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Abstract

Despite the considerable amount of parallel
data used to train neural machine translation
models, they can still struggle to generate
fluent translations in technical domains. In-
domain parallel data is often very low re-
source and synthetic domain data generated
via back-translation is frequently lower qual-
ity. To guide machine translation practitioners
and characterize the effectiveness of domain
adaptation methods under different data avail-
ability scenarios, we conduct an in-depth em-
pirical exploration of monolingual and paral-
lel data approaches to domain adaptation. We
compare mixed domain fine-tuning, traditional
back-translation, tagged back-translation, and
shallow fusion with domain specific language
models in isolation and combination. We study
method effectiveness in very low resource
(8k parallel examples) and moderately low
resource (46k parallel examples) conditions.
We demonstrate the advantages of augmenting
clean in-domain parallel data with noisy mined
in-domain parallel data and propose an ensem-
ble approach to alleviate reductions in original
domain translation quality. Our work includes
three domains: consumer electronic, clinical,
and biomedical and spans four language pairs
- Zh-En, Ja-En, Es-En, and Ru-En. We make
concrete recommendations for achieving high
in-domain performance. We release our con-
sumer electronic and clinical domain datasets
for all languages and make our code publicly
available.

1 Introduction

The prevalence of pre-trained models has fueled
exciting academic and industry progress in natural
language processing. It has allowed practitioners
to re-use computationally expensive training steps
and bypass the most inaccessible portion of model
training (Wolf et al., 2019). In neural machine
translation (NMT), these general pre-trained mod-
els often still struggle with translating domain spe-
cific material and require further tuning to achieve

desired in-domain performance. Domain adapta-
tion approaches make use of in-domain parallel
data, source language monolingual data, and tar-
get language monolingual data. Intuitively, using
clean, in-domain parallel data should provide the
best results. However, such data is often hard and
expensive to obtain. Monolingual in-domain data is
much more abundant and, at the cost of translation
quality, can be used to generate synthetic parallel
data.

In this work, we aim to elucidate which domain
adaptation approaches best suit various low data
resource scenarios to yield the highest in-domain
translation quality. We explore the benefits and
trade-offs of domain adaptation methods in combi-
nation and isolation. Because English in-domain
monolingual data is much more readily available
than in-domain data for other languages, we limit
our study to models translating into English. For
all experiments, the source language is one of Rus-
sian, Chinese, Spanish, or Japanese and the target
language is always English. For the same reason,
we limit the scope of our work to scenarios with dif-
fering access to in-domain parallel and target side
monolingual data, leaving source side monolingual
approaches such as self-training (Zhang and Zong,
2016) to a purely literary comparison.

Specifically, we examine domain adaptation ap-
proaches under three in-domain data availability
scenarios: parallel data only, target side mono-
lingual data only, and both parallel and target
side monolingual data. We compare parallel
in-domain fine-tuning, mixed-domain fine-tuning
(Zhang et al., 2019), traditional back-translation
(Sennrich et al., 2016a; Edunov et al., 2018), tagged
back-translation (Caswell et al., 2019), and in-
domain language model shallow fusion across sce-
narios where applicable. See Table 1 for a break-
down of data availability conditions and fixed ar-
chitecture adaptation methods that can be applied
to each.
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Table 1: Data Resource Scenarios and Corresponding Possible Adaptation Methods. Adaptation approaches

include 1) FT - Finetuning, 2) SF - Shallow Fusion decoding with in-domain language models, 3) BT - Backtrans-
lation, 4) ST - Self-training, 5) TBT - Tagged Backtranslation, 6) TST - Tagged Self-training

We further propose the use of domain classifiers
to mine additional in-domain parallel data - adding
dimension to the quantity verses quality trade off
encountered in back-translation discussions. Fi-
nally, we suggest an ensemble approach to mitigate
degradation in original domain performance.

2 Contributions

Our main contributions include:

* A systematic empirical comparison of domain
adaptation approaches for fixed architecture
transformer-based NMT models

* A simple ensemble method to preserve origi-
nal domain performance while gaining trans-
lation ability across new domains

* An effective low resource parallel data aug-
mentation approach to improve in-domain per-
formance

* The release of consumer electronic and clini-
cal domain datasets across Russian — English,
Chinese — English, Spanish — English, and
Japanese — English translation pairs.

