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Abstract
Despite the considerable amount of parallel001
data used to train neural machine translation002
models, they can still struggle to generate003
fluent translations in technical domains. In-004
domain parallel data is often very low re-005
source and synthetic domain data generated006
via back-translation is frequently lower qual-007
ity. To guide machine translation practitioners008
and characterize the effectiveness of domain009
adaptation methods under different data avail-010
ability scenarios, we conduct an in-depth em-011
pirical exploration of monolingual and paral-012
lel data approaches to domain adaptation. We013
compare mixed domain fine-tuning, traditional014
back-translation, tagged back-translation, and015
shallow fusion with domain specific language016
models in isolation and combination. We study017
method effectiveness in very low resource018
(8k parallel examples) and moderately low019
resource (46k parallel examples) conditions.020
We demonstrate the advantages of augmenting021
clean in-domain parallel data with noisy mined022
in-domain parallel data and propose an ensem-023
ble approach to alleviate reductions in original024
domain translation quality. Our work includes025
three domains: consumer electronic, clinical,026
and biomedical and spans four language pairs027
- Zh-En, Ja-En, Es-En, and Ru-En. We make028
concrete recommendations for achieving high029
in-domain performance. We release our con-030
sumer electronic and clinical domain datasets031
for all languages and make our code publicly032
available.033

1 Introduction034

The prevalence of pre-trained models has fueled035

exciting academic and industry progress in natural036

language processing. It has allowed practitioners037

to re-use computationally expensive training steps038

and bypass the most inaccessible portion of model039

training (Wolf et al., 2019). In neural machine040

translation (NMT), these general pre-trained mod-041

els often still struggle with translating domain spe-042

cific material and require further tuning to achieve043

desired in-domain performance. Domain adapta- 044

tion approaches make use of in-domain parallel 045

data, source language monolingual data, and tar- 046

get language monolingual data. Intuitively, using 047

clean, in-domain parallel data should provide the 048

best results. However, such data is often hard and 049

expensive to obtain. Monolingual in-domain data is 050

much more abundant and, at the cost of translation 051

quality, can be used to generate synthetic parallel 052

data. 053

In this work, we aim to elucidate which domain 054

adaptation approaches best suit various low data 055

resource scenarios to yield the highest in-domain 056

translation quality. We explore the benefits and 057

trade-offs of domain adaptation methods in combi- 058

nation and isolation. Because English in-domain 059

monolingual data is much more readily available 060

than in-domain data for other languages, we limit 061

our study to models translating into English. For 062

all experiments, the source language is one of Rus- 063

sian, Chinese, Spanish, or Japanese and the target 064

language is always English. For the same reason, 065

we limit the scope of our work to scenarios with dif- 066

fering access to in-domain parallel and target side 067

monolingual data, leaving source side monolingual 068

approaches such as self-training (Zhang and Zong, 069

2016) to a purely literary comparison. 070

Specifically, we examine domain adaptation ap- 071

proaches under three in-domain data availability 072

scenarios: parallel data only, target side mono- 073

lingual data only, and both parallel and target 074

side monolingual data. We compare parallel 075

in-domain fine-tuning, mixed-domain fine-tuning 076

(Zhang et al., 2019), traditional back-translation 077

(Sennrich et al., 2016a; Edunov et al., 2018), tagged 078

back-translation (Caswell et al., 2019), and in- 079

domain language model shallow fusion across sce- 080

narios where applicable. See Table 1 for a break- 081

down of data availability conditions and fixed ar- 082

chitecture adaptation methods that can be applied 083

to each. 084
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This Study In-Domain Data Scenario Adaptation Approaches
Parallel Source Mono Target Mono FT SF BT ST TBT TST

3 3 7 7 3 3 7 7 7 7

7 3 3 7 3 3 7 3 7 3

3 3 7 3 3 3 3 7 3 7

7 3 3 3 3 3 3 3 3 3

7 7 3 3 7 3 3 3 7 7

7 7 3 7 7 7 7 3 7 7

3 7 7 3 7 3 3 7 7 7

Table 1: Data Resource Scenarios and Corresponding Possible Adaptation Methods. Adaptation approaches
include 1) FT - Finetuning, 2) SF - Shallow Fusion decoding with in-domain language models, 3) BT - Backtrans-
lation, 4) ST - Self-training, 5) TBT - Tagged Backtranslation, 6) TST - Tagged Self-training

