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Abstract

Čech Persistence diagrams (PDs) are topological descriptors routinely used to
capture the geometry of complex datasets. They are commonly compared using
the Wasserstein distances OTp; however, the extent to which PDs are stable with
respect to these metrics remains poorly understood. We partially close this gap by
focusing on the case where datasets are sampled on an m-dimensional submanifold
of Rd. Under this manifold hypothesis, we show that convergence with respect
to the OTp metric happens exactly when p > m. We also provide improvements
upon the bottleneck stability theorem in this case and prove new laws of large
numbers for the total α-persistence of PDs. Finally, we show how these theoretical
findings shed new light on the behavior of the feature maps on the space of PDs
that are used in ML-oriented applications of Topological Data Analysis.

1 Introduction

Topological Data Analysis (TDA) is a set of tools that aims at extracting relevant topological
information from complex datasets, e.g. regarding connected components, loops, cavities, or higher
dimensional features. These different notions are made formal through the use of homology theory,
and in particular the i-th homology group Hi(A) of a set A, which captures the i-dimensional
topological features of A for i ≥ 0, see e.g. [46] or Appendix B. TDA has been successfully applied
in a variety of domains, including material science [51, 63, 30, 17], biology [21, 68, 8], real algebraic
geometry [29, 35, 28, 44] and neuroscience [67, 61, 18], to name a few. When used in conjunction
with more traditional approaches such as neural networks, TDA-based methods have outperformed
state of the arts methods for tasks such as graph classifications [19, 50].

The most prominent techniques in TDA rely on multiscale approaches, in particular through the
use of persistent homology [22]. Given a compact set A in Rd, persistent homology tracks the
evolution of the homology groups Hi(A

t) of the t-offset At =
⋃
x∈AB(x, t) of A as t goes from

0 to +∞ (where B(x, t) is the closed ball of radius t centered at x). The process is summarized
by the Čech persistence diagram (PD) of degree i of the set A: the PD dgmi(A) is a multiset2

of points in the half-plane Ω := {(u1, u2) ∈ R2 : u1 < u2}, where each point (u1, u2) in the
PD corresponds to a i-dimensional topological feature that appeared in At at scale t = u1 (its
birth time) and disappeared at scale t = u2 (its death time), see Figure 1.3 Points close to the

∗Equal contribution
2A multiset is a set where each element appears with some non-zero multiplicity.
3In general, PDs can have points with infinite coordinates. For Čech PDs, this will only be the case for a

single point of the diagram for i = 0, of coordinate (0,+∞). We discard this point in the following.
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Figure 1: The Čech PD of a point cloud A in R2 for i = 1 and its t-offsets. The two points far from
the diagonal ∂Ω in dgmi(A) correspond to the two large cycles in the set A.

diagonal ∂Ω = {(u1, u2) ∈ R2 : u1 = u2} correspond to topological features of small persistence
pers(u) = u2−u1

2 , which have a short lifetime in the filtration (At)t≥0.

A key property of PDs is their robustness to small perturbation in the data, making them suitable for
analyzing real-world datasets. This stability property is phrased in terms of the bottleneck distance
between PDs [36]. Let a and b be two PDs. A partial matching between a and b is a bijection of
multisets γ : a ∪ ∂Ω → b ∪ ∂Ω, where each point (u, u) of ∂Ω has infinite multiplicity. In other
words, the points of a are either paired with a single point of b, or mapped to the diagonal ∂Ω (and
similarly for the points of b). Let Γ(a, b) be the set of all partial matchings between a and b. The
bottleneck distance is defined as

OT∞(a, b) = inf
γ∈Γ(a,b)

max
u∈a∪∂Ω

∥u− γ(u)∥∞. (1)

The Bottleneck Stability Theorem [26, 22] states that if A1 and A2 are two compact sets, then for any
integer i ≥ 0

OT∞(dgmi(A1),dgmi(A2)) ≤ ε, (2)
where ε is the Hausdorff distance between the sets A1 and A2, defined by dH(A1,A2) =
supx∈Rd |dA1

(x)−dA2
(x)| and where dA is the distance function to a set A. An important property of

the bottleneck distance is that it is blind to small-persistence topological features: if OT∞(a, b) = ε,
then one can arbitrarily modify the PDs a and b on a slab of width ε above the diagonal (for the
ℓ∞-metric) without changing the bottleneck distance between the two PDs.

Due to this phenomenon, the bottleneck distance turns out to be too weak in many situations of
interest, where some topological features of small persistence can be as important as large-scale
topological features in the PD (say, with a classification or a regression task in mind). For this reason,
finer transport-like distances are often preferred to compare PDs. These distances, which we denote
as OTp, are defined for 1 ≤ p <∞ by

OTp(a, b) = inf
γ∈Γ(a,b)

( ∑
u∈a∪∂Ω

∥u− γ(u)∥p∞

)1/p

, (3)

with OTp ≤ OTp′ for 1 ≤ p′ ≤ p <∞. They can be seen as modified versions of the Wasserstein
distances used in optimal transport, with the diagonal ∂Ω playing the role of a landfill of infinite
mass, see e.g. [33].

The increased sensitivity to small perturbations of the OTp distances is of crucial importance in
the standard TDA pipeline, which we briefly recall. Starting from a sample of sets A1, . . . ,An,
one computes a sample of PDs aj = dgmi(Aj), j = 1, . . . , n. Statistical methods to analyze this
sample of PDs are typically awkward to define, due to the nonlinear geometry of the space of PDs
[16, 75]. To overcome this issue, the space of PDs is mapped to a vector space through some map
Φ called a feature map. Statistical method are then applied in the feature space on the transformed
sample Φ(a1), . . . ,Φ(an). Various feature maps have been designed [23, 60, 25, 54, 20, 70, 53, 48],
important examples including persistent images [4], PersLay [19], and PLLay [50]; in the latter two,
the feature map is parametrized by a neural network. A good feature map should preserve as much as
possible the geometry of the space of PDs [57]; in particular, Lipschitz (or Hölder) continuity of the
feature map is a basic requirement. However, due to their (often desirable) sensitivity to small scale
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features, most common feature maps are not regular with respect to the OT∞ distance on the space
of diagrams. Instead, they enjoy Lipschitz regularity with respect to either the finer OT1 distance
(see e.g. [33, Proposition 5.2]), or to the OTp distances (for p > 1) when restricted to diagrams a
whose α-total persistence

Persα(a) =
∑
u∈a

pers(u)α (4)

is bounded for some α > 0 large enough, see [34] and [53]. Boundedness assumptions on the α-total
persistence also yield a version of the Bottleneck Stability Theorem with respect to the finer OTp
distance: if A1 and A2 are such that Persα(dgmi(Ak)) ≤M (k = 1, 2), then, for p ≥ α,

OTpp(dgmi(A1),dgmi(A2)) ≤Mεp−α, (5)

where ε = dH(A1,A2), see [27]. Hence, in addition to having intrinsic theoretical interest, controlling
the total persistence and convergence with respect to the OTp distance of PDs is crucial to ensure the
soundness of most methods commonly used in TDA. This is the subject of this article.

Contributions. We provide a deeper understanding of the structure of Čech PDs in the specific case
where the underlying set A is a compact subset of am m-dimensional manifold M in Rd, focusing
in particular on the total persistence of the PDs and their convergence to the PDs of M with respect
to the OTp distances. The importance of this case is supported by the manifold hypothesis, which
often serves as a fundamental principle guiding the development of algorithms and models for data
analysis [41, 76, 15]. Specifically, our main contributions are the following:

• Theorem 2.2: When A ⊂ M is a compact set satisfying dH(A,M) ≤ ε for ε small enough,
we provide a quadratic improvement upon the standard Bottleneck Stability Theorem (2).
Namely, we show that there exists an optimal bottleneck matching γ such that the distance
between a coordinate of a point u ∈ dgmi(A) and the coordinate of the matched point
γ(u) ∈ dgmi(M) ∪ ∂Ω is of order O(ε2) whenever the coordinate of u is larger than 2ε.

• Theorem 3.3: In the case where the manifold M is generic and the set A is a δ-sparse point
cloud (i.e. minx̸=y∈A ∥x− y∥ ≥ δ), we provide a finer analysis by showing that the p-total
persistence Persp(dgmi(A)) remains bounded and the distance OTp(dgmi(A),dgmi(M))
converges to 0 for all p > m whenever the ratio ε/δ is upper bounded.

• Corollary 4.3: We then focus on a random context, by assuming that A = An is obtained by
sampling n i.i.d. random variables with positive bounded density f on a generic manifold
M. We prove that OTp(dgmi(An),dgmi(M)) converges in expectation to 0 for p > m.
Furthermore, we obtain a law of large numbers for the α-total persistence of dgmi(An):

Persα(dgmi(An)) = Persα(dgmi(M))+Cin
1−α/m+oL1(n1−α/m)+OL1

(( log n

n

) 1
m )
(6)

for all α > 0, where Ci is a constant that depends explicitly on M and f . In particular, for
0 ≤ i < m, Persα(dgmi(An)) stays bounded if and only if α ≥ m.

Our contributions are to be compared to one of the only preexisting results regarding the α-total
persistence of a PD: in [27], the authors proved that for all α strictly greater than the ambient
dimension d, the α-total persistence of the Čech PD of a compact set A ⊂ B(0, R) ⊂ Rd satisfies

Persα(dgmi(A)) ≤ Cα,dR
α (7)

for some constant Cα,d depending on α and d. In the two scenarios we considered (either δ-sparse
or random samples), the ambient dimension d in the constraint α > d for the control of the α-total
persistence in (7) has been replaced by the smaller intrinsic dimensionm of the problem: the manifold
hypothesis has been successfully exploited.

To summarize, our work sheds light on the behaviour of PDs, provides new guarantees for commonly
used ML methods (see e.g. Corollary 4.4), and suggests new heuristics (see Section 5). We also
perform various experiments to illustrate the validity of our results and their relevance to the classic
TDA pipeline. All proofs are deferred to the Appendix.

Related work. This work is part of a long ongoing effort to understand simplicial complexes and
PDs in a random context [10, 12, 13, 11, 49, 32, 59, 14, 45]. Closest to our work, Hiraoka, Shirai
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and Trinh gave limit laws for Čech PDs for random points in the cube [0, 1]d [47], while Goel, Trinh
and Tsunoda gave similar asymptotics in the case of samples on manifolds [42]. Limit laws for the
total persistence have been obtained by Divol and Polonik in the case of random samples in the cube
[34]. Among other contributions, this work generalizes this result to submanifolds: unlike the cube, a
manifold has a nontrivial topology; a fact which considerably complicates the situation, for we have
to take into account the presence of large topological features in the Čech PDs in order to control the
total persistence. Note also that tools other than persistent homology exist for studying the geometry
of point clouds. For instance, the authors in [77, 52] consider complete isometric invariants for point
clouds that are computable in polynomial time.

2 Čech persistence diagrams for subsets of submanifolds

Recall that a fundamental result in TDA, the Bottleneck Stability Theorem (2), states that Čech PDs
are stable with respect to Hausdorff perturbations. Consider the particular setting where one has
access to a set A, obtained as an approximation of an unknown shape of interest S through some
sampling procedure, with A ⊂ S and supx∈S dA(x) ≤ ε. The Bottleneck Stability Theorem ensures
that OT∞(dgmi(A),dgmi(S)) ≤ ε for any i ≥ 0, a bound which cannot be improved in general.
However, it turns out that a finer understanding of the proximity between dgmi(A) and dgmi(S) can
be obtained if more regularity is assumed on the shape of interest S, namely in the situation where
S = M is a compact submanifold with positive reach.

Let us first set some notation. Let M be an m-dimensional compact topological submanifold of Rd;
we always assume that the boundary of M is empty. The orthogonal projection πM on M is defined
for x close enough to M, and we define the reach τ(M) as the largest r > 0 such that the orthogonal
projection πM is well (i.e. uniquely) defined for all x ∈ Rd at distance strictly less than r from M.
The reach is a key notion to quantify the regularity of a manifold, see e.g. [39] and [24] for more
information.

Let A ⊂ M be such that dH(A,M) ≤ ε and let z ∈ Rd. By definition of the Hausdorff distance, it
holds that |dA(z)− dM(z)| ≤ ε. However, this naive bound can be quadratically improved as long as
z stays far away from M.

Lemma 2.1. Let M ⊂ Rd be a compact submanifold with positive reach and let A ⊂ M be a
compact set with dH(A,M) ≤ ε for some ε > 0. Let z ∈ Rd\M. Then, |dM(z) − dA(z)| ≤
ε2

2dM(z)

(
1 + dM(z)

τ(M)

)
.

(2) (3)

(1)

Cε2
Cε2

Cε2

ε

ε

Figure 2: PDs of M (red)
and of A (black).

We can build upon this basic remark to obtain a very precise control
of the behavior of the Čech PD of the set A. Namely, we identify three
regions in the upper halfplane Ω (displayed in Figure 2) which contain
all points in the PD dgmi(A) (for some integer i ≥ 0). In the first
region, corresponding to microscopic topological features disappearing
at scales smaller than ε+ ε2/τ(M), the Bottleneck Stability Theorem
cannot be improved. However, there exists an optimal matching (i.e.
a matching γ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω that realizes the
bottleneck distance (1)) such that at least one of the coordinates of
any point in the other two regions is larger than τ(M) − ε2/τ(M),
and the proximity between a large coordinate of a point u ∈ dgmi(A)
and the coordinate of the matched point γ(u) ∈ dgmi(M) ∪ ∂Ω is of
orderO(ε2). This yields a quadratic improvement upon the Bottleneck
Stability Theorem.

Theorem 2.2 (Improved Bottleneck Stability Theorem). Let M ⊂ Rd be a compact submanifold with
positive reach and let A ⊂ M be a compact set such that dH(A,M) ≤ ε < τ(M)/4. Let i ≥ 0 be an
integer. Then dgmi(A) is the union of three regions dgm(1)

i (A) := dgmi(A) ∩ {u1, u2 ≤ ε+ ε2

τ(M)},

dgm
(2)
i (A) := dgmi(A) ∩ {u1 ≤ ε, u2 ≥ τ(M)− ε2

τ(M)} and dgm
(3)
i (A) := dgmi(A) ∩ {u1, u2 ≥

τ(M)− ε2

τ(M)}.
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Furthermore, let C = 2
τ(M)

(
1 + R(M)

τ(M)

)
, where R(M) is the radius of the smallest ball that contains

M. There exists an optimal matching γ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω for the bottleneck
distance between dgmi(A) and dgmi(M) such that

• Region (1): If u ∈ dgm
(1)
i (A), then γ(u) ∈ ∂Ω and ∥u− γ(u)∥∞ ≤ ε.

• Region (2): If u ∈ dgm
(2)
i (A), then γ(u) is of the form (0, v2) and |u2 − v2| ≤ Cε2. The

number of such points is finite and depends only on M.

• Region (3): If u ∈ dgm
(3)
i (A), then ∥u− γ(u)∥∞ ≤ Cε2.

Note that for any i ≥ d, the i-th PDs of M and A are actually trivial.

3 Čech persistence diagrams for subsets of generic submanifolds

The improved Bottleneck Stability Theorem (Theorem 2.2) yields information relative to the location
of points in the Čech PD of A, but not about their numbers. However, both the α-total persistence of
dgmi(A) and the distance OTp(dgmi(A),dgmi(M)) for p <∞ crucially depend on the number of
points in dgmi(A) having small persistence.

Unfortunately, no control on, say, the total persistence, can exist without additional assumptions.
Indeed, in general, even the α-total persistence of the Čech PD of the submanifold M can be infinite.
Example 3.1. Let f : x ∈ R 7→ 1 + x4 sin(1/x)2. Consider the C2 curve M in R2 defined as
the union of the graphs of the functions f and −f on [−2, 2]. Being C2, the curve has a positive
reach [39]. For i = 1, the Čech PD of M contains a sequence of points (1, ℓn) for n ≥ 1, where
ℓn = 1 + Θ(n−4). In particular, as

∑
n≥1(ℓn − 1)α = +∞ for α < 1/4, the α-total persistence

of dgm1(M) is infinite for such a value of α. By considering the product Mm ⊂ R2m, one can also
build an m-dimensional C2 compact submanifold without boundary such that dgm1(M) has an
infinite α-total persistence for α < m/4.

Figure 3: A generic torus.

The existence of such counterexamples is explained by the fact that the
distance function dM to a set M is not well-behaved in general, even
when the set M is smooth. In contrast to this bleak general case, Song,
Yim & Monod (in the case of surfaces in R3) and Arnal, Cohen-Steiner
& Divol (in the general case) studied the distance function dM to M
when M is a generic submanifold [6, 71]. Their findings indicate that,
although counterexamples such as the one presented in Example 3.1
exist, they are extremely uncommon in a sense which can be made
precise.