3 Related Work

There are a couple of existing empirical compar-
isons of domain adaptation methods using LSTM
neural machine translation models. Chu et al.
(2017) explores mixed domain fine-tuning and com-
pares different in-domain up-sampling strategies to
mitigate overfitting on generally low resource par-
allel domain data. Our work is most similar to that
of Chu et al. (2018). In their empirical study, Chu
et al. (2018) compares fine-tuning NMT models on
parallel mixed domain data with fine-tuning models

on data that was synthetically generated via back-
translation. Though they propose a single domain
adaptation method for RNN based models in which
they combine back-translation, mixed-domain fine-
tuning, and shallow fusion strategies, they do not
explore iterative combinations of these approaches
and therefore do not give strong evidence for one
method over another. They also don’t consider
tagged back-translation, multi-domain ensembling,
or additional data mining strategies as we do in this
work.

(Saunders, 2021) and (Chu and Wang, 2018)
perform literary surveys on domain adaptation ap-
proaches for neural machine translation. Other
works have explored domain adaptation under one
of the three situations we compare in our investiga-
tion. Sun et al. (2019) studies training and adapting
unsupervised translation models with exclusively
monolingual data. They use cross-lingual language
model pre-training (Conneau and Lample, 2019) to
initialize their unsupervised neural machine transla-
tion (UNMT) models, then train and finetune their
models according to different scenarios modulating
the presence or absence of in-domain and out-of-
domain source and target monolingual data.

4 Datasets

We created consumer electronic and medical do-
main datasets for each language pair. We also gath-
ered in-domain monolingual data for both the med-
ical and consumer electronic domains. We have
made the datasets and dataset creation code pub-
licly available. !

! Anonymized



Domain | Language Pair | Train | Val | Test
Zh — En 7,041 | 475 | 479
Electronic Ja — En 6,777 | 452 | 460
Es — En 6,973 | 421 | 430
Ru — En 7,276 | 478 | 522
Zh — En 8,760 | 448 | 446
Medical Ja— En 5,399 | 460 | 461
Es — En 8,494 | 434 | 437
Ru — En 5,401 | 507 | 493

Biomedical Ru — En 46,782 | 279 -

Table 2: Total parallel examples for each split of each
language pair.

4.1 Parallel Consumer Electronic Dataset

We collected existing human generated translations
from consumer electronic websites to construct
the consumer electronic dataset. Specifically, we
crawled multilingual versions of XXXX? website,
matching translated versions of each page via their
URLs.

To convert document level translations into
aligned sentences, we separated sentences using
NLTK’s sentence splitter * for English, Spanish,
and Russian. We used the Spacy # library’s Chi-
nese splitter to separate Mandarin sentences and
the Konoha ° library to split Japanese sentences.
We then used the Vecalign library ¢ (Thompson and
Koehn, 2019) in conjunction with the Language-
Agnostic SEntence Representations (LASER) mul-
tilingual embedding library (Artetxe and Schwenk,
2019) to align translated document pairs on a sen-
tence level. When constructing the training set,
we selected sentence pairs within a defined cosine
distance range of 0.07 to 0.6. For the validation
and test splits, we used a narrower cosine distance
range of 0.1 to 0.5 and removed overlapping valida-
tion and test examples from the train split. Though
a lower cosine distance indicates higher semantic
similarity between translated sentence pairs, we
empirically observed cosine distances below our
set thresholds corresponded to identical or near
identical source and target strings. We manually
cleaned the train and validation splits— separating
examples containing multiple sentences and remov-
ing sentence fragments lacking a clear meaning.

2Website anonymized for review
3https://www.nltk.org/api/nltk.tokenize.html
*https://spacy.io/models/zh
>https://github.com/himkt/konoha
®https://github.com/thompsonb/vecalign

4.2 Parallel Medical Dataset

Parallel translations of medical domain data were
gathered from translated pdfs publicly provided by
the NIH U.S. National Library of Medicine ’. An
identical sentence pairing and cleaning process to
the one used for the consumer electronic dataset
was employed to form the parallel medical train,
val, and test splits. Final data totals for each lan-
guage, split, and domain are listed in Table 10

4.3 Parallel Biomedical Dataset

We use the publicly available WMT’ 20 biomedical
shared task train split for our Ru <+ En biomedical
domain data. To explore the benefits of noisy paral-
lel data, we also mine additional parallel in-domain
data from the out-of-domain En <+ Ru WMT’ 21
News dataset. Here, noise comes from potential
domain misclassification instead of from erroneous
translation as with back-translation.