We further propose the use of domain classifiers085

to mine additional in-domain parallel data - adding086

dimension to the quantity verses quality trade off087

encountered in back-translation discussions. Fi-088

nally, we suggest an ensemble approach to mitigate089

degradation in original domain performance.090

2 Contributions091

Our main contributions include:092

• A systematic empirical comparison of domain093

adaptation approaches for fixed architecture094

transformer-based NMT models095

• A simple ensemble method to preserve origi-096

nal domain performance while gaining trans-097

lation ability across new domains098

• An effective low resource parallel data aug-099

mentation approach to improve in-domain per-100

formance101

• The release of consumer electronic and clini-102

cal domain datasets across Russian→ English,103

Chinese→ English, Spanish→ English, and104

Japanese→ English translation pairs.105

3 Related Work106

There are a couple of existing empirical compar-107

isons of domain adaptation methods using LSTM108

neural machine translation models. Chu et al.109

(2017) explores mixed domain fine-tuning and com-110

pares different in-domain up-sampling strategies to111

mitigate overfitting on generally low resource par-112

allel domain data. Our work is most similar to that113

of Chu et al. (2018). In their empirical study, Chu114

et al. (2018) compares fine-tuning NMT models on115

parallel mixed domain data with fine-tuning models116

on data that was synthetically generated via back- 117

translation. Though they propose a single domain 118

adaptation method for RNN based models in which 119

they combine back-translation, mixed-domain fine- 120

tuning, and shallow fusion strategies, they do not 121

explore iterative combinations of these approaches 122

and therefore do not give strong evidence for one 123

method over another. They also don’t consider 124

tagged back-translation, multi-domain ensembling, 125

or additional data mining strategies as we do in this 126

work. 127

(Saunders, 2021) and (Chu and Wang, 2018) 128

perform literary surveys on domain adaptation ap- 129

proaches for neural machine translation. Other 130

works have explored domain adaptation under one 131

of the three situations we compare in our investiga- 132

tion. Sun et al. (2019) studies training and adapting 133

unsupervised translation models with exclusively 134

monolingual data. They use cross-lingual language 135

model pre-training (Conneau and Lample, 2019) to 136

initialize their unsupervised neural machine transla- 137

tion (UNMT) models, then train and finetune their 138

models according to different scenarios modulating 139

the presence or absence of in-domain and out-of- 140

domain source and target monolingual data. 141

4 Datasets 142

We created consumer electronic and medical do- 143

main datasets for each language pair. We also gath- 144

ered in-domain monolingual data for both the med- 145

ical and consumer electronic domains. We have 146

made the datasets and dataset creation code pub- 147

licly available. 1 148

1Anonymized
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Domain Language Pair Train Val Test

Electronic

Zh→ En 7,041 475 479
Ja→ En 6,777 452 460
Es→ En 6,973 421 430
Ru→ En 7,276 478 522

Medical

Zh→ En 8,760 448 446
Ja→ En 5,399 460 461
Es→ En 8,494 434 437
Ru→ En 5,401 507 493

Biomedical Ru→ En 46,782 279 -

Table 2: Total parallel examples for each split of each
language pair.

4.1 Parallel Consumer Electronic Dataset149

We collected existing human generated translations150

from consumer electronic websites to construct151

the consumer electronic dataset. Specifically, we152

crawled multilingual versions of XXXX2 website,153

matching translated versions of each page via their154

URLs.155

To convert document level translations into156

aligned sentences, we separated sentences using157

NLTK’s sentence splitter 3 for English, Spanish,158

and Russian. We used the Spacy 4 library’s Chi-159

nese splitter to separate Mandarin sentences and160

the Konoha 5 library to split Japanese sentences.161

We then used the Vecalign library 6 (Thompson and162

Koehn, 2019) in conjunction with the Language-163

Agnostic SEntence Representations (LASER) mul-164

tilingual embedding library (Artetxe and Schwenk,165

2019) to align translated document pairs on a sen-166

tence level. When constructing the training set,167

we selected sentence pairs within a defined cosine168

distance range of 0.07 to 0.6. For the validation169

and test splits, we used a narrower cosine distance170

range of 0.1 to 0.5 and removed overlapping valida-171

tion and test examples from the train split. Though172

a lower cosine distance indicates higher semantic173

similarity between translated sentence pairs, we174

empirically observed cosine distances below our175

set thresholds corresponded to identical or near176

identical source and target strings. We manually177

cleaned the train and validation splits– separating178

examples containing multiple sentences and remov-179

ing sentence fragments lacking a clear meaning.180

2Website anonymized for review
3https://www.nltk.org/api/nltk.tokenize.html
4https://spacy.io/models/zh
5https://github.com/himkt/konoha
6https://github.com/thompsonb/vecalign

4.2 Parallel Medical Dataset 181

Parallel translations of medical domain data were 182

gathered from translated pdfs publicly provided by 183

the NIH U.S. National Library of Medicine 7. An 184

identical sentence pairing and cleaning process to 185

the one used for the consumer electronic dataset 186

was employed to form the parallel medical train, 187

val, and test splits. Final data totals for each lan- 188

guage, split, and domain are listed in Table 10 189

4.3 Parallel Biomedical Dataset 190

We use the publicly available WMT’20 biomedical 191

shared task train split for our Ru↔ En biomedical 192

domain data. To explore the benefits of noisy paral- 193

lel data, we also mine additional parallel in-domain 194

data from the out-of-domain En↔ Ru WMT’21 195

News dataset. Here, noise comes from potential 196

domain misclassification instead of from erroneous 197

translation as with back-translation. 198

To collect this data, we trained English and Rus- 199

sian biomedical domain classifiers. Each classifier 200

utilized a pre-trained BERT Base style encoder (De- 201

vlin et al., 2018) with added classification layers. 202

Our Russian domain classifier used RuBERT Base 203

(Kuratov and Arkhipov, 2019). An equal amount 204

of 45K negative and positive classification exam- 205

ples were collected from the parallel En ↔ Ru 206

WMT’21 news task training data and the WMT’20 207

Biomedical Shared Task train set respectively. 208

We classified the English half of the entire 26M 209

parallel En↔ Ru WMT’21 news task training data, 210

saving all sentences with predicted biomedical do- 211

main probabilities over 50%. We then used our 212

Russian classifier to predict biomedical domain 213

probabilities for the Russian half of the English 214

data already predicted to be in-domain. We av- 215

eraged the classifier scores from the English and 216

Russian domain classifiers and used this averaged 217

score as our final selection criteria. See Table 4 for 218

data totals corresponding to different probability 219

score cutoffs. 220

4.4 Monolingual Data 221

We trained consumer electronic and medical do- 222

main binary classifiers to select in-domain mono- 223

lingual data from the cc100 dataset (Conneau et al., 224

2020; Wenzek et al., 2020) 8. When training the 225

classifiers, target side in-domain data was used for 226

the positive class and an equal amount of randomly 227

7https://medlineplus.gov/languages/languages.html
8http://data.statmt.org/cc-100/
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sampled cc100 data was collected for the nega-228