Namely, given an abstract manifoldM , Arnal, Cohen-Steiner and Divol
show that the set of C2 embeddings M of M into Rd such that dM
satisfies some desirable regularity conditions (described in Appendix C)
forms an open and dense set in the set of all C2 embeddings equipped with the C2-Whitney topology
[6, Theorem 1.1]. In what follows, we will simply refer to a C2 compact submanifold M such that dM
satisfies the regularity condition described in Appendix C as generic. See Figure 3 for an example.

Proposition 3.2 (Čech PDs of generic submanifolds). Let M be a generic submanifold of Rd.
Then, for any integer i ≥ 0, the PD dgmi(M) contains finitely many points. In particular,
Persα(dgmi(M)) < +∞ for all α > 0.

When M is a generic submanifold, it becomes a reasonable task to control the number of points in
dgmi(A) where A ⊂ M is an approximation of M with dH(A,M) ≤ ε. The Bottleneck Stability
Theorem implies that when ε is small enough (compared to the smallest persistence of a point in
dgmi(M)), every point of dgmi(M) is mapped to a point in dgmi(A) by the optimal bottleneck
matching, leaving the points of dgmi(A) at ℓ∞-distance to ∂Ω less than ε unmatched; those will be
mapped to the diagonal ∂Ω. The Improved Bottleneck Stability Theorem 2.2 (see Figure 2) shows
that these points are of two kinds: those in Region (1), corresponding to small topological features
in the set A (of size of order O(ε)), and those in Region (3), corresponding to large topological
features. There are many points in Region (1) (in fact, our proofs show that when A = An is a random
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sample of n points, the number of points in Region (1) is of order O(n)). In contrast, the genericity
hypothesis allows us to show that the number of points in Region (3) is small under reasonable
sampling assumptions.

We say that a point cloud A ⊂ M is (δ, ε)-dense in M if dH(A,M) ≤ ε and minx ̸=y∈A ∥x− y∥ ≥ δ.
Such point clouds naturally occur, e.g. as products of the farthest point sampling algorithm [2].

Theorem 3.3. Let M ⊂ Rd be a generic compact submanifold and A ⊂ M be a (δ, ε)-dense set in M
for some ε, δ > 0. Let a ≥ ε/δ and let i ≥ 0 be an integer. There exist ε0 > 0 depending only on M

and C0, C1, C2, C3 depending only on M and a such that if ε ≤ ε0, then dgm
(3)
i (A) has at most C0

points and for all p ≥ 1, α ≥ 0,

OTpp(dgmi(A),dgmi(M)) ≤ C1ε
p−m

Persα(dgmi(A)) ≤ C2(C
α
3 + εα−m).

(8)

In particular, as long as the ratio ε/δ is larger than some constant a > 0, the OTp distance between
dgmi(A) and dgmi(M) converges to 0 for all p > m as ε → 0, while the p-total persistence
Persp(dgmi(A)) stays bounded.

Example 3.4. Consider two parallel line segments M in R2, and a finite set A consisting of two
parallel grids of step 2ε: the set A is (2ε, ε)-dense in M. Then, there are O(ε−1) points in dgm1(A)

with birth coordinates u1 equal to 1/2 and persistence of order O(ε2); they all belong to dgm
(3)
1 (A),

whose cardinality is thus not bounded by some C0 = C0(M). This example can be easily modified to
make M a compact C2 1-dimensional manifold. This shows that the first conclusion of Theorem 3.3
cannot hold without a genericity assumption on M.

4 Random samplings of submanifolds

We now turn to the case of random samplings of (non-generic and generic) submanifolds. They tend
to adopt configurations that are more regular than what can be expected from e.g. a general ε-dense
sampling, yet their randomness gives rise to new technical difficulties. Let P be a probability measure
having a density f (with respect to the volume measure) on a compact submanifold M of dimension
m ≥ 1. Let A = An = {X1, . . . , Xn}, where X1, . . . , Xn is an i.i.d. sample from distribution P .
Let i ≥ 0 be an integer; we consider the three regions described in Figure 2 and in the statement of
Theorem 2.2, and write again dgm

(1)
i (An), dgm

(2)
i (An) and dgm

(3)
i (An) for the three corresponding

PDs. This section is devoted to the study of the probabilistic asymptotic behaviour of these three
random PDs, which can be decomposed into two almost independent questions: dgm(1)

i (An) only
depends on small-scale phenomena and can essentially be reduced to the case of a cube, even if M is
non-generic, while dgm

(2)
i (An) and dgm

(3)
i (An) are tightly connected to the macroscopic geometry

of the submanifold and can be further controlled using genericity assumptions on M.

Describing the limit behavior of the random PD dgm
(1)
i (An) requires extending the metric OTp

between PDs to more general Radon measures. Indeed, a PD can equivalently be seen as an integer-
valued discrete Radon measure on Ω, by identifying a multiset a with the Radon measure

∑
u∈a δu.

Let M denote the space of Radon measures on Ω, that is the space of Borel measures on Ω which
give finite mass to every compact set K ⊂ Ω.4 The space of Radon measures is endowed with the
vague topology, where a sequence (µn)n of measures in M is said to converge vaguely to µ ∈ M if∫
Ω
ϕdµn →

∫
Ω
ϕdµ as n→ ∞ for all continuous functions ϕ : Ω → R with compact support.

The α-total persistence is defined for µ ∈ M by Persα(µ) =
∫
Ω
pers(u)αdµ(u). For p ≥ 1, we

let Mp = {µ ∈ M : Persp(µ) < +∞}. The distance OTp, defined between PDs in (3), can be
extended to the set Mp, see [33]. The distance OTp between Radon measures is a variation of the
Wasserstein distance, with the important difference that the standard Wasserstein distance is only
defined for measures having the same mass, while the distance OTp is defined for measures having
different (and even infinite) masses. We refer to Appendix F for the precise definition and the main
properties of the OTp distance on the space Mp.

4A compact set K ⊂ Ω is at positive distance from the diagonal. Hence, a measure µ ∈ M can have an
accumulation of mass close to ∂Ω.
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For q > 0, given a function f : N → R and a sequence of (nonnecessarily measurable) real maps
(Yn)n defined on some probabilisitic space, the notation Yn = OLq (f(n)) means that E∗[|Yn|q] =
O(f(n)q), where E∗ denotes the outer expectation [73, p.6] (and similarly for the little o notation).

4.1 Region (1)

Consider the rescaled Radon measure µn,i = 1
n

∑
u∈dgm

(1)
i (An)

δn1/mu, and note that µn,i is a
random measure, owing to the randomness of the set An. Goel, Trinh and Tsunoda studied the vague
convergence of the sequence (µn,i)n [42, Remark 4.2]. Namely, assuming that the density f satisfies∫
M
f j <∞ for all j ≥ 0, they show that with probability 1 the sequence (µn,i)n converges vaguely

to some (non-random) Radon measure µf,i. The limit measure µf,i has support {0} × R+ if i = 0
and Ω if 0 < i < m; it is the zero measure if i ≥ m. We can further describe it as follows: let
µ∞,i,m be the limit of the sequence (µn,i) in the case where the sample An is uniform on the unit
cube [0, 1]m (see [34]). Then, for any continuous function ϕ : Ω → R with compact support,∫

Ω

ϕ(u)dµf,i(u) =

∫
Ω

∫
M

f(x)ϕ(f(x)−1/mu)dxdµ∞,i,m(u). (9)

Note that the vague convergence of Radon measures is only defined with respect to compactly
supported functions; as such, it is blind to phenomena located increasingly close to the diagonal ∂Ω
as n goes to infinity. In particular, and except in the case of the uniform distribution on the unit cube
[0, 1]m (see [34]), it was not known whether µn,i converges to µf,i for the OTp distance as well,
nor whether the sequences of total persistence (Persα(µn,i)) converge. We close this gap with the
following result.
Theorem 4.1 (Law of large numbers). Assume that P has a density f on M bounded away from 0 and
∞. Let i ≥ 0 be an integer and let 1 ≤ p <∞. Then µf,i ∈ Mp and E[OTpp(µn,i, µf,i)] −−−−→

n→∞
0.

Furthermore, for all α > 0, Persα(dgm
(1)
i (An))n

α
m−1 = Persα(µn,i) = Persα(µf,i) + oL1(1).

4.2 Regions (2)-(3)

It is a well-known fact that the Hausdorff distance ε = dH(An,M) between a random sample and M
is of order (log n/n)1/m whenever the underlying density f is bounded away from zero and ∞ on
M, see e.g. [38]. Hence the PDs dgm(2)

i (An) and dgm
(3)
i (An) can be described using Theorem 2.2.

However, in the case where M is a generic submanifold, one can actually obtain tighter results. We
let #E denote the cardinality of a multiset E.
Proposition 4.2. Let M be a generic m-dimensional submanifold. Assume that P has a density
f on M bounded away from 0 and ∞. Let i ≥ 0 be an integer. There exists an optimal matching
γn : dgmi(An)∪∂Ω → dgmi(M)∪∂Ω for the bottleneck distance between dgmi(An) and dgmi(M)
such that for any q ≥ 1:

• Region (2): It holds that max
u∈dgm

(2)
i (An)

|u2 − γn(u)2| = OLq (n−2/m).

• Region (3): It holds that max
u∈dgm

(3)
i (An)

∥u − γn(u)∥∞ = OLq (n−2/m) and

#(dgm
(3)
i (An)) = OLq (1).

We remark that the same bounds can be obtained almost surely (e.g. “a.s. there exists C > 0 such that
max

u∈dgm
(3)
i (An)

∥u− γn(u)∥∞ ≤ Cn−2/m”), rather than in expectation, using similar arguments.

Proposition 4.2 yields two distinct improvements upon direct applications of Theorem 2.2 and
Theorem 3.3 to the random case. First, we obtain bounds of order n−2/m instead of bounds of
order (log n/n)2/m. Second, the random sample An is in general only δ-sparse for δ of order n−2/m.
Hence, An is (δ, ε)-dense in M, but with a diverging ratio ε/δ. Therefore, Theorem 3.3 cannot be
applied to control the total number of points in dgmi(An) in Region (3).

4.3 Consequences for the Wasserstein convergence of persistence diagrams

As a simple consequence of Theorem 4.1 and Proposition 4.2, we obtain that for i < m, the p-
Wasserstein convergence of (dgmi(An)) to dgmi(M) holds if and only if p > m, as well as precise
asymptotics for the total persistence of (dgmi(An)).
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Figure 4: Left: the Čech PD dgm1(An) of a sample of n = 104 points sampled on a generic torus,
with points in Regions (1), (2) and (3) highlighted in different colors. Right: the persistence images
of dgm1(An) with weight persp for different values of p.

Corollary 4.3. Let p ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.2, the following holds:

• If p > m, then E[OTpp(dgmi(An),dgmi(M))] → 0 as n→ ∞.

• If p = m, E[OTpp(dgmi(An),dgmi(M))] → Persp(µ∞,i,m)Vol(M) as n → ∞, where
Vol(M) is the volume of M.

• If p < m and i < m, then E[OTpp(dgmi(An),dgmi(M))] → +∞ as n→ ∞.

Furthermore, for all α > 0, Persα(dgmi(An)) is equal to

Persα(dgmi(M)) + n1−
α
mPersα(µ∞,i,m)

∫
M

f(x)1−
α
m dx+ oL1(n1− α

m ) +OL1

(( log n

n

) 1
m )

.

As noted earlier, both dgmi(An) and dgmi(M) are trivial if i ≥ d.

This corollary gives a precise answer to the questions raised in the introduction. First, when An is
a random subset of a m-dimensional generic manifold in Rd, the α-total persistence of dgmi(An)
is not only bounded for α > d (as was shown by Cohen-Steiner & al. [27]), but for all α ≥ m.
Moreover, the sequence dgmi(An) converges for the OTp distance if p > m. A curious phenomenon
can be observed in the case p = m: the sequence does not converge to dgmi(M) as one would
expect, but its distance to the power p to dgmi(M) converges to some constant–in that case, the cost
to the power p of matching all the points in Region (1) to the diagonal ∂Ω neither converges to 0 nor
diverges, but is asymptotically equal to this constant.

Using these bounds on the total persistence, we obtain regularity guarantees for a large family of
feature maps, called linear feature maps, which includes feature maps introduced in [23, 4, 60, 25,
54, 70, 19]. Let (V, ∥ · ∥) be a normed vector space, and let ϕ : Ω → V be a continuous bounded map.
For α ≥ 0, the linear feature map Φα associated to ϕ and defined on the space Df of PDs having a
finite number of points is defined for all a ∈ Df by Φα(a) =

∑
u∈a pers(u)

αϕ(u) ∈ V .

Corollary 4.4. Let α ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.2, it holds that Φα(dgmi(An)) converges in probability to Φα(dgmi(M)) whenever
α > m.

Remark that other weighting schemes are possible. For instance, [53] argued for using linear feature
maps of the form Φα(a) =

∑
u∈a arctan(pers(u)

α)ϕ(u). Similar results would hold for such feature
maps, as the map u 7→ arctan(pers(u)α)ϕ(u)/pers(u)α is continuous and bounded whenever ϕ is.

5 Numerical experiments

We illustrate our results with synthetic experiments, full details are given in Appendix H. We create
a generic submanifold of dimension m by applying a random diffeomorphism Ψ to a given m-
dimensional submanifold M0 (e.g. a torus). We then draw a sample of n i.i.d. observations sampled
according to the pushforward P of the uniform distribution on M by Ψ.

8



Figure 5: Plot in log-log scale of Persp(dgm
(1)
i (An)) as a function of n for points sampled on a

circle, i = 0 (left), points sampled on a torus, i = 0 (center), points sampled on a torus, i = 1 (right).
Dashed lines have slopes equal to 1− p/m.

Continuity of feature maps. As a first experiment, we test the continuity of a feature map, the
persistence image [4]. In Figure 4, we plot the persistence image of dgm1(An) where An is a sample
of n = 104 points on a generic torus. We observe that the map is discontinuous for p < 2: the two
points with large persistence corresponding to the PD of the underlying torus are nonapparent in the
image. For p > 2, the two points are apparent, and the contribution of points with small persistence
(close to the lower edge) has vanished. In the limit situation p = 2, we see the contribution of both
points with large and small persistence. This phenomenon suggests the following heuristics: when
in presence of multiple datasets on m-dimensional objects whose global geometries need to be
distinguished, feature maps with weights persp with p > m should be used; when the relevant
information is the underlying density of the datasets, the choice p < m should be preferred.

Convergence of total persistences. We verify the rate of convergence of the total persistence
predicted by Theorem 4.1. For values of n ranging from 102 to 104, we compute Persp(dgm

(1)
i (An))

in three scenarios: points sampled on a circle for i = 0, and points sampled on a torus for i = 0 and
i = 1. The correct rates of convergence are observed on a log-log plot, see Figure 5. For i = 1, we
remark that the asymptotic regime starts at larger values of n, above n = 103.

Convergence of µn,i. We sample n points on a torus by uniformly sampling the two angles (θ, ϕ)
parametrizing the torus. We obtain a (nonnuniform) probability measure, having density f . We
then compute, for various values of n, the measure µn,1. The measure is approximated by kernel
density estimation (see Figure 6). We approximate in a similar manner the measure µ∞,1,2 by
sampling n = 105 points on a square. We then apply the change of variable formula (9) to compute
the theoretical limit µf,1. The distance OT2(µn,1, µf,1) is then computed by approximating the
measures on a grid: the distance converges to 0 as predicted by Theorem 4.1. See also Figure 6.

Figure 6: Left: Heatmap of µn,1 for n = 5 · 104 points sampled on the torus with density f . Center:
Heatmap of µf,1. Right: OT2 distance between µn,1 and µf,1 (normalized by OT2(0, µf,i)) for n
ranging from 102 to 105.
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6 Conclusion

Under the manifold hypothesis, we have greatly refined earlier work regarding the persistent homology
of subsamples of compact sets, with especially strong results when the sampling is either random or
well-behaved. In particular, we have precisely described the PDs of such samplings, and provided
new convergence guarantees w.r.t. the p-Wassertein distances, as well as detailed asymptotics for their
total α-persistence. This results in a deeper understanding of these objects, which play an important
role in ML techniques applied to TDA. The main limitations of our work were the assumptions that
the data is sampled from a submanifold, and without any noise. Relaxing those assumptions, as well
as establishing similar guarantees for Vietoris-Rips complexes, could be the subject of future research.
We also plan on exploring the consequences of our findings regarding the persistent homology
dimension [3, 66, 9, 65] of submanifolds.
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A Outline of the appendix

We recall some basic definitions regarding persistent homology in Appendix B. In Appendix C,
we define topological Morse functions and discuss some of the properties of distance functions to
compact sets. We also detail the genericity conditions from [6], and prove Proposition 3.2. We prove
Lemma 2.1 and Theorem 2.2 in Appendix D, and Theorem 3.3 in Appendix E. We rigorously define
the partial optimal transport distance OTp between Radon measures on Ω in Appendix F, before
proving Theorem 4.1, Proposition 4.2, Corollary 4.3 and Corollary 4.4 in Appendix G. Finally, we
provide some details on our experimental setup in Appendix H. Throughout the appendices, we write
C = C(a, b, . . .) to implicitly state that a newly introduced constant C depends only on some objects
a, b, . . . (e.g. C = C(M)).