To collect this data, we trained English and Rus-
sian biomedical domain classifiers. Each classifier
utilized a pre-trained BERT Base style encoder (De-
vlin et al., 2018) with added classification layers.
Our Russian domain classifier used RuBERT Base
(Kuratov and Arkhipov, 2019). An equal amount
of 45K negative and positive classification exam-
ples were collected from the parallel En <+ Ru
WMT’21 news task training data and the WMT 20
Biomedical Shared Task train set respectively.

We classified the English half of the entire 26M
parallel En <+ Ru WMT’21 news task training data,
saving all sentences with predicted biomedical do-
main probabilities over 50%. We then used our
Russian classifier to predict biomedical domain
probabilities for the Russian half of the English
data already predicted to be in-domain. We av-
eraged the classifier scores from the English and
Russian domain classifiers and used this averaged
score as our final selection criteria. See Table 4 for
data totals corresponding to different probability
score cutoffs.

4.4 Monolingual Data

We trained consumer electronic and medical do-
main binary classifiers to select in-domain mono-
lingual data from the cc100 dataset (Conneau et al.,
2020; Wenzek et al., 2020) 8. When training the
classifiers, target side in-domain data was used for
the positive class and an equal amount of randomly

"https://medlineplus.gov/languages/languages.html
8http://data.statmt.org/cc-100/



sampled cc100 data was collected for the nega-
tive. After a total of 500k English sentences were
classified as in-domain, the top 200k, 50k and n
(where n is commensurate with parallel data to-
tals for a given domain) examples with the highest
in-domain probabilities were used in experiments.

5 Domain Adaptation Methods

We focus on the efficacy of domain adaptation
approaches with access to different combinations
of parallel and monolingual target language data.
We assume access to out-of-domain NMT models
in both language directions, but narrow our study
to improving in-domain performance in the Other
Language — English direction, using English —
Other Language models solely for back-translation.
We empirically compare domain adaptation meth-
ods separately and together. We only consider adap-
tation of a fixed-architecture base model.

5.1 Fine-Tuning

There are two ways to use parallel training data
for domain adaptation. One is to mix the often
much smaller amount of in-domain data with sub-
stantially larger amounts of general domain data,
and train the model from scratch. The other, more
accessible approach, is to simply fine-tune a pre-
trained general model on domain specific data. The
first method is much more computationally expen-
sive and, in practice, not always possible as pre-
trained models often come from a third party.

When adapting general models to a specific do-
main, there is often a compromise between mini-
mizing general domain degradation and improving
in-domain performance. We characterize this trade
off in our parallel data approaches. We experiment
with fine-tuning baseline models on solely paral-
lel in-domain data and on a mix of original and
in-domain data (Zhang et al., 2019).

5.2 Back-Translation

In back-translation (Sennrich et al., 2016a; Edunov
et al., 2018; Lample et al., 2018), target side mono-
lingual data is used to generate synthetic paral-
lel data. An existing reverse direction translation
model translates the target language into the source
language, often using sampling instead of greedy
decoding to increase translation diversity- result-
ing in a fine-tuned model that is more robust to
input variation at inference time. The forward di-
rection translation model is then fine-tuned on this

generated parallel data.

The reverse direction translation model can be
used as is, or fine-tuned with available domain
data before back-translation (Kumari et al., 2021;
Artetxe et al., 2018). In situations where both
source and target side monolingual data is acces-
sible, this can be done iteratively until transla-
tion quality ceases to improve. In tagged back-
translation (Caswell et al., 2019) a special token
(e.g. <BT>) is prepended before the synthetically
generated source sentence. This tag serves to dif-
ferentiate noisy synthetic translations from ground
truth within the training set, allowing the model to
learn from the generated data without erroneously
over-fitting to its lower quality.

5.3 Shallow Fusion Decoding

Shallow fusion (Gulcehre et al., 2015; Lample et al.,
2018) combines the next token probability pre-
dicted by a pre-trained language model possess-
ing parameters ¢; with the next token probability
predicted by the NMT model’s decoder 6, at every
time step ¢. The generated translation benefits from
the fluidity and target language knowledge of the
language model while still relying on the NMT de-
coder for semantic content. The two probabilities
are added with a language model coefficient Ay ps
scaling the language model’s contribution to the
final probability.

