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ABSTRACT

In this study, we investigate the problem of dynamic multi-product selection and
pricing by introducing a novel framework based on a censored multinomial logit
(C-MNL) choice model. In this model, sellers present a set of products with
prices, and buyers filter out products priced above their valuation, purchasing at
most one product from the remaining options based on their preferences. The
goal is to maximize seller revenue by dynamically adjusting product offerings and
prices, while learning both product valuations and buyer preferences through pur-
chase feedback. To achieve this, we propose a Lower Confidence Bound (LCB)
pricing strategy. By combining this pricing strategy with either an Upper Con-
fidence Bound (UCB) or Thompson Sampling (TS) product selection approach,
our algorithms achieve regret bounds of O(d? \/T/x) and O(d?+/T/k), respec-
tively. Finally, we validate the performance of our methods through simulations,
demonstrating their effectiveness.

1 INTRODUCTION

The rapid growth of online markets has underscored the critical importance of developing strategies
for dynamic pricing to maximize revenue. In these markets, sellers have the flexibility to adjust the
prices of products sequentially in response to buyer behavior. However, optimizing prices is not a
trivial task. To effectively set prices, sellers must learn the underlying demand parameters, as buyers
make purchasing decisions based on their preferences and willingness to pay, as modeled by demand
functions (Bertsimas & Perakisl 20065 |(Cheung et al., 2017; /den Boer & Zwart, 20155 Javanmard &
Nazerzadeh, [2019; |(Cohen et al.| 2020; Javanmard & Nazerzadehl, [2019; [Luo et al.| 2022; |Fan et al.,
2024; Shah et al., 2019; Xu & Wang] 2021} |Chot et al., 2023). While the prior work has focused on
dynamically adjusting prices for single products, real-world applications such as e-commerce, hotel
reservations, and air travel often involve multiple products, further complicating the pricing strategy
(Den Boer, 2014; [Ferreira et al., 2018 |Javanmard et al., 2020; Goyal & Perivier, | 2021)).

In practice, sellers must do more than just set prices—they also need to determine which products to
offer. Buyers purcahse a product based on their preferences for available items, and this purchasing
process is influenced by the price. Higher prices reduce the likelihood of a purchase, as buyers filter
out products priced above their perceived value. This dynamic interplay between pricing and buyer
preferences is a fundamental aspect of real-world online markets, making it essential to model both
product selection and pricing together.

In this work, we tackle the problem of dynamic multi-product pricing and selection by developing a
novel framework that captures the censored behavior of buyers—where buyers consider only those
products priced below their valuation and purchase one product from the remaining options. To
model this behavior, we extend the widely used multinomial logit (MNL) choice model (Agrawal
et al., 2017azb; [Oh & Iyengar, 2021; 2019) to a censored MNL (C-MNL) model. This model al-
lows us to capture buyer behavior more accurately in scenarios where product prices impact buyer
choices. In our framework, sellers dynamically learn both the product valuations and buyer prefer-
ences, all while facing the challenge of not receiving feedback on which products buyers filtered out
due to high prices, reflecting real-world conditions.
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To address the inherent uncertainty in buyer behavior, we propose a novel Lower Confidence Bound
(LCB) pricing strategy, which sets lower initial prices to encourage exploration and avoid price
censorship. In combination with Upper Confidence Bound (UCB) or Thompson Sampling (TS)
strategies for product assortment selection, we provide algorithms that not only maximize revenue
but also efficiently balance exploration and exploitation in the face of censored feedback. Through
theoretical analysis, we derive regret bounds for our algorithms, and we validate their performance
using synthetic datasets.

Summary of Our Contributions.

* We propose a novel framework for dynamic multi-product selection and pricing that in-
corporates a censored version of the multinomial logit (C-MNL) model. In this model,
buyers filter out overpriced products and choose from the remaining options based on their
preferences.

* We introduce a Lower Confidence Bound (LCB)-based pricing strategy to promote explo-
ration by setting lower prices, avoiding buyer censorship, and facilitating the learning of
buyer preferences and product valuations.

* We develop two algorithms that combine LCB pricing with Upper Confidence Bound
(UCB) and Thompson Sampling (TS) for assortment selection, achieving regret bounds

of O(d? \/T/k) and O(d?+\/T/r), respectively.
* We provide extensive theoretical analysis, including regret bounds, and validate the effec-

tiveness of our algorithms using synthetic datasets, demonstrating their superiority over
existing approaches.

2 RELATED WORK

Dynamic Pricing and Learning Dynamic pricing with learning demand functions or market val-
ues has been widely studied (Bertsimas & Perakis| [2006; |Cheung et al., [2017; |den Boer & Zwart,
2015 Javanmard & Nazerzadeh, [2019} |Cohen et al., 2020; [Luo et al., [2022; | Xu & Wang} 2021} Fan
et al., [2024; Shah et al., [2019; |Cho1 et al., |2023; |Den Boer, [2014; |[Ferreira et al., |2018; |Javanmard
et al.| [2020; |Goyal & Perivier, 2021). However, previous work typically assumes that products are
introduced arbitrarily or stochastically, meaning the products themselves are given rather than be-
ing part of the decision-making process. In contrast, our study incorporates a preference model for
dynamic selection and pricing, where the agent must determine the assortment of products to offer
with prices.

We note that Javanmard et al.| (2020); |(Goyal & Perivier| (2021); Erginbas et al.| (2023) considered
MNL structure for dynamic pricing, which was widely considered in the assortment bandits lit-
erature (Agrawal et al.l 2017azb; (Oh & Iyengar, 2021 2019). Based on the MNL structure, the
previous pricing strategies have focused solely on optimizing revenue function. Notably, |Javanmard
et al.[ (2020); [Perivier & Goyal|(2022)) examined scenarios where the assortment is predetermined
rather than chosen by the agent under the dynamic pricing problems, and [Erginbas et al.| (2023) di-
rectly extended |Goyal & Perivier| (2021)) by considering assortment selection under the same MNL
structure. Moreover, Javanmard et al. (2020) consider i.i.d feature vectors fixed over time.

In our study, we utilize the MNL model with arbitrary features at each time to capture buyer pref-
erences. Inspired by real-world scenarios, we further incorporate activation functions to address the
non-continuous nature of buyer behavior, specifically their acceptable price thresholds. The pres-
ence of activation functions in our MNL model prevents a direct conversion to the standard MNL
structure, distinguishing our work from that of Javanmard et al.| (2020); |Goyal & Perivier| (2021));
Erginbas et al.| (2023). Furthermore, we address a multi-product setting where the agent not only
prices but also selects products at each time. As a result, we must develop a novel strategy for both
pricing and assortment selection to address this challenge.

Notably, while activation functions for buyer demand have been considered in Javanmard & Naz-
erzadeh| (2019); Cohen et al.| (2020); [Luo et al.| (2022); | Xu & Wang| (2021); |[Fan et al.| (2024)); Shah
et al.[(2019);|Choi et al.| (2023)), these studies focused on single-product offered by the environment
with single binary feedback at each time indicating whether the product was purchased or not. In
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Figure 1: The illustration describes the process involved in making a purchase.

contrast, we examine a multi-product setting where the agent must both select and price multiple
products while receiving preference feedback, a scenario commonly observed in real-world online
markets.

3 PROBLEM STATEMENT

There are N arms (products) in the market. As illustrated in Figure |1} at each time ¢ € [T, (a) an
agent (seller) selects a set of arms S; C [IV], referred to as ‘assortment,’ to a user (buyer) with a size
constraint |S;| < K(< N). At the same time, the agent prices each arm ¢ € S; as p;; € R>¢ and
suggests the assortment with the corresponding prices to the user. (b) Then, based on the valuation
v; + and price p; ; for each arm ¢ € S, the user filters out any arms ¢ € S; where the price exceeds
their valuation, i.e., v;; < p;;. (c) Finally, the user purchases at most one arm from the remaining
options based on preference. In what follows, we describe our models for the user behavior and the
revenue of the agent in more detail.

There are latent parameters #,, and 6, € R¢ (unknown to the agent) for valuation and price sensitiv-
ity, respectively. At each time ¢, each arm i € [N] has known feature information z; ; and w; ; € R?
for its valuation and price sensitivity, respectively. Then the (latent) valuation of each arm ¢ for the
user is defined as v; ; 1= a:,T .0, > 0. We also consider that there are (latent) price sensitivity parame-
ters as o ; 1= wj .0 > 0. In this work, we propose a modification of the conventional MNL choice

model with threshold-based activation functions, which we name as the censored multinomial logit
(C-MNL) choice model.

Definition 1 (Censored multinomial logit choice model) Let set of prices p; := {p; 1 }ies,. Then,
given S and py, the user purchases an arm © € Sy by paying p; + according to the probability defined
as follows:

exp(vit — 0 Dit) L(pie < i)

- . )
1+ Zjest exp(vje — o epje) L(pje < vjt)

Pt(i|5tapt) :

From the activation function in the above definition, the user considers purchasing only the arms
i € S, satisfying that its price is lower than the user’s valuation (or willingness to pay) as p; ;+ < v; ¢.
We also note that a higher price for an arm decreases the user’s preference for it, while a higher
valuation indicates a stronger preference. For notation simplicity, we use 0* := [0,;0,] € R?? and
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2i+(p) == [zi.4; —pwi+] € R24. Then the C-MNL of (T)) can be represented as
exp(:cItGU - wzteapi,t)]]-(pi,t < x;;ev)
1+ Zjest exp(x;.'jﬂv - w;,—teapji)]l(pj,t < x;,rtev)
_ exp(zit(Pi) " 0) (i < @,60)
L+ 3 5cs, exp(2,e(pj) T0) L(pje < 2 00)

Pt(ﬂsmpt) =

As in the previous literature for MNL, it is allowed for each user to choose an outside option (z¢),

or not to choose any, as P;(ig| S, pr) = ES STy t(pjlt)To*n(pj =T Importantly, at each
. (s, e

time t, the agent only observes feedback of chosen arm 7; (at most one) but does not observe feed-
back on which arms are censored from the activation function based on the latent user’s valuation.
This makes it challenging to learn the valuation from the preference feedback, and the naive pricing
strategies for maximizing revenue (Javanmard et al., |2020; |Goyal & Perivier, 2021 |[Erginbas et al.,
2023)) do not work properly for our model.

The expected revenue from chosen arm ¢ € S, is represented as R; ;(S;) = p; «P(4|St, p). Then
the overall expected revenue for the agent is formulated as

+(St, pt) Z R;+(S) Z it exp(zie(pie) T0%)L(pix < xztgv)
ty Pt i t t .
i€S: 25 T+ 2 jes, exP(2.4(pie) T0)1(pje < ] ,0,)

For notation simplicity, we use p = {p; },c[n]. Then we define an oracle policy (with prior knowl-
edge of %) regarding assortment and prices such that

(St.pi) € argmax  Ry(S,p).
SC[N],peRY:|S|<K,

Then given .S; and p; for all ¢ from a policy 7, regret is defined as

R™(T) =) E[Ri(S},p;) — Re(Se,pe)] -
te[T)

The goal of this problem is to find a policy 7 that minimizes regret.

