg(w* + é(w*)) + Aw* = 0, which is equivalent to V Lg(w* + é(w*)) = 0.

dw*

Follow the idea of influence function, we up-weigh the k-th term in the loss function by a factor of
0. This adjustment allows us to derive a series of model parameters wy, s obtained by training the
models via SAM:

. A . , . A
w5 = argmin Lo 5 (w) = L s(w) + 5 -[lwll3 = LS(W+€6(UJ))+5'L’§(w+66(w))+§ w3
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The d-related term in the loss function captures the influence of (x, yx) on w (where wy, 1 = wy).
Moreover, § also affects the worst-case perturbation through the modified objective for e: €x 5(w) =
argmax).|| <, [ 21—y Ls(w + €) + & - LE(w + ¢)]. This modification in the objective function, in
turn, indirectly influences the optimal parameters learned through SAM. Starting from a simplified

case, we neglect the indirect influence of the perturbation and introduce the simplified version of
SAM-IF.

Theorem 4.3. For the k-th data point (xy, yr,) and a SAM-trained model w*, é(w*) represents the
model weight perturbation that results in the largest loss, the corresponding SAM-IF is given by:
SAM-IF (zy, yi) = —H ;' - VLE(w* +é(w*)) where H,, is defined as H,, = V*Lg (w* + é(w*)) +
A wy, can be approximated by wy, ~ w* — SAM-IF (xy, yx)-

We can see that in SAM-IF we still use €(w*) in both Hessian matrix and gradient, while the optimal
perturbation should be €, _1(wy). However, neglecting the term related to the perturbation can
lead to an incomplete and inaccurate evaluation of data influence. In fact, it implies that while the
influence of this data point on the model’s loss function is considered, the impact of removing this
data point on the computation of model sharpness is not taken into account. This will lead to an
incomplete evaluation of data influence. To take this into consideration, € s (wi,s) — é(w™) also
need to be estimated, which is given in the following lemma.

dég 5 (w)

Lemma 4.4. ¢ 5 (wkﬁ) — é(w*) ~ €k75(w*) — é(w*) + —i L (wk_,(; — w*).

When € — 0, é; 5(w*) — é(w*) — 0, then € 5(wg,5) — é(w™) can be bounded by wy, s — w*, which
is especially useful for the following derivation.

Theorem 4.5. For the k-th data point (x, yi) and a SAM-trained model w*, the SAM-HIF is given

2o\ 1
by — (Hw + H, de(gz )) VLE (w* + é(w*)). Then wy, =~ w* — SAM-HIF (zy,, yi,)-

dé(w™)
dw

Note that in general, there is no closed-form solution for the term , to address the issue, we

can use the method in (Foret et al.,|2020) to approximate é:
\Vst(w7 0)“1_1
(| VL (w, 0)| )"

é(w) = p-sign(VyLs(w,0)) - 4)

where p satisfies % + % = 1. Assuming the sign of the gradient V,,Ls(w, 0) remains unchanged
dé(w™)

dw*

when one data point is removed,

can be calculated easily.

4.2 IMPROVING DATA VALUATION VIA GRADIENT TRAJECTORY

In Theorem [4.5] we have to know the exact worst perturbation é(w). However, according to (Foret
et al., 2020), to accelerate the training, the training algorithm for SAM uses the following closed-
form estimation of €(w™*) in (4) to replace the procedure of finding the model perturbation that results
in the largest loss. Besides, for the outer-level gradient descent, the second term in (3)) is intentionally
dropped during training for simplification, and the final gradient approximation they use is actually
VLg(w + &(w)). See Algorithm || for details. Therefore, the SAM-HIF we proposed based on the
minimization condition represents an idealized case, which sometimes proves insufficiently reliable
in practical applications where we cannot find the optimal minimizer. To bridge the gap, we will next
focus on the SAM model trained via the canonical training algorithm in (Foret et al.l 2020), where
we have the training trajectory stored in checkpoints. To measure the influence of the k-th data in
the training dataset, similar to HIF, we firstly define a loss function with the k-th term up-weighted
by § as:

Ls(w;6) = Ls(w) + 6 - Lg(w). 5)
Consider the model trained based on loss function (5)) using a gradient descent optimizer in (Foret
et al.,2020). At training step ¢, model parameters w; s are updated as

Wi—1,6 —Mi—1 - VLs (W1 + éwi—1)) — 8 -1V LE (w15 + é(wi—15)),

where 7;_1 is the learning rate at step ¢ — 1, and €(w;—1,0) is defined in @) Then, the model
trained after T' steps becomes wyr s = wp — ZtT:_Ol Nt - VwLs (wi,s + €(we s); 6). Based on the
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above discussion, we derive the Gradient-based Influence Function (SAM-GIF) by calculating the
derivative of the up-weighted retrained parameter wr s for the k-th data point with respect to d.