P(ytly<t,z) = PNyt (ye|y<e, x; 0¢)

(1)
+ALvr * P (Yely<es o)

In a domain adaptation setting, the language
model is fine-tuned on target side monolingual data
before shallow fusion decoding.

5.4 Ensemble

We propose using an ensemble of fine-tuned in-
domain models with the base translation model
to gain the benefits of adaptation across domains
while maintaining high original domain perfor-
mance. With k indicating the total number of mod-
els in the ensemble, we average their probability
distributions over the next token at every decoding
time step t.

k
1
P(ytly<t,z;601...0;) = T E P(yely<t, x: 6;)
i1

Here P(yt|y<¢, x; 6;) is the probability of target
token y at time step ¢ for a single NMT model ¢



given the input tokens = and previously generated
tokens y.

6 Experimental Setup

6.1 Base Models

We start by training strong baseline models for
all four language pairs: Spanish, Chinese, Rus-
sian and Japaneses to English. We train our mod-
els on WMT’21 news data. Table 3 shows initial
SacreBLEU (Post, 2018) results of our models on
WMT’20 test sets as well as in-domain test sets.
Our models are based on the transformer large ar-
chitecture (Vaswani et al., 2017). As suggested in
Shoeybi et al. (2019), we move the layer normaliza-
tion step for every transformer block to before each
multi-head attention and feed forward sub-layer
instead of after. The NMT models have 240M pa-
rameters. They took between 22 and 24 hours to
train on 64 Tesla-V100 32GB GPUs with a per
GPU batch size of 16k tokens. We use an initial
learning rate between le-4 and 5e-4 with between
8k and 30k warm-up steps and an Adam (Kingma
and Ba, 2015) optimizer.

We use byte-pair encoding (BPE) (Sennrich
et al., 2016b) to create our NMT vocabularies. The
Zh — En, Ja — En, and Ru — En translation mod-
els have separate encoder and decoder vocabularies,
while our Es — En model shares a single vocabu-
lary between the encoder and decoder. Each vocab-
ulary has 32k tokens. Our reverse direction base
models (En — Other Language) used for back-
translation experiments were trained in the same
manner and with the same transformer architecture
as our baseline forward direction models.

6.2 Language Models

Our language models use a similar 16-layer trans-
former decoder architecture to Radford et al. (2019)
with the same pre-layer normalization edit recom-
mended by Shoeybi et al. (2019) as in our base
NMT models. Though all the language models are
English, they are each distinctly trained for every
language pair to ensure the decoder and language
models have the same tokenizer vocabulary. They
are all trained on News Crawl ° English data, then
fine-tuned on the English half of the in-domain par-
allel datasets separately such that we have a final
total of (number of language pairs X number of
domains) distinct English LMs.

*http://data.statmt.org/news-crawl/

Language pair WMT CE Medical Biomed
Zh — En 245 345 29.9 -
Ja — En 19.8  36.1 26.8 -
Es — En 39.9 46.1 50.1 -
Ru — En 362 25.6 27.7 38.5
Table 3: SacreBLEU scores of baseline models on

WMT’20 for all language pairs except Es — En, and
in-domain test sets for all languages. The Es — En
scores are on WMT’12.

6.3 Adaptation

When fine-tuning on parallel and back-translated
data, learning rates were generally decreased by a
factor of 10 or 100 from the initial rates used when
training the base models. We fixed the fine-tuning
learning rates to be between le-5 and 5e-6. Mod-
els were fine-tuned on 1 Tesla-V100 16GB GPU
until in-domain validation BLEU scores plateaued.
BLEU plateau occurred relatively rapidly for Es-
En fine-tuning experiments, typically after only 1
epoch through the consumer electronic or medical
domain datasets with a batch size of 1024 tokens.
Zh-En, Ja-En, Ru-En models’ validation BLEU
stopped improving after 15-20 epochs for the con-
sumer electronic and medical train splits, while the
Ru-En models for the biomedical domain finished
training after 1 epoch.