4 ALGORITHMS AND REGRET ANALYSES

4.1 UCB-BASED ASSORTMENT-SELECTION WITH LCB PRICING: UCBA-LCBP

Here we propose a UCB-based assortment-selection with LCB pricing algorithm (Algorithm [T as

; — exp(zi.¢(pi) ' 0) : i :
follows. We denote by P; ¢(i|S,p) = 7 5, c5 op(z5,: (2T 0) the choice probability without the
activation functions. Let the negative log-likelihood f;(6) := — 3, SeUio} Yirt log P, ¢(i|St, pt)

where y; ¢ € {0, 1} is observed preference feedback (1 denotes a choice, and 0 otherwise) and define
the gradient of the likelihood as

9:(0) = Vo fr(0) = > (Pro(ilSe,pr) — yit)zia(pi)- )

1€ESy

We also define gram matrices from V3 f(6) as follows:

Gi(0) := Z Pt,e(ﬂst,Pt)Zi,t(pi,t)Zi,t(Pi,t)T - Z Pt,e(ﬂst,Pt)Pt,e(j‘Supt)Zi,t(Pi,t)Zj,t(pj,t)T,

1€St 1, €St
G, (0 Zpte i|St, Pt ), tﬂflt Z Py (i|St, ) Pro(3]Se, pe)wi, tJU]Tt (3)
1€ESy i,jES

Then we construct the estimator of é; € R24 for 6* from the online mirror descent with @]) and (L?[]}
as studied by Zhang & Sugiyamal (2024); Lee & Oh| (2024), within the range of © = {# € R?
65> < 1 and [[9%F727]|, < 17}, which is described in Line/[3}
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Now we explain the details regarding the strategy for the decision of price and assortment. For
the price strategy, we construct the lower confidence bound (LCB) of the valuation of arms. Let

Br = Clx/cﬁlog( )log(K) where 7 is the number of estimator updates for price, H; = Alogq +
S 1G (8,), and H, c= Mg+ llG“( s) for some constant C; > 0 and A > 0. We use
o for representing a vector consisting of elements from index n to m in @ € R2?. Then we denote
the estimator regarding valuation by @,,t = @:d. Let ¢ be the time step when 7-th update of the

estimation for price occurs and we use 0, () := @)}t, for the pricing strategy. Then with a constant
C > 1, for the time steps ¢ corresponding to the 7-th update, we construct the lower confidence
bound (LCB) of the valuation of arm i € [N] as

V¢ = x;,rtev,(f) - \EﬂTHxi,tHH;1-

We use notation 2+ = max{z,0} for z € R. Then, for the LCB pricing strategy, we set the price
of arm ¢ using its LCB as

Pit =10
Importantly, from this pricing strategy, the algorithm can effectively explore arms avoiding censor-

ship because the arm having a small price is likely to be activated from the user’s threshold in the
C-MNL choice model. In the analysis, under the condition of a favorable event regarding the LCB,

we can appropriately handle the preference feedback from C-MNL for estimating 0* with @\t How-
ever, the conditional analysis for estimation introduces regret with each update. To solve this issue,

we periodically update the estimator 9 y for LCB with constant C' > 1, as described in Line @
without hurting regret (in order) from estlmatlon error.

Next, for the assortment selection, we construct upper confidence bounds (UCB) for valuation v; ¢
and preference utility u; ; as v; ; and w; 4, respectively. We construct UCB for the valuation as

Tiv =210 )

Vit i= Ty Vot + 57Hxl,t||H;§~

Interestingly, when constructing u; ¢ regarding utility u; ; = zi,t(p;t)TH*, it is required to consider

enhanced-exploration under the uncertainty regarding both §t and p; ; (in 2; 1 (p;+)). We construct
Uiy = zia(pie) 0 + Brllzia(pie)ll g + Q\FCBT||$1‘¢||H;17

where S[|2i,¢(pi,t)|| ;-1 comes from uncertainty of 0, and 2v/C B, ||z 4| p—1 comes from that of

Pit 0 2; ¢(pi,¢). Then, using the UCB indexes, the assortment is chosen from

S; € argmax Vit exp(ui,tz .
SCIN|s|<K g 1+ > jes exp(uj)

Wesetn = 5 log K 4 1) + 3 and A\ = max{84dn, 1921/2n} for the algorithm.
n= Ui n g

4.2 REGRET ANALYSIS OF ALGORITHM [I| (UCBA-LCBP)

Similar to previous work for logistic and MNL bandit (Oh & Iyengar, [2019; 2021} Lee & Ohl[2024;
Goyal & Perivier, [2021}; [Erginbas et al.l 2023} |[Faury et al., [2020; |Abeille et al.,|2021), we consider
the following regularity condition and definition for regret analysis.

Assumption 1 ||0,]2 < 1, ||0a]2 <

<1, and ||w;tl|2 < 1foralli € [N], t € [T]
Recall © = { € R?? : |||y < 1 and ||§9+12¢||, < 1}. Then we define a problem-dependent

quantity regarding non-linearlity of the MNL structure as follows.

K= inf P, ¢(i|S,p) Ps.g(i0|S, ).
te[T],0€0,ic SC[N],pe[0,1]V tﬂ(' p) t,e(o\ p)

We note that in the worst-case, 1/x = O(K?) from the definition of P, ¢(-| S, p) with Assumption(l]
Then Algorithm [T]achieves the regret bound in the following.
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Algorithm 1 UCB-based Assortment-selection with LCB Pricing (UCBA-LCBP)
Input: \,n,8.,C > 1
Init: 7 < 1,t1 1,@,,(1) — 0y
fort=1,...,Tdo R R
Ht — /\Igd + ZS 1 G, (9 ) +nGy_ 1(9t71) with @
Hy « Mg + X' 2) G4 (8,) with (3)
Hy,, <—)\Id+22 11GUq 0, ) with (3)
0,5 — argmingcg gr— 1(9t 1)T9+ L ||0 9t 1H~ , with @) ; > Estimation
if det(H;) > C det(H,, ) then
T 17+ 1t, 1t

| Oury < Ou, (= 057

fori € [N]do
Uy Zzt‘gv,(r) - \@ﬁr”ﬂfi,tHH;} 3 > LCB for valuation
Dit <—U > Price selection w/ LCB
Vit <—x th—i—ﬁTHx”HH_l ; > UCB for valuation

Wi g 4 2i1 (i )Tﬁt—i—ﬂTHzl’t(pM)HHfl +2\/56-r||37i,t”]_1;}§ > UCB for utility

it € i, .
S € argmaxgc|ny.|s|<r 2165#%, > Assortment selection w/ UCB

Offer S, with prices p; = {p; + }ies,
Observe preference (purchase) feedback y; ¢+ € {0,1} for i € .S,

Theorem 1 Under Assumption[l} the policy m of Algorithm|[I| achieves a regret bound of
~ [ 3 a3
R”(T)zO(d2 T/KJ—‘,—/{) .

Proof The full version of the proof is provided in Appendix Here we provide a proof sketch.
We first define event £, = {||0s — 0*||u, < Br.,Vs < t} and Er holds with a high probability. In
what follows, we assume that F; holds at each time ¢.

For notation simplicity, we use v; ; := azztﬁv, Ujp 1= zi’t(p;:t)TG*, and uﬁt = zi7t(pi7t)T9*. Then
we can show that for all ¢ € [N] and t € [T, we have
vfy Swig <Tigand ug g < gy 4)
For the regret analysis, we need to obtain a bound for
Ry (S, py) — Re(Se, pe)
B Z pieexp(ui) L(pfy < vig) > pitexp(uf ) L(pie < vig)

" NG)
1+ Z]es* exp(uj, t)]l(pj,t < vje) 35 I+ ZjeSt exp(u?t)]l(pﬁ < vjt)

i€SY

For the purpose of analysis, we define ﬂ;t = Zz‘,t(pw)Te* + 2Bn||zi7t(pi,t)HH;1 +
2/ CB,, [ 3,4l g1 so that u; ; < ; ;. For the first term in (5), with (@) and the UCB-based as-

sortment selection policy, we can show that

Z 2 eXp(ui’tﬂl(pZt < i) < Ziest Vit eXp(ﬂ;,t)

* < — - (6)
ies: I+ Zjes;f eXp(uj,t)]l(pj,t < vje) 1+ Ziest exp(u;t)
For the second term in @ with @]) and the LCB-based pricing, we have
Z Pit eXP(Uﬁt)ﬂ(Pi,t < wig) . Zzes, L+t eXP(U?,t) %
= 14> es, exp(uf JL(pje <wvje) 14 >cq, exp(uf,)
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From (3)), (6), and (7)), we have

Ziest Uj,¢ exp(U; it

R(S7,p;) — Re(Se,pe) <

- 1+Zies CXPlU; ¢

sx s\@\

)
)
)
)

(w;
_ Ziest Vit exp(ﬂ;7t) B ZieSt it exp(u; i\t " ZZGSt it CXD(U; 4 B Z'LGS ﬂ;ft eXp(uft)
143 es, exP(Wiy) 14 s, exp(@iy) 1+ cs,exp(Uiy) 14 Xies, expluy,)
®)
Let 7 be the value of 7 at the time step t. We can show that E[3,,] = O(d) and E[82,] = O(d?).

Then, for a bound of the first two terms in @ with expectation bounds for 3, and 2T in the above
and elliptical potential bounds, we show that

> E

te[T)

- 0( > & (5. max|:m||H—lﬂ<Et>D

te[T]
=0 (aty/T7xk). ©)

Likewise, for the bound of the last two terms in , we can show that

ies, Vie @xP(Tit)  Yies, Uiy exp(ul,)
ZE < i, Yit _ 2aieS, Uit Y 1By

te[T)] 1+ Zzes exp( ) 1+ Ziest exp(uft)

zesf Uit exp(ﬂ;’t) ZiESt Qj,_t eXP(ﬁ;:,t)
/ - —7 ]l(Et)
I+ qus exp(u;,) 1+ Zq',est exp(; 1)

s

~ a3
=0 (dQ\/T-F K) . (10

)

which conclude the proof with (8), (9), and the fact that £ holds with a high probability. |

Under the C-MNL model, our algorithm can achieve the tight regret bound with respect to 7" as
those established in standard MNL bandits (Oh & Iyengar, |2021) and dynamic pricing under MNL
with arbitrary features (Goyal & Perivier, [2021}; [Erginbas et al., 2023)). The regret bounds of |Goyal
& Perivier|(2021); [Erginbas et al.[(2023) for the MNL dynamic pricing problems include 1/x in the
leading term where, in their work, ~ was assumed to be a constant term. In the worst case where
1/k = O(K?), their regret bounds become O(K?2v/T). Our regret bound contains only /1/x in

the leading term, allowing it to remain O (K \f for large enough 7' in the worst case Moreover,
the previous works (Goyal & Perivier, [2021} [Erginbas et al., 2023) assumed that 0, > L with
a positive constant L > 0 and their regret bounds include 1/L™ for n > 1. This leads to trivial
regret bounds in the worst case when L is small, whereas our regret bound does not depend on L.
Regarding the dimensionality, the analysis of our new censored MNL model is significantly more
challenging and involved due to the presence of activation functions, which adds complexity. As a
result, our regret bound scales with d? . However, whether this dependency can be improved remains
an open question.

We now discuss the algorithmic differences between our method and the one proposed in |Goyal
& Perivier| (2021); [Erginbas et al.| (2023). In the prior work of |Goyal & Perivier] (2021)); [Erginbas
et al.| (2023)), the price is determined by maximizing revenue at each time. However, in our C-MNL
framework, we cannot estimate 6* using the revenue-maximizing price due to the hidden nature
of non-purchased feedback regarding whether it is due to stochastic preference or elimination by
an activation function. To address this issue, we employ an LCB pricing strategy that enhances
exploration across all arms by adhering to acceptable user prices. Since our pessimistic pricing
strategy introduces a gap from the optimal price, we further incorporate an exploration-enhanced
strategy for choosing assortments.

Additionally, our algorithm is computationally more efficient since it does not require solving an
optimization problem for pricing decisions, which was necessary in the previous work. We also
note that regarding the computational costs of assortment selection, which is common in all MNL
bandit literature, the assortment optimization can be computed by solving an LP (Davis et al., 2013)).