B Persistent homology

Although this work is only concerned with PDs with respect to the Čech filtration, it is more natural
to define PDs for the sublevel sets of proper continuous functions that are bounded below. We refer
to [22] for a thorough introduction to persistent homology and PDs in an even more general context.

Let f : Rd → R be a proper continuous function that is bounded below–e.g., the distance function to
a compact set. For t ∈ R, let Xt = f−1(−∞, t] be the sublevel set of f at level t. The collection
(Xt)t∈R is called a filtration. Let i ≥ 0 be an integer. We let Hi(Xt) be the homology group of
degree i with coefficients in any fixed field F (e.g. F = Z/2Z is a popular choice) of Xt. For r < s,
the inclusion between the sublevel sets at levels r and s induces a map ιi,r,s at the homology level.
We define the persistent Betti number

βi,r,s(f) = rk(ιi,r,s : Hi(Xr) → Hi(Xs)). (10)
As shown in [22, Corollary 3.34], this number is finite. Informally, it represents the number of ith
dimensional topological features present in the sublevel set at level r that are still present at level s.

Define the extended half-plane Ω∞ = {u = (u1, u2) ∈ (R ∪ {−∞,+∞})2 : −∞ ≤ u1 < u2 ≤
+∞} and Ω = {u = (u1, u2) ∈ R2 : u1 < u2}. The collection of persistent Betti numbers
(βi,r,s(f))r<s defines a multiset of points in Ω∞, called the persistence diagram dgmi(f) of degree
i of f . See e.g. [22] for its precise definition.

Though persistence diagrams can have points with infinite coordinates, these will be of little interest
in the cases considered in this article5. To simplify our notation and definitions, we let from now on

5The persistence diagram of degree i of the distance function to a set has no point with infinite coordinates if
i > 0, and a single such point if i = 0 whose coordinates are (0,+∞).
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dgmi(f) denote the finite part (i.e. the points whose coordinates are finite) of the diagram of degree i
of f , and we assume that every diagram considered henceforth has no point with infinite coordinates.
In particular, they are all multisets of the half-plane Ω := {u = (u1, u2) ∈ R2 : u1 < u2}, which
leads to the following definition: the space D of persistence diagrams is the set of all multisets a in Ω
that contain a finite number of points6 in every quadrant Qu, u ∈ Ω.

Note that while persistence diagrams capture key topological features in an interpretable fashion, they
are not complete metric invariants: different sets can have equal persistence diagrams, see e.g. [69].
As such, they can be seen as a form of topology-centered dimensionality reduction technique. Other
topological invariants have been proposed, some of which are complete, such as those from [77, 52].

C Distance functions, topological Morse functions and generic submanifolds

In this section, we consider a special class of PDs –those yielded by the distance function to a compact
set A ⊂ Rd. We give a detailed description of such a PD when A = M is a generic submanifold.

The theory of persistent homology was historically developed for Morse functions f : Rd → R.
A Morse function f is a C2 function whose critical points x (points for which dxf = 0) are non-
degenerate (meaning that the Hessian of f at x is non-degenerate). The index of the critical point x is
equal to the number of negative eigenvalues of the corresponding Hessian. The changes of topology
of the sublevel sets of such a function are perfectly understood. First, the isotopy lemma states that
two sublevel sets f−1(−∞, u1] and f−1(−∞, u2] are isotopic if no critical values are found in the
interval [u1, u2] and if f−1[u1, u2] is compact. Second, if f−1[u1, u2] is compact and contains the
critical points x1, . . . , xK , then f−1(−∞, u2] has the homotopy type of f−1(−∞, u1] with cells ek
of dimension equal to the index of xk attached along their boundaries (see e.g. [56] for a much more
in-depth treatment).

In such a situation, the PD dgmi(f) has a clear interpretation: the coordinates (u1, u2) of a point
u ∈ dgmi(f) correspond to the critical value of a critical point of index i and i + 1 respectively.
Informally, the corresponding i-dimensional topological feature appears with the attachment of a
i-dimensional cell at value u1, and is “killed” by the attachment of a (i+1)-dimensional cell at value
u2.

The notion of Morse function extends to continuous functions with the following definition.

Definition C.1 (Topological Morse functions [58]). Let U ⊂ Rd be an open set and let f : U → R
be a continuous function.

• A point z ∈ U is said to be a topological regular point of f if there is a homeomorphism
ϕ : V1 → V2 between open neighborhoods V1 of 0 in Rd and V2 of U in Rd with ϕ(0) = z
and such that for all x = (x1, . . . , xd) ∈ V1,

f ◦ ϕ(x) = f(z) + xd. (11)

• A point z ∈ U is said to be a topological critical point of f if it is not a topological regular
point of f .

• A point z ∈ U is said to be a non-degenerate topological critical point of f of index i if there
exist an integer 0 ≤ i ≤ d and a homeomorphism ϕ : V1 → U2 between open neighborhoods
V1 of 0 in Rd and V2 of U in Rd with ϕ(0) = z such that for all x = (x1, . . . , xd) ∈ V1,

f ◦ ϕ(x) = f(z)−
i∑

j=1

x2j +

d∑
j=i+1

x2j . (12)

• The function f is said to be a topological Morse function if all its topological critical points
are non-degenerate.

For topological Morse functions, both the isotopy lemma and the handle attachment lemma stay valid:

6This corresponds to the set of diagrams of q-tame persistence modules as defined in [22].
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Lemma C.2 (Isotopy Lemma). Let f : Rd → R be a proper topological Morse function. Let a < b
be such that f−1[a, b] contains no topological critical point. Then f−1(−∞, a] is a deformation
retract of f−1(−∞, b].
Lemma C.3 (Handle Attachment Lemma). Let f : Rd → R be a proper topological Morse function.
Let c ∈ R and ε > 0 be such that f−1[c − ε, c + ε] contains no topological critical point except
for z1, . . . , zk ∈ f−1(c), with zj of index ij . Then f−1(−∞, c+ ε] is homotopically equivalent to
f−1(−∞, c− ε] with cells Bi1 , . . . , Bik of dimension i1, . . . , ik attached, i.e.

f−1(−∞, c+ ε] ≃ f−1(−∞, c− ε] ∪Bi1 ∪ . . . ∪Bik .

Their proofs are roughly the same as for smooth Morse functions –see [71, Theorems 4 and 5] for
details. As a consequence, the description of PDs for Morse functions also stays valid for topological
Morse functions.

In this paper, we are interested in the PDs of the distance function dA to various compact sets A,
called the Čech persistence diagram7 of A and denoted by dgmi(A). In general, such a function is
not a topological Morse function. Instead, changes in the topology of its sublevels can be partially
(though less completely than for a Morse function) described in terms of zeros of its generalized
gradient, which is defined at y ∈ Rd\A as

∇dA(y) =
y − c(σA(y))

dA(y)
, (13)

where σA(y) = {x ∈ A : ∥x− y∥ = dA(y)} is the set of projections of y on A and c(τ) represents
the center of the smallest enclosing ball of a set τ . When y ∈ Rd\A satisfies ∇dA(y) = 0, y is called
a differential critical point of dA. We let Crit(A) denote the set of differential critical points of dA.
An adapted version of the Isotopy Lemma remains true, as shown in [43]:
Lemma C.4 (Isotopy Lemma for Distance Functions). If 0 < a < b are such that d−1

A [a, b]

contains no differential critical point of dA, then d−1
A (−∞, a] is a deformation retract of d−1

A (−∞, b].
Consequently, any (u1, u2) ∈ dgmi(A) is such that u1, u2 ̸∈ [a, b].

Without further assumptions, little else can be said regarding the topology of the sublevels of dA; in
particular, there is no equivalent to the Handle Attachment Lemma to control the changes occurring
at critical values.

However, the distance function dM to a compactC2 submanifold M ⊂ Rd turns out to be a topological
Morse function in a “generic” sense, as was proven by Arnal, Cohen-Steiner and Divol.
Theorem C.5 (Genericity Theorem [6]). Let M be a compact C2 (abstract) manifold. Then the set
of C2 embeddings i :M → Rd such that

1. the distance function di(M) : Rd\i(M) → R is a topological Morse function,

2. for every z ∈ Crit(M), the projections σM(z) are the vertices of a non-degenerate simplex
of Rd and z belongs to its relative interior,

3. the set Crit(M) is finite,

4. for every z ∈ Crit(M) and every x ∈ σM(z), the sphere S(z, dM(z)) is non-osculating M
at x, in the sense that there exist δ > 0 and α > 0 such that for all y ∈ M ∩B(x, δ),

∥y − z∥2 ≥ ∥x− z∥2 + α∥y − x∥2, (14)

5. there exist constants C > 0 and µ0 ∈ (0, 1) such that for every µ ∈ [0, µ0), any point x
such that ∥∇dM(x)∥ ≤ µ is at distance at most Cµ from Crit(M),

is open and dense in the set of C2 embeddings M → Rd for the Whitney C2-topology.

When M is generic, the topological critical points of dM coincide with its differential critical points
(see [6, Theorem 1.8]), and the Čech PD dgmi(M) can be related to the critical points of dM in the
same way as for smooth Morse function. We are now in position to prove Proposition 3.2, which we
restate for the reader’s convenience:

7The distance function dA is proper due to the compacity of A, hence its persistence module is q-tame and
the associated persistence diagram is well-defined –see [22].
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Proposition 3.2 (Čech PDs of generic submanifolds). Let M be a generic submanifold of Rd.
Then, for any integer i ≥ 0, the PD dgmi(M) contains finitely many points. In particular,
Persα(dgmi(M)) < +∞ for all α > 0.

Proof. The proof is similar to that used in the case of smooth Morse functions, with the Isotopy
Lemma and the Handle Attachment Lemma playing the same role; we briefly summarize it for
completeness nonetheless. We do not distinguish between differential and topological critical values
and points, as they coincide.

The set Crit(M) is finite: this is simply Condition 3. from the Genericity Theorem. The Isotopy
Lemma shows that there is no change in homotopy type between Ma and Mb if 0 < a < b and [a, b]
contains no critical value. Similarly, M has the same homotopy type as Ma if a > 0 is small enough.
Hence changes in homology in the offsets can only occur at 0, when the entire submanifold appears
in the filtration, and at critical values of dM, and there can be no birth or death of interval between
them.

Let us now consider a critical value c > 0 and 0 < ε < c such that d−1
M [c − ε, c + ε] contains no

critical point except for z1, . . . , zk ∈ d−1
M (c), where zj is of index ij . Then the Handle Attachment

Lemma states that Mc+ε is homotopically equivalent to Mc−ε with cells Bi1 , . . . , Bik of dimension
i1, . . . , ik attached, i.e.

Mc+ε ≃ Mc−ε ∪Bi1 ∪ . . . ∪Bik .

Let i ≥ 1, and let Di,b be the dimension of the cokernel of Hi(M
c−ε) → Hi(M

c+ε) (where the
map is induced by the inclusion): it is precisely the number of births of intervals between c − ε
and c + ε (hence precisely at c) in the persistence module of degree i of the filtration. Similarly,
the dimension Di−1,d of the kernel of Hi−1(M

c−ε) → Hi−1(M
c+ε) is the number of deaths of

intervals at c in the persistence module of degree i− 1 of the filtration. A straightforward application
of the Mayer-Vietoris exact sequence yields that Di,b +Di−1,d is exactly equal to the number of
i-dimensional cells among Bi1 , . . . , Bik , meaning that each i-cell corresponds exactly either to the
birth of an interval for the homology of degree i, or to the death of an interval for the homology of
degree i− 1 (in particular, an i− 1-cell and an i-cell cannot “cancel each other out”). This proves
that for any i ≥ 1, the multiset of critical values dM(z) of critical points z of M of index i is equal to
the multiset

{u1 : (u1, u2) ∈ dgmi(M), u1 ̸= 0} ∪ {u2 : (u1, u2) ∈ dgmi−1(M)}. (15)

This fact proves in turn that dgmi(M) is finite for any i ≥ 0, which immediately implies that
Persα(dgmi(M)) < +∞ for all α > 0.

D Proofs of Section 2

For M a m-dimensional differential submanifold of Rd and x ∈ M, we let TxM be the tangent space
of M at x, which is identified with a linear subspace of Rd. We denote by πx : Rd → TxM the
orthogonal projection on this subspace and let π⊥

x = id − πx be the orthogonal projection on the
normal space at x. A key property, that we will repeatedly used, is that the reach of M controls the
deviation of the manifold M from its tangent space. Namely, [39, Theorem 4.18] states that for all
y ∈ M,

∥π⊥
x (x− y)∥ ≤ ∥x− y∥2

2τ(M)
. (16)

We also define the weak feature size of M, denoted by wfs(M), as the minimal distance between a
critical point of M and M. As by definition, the projection is not unique at a critical point, we must
have wfs(M) ≥ τ(M).

We first prove Lemma 2.1:

Lemma 2.1. Let M ⊂ Rd be a compact submanifold with positive reach and let A ⊂ M be a
compact set with dH(A,M) ≤ ε for some ε > 0. Let z ∈ Rd\M. Then, |dM(z) − dA(z)| ≤
ε2

2dM(z)

(
1 + dM(z)

τ(M)

)
.
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Proof. As A ⊂ M, we have dM(z) ≤ dA(z). Let x be a projection of z onto M, and let y ∈ A be a
point at distance less than ε from x. Then, using (16) and the fact that z − x is orthogonal to TxM,
we obtain that

dA(z)
2 ≤ ∥z − y∥2 = ∥z − x∥2 + ∥x− y∥2 + 2⟨z − x, x− y⟩
≤ dM(z)

2 + ε2 + 2⟨z − x, π⊥
x (x− y)⟩

≤ dM(z)
2 + ε2 +

dM(z)ε
2

τ(M)
.

Hence,

dA(z)− dM(z) =
dA(z)

2 − dM(z)
2

dA(z) + dM(z)
≤ ε2

2dM(z)

(
1 +

dM(z)

τ(M)

)
.

We can now prove Theorem 2.2:
Theorem 2.2 (Improved Bottleneck Stability Theorem). Let M ⊂ Rd be a compact submanifold with
positive reach and let A ⊂ M be a compact set such that dH(A,M) ≤ ε < τ(M)/4. Let i ≥ 0 be an
integer. Then dgmi(A) is the union of three regions dgm(1)

i (A) := dgmi(A) ∩ {u1, u2 ≤ ε+ ε2

τ(M)},

dgm
(2)
i (A) := dgmi(A) ∩ {u1 ≤ ε, u2 ≥ τ(M)− ε2

τ(M)} and dgm
(3)
i (A) := dgmi(A) ∩ {u1, u2 ≥

τ(M)− ε2

τ(M)}.

Furthermore, let C = 2
τ(M)

(
1 + R(M)

τ(M)

)
, where R(M) is the radius of the smallest ball that contains

M. There exists an optimal matching γ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω for the bottleneck
distance between dgmi(A) and dgmi(M) such that

• Region (1): If u ∈ dgm
(1)
i (A), then γ(u) ∈ ∂Ω and ∥u− γ(u)∥∞ ≤ ε.

• Region (2): If u ∈ dgm
(2)
i (A), then γ(u) is of the form (0, v2) and |u2 − v2| ≤ Cε2. The

number of such points is finite and depends only on M.

• Region (3): If u ∈ dgm
(3)
i (A), then ∥u− γ(u)∥∞ ≤ Cε2.

Proof. Proposition 5 from [7] states that if ε = dH(A,M) < (
√
2 − 1)τ(M), then the offset Ar

deformation-retracts onto M for any

r ∈
[
1

2
(τ(M) + ε−

√
∆),

1

2
(τ(M) + ε+

√
∆)

]
and ∆ = τ(M)2 − 2ετ(M) − ε2. Under the stronger assumption that dH(A,M) < τ(M)/4, and
using elementary calculus, we find that the offset Ar deformation-retracts onto M for any

r ∈
[
ε+

ε2

τ(M)
, τ(M)− ε2

τ(M)

]
.

This means in particular that the homology type, hence the homology, of Ar does not change in
that interval; as a result, there can be no birth or death of intervals in the Čech persistence diagrams
of A between ε + ε2

τ(M) and τ(M) − ε2

τ(M) , and all (u1, u2) ∈ dgmi(A) must either be such that

u1, u2 ≤ ε+ ε2

τ(M) , or u1 ≤ ε+ ε2

τ(M) , u2 ≥ τ(M)− ε2

τ(M) , or u1, u2 ≥ τ(M)− ε2

τ(M) . This almost

proves that the partition of dgmi(A) into dgm
(1)
i (A), dgm(2)

i (A) and dgm
(3)
i (A) as defined in the

statement is correct, except that the definition of dgm(2)
i (A) requires that u1 ≤ ε, whereas we only

have obtained that u1 ≤ ε+ ε2

τ(M) .