We back-translate our monolingual data de-
scribed in 4.4 with our reverse direction models
generating top 200k, top 50k, and top n (where
n equals the number parallel examples for that
language pair and domain) synthetic parallel ex-
amples. The top n and top 50k parallel examples
are a higher quality subset of the 200k examples,
allowing us to characterize the impact of quantity
verses quality of back-translated data in a low re-
source environment. We fine-tune our base mod-
els exclusively on back-translated data for our tar-
get side monolingual experiments and on a mix of
human-translated and back-translated data for our
combined parallel and target monolingual experi-
ments. We also examine the utility of fine-tuning
with back-translated data in conjunction with shal-
low fusion.

7 In-Domain Parallel Results

For Ru — En, Zh — En, and Es — En medical
domain models, mixed domain training either im-
proves or has no effect on in-domain performance.
Mixed domain fine-tuning does help maintain orig-
inal domain performance compared to models fine-
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Figure 1: Original vs. new domain performance trade-off across parallel adaptation methods. (a) shows the average
original domain performance as a function of the average in-domain BLEU score for each new domain across all
languages, capturing this trade-off when translating one new domain at a time. (b) displays the average in-and-out
of domain BLEU scores for each adaptation method over all language pairs, encapsulating trade off trends when
translating text from multiple new domains simultaneously.

tuned exclusively on parallel in-domain data. For
the biomedical and consumer electronic domains,
mixing original domain and in-domain parallel ex-
amples with a 1:1 ratio better maintains original
domain performance with a slight cost to in-domain
performance. This is probably because the med-
ical data is most similar to the original domain
where the consumer electronic and biomedical do-
mains are not. Shallow fusion decoding with an
in-domain language model boosts performance for
all languages and domains (Table 5). A detailed
results break down can be found in Appendix A.

7.1 Original Domain Degradation Mitigation
via Ensembling

We ensemble all in-domain parallel fine-tuned mod-
els and the baseline model together. When en-
sembled, baseline performance remains within 0.5
BLEU of its original score across all languages.
This is a huge improvement over the 10+ BLEU
score drop seen when fine-tuning on the consumer
electronic domain. No ensemble out performs their
single fine-tuned model counterparts when evalu-
ated on in-domain data. Nevertheless, the ensem-
ble still achieves a several BLEU point improve-
ment in each domain over the baseline and the
average BLEU score across all domains is much
higher when additionally comparing against any
single model’s out-of-domain performance. These
results indicate when translating mixed domain or
unknown domain data, ensembling in-domain mod-
els should lead to higher quality translations— even

when domains are drastically different (e.g. the
consumer electronic and medical domains). Figure
1 presents the original vs. new domain trade-off for
the consumer electronic and medical domains aver-
aged over all language pairs. Figure 1b highlights
the advantage of ensembling. The x-axis values in
1b are the combined average consumer electronic
and medical domain BLEU scores irrespective of
the domain for which each model was fine-tuned.

7.2 Benefits of Mined In-Domain Parallel
Data

Fine-tuning the baseline Ru — En model with com-
bined mined and original parallel data increased
performance over fine-tuning on just the original
data by 0.2 and 0.7 BLEU. A higher domain proba-
bility cutoff threshold, favoring reduced in-domain
noise over larger data quantity, resulted in the 0.5
BLEU score difference between the two models
trained with mined data. It should be noted that the
additional parallel data was mined from the paral-
lel Ru — En training set used to train the baseline
model. Though the model saw all mined exam-
ples during initial baseline training, viewing these
in-domain examples again during the fine-tuning
stage still increased in-domain performance over
fine-tuning on purely unseen data. See Table 4 for
a result breakdown.

8 Target Side Monolingual Results

Unsurprisingly, fine-tuning a base model on high
quality back-translated data then using an in-
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Figure 2: In-Domain BLEU scores after fine-tuning the baseline model on back-translated data. The green points
correspond to scores from models fine-tuned on the back-translated target-half of the in-domain parallel datasets.
The pink points are from models fine-tuned on back-translated cc100 data. Models with scores shown in green saw
smaller volumes of high domain quality data compared to those in pink.