Published as a conference paper at ICLR 2025

Algorithm 2 TS-based Assortment-selection with LCB Pricing (TSA-LCBP)

Input: \,n, M,3,,C > 1

Init: 7 < 1,t1 < 1,@,,(1) — Od

fort=1,...,T do

Hy Mg+ "2 Go(0,) + nGi_1(0,_1) with (3)

H;, — Moy + 22_11 G, ,\5) with (3))

Hyyp 4= Ma+ 32 1 Gy.o(6,) with (B)

0, < argming e g¢(0;— 1)T9+ = 2110 — 0, 1% - with @) ; > Estimation

Sample {Hvyt } e[ independently from N (6 M(— gLy, BZH )

Sample {g(m)}mE[M] independently from N (6, 282H; )
if det(H;) > Cdet(Ht ) then

T T+ 1Lt 1

L Oy B, (=89

fori € [N] do
Vg mzt@\v’(ﬂ - ﬁBTHxi,tHH;} ; > LCB for valuation
Dit < vjt ; > Price selection w/ LCB
Ut arg MaXpe(n] & Iﬁif ; > TS for valuation
Mit <—v2t—x”9vt
Ui g < AT MAX,,, ¢ py] zi,t(pi,t)Tﬁﬂv(m) +8Cniy; > TS for utility

V;,t exp(u; .
St € argmaxgc | s|<k dics Weip(;)ﬂ), > Assortment selection w/ TS

Offer S; with prices p; = {pz,t}zESt
Observe preference (purchase) feedback y; , € {0,1} fori € S,

4.3 TS-BASED ASSORTMENT-SELECTION WITH LCB PRICING: TSA-LCBP

Here we propose a Thompson sampling (TS)-based assortment-selection with LCB pricing algo-

rithm (Algorithm |2 ' As in Algorithm , we first estimate 5,5 using the online mirror descent
within the range of © = {# € R?? : ||9F7|, < 1and ||§4+1:24||, < 1} For determining price,

we utilize the LCB pricing as p;; = v
Br = C1Vdr log(T) log(K).
For choosing the assortment, we sample two different types of instances from Gaussian distributions;

one is for valuation and the other is for preference utility, each of which is sampled for M times as

nim nim . log(2N
91(}7,5) € R% and 6™ € R2? for m € [M], respectively. We set M = [1 — log(l_gg%] Then we

jt, where, recall, v, , = xlte () BTHxl,tHH%% with

construct TS indexes regarding the valuation and utility as

Vj¢ = argmax t&f,t and u;, := argmax zi7t(pi,t)T§,Em) + 167; +, respectively,
me[M)] me[M]

where 7; ¢ = U; ¢ — a:lT 10y +. For the utility of u; ;, we have to consider the uncertainty regarding p; ;

as well as §t, which leads to requiring an additional exploration term 7; ;. Then the assortment is
determined from

51‘ t exp(ﬂi t)
S; € argmax ’ .
SCIN|s|<K fgg 1+ > jes exp(tj)

In the following, we provide a regret bound of the algorithm by setting n = % log(K + 1) + 3 and
A\ = max{84dn, 192v/2n}.
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4.4 REGRET ANALYSIS OF ALGORITHM 2] (TSA-LCBP)

Theorem 2 Under Assumption[l} the policy w of Algorithm 2 achieves a regret bound of
~ d4
R™(T)=0 <d2 T/k+ )
K

Proof The full version of the proof is provided in Appendix Here we provide some key
components of the proof. We first define event E; = {||, —6*||z. < S, Vs < t} and Er holds with
a high probability. Let A} = {i € S; : p}, < v} and, recall, v,y = x,0,, wiy = 2z (p},) " 0%,
and uﬁt = Zi7t(pi,t)T9*. Then under E;, from the pricing and assortment selection strategies, we
can show that

ZiEA* Vit eXp( Z ) . ZZESt j_t exp(u t)
1+ ZzeA* exp(ui¢) 1+ Ziest eXp(uft) .

s

R(S;,pi) — Re(St,pr) < (11

We define event Eﬁa) such that for all ¢ € [N], we have
1B — 2] 00,4] < Vellwi¢ll -1 and [i; ¢ — zia(pie) 10 < 8C |zt (pit) Lo + Nwiell g2

which is shown to hold with a high probability. We also define event E,Sb) such that for all ¢ € [N],
we have U, > wv;;and U;+ > w;¢, which is shown to holds at least a positive constant. Let

E, = Et(a) N Et(b). Then we can show that IF’(E|]-},1, E;) > 1/8/er where F;_ is the filtration
containing information before ¢.

Let 21 = zit(pit) — Ejup, 2,015 polzit(pie) and @5y = 250 — Ejop, 5,015 po)[Tie] and vy =
Br, \/8dlog(Mt) where 7 is the value of T at time ¢. For the ease of presentation, we use

L= 2 (max |z (i) o + maax i) + o7 (my

+9% 30 Py, (1502 (Bl g + el =)+ D liall )
i€s, i€S, '

2 71)
vt

With a constant lower bound for P(Et |Fi—1, Et) and elliptical potential bounds, by omitting some
details, we can show that

Liea; Vit OP(Uit)  Fies, Uiy xp(uf,) 1(Ey) | F
L+ 3 e exp(uie) 1+ 3 e, exp(ug,) R

)

E|E

=0 (E[E[L | Fir B B P(EIF)]) =0 <d2 T/k + ‘f:) :

which concludes the proof with and the fact that '+ holds with a high probability. |

To the best of our knowledge, this is the first work to apply Thompson Sampling (TS) to dynamic
pricing under MNL functions, whereas the previous related works focused on UCB method (Ergin-
bas et al., [2023) (or did not consider assortment selection (Goyal & Perivier, [2021))). Additionally,
prior work on TS for MNL bandits (Oh & Iyengar, [2019) includes 1/x in the regret bound so that
O((1/k)V/T) and requires computationally intensive estimation with an O(#) cost at each time step
t. In contrast, by using online mirror descent updates, our TS algorithm reduces the x dependency in
the main term of the regret bound with O(+/7T/ k) for large enough T" and provides computationally
efficient online updates with an O(1) cost for estimation in MNL bandits. It is also worth noting that
our TS regret bound has an additional /d term compared to the UCB algorithm (Algorithm. This
phenomenon of increased regret with respect to d, compared to that of UCB, is consistent with ob-
servations from previous TS-based bandit literature (Oh & Iyengar} 2019; |Agrawal & Goyal |2013;
Abeille & Lazaric, 2017).
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4 ONM DASP-MNL —+ ETC —m— UCBA-LCBP (Algorithm 1) TSA-LCBP (Algorithm 2)
le4 le4 N=60 le4 N=80

4 4 4

3 3 3

2 2 2

1 1 1 ; 1

ole” ole” ole”
6 1 2 3 4 5 o0 1 2 3 4 5 o 1 2 3 a4 8

Time step t led Time step t led Time step t led

Figure 2: Experimental results for the regret of algorithms

5 EXPERIMENTS

Here, we present numerical results using synthetic datasets with varying numbers of products N E]
For the experiments, we generate each element in 6, and 6, from the uniform distribution (0, 1)
and normalize them. We also generate features in the same way. We set K = 5 and d = 4.
Unfortunately, there is no algorithm that can be directly applied to our novel setting. Therefore, for
the benchmarks, we utilize previous algorithms proposed for dynamic pricing under MNL model
such as DASP-MNL proposed in [Erginbas et al.| (2023) and ONM (online newton method) in |Goyal
& Perivier| (2021). We note that ONM works under a given assortment rather than selecting one,
so we adjust the method by adopting the method for the assortment optimization in [Erginbas et al.
(2023). We also utilize the method of Explore-then-commit (ETC) (Lattimore & Szepesvari, 2020)
as a benchmark, which conducts exploration over the first 72/3 time steps and then exploits for the
remainder of the time. In Figure [2] we can observe other benchmarks do not work properly in our
setting and our algorithms outperform the benchmarks with sublinear regret.

6 EXTENSIONS TO MORE GENERAL PROBLEMS

Randomness in Activation Function. We further investigate the presence of randomness in the
activation function in C-MNL. Let (; ; be a zero-mean random noise drawn from the range of [—c¢, ¢|
for some 0 < ¢ < 1. we consider

exp(zit (i) ") L(pix < (2,00 + Git)T)
L+ s, exp(25t(pie) T0*)1(pje < (x],00 + ) T)

ﬁt(ﬂstapt) =

We propose a variant of Algorithm|[T|(Algorithm[3]in Appendix[A.4) using an enhanced LCB pricing

strategy, which achieves O(d? \/T/x) when ¢ = O(1/+/T). Further details on the algorithm and
theorem can be found in Appendix

Extension to RL with Once-per-episode Feedback. We also study the extension to reinforcement
learning (RL) with once-per-episode feedback. In this framework, we consider that at each time, the
seller suggests up to K trajectories each consisting of H state-action pairs (s, a) with associated
prices for each trajectory. The buyer then purchases at most one trajectory based on the C-MNL
model (without price sensitivity). In this problem, we account for the latent transition probability
P(-|s,a) with Eluder dimension dp, as well as the latent valuation of the trajectory. We propose
an algorithm (Algorithm [] in Appendix [A.5)) that uses an LCB pricing strategy and UCB-based
assortment selection, considering uncertainty in both transition probability and trajectory valuation—
key differences from the bandit setting. Our algorithm achieves a regret bound of O(d 2 T/k +
VdpK HT) (omitting the logarithmic dependency on the covering number), where the second term
arises from learning the transition probability. Further details on the problem statement, algorithm,
and theorem for the RL extension are provided in Appendix [A.5]

'The source code is available at https://github.com/junghunkim7786/
Dynamic-Multi-product-Selection-and-Pricing-under-Preference-Feedback
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7 CONCLUSION

In this study, we explore dynamic multi-product selection and pricing within a new framework of
the censored multi-nomial logit choice model. We introduce algorithms that incorporate an LCB
pricing strategy along with either a UCB or TS product selection strategy. These algorithms achieve
regret bounds of O(d2+/T/x) and O(d2\/T/k), respectively. Lastly, we validate our algorithms
through experiments with synthetic datasets.

Reproducibility Statement. Complete proofs of the theorems are included in the appendix.
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A APPENDIX

A.1 NOTATION TABLE FOR THE PROOFS

Table 1: We provide definitions of notations for the proofs.

Vit = xj_tev

ot = w;rtﬂa

o* = [0y 64]

2 +(p) = [m4,65 —pwi s

Pt(i|st;pt) L exp(vi, e — i tPi,e ) L(Pi,e <vie)

T 14> es, exP(vi e —a;,epi.) L(pse<vje)
eXP(zZtav*thaaPi,t)l(pi,tSIItev)

o 1+Zj€8t eXp(I_Itov7w;r,t‘9apj=t)]l(pjyt S%‘Tﬂ’l})

_ exp(zi,t (Pi,e) ' 0)1(pie <z ,600)
143" es, exp(2),¢(pj,e) T 0%)1(pj,¢ <z/,0.)

R; +(St) = pi P (i]Se, pi)
Ry (St pt) = Yies, Rit(Sh)
. — exp(zi,¢(pi) " 0)

ft,0(2|57 p) T es exp(25,e(ps) TO)
vat = Qg:d
Vit = x;':tﬁv
E;,t = Zi,t(pi,t)—re* + 2/87t||zi7t(pi’t)||H;l + 2\/5/8n||xi,t”H;_1
Uit = zia(py,) " 0*
x7, = [z,4;04] R
ai,t = Zi,t(pi,t)Tot
Lig,t = Od
Zigt = 02g .