Let γ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω be any optimal matching for the bottleneck distance:
then the Bottleneck Stability Theorem states that any point u = (u1, u2) ∈ dgmi(A) is such that
∥u− γ(u)∥∞ ≤ dH(A,M) ≤ ε. Suppose that u is such that u1 ≤ ε+ ε2

τ(M) and u2 ≥ τ(M)− ε2

τ(M) .
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Its distance in the infinity norm to the diagonal ∂Ω is equal to (u2 − u1)/2 ≥ (τ(M) − ε −
2ε2/τ(M))/2 ≥ 5

16τ(M) > ε, where we use the fact that ε < τ(M)/4. Hence γ(u) must belong to
dgmi(M). Let (v1, v2) denote γ(u). As in the proof of Proposition 3.2, the Isotopy Lemma shows
that dgmi(M) only contains two types of points: points of the shape (0, w2), which correspond
to the homology of M itself, and points of the shape (w1, w2), where in both cases w1, w2 are
critical values of dM. In particular, both w1 and w2 must be greater than wfs(M). Let dgm(2)

i (M)

denote the multiset of all points of the first type, and dgm
(3)
i (M) denote the multiset of all points

of the second type. If v1 was non-zero, it would have to be greater than wfs(M) ≥ τ(M), and we
would have ∥u − γ(u)∥∞ ≥ |u1 − v1| ≥ τ(M) − ε − ε2

τ(M) ≥ τ(M)/2 > ε, which would be a

contradiction (we once again use that ε < τ(M)/4). Hence v1 must be 0 (i.e. γ(u) ∈ dgm
(2)
i (M)),

and u1 = |u1 − v1| ≤ ∥u− γ(u)∥∞ ≤ ε. This proves the correctness of the partition into regions
from the statement.

Consider now u = (u1, u2) ∈ dgm
(1)
i (A). All v = (v1, v2) ∈ dgmi(M) are such that

∥u− v∥∞ ≥ v2 − u2 ≥ wfs(M)− ε− ε2

τ(M)
≥ τ(M)

(
1− 1

4
− 1

16

)
> ε ≥ ∥u− γ(u)∥∞,

hence γ(u) must belong to ∂Ω. This completes the proof of the first bullet point of the statement.

We have already shown that if γ is an optimal matching and u ∈ dgm
(2)
i (A), then γ(u) ∈ dgmi(M)

is of the form (0, v2). As γ maps at most a single point of dgm(2)
i (A) to each point of dgmi(M),

the number of such points is upper bounded by the number of points of the form (0, v2) with
v2 ≥ wfs(M) in dgmi(M). Though dgmi(M) need not be finite (M is not assumed to be generic),
applying Corollary 3.34 from [22] to dM shows that dgmi(M) is q-tame, and in particular that it
contains only a finite number N of points (v1, v2) with v1 ≤ wfs(M)/4 and v2 ≥ wfs(M)/2. Hence
the cardinality of dgm(2)

i (A) is bounded by N .

It only remains to show that γ can be chosen such that if u = (u1, u2) ∈ dgm
(2)
i (A), respectively

u′ ∈ dgm
(3)
i (A), then |u2 − γ(u)2| ≤ Cε2, respectively ∥u′ − γ(u′)∥∞ ≤ Cε2. To that end,

remember first that as shown above, our starting optimal matching γ must be such that points in
dgm

(2)
i (A) must be matched to points dgm(2)

i (M). Conversely and for the same reasons, points in
dgm

(2)
i (M) must be matched to points in dgm

(2)
i (A). Similarly, points u ∈ dgm

(3)
i (A) can only be

matched to points in dgm
(3)
i (M) or to the diagonal ∂Ω; otherwise, ∥u−γ(u)∥∞ ≥ |u1−γ(u)1| = u1

would be too large. Likewise, points in dgm
(3)
i (M) can only be matched to points in dgm

(3)
i (A) or to

the diagonal. Hence γ defines disjoint submatchings

γ(2) : dgm
(2)
i (A) → dgm

(2)
i (M)

and
γ(3) : dgm

(3)
i (A) ∪ ∂Ω → dgm

(3)
i (M) ∪ ∂Ω.

Now let R(M) be the radius of the smallest ball that contains M, and consider the functions

a : Rd → R, x 7→ min(max(dA(x), τ(M)/2), R(M))

and
m : Rd → R, x 7→ min(max(dM(x), τ(M)/2), R(M)).

Let us compare the persistence diagrams dgmi(a) and dgmi(m) of the sublevel sets filtration of a and
m and the Čech persistence diagrams dgmi(A) and dgmi(M) respectively (which are by definition
the persistence diagrams of the sublevel sets filtration of dA and dM).

Note first that dA and dM can have no critical values strictly greater thanR(M), as a critical point must
belong to the convex hull of its projections. Note also that for any t ∈ [τ(M)/2, R(M)], the sublevel
set a−1(−∞, t] is exactly equal to d−1

A (−∞, t] = At. Consequently, dgmi(a) contains exactly two
disjoint types of points. The first type are points of the form (τ(M)/2, u2), which are in bijection with
the points (u1, u2) ∈ dgmi(A) with u1 ≤ τ(M)/2 (the bijection maps (u1, u2) 7→ (τ(M)/2, u2));
those are exactly the points in dgm

(2)
i (A). The second type are points of the form (u1, u2) with

u1 ≥ τ(M)/2, which are in trivial bijection (the bijection is the identity) with the points in dgmi(A)
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that satisfy the same condition; those are exactly the points of dgm(3)
i (A). The points of dgm(1)

i (A)

cannot be “seen” in dgmi(a). We will call dgm(2)
i (a) the subdiagram comprised of the points of the

first type, and dgm
(3)
i (a) the subdiagram of dgmi(a) comprised of the points of the second type.

Similarly, dgmi(m) contains two types of points: the first type are points of the form (τ(M)/2, v2),
which are in bijection with the points (0, v2) ∈ dgmi(M) (the bijection maps (0, v2) 7→
(τ(M)/2, v2)); those are exactly the points in dgm

(2)
i (M). The second type are points of the form

(v1, v2) with v1 ≥ τ(M)/2, which are in trivial bijection (the bijection is the identity) with the points
in dgmi(M) that satisfy the same condition; those are exactly the points of dgm(3)

i (M). We will call
dgm

(2)
i (m) the subdiagram of dgmi(m) comprised of the points of the first type, and dgm

(3)
i (m)

the subdiagram comprised of the points of the second type.

Recall that Lemma 2.1 states that |dM(z) − dA(z)| ≤ ε2

2dM(z)

(
1 + dM(z)

τ(M)

)
for any z ∈ Rd\M. If

z ∈ Rd is such that dA(z) ≤ τ(M)/2, then a(z) = m(z) = τ(M)/2; if it is such that dM(z) ≥ R(M),
then a(z) = m(z) = R(M). Otherwise, dM(z) ≥ dA(z)−dH(A,M) ≥ τ(M)/4 and dM(z) ≤ R(M),
hence

|dM(z)− dA(z)| ≤
ε2

2dM(z)

(
1 +

dM(z)

τ(M)

)
≤ 2ε2

τ(M)

(
1 +

R(M)

τ(M)

)
= Cε2,

where C is as defined in the proposition. This means that
∥m− a∥∞ ≤ Cε2.

Due to the Bottleneck Stability Theorem, the diagrams dgmi(a) and dgmi(m) must be at bottleneck
distance less than Cε2.

Furthermore, let δ denote maxu∈dgmi(A)∪∂Ω ∥u− γ(u)∥∞. The matching γ (and in particular the
submatchings γ(2) and γ(3)) also induces (through the correspondence detailed above between the
points of dgmi(a) and a subset of the points of dgmi(A)) a matching γ′ between dgmi(a) and
dgmi(m) such that maxu∈dgmi(a)∪∂Ω ∥u− γ′(u)∥∞ ≤ δ. Hence the bottleneck distance between
dgmi(a) and dgmi(m) is at most min(δ, Cε2).

Let β : dgmi(a) ∪ ∂Ω → dgmi(m) ∪ ∂Ω be an optimal matching for the bottleneck distance. For
similar reasons as for γ, the matching β can also be decomposed into two disjoint submatchings

β(2) : dgm
(2)
i (a) → dgm

(2)
i (m)

and
β(3) : dgm

(3)
i (a) ∪ ∂Ω → dgm

(3)
i (m) ∪ ∂Ω.

We can use the two matchings β(2) and β(3) to define a new optimal matching γ̃ : dgmi(A) ∪ ∂Ω →
dgmi(M) ∪ ∂Ω as follows:

• The points in dgm
(1)
i (A) are matched by γ̃ to ∂Ω as with γ.

• Given u = (u1, u2) ∈ dgm
(2)
i (A), let u′ = (τ(M)/2, u2) be the point of dgm(2)

i (a) with
which u is in bijection. We let γ̃ match u with the point v = (0, v2) ∈ dgm

(2)
i (M) which is

in bijection with β(2)(u′) = (τ(M)/2, v2) ∈ dgm
(2)
i (m). Then |u2 − v2| ≤ min

(
δ, Cε2

)
due to the optimality of β, and this defines a bijective matching γ̃(2) : dgm

(2)
i (A) →

dgm
(2)
i (M). Note also that max

u∈dgm
(2)
i (A)

|u1 − γ̃(2)(u)1| = max
u∈dgm

(2)
i (A)

u1 =

max
u∈dgm

(2)
i (A)

|u1 − γ(2)(u)1|, hence max
u∈dgm

(2)
i (A)

∥u− γ̃(2)(u)∥∞ ≤ δ.

• We have seen that dgm(3)
i (a) = dgm

(3)
i (A) and dgm

(3)
i (m) = dgm

(3)
i (M). We simply

define the restriction and corestriction γ̃(3) : dgm(3)
i (A) ∪ ∂Ω → dgm

(3)
i (M) ∪ ∂Ω of γ̃ as

being equal to β(3) : dgm
(3)
i (a) ∪ ∂Ω → dgm

(3)
i (m) ∪ ∂Ω. The optimality of β implies

that max
u∈dgm

(3)
i (A)

∥u− γ̃(u)∥∞ ≤ min
(
δ, Cε2

)
.

Thus the global matching γ̃ : dgmi(A) ∪ ∂Ω → dgmi(M) ∪ ∂Ω is well-defined, is optimal for
the bottleneck distance, and satisfies the conditions stated in the proposition. This completes the
proof.
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E Proof of Theorem 3.3

We prove Theorem 3.3, which we restate for the reader’s convenience:

Theorem 3.3. Let M ⊂ Rd be a generic compact submanifold and A ⊂ M be a (δ, ε)-dense set in M
for some ε, δ > 0. Let a ≥ ε/δ and let i ≥ 0 be an integer. There exist ε0 > 0 depending only on M

and C0, C1, C2, C3 depending only on M and a such that if ε ≤ ε0, then dgm
(3)
i (A) has at most C0

points and for all p ≥ 1, α ≥ 0,

OTpp(dgmi(A),dgmi(M)) ≤ C1ε
p−m

Persα(dgmi(A)) ≤ C2(C
α
3 + εα−m).

(8)

Proof. Let us first prove the bound on the cardinality of dgm(3)
i (A). As M is generic, Theorem 1.6

from [6] states that if ε is smaller than some ε0 = ε0(M), then each point in Crit(A) at distance more
than τ(M)/2 from A must be at distance at most K1ε from one of the finitely many points of Crit(M)
for some K1 = K1(M). Corollary 1.7 from the same article then states that the number of points in
Crit(A) at distance less than K1ε from a given point of Crit(M) is upper bounded by some constant
that depends on M and the ratio ε/δ, and is decreasing in this ratio; hence it is upper bounded by some
constant that depends on M and a. The proof of this corollary also shows that the maximum number
of projections on A of each of these points of Crit(A) is also upper bounded by some constant that
depends on M and a. Hence there exist constants K2 = K2(M, a) and K3 = K3(M, a) such that if
ε ≤ ε0, then there are at most K2 points in Crit(A) at distance more than τ(M)/2 from A, and each
has at most K3 projections on A.

Lemma E.1 below, applied to the interval [τ(M)/2,∞) and the set A, then states that the number
of points in dgmi(A) such that at least one of their coordinates is greater than τ(M)/2 is bounded
by K2(

(
K3

i+1

)
+
(
K3

i+2

)
). Hence there are at most C0 := K22

K3 ≥ K2(
(
K3

i+1

)
+
(
K3

i+2

)
) points in

dgm
(3)
i (A) when ε ≤ ε0.

Now let us prove the bounds on OTpp(dgmi(A),dgmi(M)) and Persα(dgmi(A)). As stated in

Theorem 2.2, which applies as ε0 < τ(M)/4, each point u = (u1, u2) ∈ dgm
(1)
i (A) is such that its

coordinates satisfy 0 ≤ u1, u2 ≤ ε+ ε2/τ(M) ≤ 2ε. In particular, they must correspond to the birth
or the death of an interval of the Čech persistence module of A that occurs before filtration time 2ε.
The homology of the offsets At can be computed using the Čech simplicial complex of A (see e.g.
[37]). In particular, each change in the homology of the offsets, hence each birth or death in the
Čech persistence module of A, is induced by the apparition of some simplex σ at the corresponding
filtration value in the Čech complex, and each such apparition causes at most a single death or birth. If
a simplex σ appears before filtration time 2ε, it is by definition contained in a ball of radius 2ε, hence
it is of diameter at most 4ε. Let us assume from now on that ε0 ≤ τ(M)/16. Consider x ∈ A; then
[2, Proposition 8.7] states that the intersection B(x, 4ε) ∩ A contains at most K4(ε/δ)

m ≤ K4a
m

points for some constant K4 = K4(M). Hence x belongs to at most 2K4a
m

simplices that appear
before ε, and there are at most #A · 2K4a

m

such simplices. As the cardinality #A can be bounded by
K5/δ

m for some K5 = K5(M), we find that #(dgm
(1)
i (A)) ≤ K6/δ

m for some K6 = K6(M, a).

Furthermore, when M is generic, Proposition 3.2 states that its PD dgmi(M) has a finite number of
points. Let γ be an optimal matching between dgmi(A) and dgmi(M) for the bottleneck distance
that satisfies the conclusions of Theorem 2.2. We find that any point u ∈ dgm

(1)
i (A) is matched to a

point of ∂Ω at distance at most ε from u. Moreover, the number of points in dgm
(2)
i (A)∪ dgm

(3)
i (A)

is bounded by some constant K7 = K7(M, a), and they are all matched to a point of dgmi(M) or ∂Ω
at distance at most ε. In particular, these finitely many points are at distance at most K8 = K8(M)
from ∂Ω. Furthermore, this matching is surjective, in the sense that γ matches all points of dgmi(M)
to a point of dgmi(A). As a result, for any p ≥ 1, we find that

OTpp(dgmi(A),dgmi(M)) ≤
∑

u∈dgm
(1)
i (A)

∥u− γ(u)∥p∞ +
∑

u∈dgm
(2)
i (A)∪dgm

(3)
i (A)

∥u− γ(u)∥p∞

≤ K6δ
−mεp +K7ε

p ≤ K6a
mεp−m +K7ε

p ≤ C1ε
p−m
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for some C1 = C1(M, a). Likewise, for any α ≥ 0, we have that

Persα(dgmi(A)) =
∑

u∈dgm
(1)
i (A)

pers(u)α +
∑

u∈dgm
(2)
i (A)∪dgm

(3)
i (A)

pers(u)α

≤ K6δ
−mεα +K7K

α
8 ≤ K6a

mεα−m +K7K
α
8 ≤ C2(C

α
3 + εα−m)

for some C2 = C2(M, a), C3 = C3(M). This completes the proof.

Lemma E.1. Let A ⊂ Rd be a finite set, and let a < b ∈ R ∪ {−∞,+∞} and i ≥ 0. Let
L⋃
j=1

Cj = Crit(A) ∩ d−1
A [a, b]

be a covering of the set of critical points of dA whose critical value belongs to [a, b],8 and let

Nj := #

 ⋃
z∈Cj

σA(z)


be the cardinality of the union of the projections of the critical points of Cj . Then the number of
points in dgmi(A) such that at least one of their coordinates belongs to [a, b] is upper-bounded by∑L
j=1

(
Nj

i+1

)
+
(
Nj

i+2

)
, hence by

∑L
j=1N

i+2
j .

Proof. It is shown in [5] that the distance function to any finite point cloud is a topological Morse
function. Hence its topological critical points are in bijection (via their critical values) with the
non-zero coordinates of the points in (the union over all degrees of) the Čech persistence diagrams of
A. The number of points in dgmi(A) such that at least one of their coordinates belongs to [a, b] must
then be upper bounded by the number of topological critical points z of topological Morse index i or
i + 1 such that dA(z) ∈ [a, b]. Moreover, it is also shown that the topological critical points of dA
are a subset of A ∪ Crit(A), though not all differential critical points need be topologically critical.
Hence any such z belongs to Cj for some j ∈ {1, . . . , L}, and σA(z) ⊂

⋃
z′∈Cj

σA(z
′).