Model Description Cutoff Total BLEU
Baseline - - 38.5
Original Parallel - 46,782 41.3
Original Parallel + Mined .90 254,037 415

Original Parallel + Mined 97 140,414  42.0

Table 4: The performance increase from adding mined
parallel data to the biomedical Ru — En finetuning set.
"cutoff" is the domain classifier probability threshold
and "total" is the train set size with mined examples
added.

domain language model for shallow fusion decod-
ing at inference time performs the best. For Ja —
En and Zh — En, these models adapted with only
monolingual data approach the same performance
as fine-tuning the base model with in-domain par-
allel data. The best Ja — En monolingual model
matched the performance of the in-domain paral-
lel model for the medical domain and surpassed
it by 0.7 BLEU points in the consumer electronic
domain. Full results are in Appendix A.

8.1 Shallow Fusion

Across the board shallow fusion either helps or has
no effect. With the exception of Ja — En models,
in-domain shallow fusion with the baseline trans-
lation model leads to less than 1.0 BLEU score
increase compared to the baseline scores in each
domain. For Ru — En, Es — En, and Ja — En
shallow fusion with in-domain language models
also increases original domain performance within
1.0 BLEU point of their original WMT’20 scores.
This shows even language models finetuned on out
of domain data still have an advantageous impact
when used for shallow fusion decoding.

BLEU Score

26 -
I

Cons. Elec. Medical Biomed

Finetuning Data / Adaptation Method
@ Parallel Only + SF Parallel + BT w/ Tuned
Parallel Only Parallel + BT w/ Base
Parallel + Tagged BT w/ Tuned + SF e Baseline
Parallel + Tagged BT w/ Tuned

Figure 3: A comparison of the resulting Ru — En
BLEU scores for each finetuning approach when in-
domain parallel and monolingual data is available. SF
stands for shallow fusion and BT stand for backtrans-
lated. Methods using parallel data alone out preformed
those combining backtranslated and parallel data.

Model Description No SF WithSF A
Baseline 34.6 355 +0.9
In-Domain Parallel 42.5 43.0 +0.5
Backtranslated 39.0 40.0 +1.0
Table 5: In-domain performance increase from us-

ing shallow fusion (SF) at inference time with base-
line models, models fine-tuned on in-domain parallel
data only, and models fine-tuned on high quality back-
translated data only. Values are averaged over all lan-
guages and over the consumer electronic and medical
domains.



8.2 Back-Translated Quantity vs. Quality
Trade-Off

We compare fine-tuning on back-translated data
mined from cc100 verses the back-translated En-
glish half of each in-domain parallel dataset.
Across the language pairs, there seems to be no
major difference in performance between models
fine-tuned with 200k, 50k, or top n totals of back-
translated cc100 data. When base models are fine-
tuned on the back-translated target half of the origi-
nal in-domain parallel datasets, the model’s perfor-
mance increased by an average of 3.2 BLEU com-
pared to the cc100 back-translation experiments.
Even with over 20x less data, fine-tuning on clean
(in terms of domain accuracy) back-translated ex-
amples out scores utilizing noisier data. This point
is illustrated in Figure 2.

9 In-Domain Parallel + Target Side
Monolingual Results

We experimented with a number of approaches
to combining back-translated data with in-domain
parallel data. We first used our baseline reverse
direction model to back-translate the top 50k cc100
sentences from each domain. Baseline models fine-
tuned on a mix of this data and in-domain paral-
lel data improved an average of 8.0 BLEU points
from the baseline. We then fine-tuned the reverse
direction model on our parallel domain data be-
fore back-translation. Combining this data with
parallel-data resulted in another +1.2 BLEU in-
crease on average. Next we experimented with
tagged back-translation. We prepended a special
back-translation token (< BT" >) to the beginning
of every synthetic back-translated input from our
previous iteration. Tagging back-translated exam-
ples increased the BLEU score by an average of
+0.2 compared to not adding tags. Finally, we used
in-domain shallow fusion decoding at inference
time with our model fine-tuned via tagged back-
translation for a +0.7 average performance boost.
Despite our efforts, we found none to be as effective
as fine-tuning on purely in-domain data or a mix
of in-domain and out-of-domain parallel data. The
bar graphs in Figure 3 illustrate the performance
increases from every technique in comparison to
parallel fine-tuning approaches. Full numeric re-
sults can be viewed in Appendix A.

10 Recommendations

1. In low resource situations, with access to both
parallel and monolingual data (<200k mono-
lingual examples, <10k parallel examples),
don’t spend time on back-translation. Instead
focus on parallel in-domain and mixed domain
fine-tuning.