L Ziest vy, exp(ui)
?(u) T 1+Zi€st exp(u;)
it =it = Bjnp, 5 (15000 [25.1]
Zit = zit(Pit) = Bjnr, 5 (15000 (256 (Pj.0)]
Gy(6;) = Yies, Pog, (196 00) 26 (i) 200 (pie) T 1(Ey)

= ies, ngstft@ (i1St,pe) P, 5, (715t i) 2t (Pie) 25,6 (Pg.0) T L(Ey)

H] = Mg+ Y021 Go(8,)
ag,t = zi,t(pi,t)-re* + 9C%(HZi’t(pi,t)”H;1 + @iz Hv*;)

A.2 PROOF OF THEOREMIII

Let 7, be the value of T at time ¢ according to the update procedure in the algorithm. We first define

event By = {||6, — 0%||r, < B-.,Vs < t}. Then we have Ep C Ep_y, ..

., C Fj and E7 holds

with a high probability (to be shown). In what follows, we first assume that E; holds for each ¢.

Under this event, we provide inequalities regarding the upper and lower

bounds of valuation and

utility function in the following. For notation simplicity, we use v; ; := ;] 00, wi,¢ := 2;,(p},) ' 0%,

and x7, := [%i,4; 04
Lemma 1 Fort > 0, under Ey, for all i € [N] we have

+ p— p—
Uy S i S Ui and wiy < Uy

13
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Proof Fort, <t <t.; 1 —1for7 > 1, under E;, we have
e e e P O

<l 167 = e, |1,

det(H,)

il dot ()

< ||35;?,tHH;1\FCH9* - atTHHtT

< ||$i,tHH;§\/55nv

< [J7 16" = 6 [ ...

where the second inequality is obtained from Lemma with the update procedure of @J’(T) in the
algorithm. This implies Uit < Vit Then with v; ; > 0, we have

1, t S Vit-
Under E;, we also have
T Ty n
)00 — 2] 0| = [0, 70" — 20,70, < 7 el g 107 = Oell o, < M2l 1 Bres
which implies
Vit < Usge

Now we provide the proof for the upper bound of u; ;. Under I, we have
2t (Pr) 0" = 200 (Pi) 00 = 204 (05) 07 = 20t (i) T0% + 20t (pie) 0" — Zia(pie) O

< Zi,t(pf,t)—r‘g* - Zi,t(pi,t)—re* + |Zi,t(Pi,t)T§t - Zi,t(Pi,t)T9*|
<Pl o — piow] o + 1200 (i) | -1 10 — 0|,
< (Pfs = 2it w00 + Brllzie (9ie) | g
< (vie = 0) + Br [12it (Pie) | 1
< (Vig = 034) + Brollzit(pie)ll g
< aﬁﬁﬂnxi,tnm + Bz (i)l 1

where the third last inequality comes from p; + S Vit it = v:rt, Vi > v, and (positive sensitiv-

= = it

ity) 0 < w;'— 0o < 1. This concludes the proof.

|
We have
Ri(S{,py) — Ri(St. pt)
3 i exp(zie(pf,) " 0°) 105, < @) ,0, )
zezs* 1+ es: exp(z;.(p5,) T 0*)1(p;, < x/,00)
-y piexp(zie(pi)  0)1(pix < x/,0,) 12

S5 T+ 2 jes, exP(2.0(py.) T0)1(pse < x],0,)

Let @, , = zi4(piy) 0" + 2V 0B, 1236 (Pi,e) | g1 + 2/ C By, [3,¢[| g1 Then under Ej, we have

zm(pi,t)TGt — 5n\|2’i,t(pz‘,t)||H;1 < zi,t(piyt)TG*, which implies @; ¢ < ﬂ;t In what follows,
we provide lemmas for the bounds of each term in the above instantaneous regret. For notation
simplicity, we use u?, := z; +(pi.+) ' 0"

Lemma 2 Fort > 0, under E; we have
Z pzt eXp(Zi,t(p;k,t)Te*)]l(pf,t < x;,rtev) < ZieSt Vit exp(ﬂ;t)
i€s; I+ Zjest* exp(zj,t(p;,t)—ro*)]l(p;,t § xztev) 1+ ZiGSt eXp(Ufi,t)

14
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and

Z pirexp(zi(pie) " 0%)L(piy < x,0,) _ Yies, Uiy exp(uf ;)
1+ 5cs, exp(2e(pj) T0) Lpje < f,00) 143 cq, exp(uf,)

)

1€S:

Proof First, we provide a proof for the inequality in this lemma. We define A} = {i € S} : Pie <

v;,1}. We observe that A} = argmaxgc(n}s/<k % Then, from Lemma A.3 in

Agrawal et al|(2017a) and u; ; < u; ¢+ from Lemmam we can show that

Dicar Proexp(uie) i ar Piy exp(Uit)

< . (13)
L+ iear exp(uie) = 1+ 3 50 40 exp(Tie)
From the above, under F;, we have
R(S5,p?) ZieA; p;t exp(um) Z,‘EA; p;t exp (s ¢ ) ZieA;‘ Vit exp(ﬂ“)
3 y P ) = =~ — = —
P ek p () L+ Yoear oxp(ne) 1+ 3 ear exD(0)
ZieA; Uy,¢ exp(TUi,t) ZiESt Uy, exp(Us,¢)
< — < —, (14)
1+ iear exp(Wie) = 14 e, exp(Tit)

where the first inequality is obtained from (T3)), the second last inequality is obtained from v; ; < U; ;
from Lemmal[I] and the last inequality is obtained from the policy 7 of constructing .S;. Then from
the definition of S, as in Lemma H.2 in|[Lee & Oh|(2024), we can show that

> ies, Vit €xp(Ui,t) < > ics, Uit exp(T; )
L+ s, exp(@ie) — 14> s, exp(T; ;)

15)

Here we provide a proof for the equation in this lemma. Since p;; = y;ft from the policy 7 and
y:t < v from Lemma we have

ZZESt j_t eXp(u]z?,t)]l(Qi_t < Vi) _ Ezest j_t exp(u; ,t)
1+ ies, exP(“?t)]l(Q:t <wig) 14 Dies, exp(u,)

5 )

Rt(Stvpt) = 9 (16)

which concludes the proof.

From (12) and Lemma[2] under E;, we have
Ri(S7,p7) — Re(St. )
pltexp it (pi, )TQ*) (p%ft < xz‘T,tov)
B ZGZS* 1+ Z]es* exp(2,¢(pj,e) T0*)1 (p;t < ij,tev)
piexp(zie(pie) 0% L(pix < 2/ ,0,)
- Z 1+ Zjest exp(25,¢(pj,e) T0*) L(pje < ij,tev)

p
7

1E€ES

ZzESt Vit exp(ﬂ;,t) ZZGSt ;rt eXp(u

T Y, ep(T,)

_ ZieSt Vit eXP(EQ,t) Zlest 7;’_,: exp(T. it
)

14 Zigst eXp(ﬁ;,t I+ Zzes, exp(T; it

t
1+ 2 ies, oxp(ug,

—/
’L

ZiESt Qtt eXP(ﬂ;,t) _ Ziest Qi_t eXP(uf,t)
1+ Ziest exp(ﬁ;yt) 1+ Ziest exp(uit)
)

)
)
)

_|_
)
To obtain a bound for the above, we provide the following lemmas.
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Lemma 3 Fort > 0, under E; we have

ZieSt Vit exp(ﬂ;t) Z’LGSt ;rt exp( ,t) -0 (5 max ||z )
— — = ¢
L4+ s, exp(@y) 1+ s, exp(T;,) T’ v

Proof For7 > 0andt, <t <t,41 — 1, under E;, we have

Vi = iy = @], 000 — 210, () + (VC + 1B zill
= 2,000 — @00 + &1,00 — 2,0, () + (VO + 1)Br, @il -2
= a0, "0 =22, "0 + 20,7 0" — 20, + (VO +1)Br il
< N6 = 0"z, 13l o+ 18s, = 0"l 28| g1+ (VO + 1B |l -

det(Ht) ~ % °
S ﬁn”xi,tHH; + m”atf — 0 u,, ”‘ri,tHH:l +(VC + 1)5n||$z‘,t|\H;;

< 2(\/5+ 1)67} HIZ,tHH;%a

where the second inequality is obtained from Lemma|[T4]

LetU; ¢ = zi4 (pi,t)T@‘\t. Using the above inequality, under E;, we have

Ziest Vit eXP(ﬂg,t) Ziest yj:t exp(ﬂ;7t) _ Ziest (Vi — Qj:t) exp(ﬂ;7t)
1+ Ziest eXP(ﬂg,f,) 1+ Ziest eXp(ﬂ;,t) B 1+ ZieSt exp(ﬂ;_’t)
< Dies, Wit —v;4) exp(T; ;)
N 1+ ZieSt eXP(EQ,t)
Y res, 20+ DB @il exp(a, )
1+ Eiest eXp(ﬂﬂt)
2(VC + 1)Br, max |l - (18)

Let Zi = 2i1(Pit) = Ejup, ; (15p0l25e(pi0)] and Ty = @iy —Ejop o (1500 [T5.]-
Lemma 4 Fort > 0, under E; we have

ZiESt yift exp(ﬂ;t) B ZieSt yift exp(uz?,t)
1+ ZiGSt exp(ﬂ;’t) 1+ ZieSt eXp(uf,t)

_ 2 =~ 2 ~ 2
—0( (HéaXIIzm(pm)HH 1+maXIIwztIIH 1)+ B (0 |23 [y 0+ 1 |21y o)

+6r Z .3, (119t pe) (|| Z -1+ ||5i,t||Hv})> .
1€ES ’
Proof The proof is provided in Appendix[A.6] [ |

In the below, we provide elliptical potential lemmas.
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Lemma 5

Zmax 222 (i), L(EL) < (4d/w)log(1 + (2TK/dN)),

Zmax”z”HH V(B < (4d/k) log(1 + (8TK/dN)),

ZZ 5, (150, pt) ||z“||H V1(Ey) < 4dlog(1 + (8TK/dN)).

t=11ieS;
Proof Define
G+(0y)
Z |St,pt Zzt(pzt)zzt(pzt) ]l<Et)
i€ESt
- Z Z +.0, ([ St, pt) th(j‘Stvpt>Zzt(pzt)Zj t(PJt) 1(Ey). (19)
i€Sy jES:

Then we first have

Gy(6r)
= Z P |St,pt Zi t(pz t)zz t(pz t) ]]-(Et)
1€St
= P, (6150 p0) Py g, (1St p) it (pint) 2.6 (ps.0) T 1(Ey)
1€S, JES
- Z tet( |St7pt)zzt(pzt)zzt(pzt) ]l(Et)
i€St
) Z > P, 5 (i1S6, )P, 5. (3150, ) (210 (i) 2.0 (i) T+ 250 (D) 200 (i) D) L(E)
1€St JES
Z t,0; ([ Sts )it (Pie) 2i,e (Ps, t) 1(E:)
1€ESt
-3 Z > P, 5 (i1Se,p1) P, 5 (310, pe) (2t (i) 2t (pie) | + 254 () 2.4 (ps.) 1) L(ER)
1ESt JES
= |St,pt Zzt(pzt)zzt(pzt) ]l(Et)
€St
- Z Z |St;pt tt‘)t j|Stapt)zl t(pz t)zz t(pz t) ]l(Et)
1€St JES:
= Z P, 5. (i[St, pt) Z P, 5,186, 0e) | 2ot (pie)zie(pie) T L(Ey)
i€Sy JES:
= Z P, 5 (i|S¢, pt) P, +.0, (iol St, )21 (Pit) Zie (pi) T 1(Ey)
1€S}
= Z HZi,t(pi,t)Zi,t(pi,t)T]l(Et)- 20)
i€S,