T—1 T—1

dw 5 dV st5+ew5 1) dw‘g—i—(fu}yg
T _Z t (wi.6); )60_27%.]_[&0. (wt, dé(t))(so,
=0 t=0 =

45 |s_g ds

where H, j is the Hess1an matrix of Lg(w;). To reduce the calculation complexity, we omit the sec-

ond Hessian term and thus have the following approximation:SAM-GIFgp (2, yr) = Zt 0 Mt
Vleg (w¢ + €(wy)). This definition is consistent with (Pruthi et al.,[2020). However, compared with
gradient descent, SAM is more often carried out under the framework of SGD optimizer. Under this
setting, it is possible that (zy,yx) may not be used in some updating steps. Therefore, we utilize
By, ; to indicate whether (z,yy) is used in the ¢-th gradient descent step. Finally, we have the
following result.

Theorem 4.6. Assume the model is trained by SGD with the worst perturbation é(-) in each iteration
is calculated via . For the data (x, yi ), it Gradient trajectory-based IF (SAM-GIF) is given by
SAM-GIFscp (i, yr) = ZtT;Ol ntBk_ytiL’g(wt +é(wy)). Then, the LOO retrained model wy, under
SAM can be estimated by wy, = w* — SAM-GIFs6p(xk, Y )-

4.3 COMPUTATION ACCELERATION

The SAM-HIF outlined in Section [{.T| requires calculations of the inverse Hessian-vector product
(IHVP). To enhance the scalability of SAM-HIF, we will introduce one efficient acceleration tech-
nique to expedite the computation of iHVP.

Neumann Serles Approximation Method. The calculation in Proposition 4.3] and Theorem [4.5]is
expressed as —H ! - G, where H denotes the Hessmn and G is the gradient. Then with the help of

the Neumann series: ' -G = (I — (I — H))™" G G+ +°°(I H)J - G. By truncating

this series at order .J, we derive approximationas H ' -G~ G+ (I —H)-G+---(I-H)’-G. It
is important to clarify that we did not specifically focus on accelerating the inversion of the Hessian
matrix; instead, we optimized the iHVP directly. This approach eliminates the need to store Hessian
matrix, which significantly reduces the memory requirements of our method.

4.4 PRACTICAL APPLICATIONS

This section presents downstream tasks leveraging SAM-HIF and SAM-GIF in diverse scenarios.

Model Editing. We can use IFs to update the model under the removal of certain data. Specifi-
cally, the model after removing the k-th data point can be estimated as w* — SAM-HIF(zy, yi; w*).
Additionally, if the training gradient trajectory is available, we can obtain an efficient and accurate
estimate as w* — SAM-GIF(xg, y; w*).

Data Evaluation. By appropriately selecting the model evaluation function, we can define influence
scores (ISs) for individual data points. These scores can then be applied to data selection to enhance
SAM performance.

Definition 4.7. (Evaluation Function) Given a validation dataset defined as Dyq; = {(2+, ¥t) }71-
the SAM learned parameter w* performance on the test task is defined as 3, o p , €(z,y;w").

val

Thus, we propose an influence evaluation method.

Theorem 4.8. Given a validation dataset defined as Do = {(x+,y+)}7—q. Denote the SAM-
retrained model after the removal of (xx, yi) as w* ;, then

Yo Mayw) = Y Maywi)x Y Vie,yiw') - IF(w,y) £ 1S(z,y),
(z,y)EDyar (z,9)EDyar (z,¥)EDyar
where IF can be SAM-HIF or SAM-GIF. We define the right hand of the above equation as the
Influence Score (IS).

A positive IS indicates that removing the data point will deteriorate the model’s performance on the
test dataset. Thus, this data point is valuable for model performance. Assigning an IS to each training
data point allows us to identify useful and harmful data for the model’s performance. Detailed
theoretical derivations are provided in the Appendix.
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Table 1: Performance Comparison on CIFAR-10, CIFAR-100, and MINI-Imagenet.