2. Ensemble in-domain and baseline models
for more robust translations when translating
mixed or unknown domains.

3. Use an in-domain language model for shallow
fusion decoding. It will most likely improve
both your in-domain and original domain per-
formance, especially when parallel domain
data is not available. In-domain shallow fu-
sion can be an effective adaptation approach
even without fine-tuning the baseline transla-
tion model.

4. If you only have monolingual data, back-
translate the highest quality monolingual data
possible, prioritize quality over data volume
in low resource settings (<200k monolingual
examples).

5. It’s worth it to mine a moderate amount of par-
allel data over a larger amount of in-domain
monolingual data.

11 Conclusion

We conducted an empirical study comparing par-
allel and monolingual data approaches to domain
adaptation in NMT. We made recommendations
on how to achieve the best in-domain translation
performance with access to low resource parallel
and/or monolingual domain data. Additionally, we
explored model ensembleing to reduce regression
of original domain performance and the benefits of
mined in-domain parallel data. We hope this work
can guide others in their creation of high quality
domain specific machine translation systems. To
our knowledge, this is the first study to extensively
analyze domain adaptation methods in aggregate
on transformer based translation models.
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Languages Domain Model Description In-Domain | Original Domain
Baseline 36.1 19.8
Consumer Electronic Ensemble Across Domains 36.5 20.0
Mixed-Domain Finetune 37.2 194
In-Domain Finetune 36.9 18.7
Ja— En In-Domain Finetune + SF 37.9 20.3
Baseline 26.8 19.8
Medical Ensemble Across Domains 29.8 20.0
Mixed-Domain Finetune 29.9 18.9
In-Domain Finetune 314 17.3
In-Domain Finetune + SF 32.2 17.8

Table 6: Detailed Ja — En in-domain parallel results. SF stands for shallow fusion.

Languages Domain Model Description In-Domain | Original Domain
Baseline 34.5 24.5
Consumer Electronic Egsemble Across.Domains 39.8 22.1
Mixed-Domain Finetune 41.0 20.3
In-Domain Finetune 42.1 14.2
Zh — En In-Domain Finetune + SF 42.2 14.1
Baseline 29.9 24.5
Medical Ensemble Across Domains 41.0 22.1
Mixed-Domain Finetune 44.8 20.7
In-Domain Finetune 447 14.4
In-Domain Finetune + SF 45.0 19.5

Table 7: Detailed Zh — En in-domain parallel results. SF stands for shallow fusion.

Languages Domain Model Description In-Domain | Original Domain
Baseline 46.1 39.9
Consumer Electronic Ensemble Across Domains 51.8 39.5
Mixed-Domain Finetune 54.6 37.6
In-Domain Finetune 56.4 33.7
Es — En In-Domain Finetune + SF 56.6 33.7
Baseline 50.1 39.9
Medical Ensemble Across Domains 54.1 39.5
Mixed-Domain Finetune 55.2 37.7
In-Domain Finetune 55.3 36.5
In-Domain Finetune + SF 55.2 36.1

Table 8: Detailed Es — En in-domain parallel results. SF stands for shallow fusion.
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Languages Domain Model Description In-Domain | Original Domain
Baseline 25.6 36.2
Ensemble Across Domains 29.5 35.9
Consumer Electronic | Mixed-Domain Finetune 35.5 31.9
Mixed-Domain Finetune + SF 35.8 32.2
In-Domain Finetune 35.9 23.6
In-Domain Finetune + SF 36.1 23.2
Baseline 27.7 36.2
Ru — En Ensemble Across Domains 31.9 359
Medical Mixed-Domain Finetune 39.2 32.3
Mixed-Domain Finetune + SF 394 32.5
In-Domain Finetune 38.7 31.6
In-Domain Finetune + SF 39.2 31.8
Baseline 38.5 36.2
Ensemble Across Domains 39.0 359
Biomedical Mixed-Domain Finetune 41.3 37.0
Mixed-Domain Finetune + SF 41.6 37.1
In-Domain Finetune 42.0 32.8
In-Domain Finetune + SF 41.7 324

Table 9: Detailed Ru — En in-domain parallel results. SF stands for shallow fusion.