Define H] := A4 + Zi;ll éé(@) Then we have

Hi,y = H{+G(6;) = H + Z K2 (Di)zi(pie) | 1(Ey), (2D
1€ES

17
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which implies that

det(Hp,q) = det(Ht/‘f'ét(gt))

> det(Hj + Z kzit(pie)zie(pie)  1(Ey))
1€S}

= det(H;) det(Ig + Y kH, 2 4(pie) (H,*2i4(pis)) T1(E))
€Sy

= det(Hy)(1 + Z 'f||zi,t(Pi,t)H§J£—1l(Et))
1€S}

t
> det(Maq) H <1 +y n||zi,s(p,-,,s)||§ﬁ_111(ES))>

i€Ss

> \2d H (1 + max i 515 (1, I 1(Es )))

s=1

> )2 H (1 + maxn”zl s (i, S)HH/ 1 L(E; ))) . (22)

s=1

Since p;; = yj:t < v < 1 under E;, we have ||z +(pi)[|3 < (|lzisll2 + |witl2)? < 4. Then
under F, from the above inequality, A > 4, and 0 < k < 1, using the fact that z < 2log(1 + z)
for any € [0,1] and x max;es, ”Zi,t(pi,t)HiItffl]l(Et) < maxies, |26, (pie) [3L(E) /A < 1, we

have

Z fimatzlt(p”)HH, (B <2 Z log (1 + ﬁmaXHz”(plt)HH, Jl(Et)>

te[T) te([T]

=2log [] (l—l—lﬁmaXszt(p”)HH, 1]1(Et)>

te[T]

det(H!
< 2log (G(AQ;“)) . (23)

Using Lemrna S| < K, H] < Aoq+3""2} 2 (i) 215 (is) T1(EY),
Ey, and z; +(pi+) € R??, we can show that

i.t(Pit)]]2 < 2 under

det(Hyy1) < (A + (2TK/d))*

Then from the above inequality, (23), and using the fact that 0 < H; < H; from G;(6) > 0, we can
conclude

Zmaxnzm(pm)uH V(B < Z aXszt p“)||H, V1(Ey) < (4d/k)log(1 + (2T K /dN)).

18



Published as a conference paper at ICLR 2025

Now we provide a proof for the second inequality of this lemma. Let x;,; = 04 and w;,; = Oq4
which implies z;,,; = 024. Then we have

Gi(6r)
= ZP |St,pt Zi t(pz t)Zz t(pz t) IL(Et)
i€St
- Z Z P, 5.(ilSe, ) P, 5, (j1Sts p) i (pi,e) 25, (y, 1) L(E)
1€Sy jES:

= Z P ‘Supt Zz t(pz t)zz t(Pz t) ]]-(Et)

1€St

- Z Z Ptg,f(|Stapt)Pt7§t(j‘Stapt)zi,t(pi,t)zj,t(pj,t)TIL(Et)

i€StU{io} j€S:U{io}
=Einp, 5 (15000 700 (Pit) 2, #(pie) TJL(EY) — ]EiNPt,ét('|5t71’t>[Zi’t(pi’t)]EiNPtﬁt("S""pt)[Zi’t(pi’t)]T]l(Et)

=Eiwp,; (- 150p0) [Zi %0 ) 1(Ey)

Z \St,]?t Zi tZz t]]-(Et)
1€Sy

=Y KZiz1(E). (24)
1€ESY

Define H] := A4 + Zt R 9\ ). Then by following the same proof steps of the first inequality
of this lemma, we can show that

det(H! /\M L+ rmax Zisll 1 1(Es (25)
t+1 Hg

s=1

Since, under E;, we have ||z;.+(pit)|l2 < ||zitll2 + |wiel|2 < 2 implying that ||Z; +||3 < 16. Then,
from the above inequality and A > 16, using the fact that x < 2log(1 + z) for any = € [0,1] and
K max;egs, ||Ei’t||il,_1]l(Et) < max;eg, ||Zi¢]|31(E;) /A < 1, we have

> nmaXHZMHH, I(E) <2 log (1 Jrl{maXHZMHH, 1]l(Et)>
te[T] te[T)

= 2log H <1+mmax|z”||H, JL(Et))

te(T)

det(H!
< 2log (egmjﬂ)) . (26)

Since we have det(H;, ;) < (A + (8TK/d))?>@ and 0 < H; < H,, from the above inequality and
(26), we can conclude

T T
ZmaXHZMHH (B < Z aXsztHH, VI(Ey) < (4d/k) log(1 + (8TK/dN)).

19
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Now we provide a proof for the third inequality in this lemma. Then we have

Gi(6r)
Z |Sf,pf Zi t(pz f)zv t(Pz t) H(Et)
1€S}

- Z Z P, 5, (i1t 00) P, 5, (316 06) 2t (i ) 2,6 (Dj0) T 1(Ey)

1€S jES:

Z |St7pt Zi t(pz t)Zz t(pz t) ]]-(Et)

i€S}
- Z Z P, 5,(ilSe, pt) tg(J|Stvpt)zlt(pzt)zjt(p]t) 1(E;)

i€SUfio} j€S:U{io}
=Eiwp, 5 (15000 200 (Pit) 20 (pi, 0) T11(Ey)
~Einp, 5, (15000 Zit (P Binp, 5 (15000 (21t (0i0)] 1(E)
=Eiwp,; (- |sf,p,)[zz 12| 1(Ey)
Z (i1, p0) % tz”]l(Et) (27)

i€St

Define H] := A4 + Zi;ll G, (55) Then by following the same proof steps, we can show that

det(H/,;) > (2) 2dH <1+ > P, 5 (ilSe, ps)|Zisll -1 L(Es )) (28)

1€S,

Since, under Ey, we have ||z; 1 (pi¢)ll2 < ||Zitll2 + ||wiell2 < 2 implying that HE”H% < 16. Then,
from the above inequality and A > 16, using the fact that © < 2log(1 + z) for any = € [0,1] and
ies, P, 3, (i|St, pe) || Z: VL(Ey) < maxges, ||Zi4]|31(E:) /A < 1, we have

2
H,~

SN P, 3. (i|5t7pt)||5i,t||§{;—1l(Et) <2 ) log <1 +> Pt,gt(ﬂst,pt)lgi,t”?{;1]]-(Et)>

te[T]1€St te(T) 1E€St
=2log H <1+ZP (i|St, pe) |2, t||H/ 11(Et)>
te[T] 1€St
det(Hy,,)
< 2log (}\Qd .
(29)

Since we have det(H/, ;) < (A + (8TK/d))?** and 0 < H; < H,, from the above inequality and

(29), we can conclude

T
ZZ |St,pt ‘Zz tHH/ 1]].(Et)
€St

og(1l+ (8T K/dN)).

Z Z t 0t |Stupt

t=11€S;

| /\
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Lemma 6

T
D max|zielf -1 < (2d/k)log(1 + (TK/dN)),
P 1€ESy v,t
T
> max P, 5 (S, po)@i.dll .y < 2d0og(1 + (TK/dN)),
t=1 f ’
T
" max P, 5, (i1e, pe) [Fial 1 < 2d10g(1 + (ATK/aN).
=1 ="t v
Proof By following proof steps in Lemmal6] we can prove the inequalities. |

Here we provide a lemma regarding the probability of the good event E;. We define

Bt =n(6log(1+ (K +1)t) +6) ng +2V\ log (2T + 20T?) + 16 (log(2MT2))2> +4n

+2nV6edlog(1 + (£ +1)/2)) + 16

and for 7 > 1,
1
B741 = n(6log(1 + (K +1)t) + 6) <1ZA + 2V \log (2v1 + 2tT?) + 16 (1og(2MT2))2> + 4
+ 2nvV6edlog(1 + (t+ 1)/2)) + B2.

Lemma 7 Letc = 2n, A > max{192v/2n, 84dn}, and n = 1 log(K + 1)+ 3. Thenfor 1 <t < t,,

we have )
P(E,)>1-— T2
andfort > 2andt, +1 <t <t,1, we have
1
P(E{E: ) >1— ek
Proof The proof is provided in Appendix [A.7
[ |
Lemma 8 9
P(Er)>1-— T

Proof Recall B, = {||§S — 0*||lg. < Bs,Vs < t}. For the time step t, + 1 < ¢ < t,4; for
7> 2,since By C Es,...,C Er, from Lemmawe have P(EL|E, ) = P(E:)/P(E:,) > 1 — %
implying P(E;) > (1 — 25 ) P(E,,). Likewise, we have P(E; ) > (1 — 2 ) P(E;,_,). We also
have P(Ey) > 1 — 7 for 1 < t < ts.

Therefore, from 7 < T', we can obtain

P(Er) > (1 - ;2) P(E,, ) > (1 - T12>T_1 P(E,,) > (1 - ;)T

Let X = (1— %)T By using the fact that 1 — 1 <log(z) <« — 1 for z > 0, we have

1 1 -T
X—lzlog(X)=T10g<1—Tg)ZT(l_l 1>:T2—1’

— 72
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ellS

which conclude that P(Er) > 1 — =~ >1—
|

Now we provide a bound for the total number of estimation updates, 7. Using Lemma[I3] under
Er, with ||z ¢(pit)||2 < 2 and 2; ¢(p; +) € R??, we can show that det(Hry1) < (A+ (2TK/d))??.
Therefore, from the update procedure in the algorithm, 77 satisfies 27 < 2(A+(TK/ 2d))24, which
implies 77 = O(dlog(T'K)). Then we have

E[Brr] = E[Br, | Er]P(ET) + E[B-, | ET]P(ET)
< Cydy/log(KT) log(T) log(K) + E|B,.| E{]P(ES,)
< Cydy/log(KT)log(T) log(K) + CyVdT log(T) log(K)(2/T)
= 0(d), (30)

where the second inequality is obtained from ]P’(E:Cp) < % and 7 < T'. Likewise, we have

E[8,] = E[57, |Er]P(Er) + E[52, | EZ]P(ET)
< Cid*log(KT)log(T)? log(K)? + E[57, | EF]P(EY,)
< Cid*log(KT)log(T)?log(K)? + C3dT log(T)? log(K)*(2/T)
= O(d?), (31)

Then from Lemmas [3| @} 5} [8} and (T7), (30), (1)), using the fact that E{ C Ef,...,C Ef, we
obtain

R™(T) = Y E[Ri(S;,p;) — Re(S, pe)]

te[T)
= Z E[(R:(S;,p;) — Re(Se,pe))1(EL)] + Z E[(R,(S},pt) — Ri(Si, pe))1(ES)]
te[T) (1]
< " B[RS} 5) — Re(Se.p))LE)] + Y P(E5)
te(T) ‘1]
_ _ ' + ,
<) E Zoics, Din ODWut) _ s PN )y )| oy
te[T] L4 2 ies, oxp(@ie) 1+ s, exp(ug,)
< Z E Lics, Uit eXp(?i’t) Z'lGSf v exp(Uiye)
te[T] L+ Ziesf exp(ui’t) L+ ZzGSt exp( Us, t)

ZlESt ;"texp( )_ ZzES, :_texp(u?,t)

1(E
T+ 3ores, oxp(iss) 1+zies,,exp<uf,t>> (Er)

+ +0(1)
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=0 |E|br Z (maxx”HH Lt Z t,0 (ilSe, pe) (Hii,t”HUj,} + ”zi,tHHtl)) 1(Et)

te(T) i€St

2 2 2 ~ 2 ~ 2
+E 77§j(ggﬂmﬁmﬁ+gg§Zm@mmm1+ggW%Mm;+ggﬁamml>M&)

for B [ D0 > P il p) %

te[T te[T) €St
d 2
> >rp ARG ) ||l“thH—1 + > >P .4, (1St pe) szt”H—l 1(Et) +;E[ ]
te[T)i€St te[T) i€St

-0 (&l |vaTTn+ £
=0 (df‘/Q\/er Cf:) :

A.3 PROOF OF THEOREM[2|

Let 7, be the value of 7 at time ¢ according to the update procedure in the algorithm. We first define

event I, = {H@‘\S — 0*||g, < Br.,Vs < t}. Then we can observe Er C Ep_q,...,C E; and
P(Er) > 1—1/T from Lemma From Lemma ] under E;, we have

vy < v (32)

We let v; = [, +/8dlog(Mt) and filtration F;_; be the o-algebra generated by random variables
before time ¢. In the following, we provide a lemma for error bounds of TS indexes.