CIFAR-10 CIFAR-100 MINI-Imagenet
Method Accuracy RT (s) Accuracy RT (s) Accuracy RT (s)
Retrain 0.9500(61) 3516.74(845) 0.7890(311) 3244.25(218) 0.6835(460) 682.56(791)
SAM-HIF(Fast) 0.9323(110) 11.07(341) 0.7208(142) 13.07(416) 0.6478(125) 11.32(243)
SAM-HIF 0.9443(121) 41.50(321) 0.7213(239) 42.41(324) 0.6516(213) 39.21(309)
SAM-GIF 0.9497(142) 4.89(142) 0.7227(469) 6.89(231) 0.6446(122) 5.89(112)

5 EXPERIMENTS

In this section, we demonstrate our main experimental results on utility, efficiency, effectiveness,
and the abilities to identify harmful data and enhance interpretability. Details and additional results
are in Appendix due to space limit.

5.1 EXPERIMENTAL SETTINGS

Dataset. We evaluated our algorithm on seven datasets: CIFAR-10, CIFAR-100 (Alex,2009), Mini-
ImageNet (Deng et al.| [2009), MNIST (LeCun et al.l |1998), HAM10000 (Tschandl et al.| |2018),
CUB (Wah et al., [2011), and Food101 (Bossard et al., 2014)). CIFAR-10/100 are benchmarks for
small-scale image classification, MinilmageNet is widely used for few-shot learning, and MNIST
comprises handwritten digits. HAM 10000, CUB, and Food101 assess generalization on skin lesions,
bird species, and food recognition, respectively.

Baselines. We use retraining as the ground truth: removing a data point and retraining the model
with SAM. Baselines include TRAK (Park et al., [2023), a projection-based kernel approximation
for large-scale data attribution, and IF-EKFAC (Grosse et al., 2023), which leverages EKFAC to
efficiently approximate Hessian-based influence functions.

When the training trajectory is unavailable, we use SAM-HIF and SAM-HIF (fast), implementing
Theorems and respectively, and accelerate both with the Neumann Series approximation
(Section4.3). When the trajectory is available, we use SAM-GIF, implementing Theorem §.6] De-
tailed algorithms are provided in the Appendix.

Evaluation Metric. We used two primary evaluation metrics to assess our models: accuracy and
runtime (RT). Accuracy evaluates the model’s performance by measuring the proportion of correctly
classified instances out of the total instances. Runtime(RT), measured in seconds, assesses the time
required for each method to update the model.

Implementation Details. We conducted experiments using the Nvidia RTX 4090-24G GPU. For
all experiments, we selected the WideResNets architecture as the backbone network for the clas-
sification task. For utility evaluation, we randomly selected samples at different proportions from
four datasets. For valuable (or harmful) samples, we removed 0-10 % of the data identified as valu-
able (or harmful) by the algorithm. Additionally, the removal process was repeated five times using
different random seeds to obtain experimental results.

5.2 EVALUATION OF UTILITY AND EDITING EFFICIENCY

We first demonstrate the results on accuracy and time consumption of three algorithms, SAM-HIF
(fast), SAM-HIF, and SAM-GIF, against the retrain method. Our experimental results are presented
in Table[T} It is evident that our three proposed algorithms significantly improve computational ef-
ficiency without sacrificing accuracy. On the CIFAR-10 dataset, the time cost of retraining reached
3516.74, while our methods notably enhance computational efficiency, with SAM-HIF (fast), SAM-
HIF, and SAM-GIF reducing the time to 11.0698, 41.4960, and 4.894 seconds, respectively. The
accuracy differences between SAM-HIF (fast), SAM-HIF, and SAM-GIF compared to retrain are
0.0177, 0.0057, and 0.0003, respectively. These findings suggest that SAM-HIF (fast), SAM-HIF,
and SAM-GIF can save substantial computational time required for retraining while achieving com-
parable accuracy.

5.3 HELPFUL DATA REMOVAL: TASK-RELATED IS ACCURACY
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Furthermore, we observe that by - B

5 it
avoiding the computation of the Hes-  i.. " . i
sian matrix, SAM-GIF requires less ™~ i L
time than both SAM-HIF (Fast) and ..
SAM-HIF. Besides, SAM-GIF not =+ = i = = TR R

only surpasses SAM-HIF and SAM- . .