As shown in [5], if z is of critical index i, then the linear span Span(σA(z)− z) is of dimension i.
By Carathéodory’s theorem, there exists i+ 1 affinely independent points in σA(z) ⊂

⋃
z′∈Cj

σA(z
′)

such that z belongs to their convex hull. Those i+ 1 points uniquely identify z among the critical
points of A, as it is the only point equidistant to them that belongs to their convex hull. Hence there
is an injection from the topological critical points of A of index i that belong to Cj into the set of
subsets of cardinality i+ 1 of

⋃
z′∈Cj

σA(z
′). Applying the same reasoning to the points of index

i+ 1, we find that there are at most
∑n
j=1

(
Nj

i+1

)
+
(
Nj

i+2

)
points in dgmi(A) with at least one of their

coordinates in [a, b], as desired.

F The OTp distance between Radon measures

Let M denote the space of Radon measures on Ω, and let us define Ω̄ := {u = (u1, u2) ∈ R2 :
u1 ≤ u2}. We call π an admissible transport plan between ν1, ν2 ∈ M if it is a Radon measure on
Ω̄× Ω̄ such that for all Borel sets A,B ⊂ Ω,

π(A× Ω̄) = ν1(A) and π(Ω̄×B) = ν2(B). (17)

For p ∈ [1,+∞), we define

OTpp(ν1, ν2) = inf
π∈Adm(ν1,ν2)

∫∫
∥u− v∥p∞dπ(u, v) ∈ R ∪ {+∞}, (18)

where ∥u∥∞ = max(|u1|, |u2|) and Adm(ν1, ν2) is the set of all admissible transport plans between
ν1 and ν2. We also define

OT∞(ν1, ν2) = inf
π∈Adm(ν1,ν2)

sup{∥u− v∥∞ : (u, v) ∈ Support(π)} (19)

8When a = −∞, we commit a minor abuse of notation by writing [a, b] rather than (a, b], and similarly
when b = +∞.
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For all p ∈ [1,∞], the infimum is in fact a minimum (see [33]). We call OTp(ν1, ν2) the p-
Wasserstein distance between ν1 and ν2, though it differs from the usual Wasserstein distance, which
is defined between measures with equal finite mass, while OTp is defined between measures that
can have different (and even infinite) masses. Intuitively, OTp allows for some of the mass of ν1 and
ν2 to be transported to the diagonal ∂Ω := {(u, u) ∈ R2}, which acts as an infinitely deep landfill.
The p-Wasserstein distance is a distance on the space Mp = {ν ∈ M : OTp(ν, 0) <∞}, where 0
denotes the null measure.

As explained in Section 4, a PD a can be identified with the Radon measure
∑
u∈a δu. Let Dp be the

set of PDs being in Mp. Then, Divol and Lacombe show in [33] that the OTp distance defined in
(18) coincides with the OTp distance defined between PDs in Equation (3), and likewise for the case
p = ∞.

We require the following lemma from [33]:

Lemma F.1. A sequence of measures (νn)n≥1 converges with respect to OTp to some measure ν
if and only if the sequence (νn)n≥1 converges vaguely towards ν and Persp(νn) → Persp(ν) as
n→ ∞.

G Proofs of Section 4

We start with the proof Theorem 4.1, which is split into a series of lemmas, before proving Proposi-
tion 4.2, Corollary 4.3 and Corollary 4.4.

Let us restate Theorem 4.1 for the reader’s convenience:

Theorem 4.1 (Law of large numbers). Assume that P has a density f on M bounded away from 0 and
∞. Let i ≥ 0 be an integer and let 1 ≤ p <∞. Then µf,i ∈ Mp and E[OTpp(µn,i, µf,i)] −−−−→

n→∞
0.

Furthermore, for all α > 0, Persα(dgm
(1)
i (An))n

α
m−1 = Persα(µn,i) = Persα(µf,i) + oL1(1).

Before proving Theorem 4.1, we state a simple lemma which allows us to control the mass of balls
on M.

Lemma G.1. Let M be a compact submanifold with positive reach. Let P be a probability measure
having a density f on M satisfying fmin ≤ f ≤ fmax for two strictly positive constants fmin, fmax.
There exist constants cm, Cm depending only on m such that for all 0 ≤ r ≤ τ(M)/4

cmfminr
m ≤ P (B(x, r)) ≤ Cmfmaxr

m. (20)

Let An be a sample of n i.i.d. observations of law P . Then, there exists C = C(M) depending on M
such that for all x ∈ M and all r > 0,

P(d(x,An) ≥ r) ≤ exp(−nCfminr
m). (21)

Proof. For the first statement, see [2, Proposition 31]. Let us prove the second one. Remark that the
probability is zero for r > diam(M). Hence, we can assume that r ≤ diam(M). When r ≤ τ(M)/4,
it holds that

P(d(x,An) ≥ r) = (1− P (B(x, r)))n ≤ exp(−ncmfminr
m).

When τ(M)/4 ≤ r ≤ diam(M), we write

P(d(x,An) ≥ r) ≤ P(d(x,An) ≥ τ(M)/4) ≤ exp(−ncmfmin(τ(M)/4)m)

≤ exp(−ncmfmin
(τ(M)/4)m

diam(M)m
rm).

Hence, the result holds with C = cmmin
(
1, (τ(M)/4)m

diam(M)m

)
.

Proof of Theorem 4.1. Recall that Goel, Trinh and Tsunoda [42] have shown that almost surely, the
sequence of Radon measures (µn,i)n vaguely converges to the Radon measure µf,i. We start by
showing that, using this vague convergence and Lemma F.1, it is enough to prove the convergence of
the p-total persistence.
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Lemma G.2. Let (νn)n≥1 be a sequence of random measures in Mp that converges vaguely almost
surely to a Radon measure ν ∈ Mp, and such that E[|Persp(νn) − Persp(ν)|] →n→∞ 0. Then,
E[OTpp(νn, ν)] →n→∞ 0.

Proof. Let us first show that (Dn)n≥1 = (OTpp(νn, ν))n≥1 converges in probability to 0. We use
the following standard result: if for every subsequence (Znk

)k≥1 of (Zn)n≥1, one can extract a
subsequence (Znkl

)l≥1 that converges almost surely to 0, then the sequence (Zn)n≥1 converges
in probability to 0. Let (Dnk

)k≥1 be a subsequence of (Dn)n≥1 = (OTpp(νn, ν))n≥1. Then, as
(Persp(νn))n≥1 converges in L1 to Persp(ν), it also converges in probability. In particular, there
exists a subsequence (nkl)l≥1 such that (Persp(νnkl

))n≥1 converges almost surely to Persp(ν).
When restricting ourselves to this subsequence, we have both vague convergence of the measures
and convergence of the p-total persistence. Hence, according to Lemma F.1, we have Dnkl

=

OTpp(νnkl
, ν) →l→∞ 0 almost surely, proving that we actually have that (Dn)n≥1 converges in

probability to 0. To prove that E[Dn] →n→∞ 0, it remains to show that the sequence (Dn)n≥1 is
uniformly integrable. By considering the trivial transport plan that sends all probability mass to ∂Ω,
we have for all n ≥ 1

Dn ≤ Persp(νn) + Persp(ν).

But the sequence (Persp(νn))n≥1 is uniformly integrable, as it converges in L1. Hence, so is the
sequence (Dn)n≥1, concluding the proof.

Using Lemma G.2, Theorem 4.1 would follow from the facts that µf,i ∈ Mp and that
E[|Persp(µn,i)− Persp(µf,i)|] converges to 0.

Recall that Cc(Ω) is the set of continuous functions f : Ω → R with compact support (i.e. the
support is bounded and at positive distance from ∂Ω). For s ≥ 0, let Ts = {(u1, u2) ∈ Ω : u2 ≥ s}.

Lemma G.3. Let α > 0. Let (νn)n≥1 be a sequence of random measures in Mα that converges
vaguely almost surely to a Radon measure ν ∈ M. Assume that the sequence of random variables
(νn(Ω))n≥1 is uniformly integrable and that

sup
n

E[Persα(νn)] < +∞ and lim
s→+∞

lim sup
n

E[
∫
Ts

persα(u)dνn(u)] = 0.

Then, ν ∈ Mα and E[|Persα(νn)− Persα(ν)|] →n→∞ 0.

Proof. We divide the proof into several steps.

1. Let ϕ ∈ Cc(Ω). We first show that (
∫
ϕdνn))n≥1 converges in L1 to

∫
ϕdν. By assumption,

the convergence holds almost surely. Furthermore, as ϕ is bounded and as the sequence
(νn(Ω))n≥1 is uniformly integrable, so is the sequence (

∫
ϕdνn)n≥1. Hence, E[|

∫
ϕd(νn−

ν)|] →n→∞ 0.

2. Let (ϕk)k≥1 be an increasing sequence of functions in Cc(Ω) that converge pointwise to the
function persα. Then, almost surely,∫

ϕkdν ≤ lim inf
n→∞

∫
ϕkdνn ≤ lim inf

n→∞

∫
persαdνn.

By Fatou’s lemma, E[lim infn→∞
∫
persαdνn] ≤ lim infn→∞ E[Persα(νn)] = C < +∞

by assumption. Hence, by letting k → ∞ and applying the monotone convergence theorem,
we obtain Persα(ν) ≤ C, proving that ν ∈ Mα.

3. The same argument can be applied to the constant function equal to 1, showing that ν(Ω) <
+∞.

4. Let s ≥ 1. The function persα can be decomposed into a sum of three positive continuous
functions persα = ϕ

(1)
s + ϕ

(2)
s + ϕ

(3)
s , where ϕ(1)s has compact support, the support of ϕ(2)s
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is included in the band {u ∈ Ω : pers(u) ≤ 1/s} and the support of ϕ(3)s is included in Ts.
Hence,

lim sup
n→+∞

E[|Persα(νn)− Persα(ν)|] ≤ lim sup
n→+∞

E[|
∫
ϕ(1)s d(νn − ν)|]

+ lim sup
n→+∞

E[|
∫
ϕ(2)s d(νn − ν)|] + lim sup

n→+∞
E[|
∫
ϕ(3)s d(νn − ν)|].

The first term in the above sum is equal to zero because of the first item, the second one is
smaller than s−α(supn E[νn(Ω)] + ν(Ω)), and the third one is smaller than

lim sup
n

E[
∫
Ts

persα(u)dνn(u)] +

∫
Ts

persα(u)dν(u).

Using the hypotheses of the lemma, the second and the third term converges to 0 as s goes
to ∞. We obtain that lim supn→+∞ E[|Persα(νn)− Persα(ν)|] = 0.

Our goal is to show that the conditions of Lemma G.3 holds for the sequence (µn,i)n≥1 to conclude.
Remark that for any Radon measure ν ∈ Mα and s ≥ 0∫

Ts

persα(u)dν(u) = α

∫ ∞

0

tα−1ν(Ts ∩ {u : pers(u) ≥ t})dt

≤ α

∫ ∞

s/2

tα−1ν(T2t)dt+ α

∫ s/2

0

tα−1ν(Ts)dt

≤ α

∫ ∞

s/2

tα−1ν(T2t)dt+ (s/2)αν(Ts),

(22)

where we use Fubini’s theorem for the first equality and the fact that {u : pers(u) ≥ t} ⊂ T2t for
the first inequality. We also have ν(Ω) = ν(T0). Hence, the different conditions of Lemma G.3 can
all be obtained by controlling the random variable µn,i(Ts) for s ≥ 0.

Proposition G.4. Let M be a compact submanifold with positive reach. Assume that P has a density
f on M satisfying fmin ≤ f ≤ fmax for two positive constants fmin, fmax. Then there exist c, C > 0
that depend on M, i, fmin and fmax such that for all integer n ≥ 1 and all s ≥ 0,

E[µn,i(Ts)2] ≤ C exp(−csm). (23)

Before proving Proposition G.4, let us show how to use it to conclude the proof of Theorem 4.1. First,
it implies that the random variables µn,i(Ω) = µn,i(T0) for n ≥ 1 have a uniformly bounded second
moment, and are therefore uniformly integrable. Second, we have E[µn,i(Ts)] ≤ E[µn,i(Ts)2]1/2
using Hölder’s inequality. Hence, (22) implies that for any α > 0, we have

E[Persα(µn,i)] ≤ α

∫ ∞

0

tα−1E[µn,i(T2t)]dt

≤ α
√
C

∫ ∞

0

tα−1e−c2
m−1tmdt.

In particular, supn E[Persα(µn,i)] < +∞. Likewise,

sup
n

E
[∫

Ts

persα(u)dµn,i(u)

]
≤ α

∫ ∞

s/2

tα−1E[µn,i(T2t)]dt+ (s/2)αE [µn,i(Ts)]

≤ α
√
C

∫ ∞

0

tα−1e−c2
m−1tmdt+ (s/2)α

√
C exp(−c/2sm)

so that lims→+∞ supn E[
∫
Ts

persα(u)dµn,i(u)] = 0. We are therefore in position to apply
Lemma G.3, proving the convergence of the α-total persistence. Together with Lemma G.2 with
α = p ≥ 1, we also obtain the OTp-convergence of µn,i. It remains to prove Proposition G.4.
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Proof of Proposition G.4. Write εn = dH(An,M). Let s ≥ 0 and let ε0 < τ(M)/2 be a small
parameter, to be fixed later. Recall that we write #S for the cardinality of a multiset S. Notice that
µn,i(Ts) = 0 if sn−1/m > εn + ε2n/τ(M). In particular, we may assume without loss of generality
that s ≤ n1/mdiam(M)(1 + diam(M)/τ(M)) = n1/mεmax, for otherwise there is nothing to prove.
Consider the event E = {εn + ε2n/τ(M) < ε0}. By definition of Region (1), if E is satisfied, then
all the coordinates of points of the PD dgm

(1)
i (An) are smaller than ε0. Notice that the cardinality of

dgmi(An) is smaller than the number of i-dimensional simplices in the Čech complex of An, which
is itself smaller than ni+1 (as each simplex corresponds uniquely to a choice of i+ 1 vertices of An).
Hence

E[µn,i(Ts)21{Ec}] ≤ n−2n2i+2P(εn + ε2n/τ(M) ≥ ε0).

We require the following lemma, which bounds the upper tail of the random variable εn = dH(An,M).

Lemma G.5. If r ≤ τ(M)/2, then

P(dH(An,M) > r) ≤ Cm
fminrm

exp(−ncmfminr
m) (24)

for two positive constants cm, Cm depending only on m. In particular, for any q ≥ 1, dH(An,M) =
OLq ((lnn/n)1/m).

Proof. The bound P(dH(An,M) > r) is given in [1, Lemma III.23]. Furthermore, [1, Lemma III.23]
also states that for any q > 0, there exists Cq depending on fmin and m such that, with probability at

least 1− n−q/m, dH(An,M) ≤ Cq
(
lnn
n

)1/m
. In particular, we obtain that

E[dH(An,M)q] ≤ Cqq

(
lnn

n

)q/m
+ diam(M)qn−q/m,

proving the second claim of the lemma.

Note that εn ≤ diam(M), so P(εn + ε2n/τ(M) ≥ ε0) ≤ P(εn ≥ c0ε0), with c0 = (1 +
diam(M)/τ(M))−1. Apply Lemma G.5 with r = c0ε0 to obtain that

E[µn,i(Ts)21{Ec}] ≤ n2i
Cm

fminrm
exp(−ncmfminr

m) ≤ C0 exp(−c1n)

for some positive constants c1, C0. Furthermore, recall that s ≤ n1/mεmax. Hence,

E[µn,i(Ts)21{Ec}] ≤ C0 exp(−c1ε−mmaxs
m) = C0 exp(−c2sm)

for some positive constant c2.

It remains to bound E[µn,i(Ts)21{E}]. For each j = 1, . . . , n, consider the set Ξjn,s of critical points
z ∈ Crit(An) such that σAn

(z) contains the point Xi and sn−1/m ≤ dAn
(z) ≤ εn + ε2n/τ(M).

Lemma G.6. It holds that µn,i(Ts) is smaller than

1

n

n∑
j=1

Li+2
j , (25)

where Lj is the cardinality of the set
⋃
z∈Ξj

n,s
σAn(z).

Proof. Lemma E.1 applied to a realization of An and the interval [sn−1/m, εn+ε
2
n/τ(M)] yields that

the number of points in dgmi(An) with at least one of their coordinates in [sn−1/m, εn+ε
2
n/τ(M)] is

upper bounded by
∑n
j=1 L

i+2
j . By definition, this means that µn,i(Ts) ≤ 1

n

∑n
j=1 L

i+2
j , as desired.
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One can show that the set Ξjn,s is localized, in the sense that it is included in a ball centered at Xj ,
with a radius depending on the sample An, that is small with high probability. Hence, the number Lj
is controlled by the number of points in An found in a small (random) neighborhood of Xj . Let us
make this idea rigorous.