tive. After a total of 500k English sentences were229

classified as in-domain, the top 200k, 50k and n230

(where n is commensurate with parallel data to-231

tals for a given domain) examples with the highest232

in-domain probabilities were used in experiments.233

5 Domain Adaptation Methods234

We focus on the efficacy of domain adaptation235

approaches with access to different combinations236

of parallel and monolingual target language data.237

We assume access to out-of-domain NMT models238

in both language directions, but narrow our study239

to improving in-domain performance in the Other240

Language→ English direction, using English→241

Other Language models solely for back-translation.242

We empirically compare domain adaptation meth-243

ods separately and together. We only consider adap-244

tation of a fixed-architecture base model.245

5.1 Fine-Tuning246

There are two ways to use parallel training data247

for domain adaptation. One is to mix the often248

much smaller amount of in-domain data with sub-249

stantially larger amounts of general domain data,250

and train the model from scratch. The other, more251

accessible approach, is to simply fine-tune a pre-252

trained general model on domain specific data. The253

first method is much more computationally expen-254

sive and, in practice, not always possible as pre-255

trained models often come from a third party.256

When adapting general models to a specific do-257

main, there is often a compromise between mini-258

mizing general domain degradation and improving259

in-domain performance. We characterize this trade260

off in our parallel data approaches. We experiment261

with fine-tuning baseline models on solely paral-262

lel in-domain data and on a mix of original and263

in-domain data (Zhang et al., 2019).264

5.2 Back-Translation265

In back-translation (Sennrich et al., 2016a; Edunov266

et al., 2018; Lample et al., 2018), target side mono-267

lingual data is used to generate synthetic paral-268

lel data. An existing reverse direction translation269

model translates the target language into the source270

language, often using sampling instead of greedy271

decoding to increase translation diversity- result-272

ing in a fine-tuned model that is more robust to273

input variation at inference time. The forward di-274

rection translation model is then fine-tuned on this275

generated parallel data. 276

The reverse direction translation model can be 277

used as is, or fine-tuned with available domain 278

data before back-translation (Kumari et al., 2021; 279

Artetxe et al., 2018). In situations where both 280

source and target side monolingual data is acces- 281

sible, this can be done iteratively until transla- 282

tion quality ceases to improve. In tagged back- 283

translation (Caswell et al., 2019) a special token 284

(e.g. <BT>) is prepended before the synthetically 285

generated source sentence. This tag serves to dif- 286

ferentiate noisy synthetic translations from ground 287

truth within the training set, allowing the model to 288

learn from the generated data without erroneously 289

over-fitting to its lower quality. 290

5.3 Shallow Fusion Decoding 291

Shallow fusion (Gulcehre et al., 2015; Lample et al., 292

2018) combines the next token probability pre- 293

dicted by a pre-trained language model possess- 294

ing parameters φt with the next token probability 295

predicted by the NMT model’s decoder θt at every 296

time step t. The generated translation benefits from 297

the fluidity and target language knowledge of the 298

language model while still relying on the NMT de- 299

coder for semantic content. The two probabilities 300

are added with a language model coefficient λLM 301

scaling the language model’s contribution to the 302

final probability. 303

P (yt|y<t, x) = PNMT (yt|y<t, x; θt)

+λLM ∗ PLM (yt|y<t;φt)
(1) 304

In a domain adaptation setting, the language 305

model is fine-tuned on target side monolingual data 306

before shallow fusion decoding. 307

5.4 Ensemble 308

We propose using an ensemble of fine-tuned in- 309

domain models with the base translation model 310

to gain the benefits of adaptation across domains 311

while maintaining high original domain perfor- 312

mance. With k indicating the total number of mod- 313

els in the ensemble, we average their probability 314

distributions over the next token at every decoding 315

time step t. 316

P (yt|y<t, x; θ1 . . . θk) =
1

k

k∑
i=1

P (yt|y<t, x; θi)

Here P (yt|y<t, x; θi) is the probability of target 317

token y at time step t for a single NMT model i 318
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given the input tokens x and previously generated319

tokens y<t.320

6 Experimental Setup321

6.1 Base Models322

We start by training strong baseline models for323

all four language pairs: Spanish, Chinese, Rus-324

sian and Japaneses to English. We train our mod-325

els on WMT’21 news data. Table 3 shows initial326

SacreBLEU (Post, 2018) results of our models on327

WMT’20 test sets as well as in-domain test sets.328

Our models are based on the transformer large ar-329

chitecture (Vaswani et al., 2017). As suggested in330

Shoeybi et al. (2019), we move the layer normaliza-331

tion step for every transformer block to before each332

multi-head attention and feed forward sub-layer333

instead of after. The NMT models have 240M pa-334

rameters. They took between 22 and 24 hours to335

train on 64 Tesla-V100 32GB GPUs with a per336

GPU batch size of 16k tokens. We use an initial337

learning rate between 1e-4 and 5e-4 with between338

8k and 30k warm-up steps and an Adam (Kingma339

and Ba, 2015) optimizer.340

We use byte-pair encoding (BPE) (Sennrich341

et al., 2016b) to create our NMT vocabularies. The342

Zh→ En, Ja→ En, and Ru→ En translation mod-343

els have separate encoder and decoder vocabularies,344

while our Es→ En model shares a single vocabu-345

lary between the encoder and decoder. Each vocab-346

ulary has 32k tokens. Our reverse direction base347

models (En → Other Language) used for back-348

translation experiments were trained in the same349

manner and with the same transformer architecture350

as our baseline forward direction models.351

6.2 Language Models352

Our language models use a similar 16-layer trans-353

former decoder architecture to Radford et al. (2019)354

with the same pre-layer normalization edit recom-355

mended by Shoeybi et al. (2019) as in our base356

NMT models. Though all the language models are357

English, they are each distinctly trained for every358

language pair to ensure the decoder and language359

models have the same tokenizer vocabulary. They360

are all trained on News Crawl 9 English data, then361

fine-tuned on the English half of the in-domain par-362

allel datasets separately such that we have a final363

total of (number of language pairs × number of364

domains) distinct English LMs.365

9http://data.statmt.org/news-crawl/

Language pair WMT CE Medical Biomed
Zh→ En 24.5 34.5 29.9 -
Ja→ En 19.8 36.1 26.8 -
Es→ En 39.9 46.1 50.1 -
Ru→ En 36.2 25.6 27.7 38.5