HHX (szsﬁ) in speed but also achieves (a) Cifarl0 (&) Cifarl 00
accuracy comparable to retraining. — pu gy "
This corroborates our previous dis- i Iﬂd )

1k
iz

cussion: compared to the SAM
model, gradient trajectories can more
accurately reflect the training of the
SAM model, leading to a more pre- s
cise estimation result. By avoiding
the computation of the Hessian ma-
trix, SAM-GIF demonstrates better
time efficiency than other methods while also showing improved accuracy on CIFAR-10. These
findings indicate that utilizing gradient information effectively enhances both training efficiency
and predictive accuracy. Moreover, we can see SAM-HIF achieves higher accuracy than SAM-
HIF (Fast) by incorporating perturbation-related components into the Hessian matrix; however, this
comes at the cost of a 2-3x increase in runtime. Mathematically, as we mentioned in Theorem 4.5]
SAM-HIF further considers the change of perturbations due to the data removal. This can make it
evaluate data influence more accurately but with additional computation time.

(c) Mnist (d) Miniimagenet
Figure 1: Helpful Data Removal: Task-Related IS Accuracy

5.4 EVALUATION OF EFFECTIVENESS

Here, we aim to show that our proposed 7 o [
influence functions can be used to attribute ol / -
data. To achieve this, we traverse the train- -
. ) 7

ing samples by calculating the IS value for
each sample to select the most valuable
data. We then remove these samples and

Test Accuracy
Fraction of mislabeled identified

/
update the model through retraining or us- 2

ing the SAM-HIF (Fast), SAM-HIF, and L] wlf

SAM_GIF, and analyzing the Changes in Fraction of training data checked Fraction of training data checked
accuracy relative to the accuracy before re- (a) Test Accuracy (b) Identified Ratio

moval. In detail, we first calculate the in-
fluence scores of all samples and select the
most valuable ones by ranking them. Then, the top k most valuable data points are removed, where
k ranges from 2% to 10% of the data size. Next, the model is retrained multiple times using different
random seeds or updated using our different methods. The test set accuracy is then calculated after
updating the parameters. Additionally, we randomly delete the same proportion of samples as a
control experiment. Our experimental results, as shown in the Figure ] indicate that after remov-
ing the most valuable training data, the accuracy of the updated model decreases across different
datasets. For instance, for the CIFAR-10 dataset, when the removal ratios are 0.02, 0.05, 0.07, and
0.10, the accuracy scores for retraining and the SAM-HIF (Fast), SAM-HIF, and SAM-GIF algo-
rithms gradually decrease. At the 0.10 removal ratio, the accuracy for the four methods drops to
0.8432, 0.8212, 0.8412, and 0.8311, respectively. The accuracy of different approaches is similar
to that of retraining (with a maximum difference of 0.022), which demonstrates that our algorithm
significantly reduces computational time while maintaining accuracy. In contrast, random deletion
exhibits greater variability, and although a higher deletion ratio can improve accuracy, the results are
less stable.

Figure 2: Harmful Data Removal Experiment.

5.5 RESULTS OF IDENTIFYING HARMFUL DATA

To evaluate our algorithm’s ability to identify harmful data, we introduce noise into CIFAR-10 by
randomly inverting labels for 10% of the training set. Models are trained with SAM using the same
setup as previous experiments. We compute each sample’s IS with SAM-GIF and label samples
with low IS as harmful. We then retrain models while removing increasing proportions of these
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harmful samples and report test accuracy (Figure 2a). As more harmful data are removed, accuracy
improves; at a 25% removal rate, accuracy increases by about 0.06. In contrast, random removal
leads to unstable or reduced accuracy. As shown in Figure[2p, our method detects over 90% of noisy
data when the detection rate reaches 0.4, outperforming random deletion. Results on additional
datasets and baseline comparisons are provided in the Appendix [D.2] We further conduct the same
harmful data removal experiments on the CUB and FOOD-101 datasets, as shown in Figure 3]

As the removal ratio increases, the ac-
curacy of all methods improves, but
our methods (SAM-GIF and SAM-HIF)
consistently outperform the baseline ap-
proaches, including TARK, IF, and IF-
EKFAC. Notably, when 20% of the data is
removed, SAM-GIF achieves about 65.5%
accuracy on CUB and around 76.5% on
FOOD-101, which are both higher than
those achieved by the baseline methods.