For r ≥ 0, define the shape

C(r) = {y = (ym, yd−m) ∈ Rm × Rd−m : ∥y∥ ≤ r, ∥yd−m∥ ≤ ∥y∥2

2τ(M)
}. (26)

We build a partition of C(r) in the following way. Consider a finite partition W of the unit sphere in
Rm × {0}d−m into sets of diameters smaller than θ = π/4 (for the geodesic distance on the sphere),
which we fix for a given dimension m. Let W(r) be the partition of C(r) consisting of the sets

{y = (ym, yd−m) ∈ C(r) : ym/∥ym∥ ∈W},

where W is an element of the partition W .

For x ∈ M, consider an isometry ιx : Rd → Rd sending Rm × {0}d−m to TxM. Let C(x, r) =
x+ ιx(C(r)). Likewise, we define a partition W(x, r) by applying the affine transformation W 7→
x+ ιx(W ) to each W ∈ W(r).

For j = 1, . . . , n, let Rjn be the smallest radius r ≤ ε0 such that every W ∈ W(Xj , r) contains a
point of An other than Xj . By convention, we let Rjn = ε0 if such a radius does not exist. Rjn can
be made measurable with a good choice of x 7→ ιx; we assume it to be the case henceforth.

Lemma G.7. Let ε0 ≤ τ(M)/
√
2. For all j = 1, . . . , n, if z ∈ Crit(An) is such that Xj ∈ σAn(z)

and dAn(z) ≤ ε0, then ∥Xj − z∥ ≤ c0Rjn for some positive absolute constant c0.

Proof. Recall that for x ∈ M, πx is the orthogonal projection on TxM while π⊥
x is the orthogonal

projection on the normal space at x. Let j = 1, . . . , n and let z ∈ Crit(An) be such thatXj ∈ σAn
(z).

The direction e = πXj
(z − Xj)/∥πXj

(z − Xj)∥ belongs to the unit sphere in TXj
M; note that

πXj (z −Xj) ̸= 0 due to Lemma G.8 below, which applies as dAn(z) ≤ ε0 ≤ τ(M)/
√
2. Hence,

ι−1
x (e) belongs to an element W0 of the partition W . Consider the corresponding element W of the

partition W(Xj , Rjn).

If Rjn = ε0, then the conclusion of the lemma holds (for c0 = 1): indeed we have ∥Xj − z∥ =
dAn(z) ≤ ε0 ≤ Rjn. Otherwise, by assumption, there exists a point Xk ∈ W for some k ̸= j. As
Xj ∈ σAn(z), it holds that ∥Xj − z∥ ≤ ∥Xk − z∥. Hence,

∥Xj − z∥2 ≤ ∥Xk − z∥2 = ∥Xj − z∥2 + ∥Xj −Xk∥2 + 2⟨Xk −Xj , Xj − z⟩

and

⟨Xk −Xj , z −Xj⟩ ≤
∥Xj −Xk∥2

2
. (27)

We write

⟨Xk −Xj , z −Xj⟩ = ⟨πXj
(Xk −Xj), πXj

(z −Xj)⟩+ ⟨π⊥
Xj

(Xk −Xj), π
⊥
Xj

(z −Xj)⟩

By construction, as the diameter of W0 is less than θ, we have ⟨πXj
(Xk −Xj), πXj

(z −Xj)⟩ ≥
cos(π/4)∥πXj (Xk −Xj)∥∥πXj (z −Xj)∥. On the other hand, according to [39, Theorem 4.18],

∥π⊥
Xj

(Xk −Xj)∥ ≤ ∥Xk −Xj∥2

2τ(M)
, (28)

which also implies that ∥πXj
(Xk −Xj)∥ ≥ ∥Xj −Xk∥

√
1− ε20

4τ(M)2 . Similarly, Lemma G.8 below

states that ∥πXj (z −Xj)∥ ≥ ∥z −Xj∥/
√
2 and ∥π⊥

Xj
(z −Xj)∥ ≤ ∥z −Xj∥2/τ(M) (using our

assumption that dAn
(z) ≤ ε0 ≤ τ(M)/

√
2).
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Hence we obtain that

cos(π/4)∥Xj −Xk∥∥z −Xj∥

√
1− ε20

4τ(M)2√
2

≤ cos(π/4)∥πXj (Xk −Xj)∥∥πXj (z −Xj)∥

≤ ∥Xk −Xj∥2

2
+

∥Xk −Xj∥2∥z −Xj∥2

2τ(M)2

≤ ∥Xk −Xj∥2
(
1

2
+

ε20
2τ(M)2

)
.

Dividing by ∥Xj −Xk∥ and using that ∥Xj −Xk∥ ≤ Rjn and that ε0 ≤ τ(M)/
√
2, we see that

∥z −Xj∥ is smaller than Rjn up to an absolute multiplicative constant.

We now prove the lemma used above:

Lemma G.8. Let A ⊂ M, z ∈ Crit(A) and x ∈ σA(z). Then ∥π⊥
x (z − x)∥ ≤ ∥z − x∥2/τ(M).

Furthermore, if dA(z) ≤ τ(M)/
√
2, then ∥πx(z − x)∥ ≥ ∥z − x∥/

√
2.

Proof. The point z can be written as a convex combination z =
∑
k λkyk where the points yk are in

A ⊂ M. Then, using [39, Theorem 4.18],

∥π⊥
x (z − x)∥ ≤

∑
k

λk∥π⊥
x (yk − x)∥ ≤

∑
k

λk
∥yk − x∥2

2τ(M)

=
∑
k

λk
∥yk − z∥2 + ∥z − x∥2 + 2⟨yk − z, z − x⟩

2τ(M)
=

∥z − x∥2

τ(M)
,

as ∥yk−z∥2 = ∥x−z∥2 and
∑
k λk(yk−z) = 0. The second inequality ∥πx(z−x)∥ ≥ ∥z−x∥/

√
2

from the statement follows from the first one through a direct computation.

Let us now show that the random variable Rjn has controlled tails.

Lemma G.9. For all x ∈ M, r ≥ 0, B(x, r) ∩M ⊂ C(x, r).

Proof. Let y ∈ M be such that ∥πx(y − x)∥ ≤ r. Then, according to [39, Theorem 4.18], ∥π⊥
x (y −

x)∥ ≤ ∥y−x∥2

2τ(M) . In particular, B(x, r) ∩M ⊂ C(x, r).

Lemma G.10. For 0 < t ≤ τ(M)/4 and j = 1, . . . , n, we have P(Rjn > t) ≤ Cme
−cmfmin(n−1)tm

for some positive constants cm, Cm.

Proof. IfRjn is larger than t, then there exists at least one setW ∈ W(Xj , t) such that its intersection
with An contains only Xj . Hence,

P(Rjn > t|Xj) ≤
∑

W∈W(Xj ,t)

P(An ∩W = Xj |Xj) =
∑

W∈W(Xj ,t)

(1− P (W ))n−1.

Let π0 be the orthogonal projection from Rd to Rm × {0}d−m. The image of a set W ∈ W(Xj , t)
by the projection y 7→ πXj (y − Xj) is equal to ιXj (π0(W0)) ⊂ TXjM for some W0 ∈ W(t).
For t ≤ τ(M)/4, the orthogonal projection y ∈ B(Xj , t) ∩ M 7→ πXj

(y − Xj) ∈ TXj
M is a

diffeomorphism on its image, with Jacobian lower bounded by a constant cm that depends only on m,
see e.g. [31, Lemma 2.2]. According to Lemma G.9, the preimage of ιXj

(π0(W0)) ⊂ TXj
M by this

diffeomorphism is equal to W ∩M . Hence, by a change of variable,

P (W ) = P (W ∩M) ≥ fmincmVolm(W0) ≥ fminc
′
mt

m

for some c′m > 0. Hence,

P(Rjn > t|Xj) ≤ #We−fminc
′
m(n−1)tm .

We conclude by taking the expectation.

30



Let us now control the number of points found in a ball B(Xj , κRjn) for some κ ≥ 0. Let ρ0 > 0
be small enough such that

∫
B(x,ρ0)∩M

f < 1/2 for any x ∈ M.

Lemma G.11. Let l ≥ 0, κ > 0 be such that κε0 ≤ min(ρ0, τ(M)/4). For j = 1, . . . , n, let Kjn(κ)

be the number of elements of An found inB(Xj , κRjn). Then, E[Kjn(κ)
l] ≤ Cm,l(1+

(
fmax

fmin

)l
κlm)

for some constant Cm,l which depends on m and l.

Proof. Let us write {W1, . . . ,WK} = W(Xj , κRjn). Without loss of generality, we can assume
that n ≥ K+1, as otherwise the bound is trivial. As in [34, Lemma 5], we remark that there is at least
one sample point in every Wi, and that there is (almost surely) one single element Wi∗ of the partition
with exactly one sample point on its boundary. Let Ni be the cardinality of (Wi ∩ An)\{Xj}, and
N−1 be the cardinality of An\B(Xj , κRjn). Define

α̃i :=

∫
Wi

f

and αi := α̃i

1−α̃i∗
for all i ̸= i∗, as well as α−1 =

1−
∑K

i=1 α̃i

1−α̃i∗
. Note that as κRjn ≤ ρ0, we have

α̃i < 1/2 for all i = 1, . . . ,K. As κRjn ≤ κε0 ≤ τ(M)/4, we may use once again that the
orthogonal projection y ∈ B(Xj , κRjn) ∩M 7→ πXj

(y −Xj) ∈ TXj
M is a diffeomorphism on its

image, with Jacobian upper and lower bounded by constants depending only on m (see [31, Lemma
2.2]) to also obtain that

cfmin(κRjn)
m ≤ α̃i ≤ Cfmax(κRjn)

m

for all i = 1, . . . ,K and some constants c = c(m), C = C(m). Hence there exists C ′ = C ′(m) > 0
such that

cfmin(κRjn)
m ≤ αi ≤ C ′fmax(κRjn)

m

for all i = 1, . . . ,K. Consider a multinomial random variable L = (L1, . . . , L̂i∗ , . . . , LK , L−1) of
parameters n− 2 and (α1, . . . , α̂i∗ , . . . , αK , α−1), and let E denote the event

{Li ≥ 1 ∀i ∈ {1, . . . ,K}\{i∗}}.

Then conditionally on Xj , Rjn and i∗, the variable N = (N1, . . . , N̂i∗ , . . . , NK , N−1) follows
the same distribution as L | E. Thus, conditionally on Xj , Rjn and Wi∗ , the variable Kjn(κ) =

1 +
∑K
i=1Ni = 2 +

∑K
i=1,i̸=i∗ Ni (where the initial 1 comes from Xj) has the same distribution as

2 +

K∑
i=1,i̸=i∗

Li| E.

Note that as κRjn ≤ ρ0, we have α−1 ≥ 1/2.

As a result, Lemma G.12 below yields that

E[Kjn(κ)
l|Xj , Rjn,Wi∗ ] = E[(2 +

K∑
i=1,i̸=i∗

Li)
l | E] ≤ 2l(2l + E[(

K∑
i=1,i̸=i∗

Li)
l | E])

≤ 2l(2l + CK,l(1 + (n− 2)

K∑
i=1,i̸=i∗

αi)
l)

≤ C ′
K,l(1 + (n

K∑
i=1,i̸=i∗

αi)
l) ≤ C ′

K,l(1 + (nKC ′fmax(κRjn)
m)l)

≤ Cm,l(1 + κmlf lmaxn
lRmljn )

where CK,l, C ′
K,l and Cm,l are constants whose dependencies are indicated by their indices (remem-

ber that K = #W depends only on m). We can now conclude by considering

E[Kjn(κ)
l] = EXj ,Rjn,Wi∗ [E[Kjn(κ)

l|Xj , Rjn,Wi∗ ]] ≤ ERjn
[Cm,l(1 + κmlf lmaxn

lRmljn )]
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The quantity nlE[Rmljn ] is bounded by a constant, which is proved by integrating the tail bound found
in Lemma G.10. Indeed, Lemma G.10 implies that the random variable nRmjn is subexponential with
a subexponential norm m independent of n, of order O(1/fmin); the moment of order l of such a
random variable is bounded by Clml, see [74, Section 2.7].

Let us now prove the technical lemma used above.

Lemma G.12. Let K ≥ 1 and L = (L1, . . . , LK , LK+1) be a random multinomial variable of
parameters n and α1, . . . , αK , αK+1. Then there exists C = C(K, l) such that

E[(
K∑
i=1

Li)
l|Li ≥ 1 ∀i = 1, . . . ,K] ≤ Cl(1 + (n

K∑
i=1

αi)
l).

Proof. Let X1, . . . , Xn be i.i.d. categorical variables of parameters α1, . . . , αK , αK+1. De-
fine Lk(p) =

∑
r≤p 1Xr=k; then (L1(n), . . . , LK(n), LK+1(n)) has the same distribution as

(L1, . . . , LK , LK+1), and we identify the two in our notations. For a fixed n, and for any injective
function ι : {1, . . . , k} → {1, . . . , n}, consider the event

Eι := {L1(ι(1)) = 1, . . . , L1(ι(K)) = 1},

i.e. ι(i) is the first appearance of i among the variables X1, . . . , Xn. Note that E := {L1, . . . , LK ≥
1} =

⊔
ιEι where the sum is taken over all such injective functions. Then

E[(
K∑
i=1

Li)
l|E] =

∑
ι

P(Eι|E)E[(
K∑
i=1

Li)
l|Eι].

Fix a function ι, and assume without loss of generality that ι(1) < ι(2) < . . . < ι(K). Conditioned by
Aι, the variable Yi :=

∑ι(i+1)−1
r=ι(i)+1 1Xr ̸=K+1 is a binomial variable of parameters ι(i+1)−ι(i)−2 ≤ n

and
∑i

i=1 αi

α1+...+αi+αK+1
≤
∑K
i=1 αi. Hence E[Y li |Eι] ≤ C1(l)(n

∑K
i=1 αi)

l using classical bounds on
the l-th moment of a binomial variable, and we see that

E[(
K∑
i=1

Li)
l|Eι] = E[(

n∑
r=1

1Xr ̸=K+1)
l|Eι] = E[(K +

K∑
i=0

ι(i+1)−1∑
r=ι(i)+1

1Xr ̸=K+1)
l|Eι]

≤ C2(K, l)(K
l +

K∑
i=0

E[Y li |Eι]) ≤ C3(K, l)(1 + (n

K∑
i=1

αi)
l)

where we write ι(0) = 0 and ι(K + 1) = n to simplify notations.

Let us wrap things up. Recall Lemma G.6: it holds that

µn,i(Ts) ≤
1

n

n∑
j=1

Li+2
j , (29)

where Lj is the cardinality of the set
⋃
z∈Ξj

n,s
σAn(z). But according to Lemma G.7, if z ∈ Ξjn,s,

then ∥Xj − z∥ ≤ c0Rjn. In particular, dAn
(z) ≤ c0Rjn, and any point y ∈ σAn

(z) is at distance
less than 2c0Rjn from Xj . Hence, Lj is smaller than Kjn(κ) for κ = 2c0. Choose ε0 so that
κε0 ≤ κε0 ≤ min(ρ0, τ(M)/4). We are in position to apply Lemma G.11. We further remark that
Lemma G.7 implies that Ξjn,s is empty if c0Rjn < sn−1/m.
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Hence, by Jensen’s inequality,

E[µn,i(Ts)21{E}] ≤ E


 1

n

n∑
j=1

1{2c0Rjn ≥ sn−1/m}Kjn(2c0)
i+2

2


≤ E
[
1{2c0R1n ≥ sn−1/m}K1n(2c0)

2i+4
]

≤
√

P(2c0Rjn ≥ sn−1/m)E[K1n(2c0)4i+8]

≤ Cm,i exp(−cmfmins
m)

for some constants cm, Cm,i > 0, where we apply Lemma G.10 and Lemma G.11 at the last line.

This completes the proof of Theorem 4.1.

We now prove Proposition 4.2:
Proposition 4.2. Let M be a generic m-dimensional submanifold. Assume that P has a density
f on M bounded away from 0 and ∞. Let i ≥ 0 be an integer. There exists an optimal matching
γn : dgmi(An)∪∂Ω → dgmi(M)∪∂Ω for the bottleneck distance between dgmi(An) and dgmi(M)
such that for any q ≥ 1:

• Region (2): It holds that max
u∈dgm

(2)
i (An)

|u2 − γn(u)2| = OLq (n−2/m).

• Region (3): It holds that max
u∈dgm

(3)
i (An)

∥u − γn(u)∥∞ = OLq (n−2/m) and

#(dgm
(3)
i (An)) = OLq (1).