Table 3: SacreBLEU scores of baseline models on
WMT’20 for all language pairs except Es → En, and
in-domain test sets for all languages. The Es → En
scores are on WMT’12.

6.3 Adaptation 366

When fine-tuning on parallel and back-translated 367

data, learning rates were generally decreased by a 368

factor of 10 or 100 from the initial rates used when 369

training the base models. We fixed the fine-tuning 370

learning rates to be between 1e-5 and 5e-6. Mod- 371

els were fine-tuned on 1 Tesla-V100 16GB GPU 372

until in-domain validation BLEU scores plateaued. 373

BLEU plateau occurred relatively rapidly for Es- 374

En fine-tuning experiments, typically after only 1 375

epoch through the consumer electronic or medical 376

domain datasets with a batch size of 1024 tokens. 377

Zh-En, Ja-En, Ru-En models’ validation BLEU 378

stopped improving after 15-20 epochs for the con- 379

sumer electronic and medical train splits, while the 380

Ru-En models for the biomedical domain finished 381

training after 1 epoch. 382

We back-translate our monolingual data de- 383

scribed in 4.4 with our reverse direction models 384

generating top 200k, top 50k, and top n (where 385

n equals the number parallel examples for that 386

language pair and domain) synthetic parallel ex- 387

amples. The top n and top 50k parallel examples 388

are a higher quality subset of the 200k examples, 389

allowing us to characterize the impact of quantity 390

verses quality of back-translated data in a low re- 391

source environment. We fine-tune our base mod- 392

els exclusively on back-translated data for our tar- 393

get side monolingual experiments and on a mix of 394

human-translated and back-translated data for our 395

combined parallel and target monolingual experi- 396

ments. We also examine the utility of fine-tuning 397

with back-translated data in conjunction with shal- 398

low fusion. 399

7 In-Domain Parallel Results 400

For Ru → En, Zh → En, and Es → En medical 401

domain models, mixed domain training either im- 402

proves or has no effect on in-domain performance. 403

Mixed domain fine-tuning does help maintain orig- 404

inal domain performance compared to models fine- 405
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Figure 1: Original vs. new domain performance trade-off across parallel adaptation methods. (a) shows the average
original domain performance as a function of the average in-domain BLEU score for each new domain across all
languages, capturing this trade-off when translating one new domain at a time. (b) displays the average in-and-out
of domain BLEU scores for each adaptation method over all language pairs, encapsulating trade off trends when
translating text from multiple new domains simultaneously.

tuned exclusively on parallel in-domain data. For406

the biomedical and consumer electronic domains,407

mixing original domain and in-domain parallel ex-408

amples with a 1:1 ratio better maintains original409

domain performance with a slight cost to in-domain410

performance. This is probably because the med-411

ical data is most similar to the original domain412

where the consumer electronic and biomedical do-413

mains are not. Shallow fusion decoding with an414

in-domain language model boosts performance for415

all languages and domains (Table 5). A detailed416

results break down can be found in Appendix A.417

7.1 Original Domain Degradation Mitigation418

via Ensembling419

We ensemble all in-domain parallel fine-tuned mod-420

els and the baseline model together. When en-421

sembled, baseline performance remains within 0.5422

BLEU of its original score across all languages.423

This is a huge improvement over the 10+ BLEU424

score drop seen when fine-tuning on the consumer425

electronic domain. No ensemble out performs their426

single fine-tuned model counterparts when evalu-427

ated on in-domain data. Nevertheless, the ensem-428

ble still achieves a several BLEU point improve-429

ment in each domain over the baseline and the430

average BLEU score across all domains is much431

higher when additionally comparing against any432

single model’s out-of-domain performance. These433

results indicate when translating mixed domain or434

unknown domain data, ensembling in-domain mod-435

els should lead to higher quality translations– even436

when domains are drastically different (e.g. the 437

consumer electronic and medical domains). Figure 438

1 presents the original vs. new domain trade-off for 439

the consumer electronic and medical domains aver- 440

aged over all language pairs. Figure 1b highlights 441

the advantage of ensembling. The x-axis values in 442

1b are the combined average consumer electronic 443

and medical domain BLEU scores irrespective of 444

the domain for which each model was fine-tuned. 445

7.2 Benefits of Mined In-Domain Parallel 446

Data 447

Fine-tuning the baseline Ru→ En model with com- 448

bined mined and original parallel data increased 449

performance over fine-tuning on just the original 450

data by 0.2 and 0.7 BLEU. A higher domain proba- 451

bility cutoff threshold, favoring reduced in-domain 452

noise over larger data quantity, resulted in the 0.5 453

BLEU score difference between the two models 454

trained with mined data. It should be noted that the 455

additional parallel data was mined from the paral- 456

lel Ru→ En training set used to train the baseline 457

model. Though the model saw all mined exam- 458

ples during initial baseline training, viewing these 459

in-domain examples again during the fine-tuning 460

stage still increased in-domain performance over 461

fine-tuning on purely unseen data. See Table 4 for 462

a result breakdown. 463

8 Target Side Monolingual Results 464

Unsurprisingly, fine-tuning a base model on high 465

quality back-translated data then using an in- 466
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Figure 2: In-Domain BLEU scores after fine-tuning the baseline model on back-translated data. The green points
correspond to scores from models fine-tuned on the back-translated target-half of the in-domain parallel datasets.
The pink points are from models fine-tuned on back-translated cc100 data. Models with scores shown in green saw
smaller volumes of high domain quality data compared to those in pink.