CUB Dataset

FOOD-101 Dataset
eay

0760

)

S 0755

%

Accuracy(%)
Accuracy(¥

000 020 0.00

00 010 015 005 010 015
Removal Ratio Removal Ratio

Figure 3: Baselines for Harmful Data Removal

5.6 RESULTS ON INTERPRETABILITY

We apply SAM-GIF to identify the training samples that are most relevant to specific prediction
errors in the test samples. In this process, we select samples from the test data where the model
misclassifies. By calculating the IS of the samples, we identify and visualize harmful data with
a negative IS that leads to erroneous predictions, namely. Figure [] presents the visualization of
this error prediction tracing process for the CIFAR-10 dataset (more visualization results are in
Appendix). The first row displays examples of misclassified test samples, the second row shows the
most influential training data for classifying this sample, and the third row shows the most harmful
training data for this classification. We can trace the outcomes of the error prediction process through
the visualization results. Please see Appendix [D.3] for more results. We also conduct an ablation
study (see Appendix[D.4).

6 CONCLUSION

In conclusion, we addressed data attribution challenges in the SAM framework with two novel meth-
ods: SAM-HIF and SAM-GIF. SAM-HIF employs a comprehensive closed-form data influence es-
timation. SAM-GIF utilizes gradient trajectory information for efficient, scalable evaluation. Exper-
iments on four datasets indicated the effectiveness and scalability of these methods. Our approach
aids in mislabeled data detection, model editing, and interpretability in SAM-trained models.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to refine grammar and improve language fluency. The authors reviewed and edited
all LLM-generated content and assume full responsibility for the final text.

B OMITTED PROOFS

B.1 DATA ATTRIBUTION IN SAM VIA HESSIAN IF

Theorem B.1. Consider the data (xy,yx) along with a SAM-trained model w*, é(w™*) represents
the model weight perturbation that results in the largest loss. Then the corresponding SAM-IF is
defined as:

SAM-IF(xy, ) = —H, ' - VLE(w* + é(w™))
where H,, is defined as H,, = V*Lg (w* + é(w*)) + X - I. wy, can be approximated by
wr & w* — SAM-IF(z, yr).

Proof. Recalling the definition é(w) = arg max; | <, Ls(w + €) and
* . )\ 2
w :argmlnLS(w)+§-||w||2

A
= argmin Lg(w + é(w)) + 3 ||wl|3

n A (6)
= argmin 3" s,y + w)) + 5 - ol
w i=1

n

; A
= argmin ) Li(w +&w)) + 7 - |lwlf3

2
Yo =1

Now we consider removing the k-th data (zy,yx). The retrained parameter after the removal is

denoted as wy:
n

: i R A
wy = arg min Z Ls(w+e(w))+§~||w||§
Y =1,k

To estimate this wy, we can firstly up-weigh the loss term L% (w + é(w)) by § in the original loss
function defined in (6), then a series of optimization problem can be defined as:

. . R A
ws = argmin Lg(w + é5(w)) + 9 - ng(w + és(w)) + 5 l|w||3 @)

Noting here é5(w) will change according to § and is defined as

é5(w) = argmax [Lg(w +€) + 6 - LE(w + €]
lellp<p

From the minimizing condition in Equation (6) and (7) and Lemma[4.2] we have
VLs(w* + éw*)) = 0,VLs(ws + és(ws)) + 6 - VLE(ws + é5(ws)) = 0. (8)
To estimate ws — w*, we perform a Taylor expand at w* for the first equation in (g).:
0=VLs(w*+&w") +6 - VLE (W + é(w*)) + V2Lg (w* + éw™)) - (ws — w*)
+ V2L (w* + éw™)) - (&5 (ws) — é(w™))

In the above expansion, the first term equals 0 from (8). And to make thing easier, we can neglect
the last term and deduce a simple influence function for SAM.