Proof. Let εn = dH(An,M). Let ΠM := {x ∈ σM(z) : z ∈ Crit(M)} be the (finite) set of
projections of critical points z ∈ Crit(M). The proof of Theorem 3.3 relied on the use of Theorem
1.6 in [6]. This theorem states roughly that both critical points z ∈ Crit(An) far from M and their
projections x ∈ σAn

(z) are stable with respect to the Hausdorff distance, meaning that every such
point z is at distance O(εn) from a critical point z′ ∈ Crit(M), with x being at distance O(εn) from
a point x′ ∈ ΠM. Thus, the number of critical points of An located close to a given z′ ∈ Crit(M)
is crudely upper bounded by the number of subsets which can be formed by selecting elements in
neighborhoods of size O(εn) around x′ ∈ σM(z

′). We used the same idea to bound the cardinality of
dgm

(3)
i (A) in Theorem 3.3.

In a random setting, the distance εn is of order (lnn/n)1/m, as suggested by Lemma G.5, while the
number of points found in a ball of radius r is typically of order nrm, yielding a logarithmic number
of elements in a neighborhood of size O(εn) around a given point x ∈ M. Hence, our earlier strategy
is not tight enough to bound in expectation the cardinality of dgm(3)

i (A) by a constant.

We improve upon this strategy with the following intuition: the maximal distance between a point x
of M and the point cloud An does not really matter in [6, Theorem 1.6], but only the density of the
point cloud An around the (finitely many) projections x ∈ ΠM. Although εn is of order (lnn/n)1/m,
the distance between a fixed point x ∈ M and An is known to be of order n−1/m (see (21)). This
remark explains how we can intuitively replace neighborhoods of radii (lnn/n)1/m by radii of size
n−1/m in the previous arguments.

We now make these ideas rigorous. Let Crit>(An) = {z ∈ Crit(An) : dAn
(z) ≥ τ(M)/2} denote

the set of critical points of An “far” from M and let ΠAn
:= {x ∈ σAn

(z) : z ∈ Crit>(An)} be the
corresponding set of projections. We let ε0 be a small constant to be fixed later. Theorem 1.6 from
[6] states that, thanks to the genericity of M, there exist K1,K2 > 0 such that for ε0 small enough, if
εn < ε0:

• there exists a map ϕ : Crit>(An) → Crit(M) such that d(z, ϕ(z)) ≤ K1εn for all z ∈
Crit>(An), and

• there exists a map ψ : ΠAn
→ ΠM such that d(x, ψ(x)) ≤ K2εn for all x ∈ ΠAn

.
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Furthermore, the map ψ is such that for each z ∈ Crit>(An) and each x′ ∈ σM(ϕ(z)), there exists
x ∈ σAn(z) such that ψ(x) = x′ (if ε0 is chosen small enough). Indeed, due to the genericity of M,
each critical point z′ ∈ Crit(M) belongs to the relative interior of σM(z′) (as stated in Appendix
C). In particular, it cannot belong to the convex hull of any strict subset of σM(z′). By continuity of
the convex hull for the Hausdorff distance, as soon as z ∈ Crit>(An) is close enough to ϕ(z) and
its projections x ∈ σAn

(z) are close enough to σM(ϕ(z)) (i.e. as soon as εn is small enough), the
point z cannot belong to the convex hull of any subset S ⊂ σAn

(z) that does not contain for each
x′ ∈ σM(ϕ(z)) at least one point x such that ψ(x) = x′. As z must belong to the convex hull of
σAn

(z), we conclude that each x′ ∈ σM(ϕ(z)) has at least one preimage by ψ in σAn
(z). As Crit(M)

is finite, taking the minimum distance such that this property holds for z′ over all z′ ∈ Crit(M)
proves the claim.

We introduce the random function defined as

∀r ≥ 0, E(r) := min(sup{dAn
(y) : y ∈ M ∩ΠrM}, ε0) =: min(F (r), ε0), (30)

where ΠrM is as usual the r-offset of ΠM. This random variable measures the density of the point
cloud An in neighborhoods of size r of points x′ ∈ ΠM.

Let
ρn := sup{dΠM

(x) : x ∈ ΠAn
} (31)

give (when εn < ε0 for ε0 small enough) the largest distance between a projection x ∈ ΠAn
and the

corresponding projection ψ(x) ∈ ΠM. We also define

ηn := sup{dΠM
(x) : x = πM(z), z ∈ Crit>(An)}. (32)

We require the following controls on the random variables ρn and ηn.

Lemma G.13. There exist positive constants ε0 = ε0(M), K3 = K3(M), K4 = K4(M) and
K5 = K5(M) such that if εn < ε0, it holds that for any z ∈ Crit>(An)

|dAn
(z)− dM(ϕ(z))| ≤ K3E(ηn)

2, (33)
ηn ≤ K4E(ηn), (34)
ρn ≤ K5E(ηn). (35)

Proof. The lemma follows from a careful read of the proof of Theorem 1.6 in [6]. First, remark that
in the proof of Lemma 5.1 in [6] (applied with r = τ(M)/2, R = diam(M)), the Hausdorff distance
ε = dH(An,M) can be replaced by E(ηn). Hence, if z ∈ Crit>(An), there exists a µ-critical point
z′ of M at distance less than E(ηn), with µ ≤ L1(M)E(ηn). By genericity, for a choice of ε0 small
enough, this point z′ is at distance L2(M)µ from a critical point z0 ∈ Crit(M). For ε0 small enough,
this point z0 is necessarily equal to ϕ(z), with ∥z−ϕ(z)∥ ≤ (1+L2L1)E(ηn). Due to the Lipschitz
property of the projection onto M around z0 (see the arguments found at the bottom of p. 19 in [6]),
any point x ∈ πM(z) is such that ∥x− x′∥ ≤ L3(M)∥z − ϕ(z)∥ for some x′ ∈ σM(ϕ(z)). By taking
the supremum over all such points x, we obtain that

ηn ≤ L3(1 + L2L1)E(ηn),

proving (34).

One can also check that εn can be replaced by E(ηn) in the end of the proof of Theorem 1.6 in [6],
so that (35) holds.

Let us now prove (33). Let z ∈ Crit>(An). Consider xAn
∈ σAn

(z); we know that ∥ψ(xAn
) −

xAn
∥ ≤ K5E(ηn) using (33). As ϕ(z) − ψ(xAn

) is orthogonal to Tψ(xAn )M, [39] states that

∥π⊥
ψ(xAn )(xAn

− ψ(xAn
))∥ ≤ ∥xAn−ψ(xAn )∥2

2τ(M) ≤ K2
5E(ηn)

2

2τ(M) , hence

∥ϕ(z)− xAn∥2 = ∥ϕ(z)− ψ(xAn)∥2 + 2⟨ϕ(z)− ψ(xAn), ψ(xAn)− xAn⟩+ ∥ψ(xAn)− xAn∥2

≤ dM(ϕ(z))
2 +

K2
5E(ηn)

2

τ(M)
dM(ϕ(z)) +K2

5E(ηn)
2 ≤ dM(ϕ(z))

2 + E(ηn)
2L4,

where L4 = K2
5

(
R(M)
τ(M) + 1

)
, R(M) is the radius of the smallest closed ball that contains M, and

dM(ϕ(z)) ≤ R(M) because a critical point must belong to the convex hull of its projections. As
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the same bound applies to each of the projections x′An
∈ σAn(z), we find that the closed ball

B
(
ϕ(z),

√
dM(ϕ(z))2 + E(ηn)2L4

)
contains σAn(z). Since z is the center of the smallest ball that

contains σAn(z), whose radius is dAn(z), we find that

dAn(z)
2 ≤ dM(ϕ(z))

2 + E(ηn)
2L4. (36)

Similarly, consider now xM ∈ σM(ϕ(z)), and let xAn ∈ ψ−1(xM) ∩ σAn(z) (we have seen below
the definition of ϕ and ψ that its existence is guaranteed). We have shown earlier that there exists
x ∈ σM(z) such that ∥x − xM∥, ∥x − xAn

∥ ≤ O(E(ηn)), and the same reasoning as above yields
that ∥z − xAn

∥2 = ∥z − x∥2 + O(E(ηn)
2) and ∥z − xM∥2 = ∥z − x∥2 + O(E(ηn)

2) (with all
big O constants depending only on M), hence that ∥z − xM∥2 ≤ ∥z − xAn

∥2 + E(ηn)
2L5(M) =

dAn
(z)2 + E(ηn)

2L5.

As before, this shows that the closed ball B
(
z,
√
dAn(z)

2 + E(ηn)2L5

)
contains σM(ϕ(z)), hence

that
dM(ϕ(z))

2 ≤ dAn(z)
2 + E(ηn)

2L5. (37)

This, together with (36) and the fact that dAn
(z) ≥ τ(M)/2, shows that |dAn

(z) − dM(ϕ(z))| ≤
K3(M)E(ηn)

2.

Consider a (random) optimal matching γn : dgmi(An) ∪ ∂Ω → dgmi(M) ∪ ∂Ω such that
max

u∈dgm
(2)
i (An)

|u2 − γn(u)2| ≤ Cε2n and max
u∈dgm

(3)
i (An)

∥u − γn(u)∥∞ ≤ Cε2n whose ex-
istence is guaranteed by Theorem 2.2 (for some C = C(M) > 0). For r ≥ 0, we let N(r) be the
number of points of An found in ΠrM (i.e. at distance less than r from a point in ΠM).

Lemma G.14. There exists ε0 = ε0(M) such that if εn ≤ ε0, then

max
u∈dgm

(2)
i (An)

|u2 − γn(u)2| ≤ K3E(ηn)
2,

max
u∈dgm

(3)
i (An)

∥u− γn(u)∥∞ ≤ K3E(ηn)
2.

Furthermore, #(dgm
(3)
i (An)) is smaller than N(ρn)

i+2.

Proof. Let us assume from now on that ε0 is small enough that 2(K3 + C)ε20 is smaller than the
smallest difference between two distinct critical values of dM.

Consider a point (u1, u2) ∈ dgm
(3)
i (An) that is mapped by γn to the diagonal. The coordinates u1

and u2 differ by at most Cε2n, hence they are critical values of dAn
that correspond to critical points

that are mapped by ϕ to two critical points of M that have the same critical value (due to 2(K3+C)ε
2

being smaller than the smallest difference between two distinct critical values of dM). But as stated in
Equation (33) of Lemma G.13, these critical values must then be K3E(ηn)

2-close to that of the two
critical points of M, hence ∥u− γn(u)∥∞ = d(u, ∂Ω) = (u2 − u1)/2 ≤ K3E(ηn)

2, as desired.

Likewise, consider a point (u1, u2) of dgm
(3)
i (An) that is mapped by γn to a point (v1, v2) of

dgm
(3)
i (M). The birth coordinates u1 and v1 differ by at most Cε2, hence the associated critical

values must correspond to a critical point z of An and a critical point z′ of M such that ϕ(z) has
the same filtration value as z′ (again due to 2(K3 + C)ε2 being smaller than the smallest difference
between two distinct critical values of dM). But as above, we have |u1 − v1| = |dAn

(z)− dM(z
′)| =

|dAn
(z)− dM(ϕ(z))| ≤ K3E(ηn)

2. As the same applies to u2 and v2, we find that ∥u− γn(u)∥∞ ≤
K3EE(ηn)

2 and max
u∈dgm

(3)
i (An)

∥u − γn(u)∥∞ ≤ K3E(ηn)
2. The same reasoning shows that

max
u∈dgm

(2)
i (An)

|u2 − γn(u)2| ≤ K3E(ηn)
2.

Finally, and by definition, ΠAn
= {x ∈ σAn

(z) : z ∈ Crit(An), dAn
(z) ≥ τ(M)/2} is included in

An ∩ΠρnM , hence #(ΠAn
) ≤ N(ρn). Lemma E.1 applied to An and the interval [τ(M)/2,+∞) then

yields that the number of points in dgm
(3)
i (An) is smaller than N(ρn)

i+2.

Lemma G.15. Let ε0 be the parameter defined in Lemma G.14. It holds that for all q ≥ 1,
E(ηn)1{εn ≤ ε0} = OLq (n−1/m) and N(ρn)1{εn ≤ ε0} = OLq (1).
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Assume for a moment that Lemma G.15 holds. Then, we write (for a choice of ε0 small enough)

max
u∈dgm

(2)
i (An)

|u2 − γn(u)2| ≤ K3E(ηn)
21{εn ≤ ε0}+R(M)1{εn > ε0}

≤ K3E(ηn)
21{εn ≤ ε0}+R(M)1{εn > ε0}. (38)

where we recall that R(M) is the radius of the smallest enclosing ball of M. Because of Lemma G.5,
the random variable 1{εn > ε0} is a OLq (n−2/m) for all q ≥ 1. But then, because of Lemma G.15,
we obtain that the right-hand side in (38) is a OLq (n−2/m) for all q ≥ 1. Likewise, we obtain that
max

u∈dgm
(3)
i (An)

∥u− γn(u)∥∞ = OLq (n−2/m) for all q ≥ 1. At last, we have

#(dgm
(3)
i (An)) ≤ N(ρn)

i+21{εn ≤ ε0}+ ni+21{εn > ε0}.

The first term is a OLq (1) for all q ≥ 1 because of Lemma G.15, while the second one is a OLq (1)
for all q ≥ 1 because of Lemma G.5. This concludes the proof of Proposition 4.2. Let us now prove
Lemma G.15.

Proof of Lemma G.15. Let t > 0. The key observation to obtain Lemma G.15 is that (34) implies
that if ηn > t, then there exists r > t with r ≤ K4E(r).

Lemma G.16. For all λ > 0, there exist positive constants Cλ, cλ (depending on λ, M and fmin)
such that for all r > 0, P(r ≤ λE(r)) ≤ Cλ exp(−cλnrm).

Proof. Remark that if r ≤ λE(r), then r ≤ λF (r). The set M∩ΠrM is the union of a finite number of
balls of radius r. Hence, it can be covered by Cλ = Cλ(M) open balls of radius r/(2λ), with centers
x1, . . . , xCλ

∈ M. Note that if all these balls intersect An, then for all y ∈ M ∩ΠrM, dAn
(y) < r/λ.

Hence, if λF (r) ≥ r, then the intersection of one of these balls with An is empty. Hence, according
to Lemma G.1,

P(r ≤ λF (r)) ≤
Cλ∑
k=1

P(dAn
(xk) ≥ r/(2λ)) ≤ Cλ exp(−C(M)fminn(r/λ)

m).

Remark that the fonction E is nondecreasing and 1-Lipschitz continuous: we have for r < s,
E(r) ≤ E(s) ≤ E(r) + (r − s). Fix t > 0 and consider the sequence tk = akt for some a > 1
to fix. Assume that ηn > t and that εn ≤ ε0. Then ηn is between two values tk < tk+1. But then,
according to Lemma G.14,

E(tk)

tk
≥ E(ηn)− (ηn − tk)

tk
≥ 1

a

E(ηn)

ηn

tk+1

tk
− (a− 1) ≥ 1

K4
− (a− 1)

E(tk+1)

tk+1
≥ 1

a

E(ηn)

tk
≥ 1

a

E(ηn)

ηn
≥ 1

K4a
.

Choose a > 1 such that 1
K4

− (a− 1) > 0, and let

λ = min
( 1

K4
− (a− 1),

1

K4a

)
> 0

We have proven that if εn ≤ ε0 and ηn > t, then there exists k ≥ 0 with E(tk) ≥ λtk.

Hence,

P(ηn > t, εn ≤ ε0) ≤ Cλ
∑
k≥0

exp(−cλakmntm).

A standard comparison between this sum and an integral shows that this sum is at most of order

K6(nt
m)−1 exp(−K7nt

m). (39)

for two positive constants K6, K7 depending on M and fmin. But when ntm ≤ 1, we can simply use
the bound P(ηn > t, εn ≤ ε0) ≤ 1. Hence,

P(ηn > t, εn ≤ ε0) ≤ min(1,K6(nt
m)−1 exp(−K7nt

m)) ≤ K8 exp(−K9nt
m)) (40)
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for two other constants K8, K9.

To summarize, we have shown that the random variable nηmn 1{εn ≤ ε0} is subexponential, with
subexponential norm depending only on M and fmin, see e.g. [74, Section 2.7]. We will now
simply say that a random variable is subexponential to indicate that it is subexponential with a norm
depending only on M and fmin.

Lemma G.1 shows that the random variable ndAn
(x)m for a fixed x ∈ M is also subexponential.

Thus, so is nE(0)m = nmaxx∈ΠM
dAn

(x)m, as a maximum of a finite number of subexponential
random variables. As nE(ηn)

m ≤ n(ηn + E(0))m ≤ 2m−1(nηmn + nE(0)m), the random vari-
able nE(ηn)

m1{εn ≤ ε0} is also subexponential. In particular, we have E(ηn)1{εn ≤ ε0} =
OLq (n−1/m) for all q ≥ 1.