Lemma 9 For any given JF;_1, with probability at least 1 — O(1/t2), for all i € [N], we have

[ie = 0ol < Vel zill -1 and [Tie — zie(pie) "0e] < 8C(|zi(Pie)ll -1 + @il gr-1)-

Proof We can show this lemma by adopting proof techniques of Lemma 10 in/Oh & Iyengar|(2019).
We first provide a proof of the first inequality in this lemma. Given F;_;, Gaussian random variable

m) _ A(m)
z, tev ¢ has mean z; tet and standard deviation £, ||z, || p-1- Let m/ = argmax,, ¢y ] 0,7 .

Then we have

|n£I€l?])\}} Z;, te _xz te ‘ - ‘xz t(9 975)'

— ] H, P HY2 ) — 6,)]
< Brlwiall 1 185 HLE O = 0

1/2 5(m n
< Brllziallgy max 187 HUY 0 = 802

:Bn|

in H&),mHQv

where each element in &, ,, is a standard normal random variable, which concludes the proof of
the last inequality in this lemma from max,,e[ar] [|§v,m |2 < \/4dlog(Mt) with probability at least

1
1- 4.
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Now we provide a proof for the second inequality in this lemma. Let m* = arg max,,, ¢ ;c[téﬁ”“
Then we have

| max Zz‘,t(pi,t)Tgt(m) — Zz‘,t(pz‘,t)Tat + 8CTi 4

me([M]
< Jzi(pie) "B —8,)| + 80|x?t<5(i” '~ 8,.)]
= |2ie(pi) TH, PHP O 8|+ 8C)e ] Hy P HIZ O — 0,0

v,t

< V2Br, 124 (pi) | g 1 (V28Br,) ™ 1H1/2<em> 00)ll2 + 8CBr, |will 11187 HLYP 07 = 010)

< V2B lziapin) gy e V28:) 7 H P 07 = 612

+ 8C e il -y o 1871 HIE 037 = Bz

= \[ﬁn | 2i.¢ (i, t)HH 1 max [€mll2 + 8CBr, ||, tHH L mmf[il\}fl] 1€0,m ll2,

where each element in &, and &, ,, is a standard normal random variable. We use the fact that
[€mll2 < +/8dlog(t) and [|€yml2 < \/4dlog(t) with probability at least 1 — 2. By using union
bound for all m € [M], with probability at least 1 — O(1/t?), we have

T H(m) To.
iy i) =) O

< 8Cu(l2ie i) L1 + liall ),
which concludes the proof.

For notation simplicity, we use uf, = z; ¢(p; ) ' 0*. We define A7 = {i € S} : p;, <wiy}. Asin
(T4) and (T6), under E;, we have

Ry(S/,py) — Re(St,pt)

_ ZZEA* Pit exp(u,¢) Zz’esf texp(uit)l(yit < i)

1+ Dicar exp(uiy) 1+ >ies, exp(ul )1(vf, < wiy)

< ZieA;‘ Vi, ¢ exp(Uiy) ZzESt z+t eXP(“f,t)]l(Q:t < vit)

— 1+ ZieA* exp(uiy) 1+ Yies, exp(uft)]l(yj’t < wit)

_ D iea; Vit exp(uir) Zzest v, exp(uf,) (33)
14 ZieA* exp(u;, D 1+ Y ies, exp(uy ;)

In what follows, we provide several definitions of sets and events for the analysis of Thompson sam-
pling. Regarding the valuation, we first define ¥; ;(©,) = max,,c[ a:It&(}m) for ©, = {8{™ €
R?},,¢(ar) and define sets

évyt = {@U € R*XM .

0.4(00) = 27, 00| < lliell o1 Vi€ [N}} and

0, = {@ e RYM : 5,4(0©) > v, Vi € [N}} neo,.

Then we define event E,, ; = {{5§f’t‘)}me[M] € é;t}

Regarding the utility, we define w;+(0,,0,) = max,,e[nm] ziyt(pi,t)TO(m) +
maxep Zit (pie) T (08 = 8,) for ©, = {90™) € B>}, c1ap and ©,, = {8™ € R} e as

24
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and define sets
0, = {@ x 0, € R2M  RXM . 37, (0,,,0,) — zi}t(pi,t)TaZ’

< 8Culsapelg + losally) i € V]

and O = {@ X 0, € R2M 5 RIM . 31 (0,,0,) > u, Vi € [N]} N o,

Then we define event £, ; = {{ 5 ™) Fmelan X {0:]? Yme € ©)}. For the ease of presentation, we

define Et Ev 4N Eu ¢. In the following, we provide a lemma that will be used for following regret
analysis. Let Z;,y = 24(piy) — Ejnp, 5 C1sepo[Zie(pid)] and Ziy = @i = Bjop, o (15,90 [Tit].

Lemma 10 Fort € [T, under Eu,t and E;, we have

sup ZieSt Ei,t exp(ﬂi,t) B ZzESt j—t exp( (Guv ev))
O, xX0,€0, 1+ ZiESt eXp(ai,t) 1+ ZieSt eXp( Uq,t (@ua 971))

_ 2 ol V(12 2 2 ~ 2 ~ 2
= 0(% (e [122,¢ (pie )|y 0 + rgé%,fllxz,tll 21 % (a2 el + max [Tl 1)

+v% > P 7, (lSe, p) (117,

1ES

)+ e el )

Proof We define @} , = z;¢(pis) 0" + 9ICYe(llzi¢(Pie )l -2 + l|@iell r-1). Then from B, and
FE;, we have ’
Ui < 23 (pie) "0 + 80 (210 (pi) | g1+ il gr2)
< zit(pi, )TG* + Br Nl zi (ps, t)HH L SC%(szt(pz t)HH 1 [l t”H )

< ui’t.

From the definition of Sy, we have v; ; > 0 for ¢ € S;. This is because if v; ; < 0 for some ¢ € [N]
then i ¢ S;. Then as in (I3), we can show that

Ziest U exp(Ui ) - Ziest Vst exp(ﬂ’i’t)
143 s, exp(Uie) — 1+ 3 s, exp(u;,)

Then we have
ZiESt 0y, €xp(; 1) ZieS’t %rt exp (Ui, i(Ou, Oy)
1+ Eies eXp(ul ) 1+ EzeSt eXp(ul (04, 0y)

ZZESt Vit exp( iyt EiESt 1t exp(
T+ e, exp(ui,) 14 ZlES exp(u.
p( (

~ | ~—

~!
Z

)
v)

§

it

, 0,
,0
n > ics, Vit exp(u;,t) Zies,, Q:t exp(t;,t(Ou, Oy))

) +(Oy
) (O
ZzeS’t Vi, €X u; t) Zies, ;1 €Xp u;,t)
1+ Zzest exp(u; t) 1+ Zzest exp(u; t)

(34)

We define u; ;, = zi7t(pi7t)T§t. Then, for the first two terms in the above, we have

25
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Ziest Vit exp(ﬁ/i,t) B ZieSt Qj,_t exp(ﬂg’t) _ X:iest (Uit — yi_t) eXP(ag,t)
I+ ZiESt exp(ﬂ;t) 1+ Ziest exp(ﬂ;t) B 1+ Zz’est exp(ﬂ;,t)
< Ziest (Vit — Qz‘,t) exp(ﬁ;t) < Ziest(wi,t - x;"t@\ , z—'l,—t/\v,t - Qi,t|) exp(ﬁ;t)
- L+ es, exp(u;,) N L+ es, exp(u] ;)
Ziest (v + ﬂt)”ﬂfi,t”[{;i eXp(ﬁ;,t) Ziest Q’Yt”zi,t”iji exp(ﬂ;’t)

= 2 < — < 2y max || T ¢ || g-1-
T+ S, oxp(aL,) 1+ Sres, oxp(aL,) o |2l gy 2

(35)

For the latter two terms in (34), by following the same proof technique i in Lemma M] and using
the fact that [u] , — Ui ¢(Ou, 0,)] < [u], — zit(pit) " 0t| + |z”(pzt) 6, — Ui 1(Oy,0y)| =
O('yt(\|zi7t(pi7t)||H;1 + ||l’i7t||H7})) from E, and ©, x ©, € O, with 8, < 7;, we can show
that

sup
0.x0,€0,

Pies, Liaexp(U,) s, viy exp(Uit(Ou, ©0))
1+ ZiESt exp(ﬂ;)t) 1+ Ziest exp(aiyt(@ua 61;))

—0<% (e 2,0 (pio) 17y -0+ mac a7 —0) 497 (e [ Zall7 -0+ max [Zel17:)

+,‘Yt Z at |St7pt (”Zz t”H 1+ ||.’:C,L tHH )) (36)
1€Sy
We can conclude the proof from (34), (33)), and (36). [ ]

Then, for a bound of instantaneous regret of @), we have

ZieA?‘ Vit exp(Ui,¢ ) > ies, th eXp(Uf,t) 1(Ey) | F
T+ e exp(uie) 142 cs, exp(uj ;) ! =1

)

E|E

ZzeA* V4,1 €XP( Uit dics v+t exp

T (u
<E|E nf
- (1 + Zlem exp(u; ¢ in

p(

0.x0,€8, SCINISI<k 1+ Y ics €XD

A*vitex Uit

(s
(s

inf 2ies 7z+t exp (it (O,
(w

6.x0,e8, SCINMSI<k 1+ Zles exp(u; ¢

s

14 ZleA* exp(u; ¢

iz Vit exp(U; ¢

<E|E
- <1 + ZleA* exp(t; ¢

inf
0.x0,c0, 1 + Zles, exp

@
£
@
<

leA* V;.1 exp (Ui

1+ ZzeA* exp(U; ¢

)
)
)
)
)
)
)
)

(
inf Zzesf Uit exp(t; ¢
0.,x0,e0, 1 + Zzest exp(u;

<E _]E > ics, Vit exp(Uit)
B 1+ Dies, EXP(ai,t)

(u; ( 0,))
I Oux0,c0, 1 +Zzes exp (U ¢ (O, Oy))
I [ . F’J,L € (7 + explu; @uv ®U
=E |E sup ZZES‘ ! Xp(~’t) — Zzest it p(~7t( ) 1(E:) | Fi- 17Et
louxo,e0, \ 1+ 2ies, xP(Uie) 143 s, exp(Uii(Ou, 0y))

=0 (&[] (<2 oty o)+ 2y + el )

+7 Y P, 5, (1S, 1) W=l g + 1 Taell ) + e Illé%xmi,tﬂgvg)) L(Ey) | Fio1, B
1€Sy ¢ .
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_ 2 VAN 2 2 ~ 12 ~ 2
=0 (&[5 |32 s ) By + s )+ 220 By + a5 )

+’YtZ ., (]St pe) (||Ezt||H;

_ )+ yemax el oy | Foor, B, By
1€St

X P(Et|Et, ./rt_l)‘| )

_ 2 ) N2 2 2 =~ 112 =~ 2
=0 (E {E {% (a2, (pi.o) I+ + max el ) + i (max 12 el o+ max [Z. )
P(Et|rt1)D ,

(37)

% Y Py, (0180 p) (1 -
1€S}

ard) T e max |zl gt | Fir, B, By

where the first equality comes from the independency of E, given F;_1, the second inequality is
obtained from wu; ; < u;; under the event Ef and from the definition of S, the third inequality is
obtained from the fact that v ;< v " under Et, the third last equality is obtained from Lemma

and the last equality comes from independence between E; and Et given Fi_1.