©))

dw5

SAM-IF(.’L'k7yk) = ﬁ
6=0

= —H;' VLE(w" +éw")),
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where H,,, is defined as H,, = V?Lg (w* + é(w*)) + A - L.
When 6 = —1, ws becomes wy. Then wy, can be approximated by a first-order Taylor expansion:

w ~ w* — SAM-IF (2, yg)-

O
Lemma B.2. The term €y 5 (wi s) — €(w*) can be approximated by
€5 (Wh,s) — €(wW™)
. I 1 (% . (10)
=éps(W") — €w’) + %U (w5 — W)

Proof. Now, we begin to estimate €5 5(wg,5) — é(w*). Recalling the definitions as following:

€k,5 (Whs) = alllfgi"max [Ls(wr,s+€) +6 - L(wr,s +€)]
€llp<p

€(w*) = argmax . Lg(w* + €)

llellp<p

We will use € 5(w™) as an intermediate variable to simplify the approximation, which is defined as

érs(w*) = argmin [Lg(w* +€) + 6 - LE(w* + €)]
llellp<p

Firstly, we perform a Taylor expansion for é 5 (wg,s) at w* as follows:

dég,s (wr,s)

dw (ks =)

€ko (Wr,s) ~ €5 (W) +

w=w*

Then the objective to estimate becomes
€k, (wr,s) — €(w”)
=65 (Wr.5) = €r5(W) + éx 5 (W) — E(w")

dég s (wk,s5)

=€ s(wW*) — é(w") + o

O

Theorem B.3. Consider the k-th data (xy,yy) along with a SAM-trained model w*. Define the
Hessian-based influence function for SAM(SAM-HIF) as:

SAM-HIF (xy, y,)
dé(w™*)
dw

S (Hw—i—Hw- >_1-VL’§ (w* + é(w*)).

Then wy, can be approximated by:

wi & w* — SAM-HIF (x, yk).

Proof. Based on the expansion in Equation (9) in Theorem we can further estimate the term

€r,5 (Wi,5) — €(w*) by Lemma
0=VLs (w4 éw*))+0-VLE (w* + é(w*)) + V2Ls (w* 4 éw*)) - (ws — w*)

~ * ~ * ~ * dA * (11)
+ V2Lg (w* + é(w ))-(ea(w ) — é(w )—l—% ~(w5—w)>
The first term equals 0 from (§). Then we have
d€5 (W5)

0=25-VLE (W + éw")) + (Hw +H,- ) (ws — w*) + Hy, - (65(w") — Ew?)).

12)

dw
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Then
déiig)a)) “Hy - (E5(w") — €(wh))

d€5 (o.)5)
dw

ws —w"=— (Hw+Hw~

—6-(Hw+Hw- )1~VL§(w*+é(w*)).

Then we can obtain the following equation:

dws ( dé (w*) ) -1 dés(w*)
- =—\(H,+H, - -H, -
s {5_, dw 5 |5,
A sy —1
- <Hw +H,- deé:j )> VLE (w* + (w")).

To enhance the computation efficiency, we drop the first term, and obtain the SAM-HIF as

dé (w*)
dw

dw5
SAM-IF = —
dé

-1
) CVLE (W + é(wr)). (13)

=— (Hw +H, -
=0

O
B.2 COMPUTATION ACCELERATION

Theorem B.4. Given a validation dataset defined as Do = {(xt,y:)}}_,. Denote the SAM-
retrained model after the removal of (x, yi) as w* ,, then

Z Uz, y;w") — Z Uz, y;w™y)

(xvy)EDval (xvy)EDval
~ Z Vi(z,y;w*) - IF(x,y) = IS(z, ),
(z,y)€Dvar

where IF can be SAM-HIF or SAM-GIF. We define the right hand of the above equation as the
Influence Score (IS).

Proof.
Z Uz, y;w*) — Z Oz, y;wr )
(#,9)€Dyvar (#,y)€Dyar
~ Z Vi(z,y;w0") - (w* —w’y)
(#,9)€Dvai
= Z Vi(z,y;w*) - TF(2,y) = 1S(z,y).
(z,9)EDyar

C OMITTED ALGORITHMS
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Algorithm 1 SAM Algorithm in (Foret et al., 2020)

Require: Training set .S, Loss function L, Batch size b, Step size 7 > 0, Neighborhood size p > 0.
Ensure: Model trained with SAM

1: Initialize weights wg, t = 0;

2: while not converged do

3:  Sample batch B = {(z1,91), .., (v, ys) };

4:  Compute gradient V,, Lz (w;) of batch’s training loss;
5:  Compute é(w) per Equation ;

6:  Compute gradient: g = V,, Lp(w; + €(wy));

7.  Update weights: wyy1 = wy —ng; t =t + 1;

8: end while

Algorithm 2 SAM-IF with gradient trajectory

1: Input:
data: Training Dataset S = {(z;, y; },, data point (z, yi) to be evaluated.
Parameter: Parameter checkpoint set 2 = {w,}3_,, learning rate 7, at step c.
2: Compute the influence of (zy, yx) in the c-th checkpoint as

IF. =1 - VLg(wcfl + €(w071)>
3: Sum up to obtain the final influence as

SAM-IFs, = Y IF,

c=1

4: Return: SAM-IFg,. Final Parameter w™ = w* — SAM-IF.