It remains to bound N(ρn). First, because of (35), the random variable nρmn 1{εn ≤ ε0} is subex-
ponential. Also, for a fixed t, N(t) follows a binomial distribution of parameter n and P (ΠtM). As
long as t ≤ τ(M)/4, a ball of radius t is of mass smaller than Cmfmaxt

m (see Lemma G.1). Let
0 ≤ k ≤ n be an integer. For any t ≤ τ(M)/4, we bound

P(N(ρn) ≥ k, εn ≤ ε0) ≤ P(N(t) ≥ k, ρn ≤ t) + P(ρn > t, εn ≤ ε0)

≤ P(N(t) ≥ k) + 2 exp(−K10nt
m),

where K10 is proportional to the subexponential norm of nρmn 1{εn ≤ ε0}, see [74, Section 2.7]. Let
t = (k/n)1/mmin(τ(M)/4, 1/(#ΠM · 2Cmfmax)

1/m). This choice of t ensures that t ≤ τ(M)/4
and that E[N(t)] ≤ n(#ΠM)Cmfmaxt

m ≤ k/2. Then, by Bernstein’s inequality [74, Theorem
2.8.4],

P(N(t) ≥ k) ≤ P(N(t)− E[N(t)] ≥ k/2) ≤ exp

(
− k2/8

n(#ΠM)Cmfmaxtm + k/6

)
≤ exp (−K11k)

for some constant K11 depending on m, M and fmax. We have proven that for all k ≥ 0,

P(N(ρn) ≥ k, εn ≤ ε0) ≤ 2 exp (−K11k) + 2 exp(−K10nt
m)

≤ 2 exp (−K11k) + 2 exp(−K12k)

for some constant K12 depending on m, M, fmin and fmax. Hence, the random variable
N(ρn)1{εn ≤ ε0} is subexponential, with a subexponential norm depending on M, fmin and
fmax. This implies in particular that N(ρn)1{εn ≤ ε0} = OLq (1) for all q ≥ 1.

Corollary 4.3 is a simple consequence of Proposition 4.2:

Corollary 4.3. Let p ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.2, the following holds:

• If p > m, then E[OTpp(dgmi(An),dgmi(M))] → 0 as n→ ∞.

• If p = m, E[OTpp(dgmi(An),dgmi(M))] → Persp(µ∞,i,m)Vol(M) as n → ∞, where
Vol(M) is the volume of M.

• If p < m and i < m, then E[OTpp(dgmi(An),dgmi(M))] → +∞ as n→ ∞.

Furthermore, for all α > 0, Persα(dgmi(An)) is equal to

Persα(dgmi(M)) + n1−
α
mPersα(µ∞,i,m)

∫
M

f(x)1−
α
m dx+ oL1(n1−

α
m ) +OL1

(( log n

n

) 1
m )

.

Proof. Let εn = dH(An,M). Consider the event E = {εn < τ(M)/2}. According to Theorem 2.2,
on E, the number of points of dgm(2)

i (An) is bounded by some constant N0 depending only on M.

• Consider the optimal matching γn given by Proposition 4.2. On the event E, this optimal
matching sends all the points of dgm(1)

i (An) to the diagonal ∂Ω. Thus, we have (when E is
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satisfied)

|OTpp(dgmi(An),dgmi(M))− Persp(dgm
(1)
i (An))|

≤ N0 max
u∈dgm

(2)
i (An)

∥u− γn(u)∥p∞ +#(dgm
(3)
i (An)) max

u∈dgm
(3)
i (An)

∥u− γn(u)∥p∞.
(41)

Furthermore, note that

max
u∈dgm

(2)
i (An)

∥u− γn(u)∥p∞ ≤ max

(
max

(u1,u2)∈dgm
(2)
i (An)

|u2 − γn(u)2|p, εpn

)
≤ max

(u1,u2)∈dgm
(2)
i (An)

|u2 − γn(u)2|p + εpn.

We take the expectation and apply the Cauchy-Schwarz inequality to obtain (together with
Theorem 4.1, Proposition 4.2 and Lemma G.5):

E[OTpp(dgmi(An),dgmi(M))1{E}] ≤ n1−p/mPersp(µf,i) + o(1).

When E is not realized, we crudely bound OTpp(dgmi(An),dgmi(M)) by considering the
matching sending every point to the diagonal. The cost of this matching is bounded by
CM(1 + ni+1), where ni+1 is an upper bound on the number of points in dgmi(An) and
CM is some constant depending on M. Hence,

E[OTpp(dgmi(An),dgmi(M))1{Ec}] ≤ CM(1 + ni+1)P(εn > τ(M)/2) = o(1),

according to Lemma G.5. This proves the first bullet point.

• The second bullet point is proved likewise from (41). Indeed, in that case, it holds that

E[|OTpp(dgmi(An),dgmi(M))− Persp(dgm
(1)
i (An))|1{E}] = o(1). (42)

Also, using the same crude bound, we obtain that

E[|OTpp(dgmi(An),dgmi(M))− Persp(dgm
(1)
i (An))|1{Ec}] = o(1). (43)

So far, we have proved that OTpp(dgmi(An),dgmi(M)) = Persp(dgm
(1)
i (An)) + oL1(1).

According to Theorem 4.1, it holds that Persp(dgm
(1)
i (An)) = Persp(µf,i) + oL1(1) for

p = m, proving the second bullet point.

• For the third bullet point, we use that on the event E,

OTpp(dgmi(An),dgmi(M)) ≥ Persp(dgm
(1)
i (An)). (44)

The latter is equal to n1−p/mPersp(µf,i) + oL1(n1−p/m), with Persp(µf,i) > 0: indeed,
the support of the measure µf,i is nontrivial for i < m, see [47, 42]. Hence,

E[OTpp(dgmi(An),dgmi(M))] ≥ E[OTpp(dgmi(An),dgmi(M))1{E}]

≥ E[Persp(dgm(1)
i (An))]− E[Persp(dgm(1)

i (An))1{Ec}].

The second term goes to zero (use the crude bound Persp(dgm
(1)
i (An)) ≤ CM(1 + ni+1)),

while the first one diverges. This proves the third bullet point.

At last, we prove the formula for the asymptotic expansion of

Persα(dgmi(An)) = Persα(dgm
(1)
i (An)) + Persα(dgm

(2)
i (An)) + Persα(dgm

(3)
i (An)). (45)

The first term is equal to n1−α/mPersα(µ∞,i,m)
∫
M
f(x)1−

α
m dx+ oL1(n1−α/m) according to The-

orem 4.1. Remark that for u, v ∈ Ω, |persα(u)− persα(v)| ≤ 2α(persα(u) + persα(v))∥u− v∥∞.
Hence, on the event E = {εn < τ(M)/2},

|Persα(dgm(2)
i (An)) + Persα(dgm

(3)
i (An))− Persα(dgmi(M))|

≤ 2αεn(Persα(dgm
(2)
i (An)) + Persα(dgm

(3)
i (An)) + Persα(dgmi(M))).
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We crudely bound the persistence of a point in dgmi(An) by R(M), the radius of the smallest
enclosing ball of M, to obtain that

|Persα(dgm(2)
i (An)) + Persα(dgm

(3)
i (An))− Persα(dgmi(M))|

≤ 2αεn(R(M)α + 1)(#(dgm
(2)
i (An)) + #(dgm

(3)
i (An)) + Persα(dgmi(M))).

We have already established that #(dgm
(2)
i (An)) = OL2(1) (actually, it is larger than N0 with only

exponentially small probability). Furthermore, Proposition 4.2 states that #(dgm
(3)
i (An)) = OL2(1).

Lemma G.5 also states that εn = OL2(((log n)/n)1/m). Hence,

|Persα(dgm(2)
i (An)) + Persα(dgm

(3)
i (An))− Persα(dgmi(M))| = OL1(((log n)/n)1/m).

This concludes the proof.

Finally, remember that we defined linear feature maps as follows (at the end of Section 4): we let
(V, ∥ · ∥) be a normed vector space and ϕ : Ω → V be Lipschitz continuous. For α ≥ 0, the linear
feature map Φα associated to ϕ and defined on the space Df of finite PDs is

∀a ∈ Df , Φα(a) =
∑
u∈a

pers(u)αϕ(u) ∈ V. (46)

Let us prove the associated Corollary 4.4:
Corollary 4.4. Let α ≥ 1 and let 0 ≤ i < d be an integer. Under the same assumptions as in
Proposition 4.2, it holds that Φα(dgmi(An)) converges in probability to Φα(dgmi(M)) whenever
α > m.

Proof. According to [33, Proposition 5.1], the feature map Φα is continuous with respect to the
OTα distance. But we have shown in Corollary 4.3 that E[OTαα(dgmi(An),dgmi(M))] → 0 as
n→ ∞. In particular, OTα(dgmi(An),dgmi(M)) converges in probability to 0. By continuity, so
does ∥Φα(dgmi(An))− Φα(dgmi(M))∥.

H Details on numerical experiments

We provide in this section additional details on the numerical experiments conducted in Section 5. PDs
are computed using GUDHI [62]. PDs are plotted using the giotto-tda library [72] and persistence
images using scikit-tda [64]. All experiments can be easily run on a standard office laptop over a
few hours.

Simulation of generic tori. Let R > r be two positive numbers. The (standard) torus M0 of major
radius R and minor radius r is given as the image of [0, 2π]2 by the map

F : (θ, ϕ) ∈ [0, 2π]2 7→

(
(R+ r cos(θ)) cos(ϕ)
(R+ r cos(θ)) sin(ϕ)

r sin(θ)

)
. (47)

Consider a list y1, . . . , yk of pairs of angles in [0, 2π]2, together with positive numbers a1, . . . , aK .
We let r(y) = r +

∑K
k=1 akψ(d(y, yk)/σ), where ψ(t) = 1{t < 1} exp(1/(t2 − 1)), 0 < σ < 2π

and d is the Euclidean distance on the flat torus. We then define

F̃ : (θ, ϕ) ∈ [0, 2π]2 7→

(
(R+ r(θ, ϕ) cos(θ)) cos(ϕ)
(R+ r(θ, ϕ) cos(θ)) sin(ϕ)

r(θ, ϕ) sin(θ)

)
. (48)

Lemma H.1. Assume that max(θ,ϕ)∈[0,2π]2 r(θ, ϕ) < R − r. Then, the image of F̃ is a compact
smooth submanifold, homeomorphic to a torus.

Proof. The condition on the function r ensures that the function F̃ is injective and (2π)-periodic in
each of its variables. Let (θ, ϕ) ∈ [0, 2π]2. We write r as a shorthand for r(θ, ϕ). Let S = R+r cos(θ)

and U = −r sin(θ) + ∂θr cos(θ). The differential of F̃ is equal to

dF̃ (θ, ϕ) =

(
U cos(ϕ) −S sin(ϕ) + ∂ϕr cos(θ) cos(ϕ)
U sin(ϕ) S cos(ϕ) + ∂ϕr cos(θ) sin(ϕ)

r cos(θ) + ∂θr sin(θ) ∂ϕr sin(θ)

)
(49)
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The determinant of the two first rows is equal to SU , and is therefore only equal to 0 if U = 0. But
in that case,

dF̃ (θ, ϕ) =

(
0 −S sin(ϕ) + ∂ϕr cos(θ) cos(ϕ)
0 S cos(ϕ) + ∂ϕr cos(θ) sin(ϕ)

r cos(θ) + ∂θr sin(θ) ∂ϕr sin(θ)

)
(50)

is a rank 2 matrix. Indeed, note that U is equal to the dot product of eθ = (− sin(θ), cos(θ)) with
the (nonzero) vector (r, ∂θr). Hence, if U = 0, then the dot product of (r, ∂θr) with the vector
(cos(θ), sin(θ)) (that is perpendicular to eθ) is nonzero. Furthermore, one of the two top entries in the
second column is also nonzero. Indeed, this is clear if ∂ϕr = 0 or if sin(ϕ) = 0 (we have S > 0 by
assumption). Otherwise, having the two entries equal to zero would imply that S2 = −(∂ϕr) cos

2(θ),
a contradiction.

In all cases, dF̃ (θ, ϕ) is of maximal rank. This implies the conclusion.

Let R = 2.4, r = 0.8, σ = 2 and K = 30. We create a random torus by sampling pairs of angles
Y = {y1, . . . , yK} uniformly at random, conditioned on the fact that maxy∈[0,2π]2 dY(y) < σ. We
then draw the numbers a1, . . . , aK as exponential random variables of scale 0.5, conditioned on the
fact that maxϕ∈[0,2π] r(ϕ) < R − r. We let M be the image of [0, 2π]2 by F̃ . Although we do not
rigorously prove that the manifold M is almost surely generic, we conjecture that it is the case.

A probability measure on P on M is obtained in the following way. Sample (θ, ϕ) ∈ [0, 2π]2 so that
F (θ, ϕ) is uniform on the torus. Then, let x = F̃ (θ, ϕ). To put it another way, P is the pushforward
of the uniform measure on the torus by F̃ ◦ F−1.

Continuity of feature maps We sample n = 104 points according to P , and compute the Čech
PDs of the corresponding set An. For i = 1, we plot the persistence images with weights persp,
p = 0, 1, 2, 4, with both birth and persistence values ranging between 0 and 1, and grid step equal to
0.002. See Figure 4.

Convergence of the total persistences. We run three experiments. First, we compute the Čech PD for
i = 0 of n uniform points on a (nongeneric) circle. Second, we compute the Čech PD for i = 0 of n
uniform points on a (nongeneric) torus. Third, we compute the Čech PD for i = 1 of n uniform points
on a (nongeneric) torus. Each experiment is ran for values of n ranging from n = 102 to n = 104.
We observe in Figure 5 the convergence rate of the total persistence of dgm(1)

i (An) predicted by
Theorem 4.1. We then repeat each experiment 10 times, with similar rates of convergence observed
for each run, although with a large relative standard deviation (around 30%) for very small values of
Persp(dgm

(1)
i (An)) (the relative standard deviation being defined by the ratio between the standard

deviation and the mean).

Convergence of µn,i. Let i = 1. Let Q be the probability distribution obtained as the pushforward of
the uniform distribution on [0, 2π]2 by the map F defined above. Using Equation (49), one can show
that the density f of Q is given by

∀x ∈ M0, f(x) =
1

(2π)2
1

r(R+ r cos(θ))
, (51)

where (θ, ϕ) = F−1(x). Assume that the Radon measure µ∞,i,2 has a density g0 on Ω (this fact is
not proven, but conjectured and strongly supported by experiments). Then, using (9), one can make a
change of variables and observe that µf,i has a density gf , given by

∀v ∈ Ω, gf (v) =
1

(2π)3

∫ 2π

0

1

r(R+ r cos(θ))
g0

(
1

2π

v√
r(R+ r cos(θ))

)
dθ. (52)

We sample a set An of n = 105 points on a square and consider the convolution of the measure
1
n

∑
u∈dgmi(An)

δn1/mu with a Gaussian kernel, so that we obtain an estimation ĝ0 of the density g0.
We then define an estimator ĝf of gf by approximating the integral over a regular grid of 100 points
on [0, 2π].
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We then place a grid of size 100× 100 over the square [0, 17]2. The measure µf,i is approximated by
the measure µ̂f,i with piecewise constant density on each square of the grid, with density in the square
centered at x given by ĝf (x). The corresponding measure is displayed in the center of Figure 6.

For a given value of n, we sample a set An of n points according toQ, and compute the corresponding
measure µn,i. The same transformations are applied to µn,i, so that we obtain a piecewise constant
measure µ̂n,i on the same 100 × 100 grid. The heatmap of this measure is shown on the left of
Figure 6.

At last, we approximate the distance OT2(µn,i, µf,i) by computing the distance OT2(µ̂n,i, µ̂f,i)

using the POT library, see [40, 55]. The distance is then normalized by OT2(0, µ̂f,i) =
√

Pers2(µ̂f,i).
The evolution of the normalized distance with respect to n is plotted in Figure 6. As predicted by
Theorem 4.1, the OT2 distance converges to 0 as n gets larger. We then repeat each experiment
10 times, with a convergence to 0 observed each time, the relative standard deviation being always
smaller than 7%.
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experiments conducted in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The numerical experiments that we ran are basic and can be easily reproduced
using the GUDHI library [62]. We therefore did not feel that providing open access to the
code was necessary. We are happy to share it on demand.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the hyperparameters needed to produce the figures in Section 5 are given
in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The two numerical experiments exhibiting rates of convergence (Figure 5 and
Figure 6) were conducted over multiple runs, with orders of magnitude of the fluctuations
presented in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As stated in the appendix, we only ran small to medium-scale experiments,
which each took no more than an hour on a standard office laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics. Note that due to the theoretical nature of our work, many (though
not all) points raised in the Code of Ethics are moot.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, as it is foundational.

Guidelines:

45

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the libraries used in the experiments are free of use and properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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