We provide a lemma below for further analysis.

Lemma 11 Forall t € [T, we have

1
P(,ﬁi’t > Vit and ,ﬁi,t > (U Vi € [N] | -7:t717 Et) >

= 4/er’

Proof Given F;_1, 7, 01(,77;) follows Gaussian distribution with mean z/,0, ; and standard deviation
Br.||i,¢|| ;-1 - Then we have
. ’ v, t

P | max xztﬂf,t) > a0, Vi € [N]|Fi_1, B
me[M]
1- NP (x:tgl(,nz) < xl0,Vm e [M]\]-},hEt)

T )
xi,tev - xi’tov,t

>1—-NP| Z,, <
< Boni,tHHUji

Vm S [M”-thlv Et>

>1-NP(z <)M

where Z,,, and Z are standard normal random variables. Likewise, we have

P < max Zi,t(pi_t)Tgﬁml) +8C max (z; 01()";2) - 01) ) > zit(py t)TG* Vi € [N] ] ft_l,Et>
m1€[M] ' mo€[M]

- ( o Zia(pid) O +8C(@ [0 = 0 fua) 2 zia(wi,) 16" Vi € [N]| fE)

>1- NP (zi7t(pi,t)T§§m> +8C (21,0 — &l 000) < 2o (0}) 76" Vm € [M] | Fo, Et)
zi7t(pi,t)T§§m) — 2i4(pi) T O + SC(JUZtgf:Z) - xiT,té\wt)
< B, \/2Hzi,t(pi,t)||2 1t SC”xi,t”?{U—%
\/QHZzt Dit || 1 +SC||$i,t||2 -
/J’T,(Ilzit(pzt)HH 1 +?\FllwztllH )

Ta*

=1—- NP

2,4 (P} ) — Zia(pie) " b,
vm
= Bl tpit)lly-1 +2VC lwielly-1)

€ [M] | ]-'tl,Et>
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N PO e o

>1—-NP| Z,
Br. (216 ie) | 1 + 2V C i

Hv—;)

zit(Phy) 0" — Zi(pin) O
<
Br (lapi)ly s+ 2/Cllzaally )

Vm € [M} ‘./T‘.tfl,Et

Z’i7t(p;t>—r9* — zit(pit) " 0
ﬁ"'t(”’zi,t(pi,t)”‘/t—l + 2\/5||xi7tHVU_7t1)
>1-NP(Z <)M,

>1—-NP| Z, < Vm€[M]|ft71,Et

where the third last inequality is obtained from the fact that the variance of zi’t(pi7t)T§§m) —
Zit(pie) 0p +8C (], 0 — 2] ,0,) s B2 (2] 210 (pire) 12—+ 8Cl||%, ) and second last in-

equality is obtained from /2(a? + b?) > (a-+b), and the last inequality is obtained from w; ; < @, ¢
in Lemma|T]and independency for M samples.

Then using union bound, we have
P (05 > v and U ¢ > u; 4 Vi € [N]|Feo1, Ey)

>1-2NP(Z <1)M.
1

>1—-2N(1— M
- ( 4\/671')
-1

= 4\/er’

where the second last inequality is obtained from P(Z < 1) < 1 — 1/4\/em using

the anti-concentration of standard normal distribution, and the last inequality comes from
_ log 2N :

M=1T]1- m]. This concludes the proof. [ |

From Lemmas[9]and [T1} for ¢ > to for some constant ty > 0, we have
P(E,|Fi—1, Ey)
—P (az,t > w4, Ty > iy Vi € [N] and {07 Ve € Ousts 10 Ymeiary X {057 Ymea] € (:)t|]-}_1,Et)
=P (Wi > i, Vg > v Vi € [N]|Fio1, Ey)
—P (1057 hmean & Ou A0 bmeqan) X {007 Ymeian) & Ol Fir, Er)
> 1/4v/er — O(1/t?)
> 1/8/er.

For simplicity of the proof, we ignore the time steps before (constant) ¢y, which does not affect our
final result. For simplicity, we also use

L, = vf(géasf [ max la-1) + vf(rgéasf IZi.el1% -+ + max 17215 -1)

7 Y Py, 150 p0) Izl g+ [ iell 1) + e max il s
i1€St " €5 v

Hence, we have
E[Le | Fio1 Bi) 2 E [Le | Foo, Bo By (B Fio1, By)

>E [Lt | Foor, By, Et} 1/8V/en. (38)
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With (37) and (38)), we have
(ZieAz Vi expuie)  Yies, viy eXp(”ﬂ)) 1B | ]__t_ll
L+ Yiea: exp(uig) 142, exp(ul,)
-0 (E [Lt | ]-'t_l,Et,Et] P(E; | ]-‘t_l))
— O(E[L; | For, B P(E; | Fi1)). (39)

E

Then from (33), 39), G0), 1) and Lemma[5}[6} B with . > E%_,,..., D Ef, we have

R™(T) =Y E[R(S;,p}) — Re(St,p)1(E)] + > B[Ri(Sf,p}) — RS, pi) L(EF)]
te[T) te[T)

ZieA;‘ ;e exp(uig) _ Ziest Q:t eXP(Uf,t)IL(Q:t <w ) 1(By)

U Yiear oxp(uie) 1+ e, exp(ul )1(v], < vig "

<) E + Y P[EF)]

te[T) te[T]
=0 | > E[E[L | Fi 1, B]P(E; | Fiy)]
te[T)
- O Z ]E Lt Et
te[T)
= 6 \[BTT\/i Z max ||£EZ t”?{ 1 + +f/6TT Z Z P |St7pt)
te[r) te[T] €S,
d2
tat( |5t,10t)||$zt||H 1+ M p .4, (]St pe) ||Zzt||H () ||+ ;E[BT%]
tG[T 7€St fE[T] 1€S}
d4
O ( BTT}d T/'%_‘_ Ii)

~ 4
:O<d2 T//Q—i—cli).

A.4 RANDOMNESS IN ACTIVATION FUNCTION

In this section, we study the case where there exists randomness in the activation function of C-
MNL. Let ¢; ; be a zero-mean random noise drawn from the range of [—c, ¢| for some 0 < ¢ < 1.
Then the noisy activation is modeled in C-MNL as

eXp(Zi,t(pi,t)Ta*)]]-(pi,t < (:cztﬁv +¢i)™)
1+ Ejest exp(zj,(pj,e) T0*)1(pje < (%Ttev + ¢t

ﬁt(ﬂstapt) =

A.4.1 ALGORITHM & REGRET ANALYSIS
Here we provide an algorithm (Algorithm 3 for the random activation C-MNL. The different part

from Algorithm is in pricing strategy such that p; ; = (v; , — ¢)T. The remaining parts are the
same.

Now we provide a regret bound of the algorithm in the following.

Theorem 3 Under Assumption[]] the policy m of Algorithm[3|achieves a regret bound of
R™(T) =0 (d VT + CT) .
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Algorithm 3 UCB-based Assortment-selection with Enhanced-LCB Pricing (UCBA-ELCBP)
Input: A\, 79, 8-, c

Init: 7 < 1,t1 < 1,@,,(1) — Od

fort=1,...,T do

Hy Mg+ "2 Go(0,) + nGi_1(0,_1) with (3)

H;, — Moy + 22_11 G, As) with (3))

Hyp Mg+ Y20 G 4(6,) with (3)

0, < argming e g¢(0;— 1)T9+ = 2110 — 0, 1||2 - with @) ; > Estimation

if det(H;) > 2det(H,_) then
T T+ 1Lt 1t

B 0, v,(r) <—9v7t (= 91‘1)

fori € [N]do
Vg 3,0, () — ‘/iﬁthi,t”H;j ; > LCB for valuation
pit + (v Vi~ o)t > Price selection w/ LCB
T xiﬁv)t + ﬁt||xi7t||H;1 ; > UCB for valuation

sy zi,t(pivt)—rﬁtJrﬂtHzi?t(pi’t)”H;l +2\/§5tllwi¢|lH;; +c;> UCB for utility

Ui, exp(Ui,¢) . .
Sy < argmaxgc|nj|s|<L 2ics m, > Assortment selection w/ UCB

Offer S, with prices p; = {p; + }ies,
Observe preference (purchase) feedback y; , € {0,1} fori € S,

Therefore, if we have ¢ = O(1/v/T), the regret bound in the above theorem becomes O(d2 \/T'/k)
same as that in Theorem [l for the case without the noise in activation functions.

Proof Here we provide only the different parts from the proof of Theorem | I Letvf, = (v;, — ¢)
and WS = 24 (pie) " 0% + 2v2B:, || 2.0 (ps, t)”H 1+ Q\fﬂﬂ Iz, t”H‘l + ¢. Then we can observe
that under Ey, p; s < vi¢ + (i ¢ and U; ¢ < ;. From (12) and Lemmal under E., we have

Ri(S),py) — Re(St. pe)
ZieSt Eiﬂf eXp(Eg(jt) ZzESt =i,t exp(u ) ZZESf =i,t exp(u ) _ ZleSf =i,t exp( )

T 14D s, exp(w) 1+ Dies, eXP(“i,t) L+ s, eXp(“z‘,t) L+ es, exp(u i,t)
(40)

By following the proof of Lemmas [3|and[4] under E; , we can show that

Dies, Uit exP(@)  Yies, Uit exp(Ui )
1+ ZiGSt eXp(ﬂ;,t) 1+ Zzest exp(T. ;t)

(a)

= 0 (82 e oy + 2 el i) -+ B sl 3 )

)

1+ ZieSt exp(ﬂ;’t) 1+ ZiGSt exp(uy ;)

s

Yies, Uit exp(@,) Ziest vit exp(uf,)

_ 2 ~ 2 ~ 2
= 0 (5 el )y o )+ 92 oy e )

+ﬁTtZ t,0, IStvpt (|~

1€ES

H! + ||§i,t||H;}) + C) .
Then by following the proof steps of Theorem [I] we can show that

R™(T)=0 <d5m+CT+ ij)
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A.5 EXTENSION TO RL WITH ONCE-PER-EPISODE FEEDBACK

In this section, we adopt the RL framework with once-per-episode preference feedback, as described
by (Chen et al.,2022; |Pacchiano et al.,[2021). The main difference from previous literature is that we
consider dynamic pricing to maximize revenue based on the model. Furthermore, we consider the
multinomial logit model for the preference model, which allows feedback among up to K options
rather than a duel between two options, which was considered in the previous work. In our model, an
agent proposes up to K different trajectories with prices for each trajectory, and the user purchases
at most one trajectory based on their preference.