Algorithm 3 Simple SAM-IF

1: Input:
Data: Training Dataset S = {(z;, y; }7-, data point (z, yx) to be evaluated.
Parameter: The learned SAM-parameter w*, the learned best perturbation €.
2: Compute T as:
TF = VLE (W +¢)

3: Define the Hessian matrix H as:
V2Lg (w* +¢)

4: Use EK-FAC to compute the Hessian-vector product of H and T*:
SAM-IF = —H . T*

5: Obtain the estimated parameter by
w~ =w* — SAM-IF.

6: Return: SAM-IF, w™.
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Algorithm 4 SAM-IF with total Hessian

1:

10:
11:
12:
13:

Input:
Data: Training Dataset S = {(z;, y; }7-, data point (z, yx) to be evaluated.
Parameter: The learned SAM-parameter w*, the learned best perturbation €.
Compute T" as:

TF = VLE (W +¢)

: Define the gradient of € as

|V L (w*)|7!
(I VL (@) |7

€

Give the definition of H as
H =V?Lg (w* +€) + V?Lg (w* +¢) - C“.

Jjg<1
Tk<—_[0
if HIJ — Ij,1||1 > ( then

Use EK-FAC to compute the Hessian-vector product S; £ H - I;.
Compute I by
Ly =1;—0-1; +S; +TF
JeJj+1
end if
SAM-IF + Ij+1.

Obtain the estimated parameter by w™ = w* — SAM-IF.
Return: SAM-IF. w™.
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D ADDITIONAL EXPERIMENT RESULTS
This section presents the additional experimental results for completeness and detailed analysis.

D.1 RESULTS OF EFFICIENCY AND ACCURACY

To further validate the effectiveness and generalizability of our approach, we conducted exten-
sive experiments across a range of datasets (MNIST, HAM, CUB, FOOD-101) and models (Wide-
Resnet (Zagoruyko & Komodakis| [2016)), ViT (Dosovitskiy et al., [2020), and ResNet50 (He et al.
2016)).

We first evaluate on MNIST and HAM datasets using Wide-Resnet. Beyond these, we extend our
comparison to the CUB and FOOD-101 datasets with both ViT and ResNet50 architectures. For
each setting, we compare the proposed SAM-GIF with baseline methods, including Retrain, SAM-
HIF, and SAM-HIF(Fast), reporting both test accuracy and runtime (RT in seconds).

Table 2: Performance comparison on MNIST and HAM.

Mnist HAM
Method Accuracy RT (second) Accuracy RT (second)
Retrain 0.9927+0.0005 2304.24+7.91 0.7254+0.02 2300.00£10.00
SAM-HIF(Fast) 0.9876+0.0013  8.0698+2.91  0.7130+0.0150 15.00£2.00
SAM-HIF 0.9880+0.0011 18.2321+1.91 0.721240.0120 52.204+3.00
SAM-GIF 0.9884+0.0007  2.8212+1.91  0.7350£0.0110 4.3204+1.50

Table 3: Performance comparison on ViT.

CUB FOOD-101
Method Accuracy RT (s) Accuracy RT (s)
Retrain 0.7236+£0.005 2876.23+12.47 0.82314+0.031 16310.24+25.32
SAM-HIF 0.7032+0.005  53.2310+3.78  0.793240.024 47.212+4.12
SAM-HIF(Fast) 0.7189+0.003 22.3211+5.16 0.8012+0.014 28.31+3.21
SAM-GIF 0.7214+0.003  14.3231+£2.33  0.8123+0.047 15.2144+3.23

Table 4: Performance comparison on Resnet50.