Model Description Cutoff Total BLEU
Baseline - - 38.5
Original Parallel - 46,782 41.3
Original Parallel + Mined .90 254,037 41.5
Original Parallel + Mined .97 140,414 42.0

Table 4: The performance increase from adding mined
parallel data to the biomedical Ru→ En finetuning set.
"cutoff" is the domain classifier probability threshold
and "total" is the train set size with mined examples
added.

domain language model for shallow fusion decod-467

ing at inference time performs the best. For Ja→468

En and Zh→ En, these models adapted with only469

monolingual data approach the same performance470

as fine-tuning the base model with in-domain par-471

allel data. The best Ja→ En monolingual model472

matched the performance of the in-domain paral-473

lel model for the medical domain and surpassed474

it by 0.7 BLEU points in the consumer electronic475

domain. Full results are in Appendix A.476

8.1 Shallow Fusion477

Across the board shallow fusion either helps or has478

no effect. With the exception of Ja→ En models,479

in-domain shallow fusion with the baseline trans-480

lation model leads to less than 1.0 BLEU score481

increase compared to the baseline scores in each482

domain. For Ru → En, Es → En, and Ja → En483

shallow fusion with in-domain language models484

also increases original domain performance within485

1.0 BLEU point of their original WMT’20 scores.486

This shows even language models finetuned on out487

of domain data still have an advantageous impact488

when used for shallow fusion decoding.489

Cons. Elec. Medical Biomed
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32

34

36

38

40

42

BL
EU
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Finetuning Data / Adaptation Method
Parallel Only + SF
Parallel Only
Parallel + Tagged BT w/ Tuned + SF
Parallel + Tagged BT w/ Tuned

Parallel + BT w/ Tuned
Parallel + BT w/ Base
Baseline

Figure 3: A comparison of the resulting Ru → En
BLEU scores for each finetuning approach when in-
domain parallel and monolingual data is available. SF
stands for shallow fusion and BT stand for backtrans-
lated. Methods using parallel data alone out preformed
those combining backtranslated and parallel data.

Model Description No SF With SF ∆

Baseline 34.6 35.5 +0.9
In-Domain Parallel 42.5 43.0 +0.5
Backtranslated 39.0 40.0 +1.0

Table 5: In-domain performance increase from us-
ing shallow fusion (SF) at inference time with base-
line models, models fine-tuned on in-domain parallel
data only, and models fine-tuned on high quality back-
translated data only. Values are averaged over all lan-
guages and over the consumer electronic and medical
domains.
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8.2 Back-Translated Quantity vs. Quality490