Languages Domain Model Description In-Domain | Original Domain
Baseline 25.6 36.2
In-Domain + Baseline BT 324 33.3
Consumer Electronic | In-Domain + Finetuned BT 34.4 25.8
In-Domain + Tagged Finetuned BT 34.2 21.8
In-Domain + Tagged Finetuned BT + SF 34.8 22.1
Ru — En Baseline 27.7 36.2
In-Domain + Baseline BT 36.8 26.2
Medical In-Domain + Finetuned BT 37.3 27.1
In-Domain + Tagged Finetuned BT 37.9 20.2
In-Domain + Tagged Finetuned BT + SF 38.2 20.0
Baseline 38.5 36.2
In-Domain + Baseline BT 41.1 33.8
Biomedical In-Domain + Finetuned BT 40.9 34.6
In-Domain + Tagged Finetuned BT 40.2 34.6
In-Domain + Tagged Finetuned BT + SF 41.0 34.8

Table 10: Detailed Ru — En in-domain parallel + target monolingual results. BT stands for backtranslation and
SF stands for shallow fusion.
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Languages Domain Model Description In-Domain | Original Domain
Baseline 36.1 19.8
Baseline + SF 379 20.3
BT Top 200k 34.7 18.6
Consumer Electronic BT Top 50k 34.8 170
BT Top 50k + SF 354 16.7
BT Top CE Total 34.2 17.4
BT CE Target 36.3 17.6
Ja — En BT CE Target + SF 37.6 18.1
Baseline 26.8 19.8
Baseline + SF 29.2 20.5
BT Top 200k 273 16.2
. BT Top 50k 27.3 16.5
Medical BT Top 50k + SF 29.3 18.0
BT Top Medical Total 27.5 15.5
BT Medical Target 29.3 16.6
BT Medical Target + SF 314 16.9

Table 11: Detailed Ja — En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.

Languages Domain Model Description In-Domain | Original Domain
Baseline 34.5 24.5
Baseline + SF 34.5 23.8
BT Top 200k 35.5 25.2
Consumer Electronic BT Top 50k 355 252
BT Top 50k + SF 35.5 24.2
BT Top CE Total 35.8 25.1
BT CE Target 38.2 26.2
BT CE Target + SF 38.4 24.7
Zh = En Baseline 299 245
Baseline + SF 29.7 20.2
BT Top 200k 33.6 24.8
. BT Top 50k 35.6 17.2
Medical BT Top 50k + SF 36.2 15.5
BT Top Medical Total 34.6 20.1
BT Medical Target 39.2 20.1
BT Medical Target + SF 42.0 19.5

Table 12: Detailed Zh — En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.
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Languages Domain Model Description In-Domain | Original Domain
Baseline 46.1 39.9
Baseline + SF 46.7 40.0
BT Top 200k 46.8 38.6
Consumer Electronic BT Top 50k 47.2 358
BT Top 50k + SF 48.1 36.3
BT Top CE Total 48.3 39.8
BT CE Target 53.2 35.8
BT CE Target + SF 533 359
Es = En Bascline 50.1 39.9
Baseline + SF 50.8 40.1
BT Top 200k 493 355
. BT Top 50k 50.0 37.2
Medical BT Top 50k + SF 50.9 37.9
BT Top Medical Total 50.2 39.9
BT Medical Target 52.5 34.8
BT Medical Target + SF 52.7 34.8

Table 13: Detailed Es — En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.

Languages Domain Model Description In-Domain | Original Domain
Baseline 25.6 36.2
Baseline + SF 26.5 36.9
BT Top 200k 27.4 36.2
Consumer Electronic BT Top 50k 28.0 354
BT Top 50k + SF 28.4 355
BT Top CE Total 27.2 36.6
BT CE Target 30.5 322
BT CE Target + SF 31.0 324
Baseline 27.7 36.2
Ru — En Baseline + SF 284 37.1
BT Top 200k 28.6 32.0
. BT Top 50k 28.5 343
Medical BT Top 50k + SF 29.8 34.5
BT Top Medical Total 28.4 36.6
BT Medical Target 32.9 354
BT Medical Target + SF 334 35.6
Biomedical Baseline 38.5 36.2
Baseline + SF 39.0 36.6

Table 14: Detailed Ru — En in-domain target monolingual results. BT stands for backtranslation and SF stands
for shallow fusion.
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