CUB FOOD-101
Method Accuracy RT (s) Accuracy RT (s)
Retrain 0.6336+0.005 2197.33+12.47 0.7436+0.031  15900.24+25.32
SAM-HIF 0.6213+0.005  37.2590+3.78  0.7022+0.024 41.321+4.12
SAM-HIF(Fast) 0.6178+0.003  25.3214+5.16  0.6918+0.014  26.0698+3.21
SAM-GIF 0.62444+0.004  12.6789+2.33  0.7189+0.047 13.234+3.23

Across all datasets and model architectures, SAM-GIF achieves test accuracy very close to, or even
surpassing, that of full retraining. For example, on the HAM dataset (Wide-Resnet), SAM-GIF
reaches 0.7350 accuracy, outperforming Retrain (0.7254). On CUB and FOOD-101, both with ViT
and ResNet50, SAM-GIF maintains competitive accuracy relative to all baselines.

SAM-GIF consistently offers significant speedup over retraining. For instance, on MNIST and
HAM with Wide-Resnet, the runtime of SAM-GIF is just 2.8s and 4.3s respectively, compared to
over 2300s for retraining—about three orders of magnitude faster. Similar trends hold for ViT and
ResNet50, where SAM-GIF achieves the lowest runtime among all methods.

Overall, these results demonstrate that SAM-GIF achieves an excellent balance, providing high
accuracy nearly on par or superior to retraining, while drastically reducing computational costs
across diverse datasets and model architectures.

D.2 RESULTS OF IDENTIFYING HARMFUL DATA

We conduct additional harmful data identification experiments on the MNIST, CIFAR-100, and
Mini-ImageNet datasets. The results are listed as follows. Figures [5] [6] and [7]illustrate the effec-
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tiveness of the SAM-GIF algorithm in detecting and removing harmful data. The superiority of our
method is demonstrated across multiple datasets. We observe that, compared to random removal,
the harmful detection rate of the SAM-GIF algorithm reaches approximately 80% at a removal rate
of 0.4. Moreover, by removing harmful data, the model’s accuracy gradually improves.
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Figure 5: Harmful data removal experiment on CIFAR-100 dataset. IS: using the influence score to
determine which sample to remove. Random: randomly removing tasks.
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Figure 6: Harmful Removal on Mini-ImageNet. IS: using the influence score to determine which
sample to remove. Random: randomly removing tasks.
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Figure 7: Harmful data removal experiment on MNIST dataset. IS: using the influence score to
determine which sample to remove. Random: randomly removing tasks

D.3 ADDITIONAL RESULTS ON INTERPRETABILITY

Figures (8] [0] and[I0]present additional visualization results of the error prediction tracing process on
the MNIST, CIFAR-100, and Mini-ImageNet datasets, respectively. The first row displays examples
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of misclassified test samples, the second row shows the most influential training data for classifying
these samples, and the third row presents the most harmful training data for these classifications.
These visualization results allow us to trace the outcomes of the error prediction process effectively.
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Figure 8: The most helpful and harmful training data tracked by misclassified data on MNIST dataset
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Figure 9: The most helpful and harmful training data tracked by misclassified data on CIFAR-100
dataset

D.4 ADDITIONAL ABLATION STUDY
D.5 ABLATION STUDY

We conducted ablation experiments on above three methods, SAM-HIF (fast), SAM-HIF and
SAM-GIF. We randomly removed 1%-8% of the training samples from CIFAR-10 and CIFAR-
100 datasets, and evaluated the model parameters using SAM-HIF(fast) and SAM-HIF, with retrain
serving as the ground truth. The results, shown in Figure [T]] clearly demonstrate that SAM-HIF
consistently outperforms SAM-HIF(Fast) during the process of data removal. Also, we can see
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Figure 10: The most helpful and harmful training data tracked by misclassified data on Mini-
ImageNet dataset

both methods consistently have slight differences with the ground truth. Results for SAM-GIF are
included in the Appendix [D.4]

Figure [I2] shows the ablation study

results of SAM-GIF. We primar- o - R H -
ily tested the impact of different | o SN B
numbers of checkpoint weights on r N gom [N

the SAM-GIF algorithm using the  § . : . - —
CIFAR-10 dataset. From the figure, 3" N \ 3o NI

we can observe that as the number .. o N

of checkpoints increases, the accu- N\ \
racy of SAM-GIF becomes closer to S N S S T 1 | 1
that Of retraining. When the num- Fraction of training data checked Fraction of training data checked
ber of checkpoints is 10, the accuracy (a) CIFAR-10 (b) CIFAR-100

of SAM-GIF is 0.9497, while the re-  Figure 11: Ablation studies on CIFAR-10 and CIFAR-100.
training accuracy is 0.9517. At the

same time, as the number of checkpoints increases, the running time of SAM-GIF also increases.
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