Trade-Off491

We compare fine-tuning on back-translated data492

mined from cc100 verses the back-translated En-493

glish half of each in-domain parallel dataset.494

Across the language pairs, there seems to be no495

major difference in performance between models496

fine-tuned with 200k, 50k, or top n totals of back-497

translated cc100 data. When base models are fine-498

tuned on the back-translated target half of the origi-499

nal in-domain parallel datasets, the model’s perfor-500

mance increased by an average of 3.2 BLEU com-501

pared to the cc100 back-translation experiments.502

Even with over 20x less data, fine-tuning on clean503

(in terms of domain accuracy) back-translated ex-504

amples out scores utilizing noisier data. This point505

is illustrated in Figure 2.506

9 In-Domain Parallel + Target Side507

Monolingual Results508

We experimented with a number of approaches509

to combining back-translated data with in-domain510

parallel data. We first used our baseline reverse511

direction model to back-translate the top 50k cc100512

sentences from each domain. Baseline models fine-513

tuned on a mix of this data and in-domain paral-514

lel data improved an average of 8.0 BLEU points515

from the baseline. We then fine-tuned the reverse516

direction model on our parallel domain data be-517

fore back-translation. Combining this data with518

parallel-data resulted in another +1.2 BLEU in-519

crease on average. Next we experimented with520

tagged back-translation. We prepended a special521

back-translation token (< BT >) to the beginning522

of every synthetic back-translated input from our523

previous iteration. Tagging back-translated exam-524

ples increased the BLEU score by an average of525

+0.2 compared to not adding tags. Finally, we used526

in-domain shallow fusion decoding at inference527

time with our model fine-tuned via tagged back-528

translation for a +0.7 average performance boost.529

Despite our efforts, we found none to be as effective530

as fine-tuning on purely in-domain data or a mix531

of in-domain and out-of-domain parallel data. The532

bar graphs in Figure 3 illustrate the performance533

increases from every technique in comparison to534

parallel fine-tuning approaches. Full numeric re-535

sults can be viewed in Appendix A.536

10 Recommendations 537

1. In low resource situations, with access to both 538

parallel and monolingual data (<200k mono- 539

lingual examples, <10k parallel examples), 540

don’t spend time on back-translation. Instead 541

focus on parallel in-domain and mixed domain 542

fine-tuning. 543

2. Ensemble in-domain and baseline models 544

for more robust translations when translating 545

mixed or unknown domains. 546

3. Use an in-domain language model for shallow 547

fusion decoding. It will most likely improve 548

both your in-domain and original domain per- 549

formance, especially when parallel domain 550

data is not available. In-domain shallow fu- 551

sion can be an effective adaptation approach 552

even without fine-tuning the baseline transla- 553

tion model. 554

4. If you only have monolingual data, back- 555

translate the highest quality monolingual data 556

possible, prioritize quality over data volume 557

in low resource settings (<200k monolingual 558

examples). 559

5. It’s worth it to mine a moderate amount of par- 560

allel data over a larger amount of in-domain 561

monolingual data. 562

11 Conclusion 563

We conducted an empirical study comparing par- 564

allel and monolingual data approaches to domain 565

adaptation in NMT. We made recommendations 566

on how to achieve the best in-domain translation 567

performance with access to low resource parallel 568

and/or monolingual domain data. Additionally, we 569

explored model ensembleing to reduce regression 570

of original domain performance and the benefits of 571

mined in-domain parallel data. We hope this work 572

can guide others in their creation of high quality 573

domain specific machine translation systems. To 574

our knowledge, this is the first study to extensively 575

analyze domain adaptation methods in aggregate 576

on transformer based translation models. 577

References 578

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. 579
Unsupervised statistical machine translation. In Pro- 580
ceedings of the 2018 Conference on Empirical Meth- 581
ods in Natural Language Processing, pages 3632– 582

8

https://doi.org/10.18653/v1/D18-1399


3642, Brussels, Belgium. Association for Computa-583
tional Linguistics.584

Mikel Artetxe and Holger Schwenk. 2019. Mas-585
sively multilingual sentence embeddings for zero-586
shot cross-lingual transfer and beyond. Transac-587
tions of the Association for Computational Linguis-588
tics, 7:597–610.589

Isaac Caswell, Ciprian Chelba, and David Grangier.590
2019. Tagged back-translation. In Proceedings of591
the Fourth Conference on Machine Translation (Vol-592
ume 1: Research Papers), pages 53–63, Florence,593
Italy. Association for Computational Linguistics.594

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.595
An empirical comparison of domain adaptation596
methods for neural machine translation. In Proceed-597
ings of the 55th Annual Meeting of the Association598
for Computational Linguistics (Volume 2: Short Pa-599
pers), pages 385–391, Vancouver, Canada. Associa-600
tion for Computational Linguistics.601

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2018.602
A comprehensive empirical comparison of domain603
adaptation methods for neural machine translation.604
Journal of Information Processing, 26:529–538.605

Chenhui Chu and Rui Wang. 2018. A survey of do-606
main adaptation for neural machine translation. In607
Proceedings of the 27th International Conference on608
Computational Linguistics, pages 1304–1319, Santa609
Fe, New Mexico, USA. Association for Computa-610
tional Linguistics.611

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,612
Vishrav Chaudhary, Guillaume Wenzek, Francisco613
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-614
moyer, and Veselin Stoyanov. 2020. Unsupervised615
cross-lingual representation learning at scale. In616
Proceedings of the 58th Annual Meeting of the Asso-617
ciation for Computational Linguistics, pages 8440–618
8451, Online. Association for Computational Lin-619
guistics.620

Alexis Conneau and Guillaume Lample. 2019. Cross-621
lingual language model pretraining. In Advances in622
Neural Information Processing Systems, volume 32.623
Curran Associates, Inc.624

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and625
Kristina Toutanova. 2018. Bert: Pre-training of deep626
bidirectional transformers for language understand-627
ing. arXiv preprint arXiv:1810.04805.628

Sergey Edunov, Myle Ott, Michael Auli, and David629
Grangier. 2018. Understanding back-translation at630
scale.631

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun632
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,633
Holger Schwenk, and Yoshua Bengio. 2015. On us-634
ing monolingual corpora in neural machine transla-635
tion. arXiv preprint arXiv:1503.03535.636

Diederik P. Kingma and Jimmy Ba. 2015. Adam: 637
A method for stochastic optimization. CoRR, 638
abs/1412.6980. 639

Surabhi Kumari, Nikhil Jaiswal, Mayur Patidar, Man- 640
asi Patwardhan, Shirish Karande, Puneet Agarwal, 641
and Lovekesh Vig. 2021. Domain adaptation for 642
NMT via filtered iterative back-translation. In Pro- 643
ceedings of the Second Workshop on Domain Adap- 644
tation for NLP, pages 263–271, Kyiv, Ukraine. As- 645
sociation for Computational Linguistics. 646

Yuri Kuratov and Mikhail Arkhipov. 2019. Adaptation 647
of deep bidirectional multilingual transformers for 648
russian language. arXiv preprint arXiv:1905.07213. 649

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, 650
and Marc’Aurelio Ranzato. 2018. Unsupervised ma- 651
chine translation using monolingual corpora only. 652
In International Conference on Learning Represen- 653
tations. 654

Matt Post. 2018. A call for clarity in reporting bleu 655
scores. arXiv e-prints arXiv:1804.0877. 656

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 657
Dario Amodei, Ilya Sutskever, et al. 2019. Lan- 658
guage models are unsupervised multitask learners. 659
OpenAI blog, 1(8):9. 660

Danielle Saunders. 2021. Domain adaptation and 661
multi-domain adaptation for neural machine transla- 662
tion: A survey. 663

Rico Sennrich, Barry Haddow, and Alexandra Birch. 664
2016a. Improving neural machine translation mod- 665
els with monolingual data. In Proceedings of the 666
54th Annual Meeting of the Association for Compu- 667
tational Linguistics (Volume 1: Long Papers), pages 668
86–96, Berlin, Germany. Association for Computa- 669
tional Linguistics. 670

Rico Sennrich, Barry Haddow, and Alexandra Birch. 671
2016b. Neural machine translation of rare words 672
with subword units. In Proceedings of the 54th An- 673
nual Meeting of the Association for Computational 674
Linguistics (Volume 1: Long Papers), pages 1715– 675
1725, Berlin, Germany. Association for Computa- 676
tional Linguistics. 677

Mohammad Shoeybi, Mostofa Ali Patwary, Raul Puri, 678
Patrick LeGresley, Jared Casper, and Bryan Catan- 679
zaro. 2019. Megatron-lm: Training multi-billion pa- 680
rameter language models using model parallelism. 681
ArXiv, abs/1909.08053. 682

Haipeng Sun, Rui Wang, Kehai Chen, M. Utiyama, 683
E. Sumita, and T. Zhao. 2019. An empirical study of 684
domain adaptation for unsupervised neural machine 685
translation. ArXiv, abs/1908.09605. 686

Brian Thompson and Philipp Koehn. 2019. Vecalign: 687
Improved sentence alignment in linear time and 688
space. In Proceedings of the 2019 Conference on 689
Empirical Methods in Natural Language Processing 690

9

https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.18653/v1/W19-5206
https://doi.org/10.18653/v1/P17-2061
https://doi.org/10.18653/v1/P17-2061
https://doi.org/10.18653/v1/P17-2061
https://doi.org/10.2197/ipsjjip.26.529
https://doi.org/10.2197/ipsjjip.26.529
https://doi.org/10.2197/ipsjjip.26.529
https://aclanthology.org/C18-1111
https://aclanthology.org/C18-1111
https://aclanthology.org/C18-1111
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
https://aclanthology.org/2021.adaptnlp-1.26
https://aclanthology.org/2021.adaptnlp-1.26
https://aclanthology.org/2021.adaptnlp-1.26
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
http://arxiv.org/abs/2104.06951
http://arxiv.org/abs/2104.06951
http://arxiv.org/abs/2104.06951
http://arxiv.org/abs/2104.06951
http://arxiv.org/abs/2104.06951
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136
https://doi.org/10.18653/v1/D19-1136


and the 9th International Joint Conference on Natu-691
ral Language Processing (EMNLP-IJCNLP), pages692
1342–1348, Hong Kong, China. Association for693
Computational Linguistics.694

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob695
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz696
Kaiser, and Illia Polosukhin. 2017. Attention is all697
you need. arXiv preprint arXiv: 1706.03762.698

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-699
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-700
mand Joulin, and Edouard Grave. 2020. CCNet:701
Extracting high quality monolingual datasets from702
web crawl data. In Proceedings of the 12th Lan-703
guage Resources and Evaluation Conference, pages704
4003–4012, Marseille, France. European Language705
Resources Association.706

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien707
Chaumond, Clement Delangue, Anthony Moi, Pier-708
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-709
towicz, et al. 2019. Huggingface’s transformers:710
State-of-the-art natural language processing. arXiv711
preprint arXiv:1910.03771.712

Jiajun Zhang and Chengqing Zong. 2016. Exploit-713
ing source-side monolingual data in neural machine714
translation. In Proceedings of the 2016 Conference715
on Empirical Methods in Natural Language Process-716
ing, pages 1535–1545, Austin, Texas. Association717
for Computational Linguistics.718

Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul719
McNamee, Marine Carpuat, and Kevin Duh. 2019.720
Curriculum learning for domain adaptation in neu-721
ral machine translation. In Proceedings of the 2019722
Conference of the North American Chapter of the723
Association for Computational Linguistics: Human724
Language Technologies, Volume 1 (Long and Short725
Papers), pages 1903–1915, Minneapolis, Minnesota.726
Association for Computational Linguistics.727

A Detailed Results 728

10

https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/D16-1160
https://doi.org/10.18653/v1/N19-1189
https://doi.org/10.18653/v1/N19-1189
https://doi.org/10.18653/v1/N19-1189


Languages Domain Model Description In-Domain Original Domain

Ja→ En

Consumer Electronic

Baseline 36.1 19.8
Ensemble Across Domains 36.5 20.0
Mixed-Domain Finetune 37.2 19.4
In-Domain Finetune 36.9 18.7
In-Domain Finetune + SF 37.9 20.3

Medical

Baseline 26.8 19.8
Ensemble Across Domains 29.8 20.0
Mixed-Domain Finetune 29.9 18.9
In-Domain Finetune 31.4 17.3
In-Domain Finetune + SF 32.2 17.8

Table 6: Detailed Ja→ En in-domain parallel results. SF stands for shallow fusion.

Languages Domain Model Description In-Domain Original Domain

Zh→ En

Consumer Electronic

Baseline 34.5 24.5
Ensemble Across Domains 39.8 22.1
Mixed-Domain Finetune 41.0 20.3
In-Domain Finetune 42.1 14.2
In-Domain Finetune + SF 42.2 14.1

Medical

Baseline 29.9 24.5
Ensemble Across Domains 41.0 22.1
Mixed-Domain Finetune 44.8 20.7
In-Domain Finetune 44.7 14.4
In-Domain Finetune + SF 45.0 19.5

Table 7: Detailed Zh→ En in-domain parallel results. SF stands for shallow fusion.

Languages Domain Model Description In-Domain Original Domain

Es→ En

Consumer Electronic

Baseline 46.1 39.9
Ensemble Across Domains 51.8 39.5
Mixed-Domain Finetune 54.6 37.6
In-Domain Finetune 56.4 33.7
In-Domain Finetune + SF 56.6 33.7

Medical

Baseline 50.1 39.9
Ensemble Across Domains 54.1 39.5
Mixed-Domain Finetune 55.2 37.7
In-Domain Finetune 55.3 36.5
In-Domain Finetune + SF 55.2 36.1

Table 8: Detailed Es→ En in-domain parallel results. SF stands for shallow fusion.
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Languages Domain Model Description In-Domain Original Domain

Ru→ En

Consumer Electronic

Baseline 25.6 36.2
Ensemble Across Domains 29.5 35.9
Mixed-Domain Finetune 35.5 31.9
Mixed-Domain Finetune + SF 35.8 32.2
In-Domain Finetune 35.9 23.6
In-Domain Finetune + SF 36.1 23.2

Medical

Baseline 27.7 36.2
Ensemble Across Domains 31.9 35.9
Mixed-Domain Finetune 39.2 32.3
Mixed-Domain Finetune + SF 39.4 32.5
In-Domain Finetune 38.7 31.6
In-Domain Finetune + SF 39.2 31.8

Biomedical

Baseline 38.5 36.2
Ensemble Across Domains 39.0 35.9
Mixed-Domain Finetune 41.3 37.0
Mixed-Domain Finetune + SF 41.6 37.1
In-Domain Finetune 42.0 32.8
In-Domain Finetune + SF 41.7 32.4

Table 9: Detailed Ru→ En in-domain parallel results. SF stands for shallow fusion.

Languages Domain Model Description In-Domain Original Domain

Ru→ En

Consumer Electronic

Baseline 25.6 36.2
In-Domain + Baseline BT 32.4 33.3
In-Domain + Finetuned BT 34.4 25.8
In-Domain + Tagged Finetuned BT 34.2 21.8
In-Domain + Tagged Finetuned BT + SF 34.8 22.1

Medical

Baseline 27.7 36.2
In-Domain + Baseline BT 36.8 26.2
In-Domain + Finetuned BT 37.3 27.1
In-Domain + Tagged Finetuned BT 37.9 20.2
In-Domain + Tagged Finetuned BT + SF 38.2 20.0

Biomedical

Baseline 38.5 36.2
In-Domain + Baseline BT 41.1 33.8
In-Domain + Finetuned BT 40.9 34.6
In-Domain + Tagged Finetuned BT 40.2 34.6
In-Domain + Tagged Finetuned BT + SF 41.0 34.8

Table 10: Detailed Ru→ En in-domain parallel + target monolingual results. BT stands for backtranslation and
SF stands for shallow fusion.
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Languages Domain Model Description In-Domain Original Domain

Ja→ En

Consumer Electronic

Baseline 36.1 19.8
Baseline + SF 37.9 20.3
BT Top 200k 34.7 18.6
BT Top 50k 34.8 17.0
BT Top 50k + SF 35.4 16.7
BT Top CE Total 34.2 17.4
BT CE Target 36.3 17.6
BT CE Target + SF 37.6 18.1

Medical

Baseline 26.8 19.8
Baseline + SF 29.2 20.5
BT Top 200k 27.3 16.2
BT Top 50k 27.3 16.5
BT Top 50k + SF 29.3 18.0
BT Top Medical Total 27.5 15.5
BT Medical Target 29.3 16.6
BT Medical Target + SF 31.4 16.9

Table 11: Detailed Ja→ En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.

Languages Domain Model Description In-Domain Original Domain

Zh→ En

Consumer Electronic

Baseline 34.5 24.5
Baseline + SF 34.5 23.8
BT Top 200k 35.5 25.2
BT Top 50k 35.5 25.2
BT Top 50k + SF 35.5 24.2
BT Top CE Total 35.8 25.1
BT CE Target 38.2 26.2
BT CE Target + SF 38.4 24.7

Medical

Baseline 29.9 24.5
Baseline + SF 29.7 20.2
BT Top 200k 33.6 24.8
BT Top 50k 35.6 17.2
BT Top 50k + SF 36.2 15.5
BT Top Medical Total 34.6 20.1
BT Medical Target 39.2 20.1
BT Medical Target + SF 42.0 19.5

Table 12: Detailed Zh→ En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.
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Languages Domain Model Description In-Domain Original Domain

Es→ En

Consumer Electronic

Baseline 46.1 39.9
Baseline + SF 46.7 40.0
BT Top 200k 46.8 38.6
BT Top 50k 47.2 35.8
BT Top 50k + SF 48.1 36.3
BT Top CE Total 48.3 39.8
BT CE Target 53.2 35.8
BT CE Target + SF 53.3 35.9

Medical

Baseline 50.1 39.9
Baseline + SF 50.8 40.1
BT Top 200k 49.3 35.5
BT Top 50k 50.0 37.2
BT Top 50k + SF 50.9 37.9
BT Top Medical Total 50.2 39.9
BT Medical Target 52.5 34.8
BT Medical Target + SF 52.7 34.8

Table 13: Detailed Es→ En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.

Languages Domain Model Description In-Domain Original Domain

Ru→ En

Consumer Electronic

Baseline 25.6 36.2
Baseline + SF 26.5 36.9
BT Top 200k 27.4 36.2
BT Top 50k 28.0 35.4
BT Top 50k + SF 28.4 35.5
BT Top CE Total 27.2 36.6
BT CE Target 30.5 32.2
BT CE Target + SF 31.0 32.4

Medical

Baseline 27.7 36.2
Baseline + SF 28.4 37.1
BT Top 200k 28.6 32.0
BT Top 50k 28.5 34.3
BT Top 50k + SF 29.8 34.5
BT Top Medical Total 28.4 36.6
BT Medical Target 32.9 35.4
BT Medical Target + SF 33.4 35.6

Biomedical
Baseline 38.5 36.2
Baseline + SF 39.0 36.6

Table 14: Detailed Ru→ En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.
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