A.5.1 PROBLEM STATEMENT

We consider T-episode, H-horizon RL (P, S, A, H, p) where S is a finite set of states, A is a set of
actions, IP(+|s, a) is the latent MDP transition probabilities given a state and action pair (s, a), H is
the length of an episode, p denotes the initial distribution over states. We denote a trajectory during
H steps as | = (s14,a1,0,.--,SH,,am,) € T where T is the set of all possible trajectories of
length H. Then at each time ¢, an agent selects a set of policies for sampling trajectory assortment
denoted as IT; = {m;; € II : i € [K;]} with 0 < K; < K where II is the set of all feasible
policies. Then a set of trajectories (assortment) is sampled from the transition probability under I1;
as Ty = {l; ~ Pt : 4 € [K;]} with Ty C T. At the same time, the agent prices each trajectory
l € T'; as p;; and suggests the trajectory assortment to a user.

We define an embedding function for a trajectory [ as ¢;(I) € R?. There is a latent parameter
0, € R<, and the valuation of each trajectory [ is defined as v;; = qbt(l)T@v > 0. For simplicity,
we consider ||¢;(1)]2 < 1 and ||0,]]2 < 1. Let p, :== {pi+ }ie7- Given I'; and p;, the user chooses
(purchases) a trajectory { € I'; by paying p;, ; according to the probability of the censored MNL as
follows:
exp(vi,e) L(pie < vi,e)

1+ Zl/er exp(vr o) L(pr s < wre)

It is allowed for the wuser to choose an outside option (lg) as P.(lo|T¢,pe) =
Ey In this extension of MDPs, we consider the nested MNL

1ery CXP(UL’,t)]l(PL’, <vp)”

model without a price-sensitivty. It is an open problem to consider a price-sensitivity in the MDP
setting.

(l|rt7pt)

We adopt the generalized function approximation for transition probability in |Chen et al.| (2022);
Ayoub et al.[(2020). For the latent state transition probability P, we consider that [P belongs to a given
transition set P. We define a set of functions V = {v : S — [0, 1]}. Then for the complexity of the
model class, we consider a generalized function approximation regarding the transition probablhty
suchthatf]pz{f:H]P’EPs.t.V(s,a,V)ESX.AXV,f(S,av [P(ds’ | s,a)v( } We
describe the concept of Eluder dimension introduced by Russo & Van Roy|(2013)).

Definition 2 (a-independent) Let F be a function class defined in X, and {x,1,24,...,2,} € X.
We say x € X is a-independent of {21, xa, ..., x, } with respect to F if there exists f1, fo € F such

that \/3 511 (Fi (i) = f2(2:))? < abut fi(z) — fo(2) > @

Definition 3 (Eluder Dimension) Suppose F is a function class defined in X, the o-Eluder di-
mension is the longest sequence {x1,Ta,...,x,} € X such that there exists &' > « where x; is
o/ -independent of {x1,...,x;—1} forall i € [n)].

By using the concept of Eluder dimension, we define dp = dim(Fp, ) to be the a-Eluder dimen-
sion of Fp. As described in (Chen et al.| (2022); |Ayoub et al.[ (2020), the generalized model includes
linear mixture models where dp = O(dlog(1/a)).

The expected revenue from trajectory [ is represented as R;,(I')) = pPor(ly =
IIT¢,pt). Then the overall expected revenue for the agent is formulated as R;(Il;,p;) =
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Ergprmemy [Dier Ri,¢(T)] . For notation simplicity, we use p = {p;}icr. Then we de-
fine an oracle policy under known P and 6§ regarding assortment and prices such that IIy €
arg maxpy . |< x Er~mr [maxo<y, <1 vier R¢(L', p)] . We can observe that given I', the optimal
price is pj, = v;,¢ for [ € I' from censored MNL. Then for II; and p;, the regret is defined as

R(T) = Z B[R (I}, p7)] — E[Ry (1T, pr)].
te(T]

Now we introduce regularity assumption and definition similar to the bandit setting.
Assumption 2 ||6, |2 < 1and ||¢:(1)|2 < 1foralll € T andt € [T)

exp(¢: (1) " 0)
1+Zl’ er eXP(‘fbt(l/)Te)
bility without the activation functions. Same as previous work for logistic and MNL bandit (Oh
& Iyengar, 2019} 2021} |Goyal & Perivier, 2021 |[Erginbas et al., 2023} [Faury et al.| [2020; |Abeille
et al.} 2021)), here we define a problem-dependent quantity regarding the non-linearlity of the MNL
structure as follows.

For the ease of presentation, we denote by P, o(I|T',p) = the choice proba-

K= inf Pl p) Py o (1o|T, p).
et pefanysop<r - 02T ) FLololl’.p)

A.5.2 ALGORITHM & REGRET ANALYSIS

For dealing with the activation function in MNL, we utilize LCB for the price strategy. The main
difference from the bandit setting is in selecting policy II; for suggesting trajectory assortment. For
the assortment strategy, we consider exploration not only for learning valuation but also for learning
transition probability. We describe our algorithm (Algorithm ) in what follows.

Let f;(0) := — Zlel“,,u{lo} Y11 log Pr o (1T, pe) where y; , € {0, 1} is observed preference feed-
back (1 denotes choice, otherwise 0) and define the gradient of the likelihood as
9:(0) = Vo fe(0) = Z(Pt,o(ﬂft,pt) = Yt) e (0). (41)
leT,

We also define gram matrices from V3 f ( ) as follows:

Z Py o(U|Se, pr) e (1) e (1) Z Pro(USe, pe) Pro(l'|Se,p)¢e(Den (1) T, (42)

lels Li'ely

Then we construct the estimator of 02 € R< for 6, from the online mirror descent within the range
of © = {0 € RY : ||0]]y < 1}. Let 8, = CyVdllog(T)log(K) and H; = My + Y'21 G (05)
for some constants C; > 0, A > 0. We first construct the lower conﬁdence bound (LCB) of the
valuation of trajectory [ as v; , = ¢4(1 )78, () — Brlloe(l )||H 1, where 9(7) = 6§, and t, is the
time step for 7-th update of the estimation for price. Then, for the LCB pricing strategy, we set the
price of trajectory ! using its LCB as p;; = y;ft. Furthermore, for constructing assortment policy,

we construct upper confidence bounds (UCB) for valuation v; ; as ;,, = qbt(l)T@\t + Belloe (D) o

Now we describe the procedure regarding latent transition probability. In our setting of pref-
erence feedback without reward information, we cannot calculate the value estimation for each
given state. To tackle this, we utilize the approach introduced in |Chen et al.| (2022). Given
Vn ni € 10, 1]'5 lfor 0 < n < t (to be specified), we estimate the transition probability as
Py = argmingep Y0y Sier, sy (Cacs P/(sl5n0 an ) Vani(s) = Vana(sninn)”. We
denote by N (F,a,| - ||o) the a-covering number of F in the sup-norm || - ||oo. Let Bp =
Colog(TN (Fp,1/THK, | - ||oc)) for some constant Cy > 0 and Bp; = {P' € P : Ly(P', ;) <

,B[p} whereLt(Pl,Pg) Z Zler Zh 1(<P1( |shl,ahl) PQ( |shl,ahl) Vnhl>) . Then for
VeV,seS aec A we construct a confidence bound for the transition probability as

bpi(s,a,V) = max Z (Py(s'|s,a) — Py(s'|s,a))V(s). 43)

Py,PoEBp,¢
1F2€08p.e T
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Then we define

Ving = argmax bp ¢ (sp,1, ang, V), (44)
Vev

which is similar to the reward-free exploration for MDPs in|Chen et al.[(2021)). Using the confidence
bound, we select a set of policies II; for sampling trajectory assortment I'; ~ P as follows:

H—1
Uy, exp(Ui,¢)
. ’ + bp.i(Shi,an1, Vi, .
z(Hzmexm S be(snrsans >>]

ler h=1

II, = argmax E

r~P, (1)
IV CIT: T | < K

We set 1) = 2 log(K + 1) + 3 and A = max{84dn, 192v/2n} for the algorithm. Then the algorithm
achieves the regret bound in the following theorem.

Algorithm 4 UCB-based Trajectory Assortment-selection with LCB Pricing (UCBTA-LCBP)

InplIt. )\ 7, /Bt’ /B]P’ N
Init: 7 < 1,¢; < 1,0, (1) < 0qg
fort=1,...,Tdo

Ht<—)\ld—|—Zi 11G s) with (@2)
Hy = My + Y2 ia( o)+ G (6i-1)
0, argmlnge@gt(ﬁt )0+ & ||9 0, 1||2 _, with @) ; > Estimation

if det(H;) > 2det(H; ) then
T T4+ 1t 1t
L 5(7) A @T
for € T do R
Vg £ ¢t(Z)T9(7) - 5t|\¢t(l)||v;1
Pit < Q:t

| e ()70 + &H@(DHV;I
t—1 2
]P’t <+ arg min Z Z Z (Z (s|shisani)Va,ni(s) — Vn7h’l(8h+17l)> with (@4)

PEP 1 Z1ier, h=1 S
Ht <
U1, exp(Ty,¢) =
t it
+ E bpt(Sh,is anis Vi,n)
h—1

H’er%:l][g’aIDS(KEFNPt(H/) l; (1 + Xver exp(Ur ¢) vith €3
Iy ~ P, > Trajectory assortment selection w/ UCB
Dit ylft foralll € I'y; > Price selection w/ LCB
Offer I, with prices p; = {p;; : { € T';} and observe y;, € {0,1} forl € 'y

Theorem 4 Under Assumption ) the policy m of AlgorithmH] achieves a regret bound of
R™(T) = O (ay/T/r + \/de KHT 1og(N (Fe, 1/THE, | [0)) ) -

Compared to the regret bound for the bandit setting, in MDP, there exists an additional term of
Vdp KHT log(N (Fp,1/THK, || - || )) regarding the latent transition probability.

A.5.3 PROOF OF REGRET BOUND IN THEOREME]

For the estimation of 6,, define event E {||9 — Oyllv. < Br.,¥s < t}. Then we have

P(E (Tl)) > 1-2/T from Lemma We also provide a confidence bound for the transition probability
in the following lemma.

Lemma 12 (Lemma A.2[Chen et al.|(2022)) With probability at least 1 — 1/T, forall t € [T,

(P, P,) = Z Z Z <Z S|Shi,an,) — t(5|5h,l;ah,l))Vn,h,l(5)> < Bp.

n=11€l; h=1 \s€S
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Define event B = {L,(P,P;) < fp, for all t € [T}, which holds with probability at least 1 —1/T
from the above lemma. Then we define E; = {Egl) nE®},

Lemma 13 Under E,, for any scalar function f(I') that depends on a trajectory set I" and satisfies
f(T) € [0,1) and for any policy set T1 C II with |I1| < K, we have

and

H-1
Esimprnpr(s) [ (D]=Ey _, popn( o D] < Z B mp i nBr (1) [Z be,t(Sh,is an,i, Viht)
mell h=1

H—1
Eslwp,rwﬁgl(%l)[f(F)]*Eswp,FNPHusl)[f(F)] < ZESINp,ZNPw(.\sl) [Z bp ¢ (Sh,1, an,i, Vi,n)
rell h=1

Proof Here we utilize some proof techniques in Lemma A.3 in|Chen et al.[(2022)) and Lemma B.1
in|Chatterji et al.|(2021). For given Ky < K, letT' = {l : k € [K;]}, T = {l : i < k < 5}, and
0% = {m :i < k < j}. We define P to be a trajectory distribution where s1 ~ p, the state-action
pairs up to the end of step & are drawn from @’r, and the state-action pairs from step h + 1 up until
the last step H are drawn from P”™. We let s; be a vector for the initial state for the trajectories of I
in which each element is i.i.d drawn from p. Then we have

ES]Np,FN]P’H(~|S1)[f(F)] - EslevllNﬁfl(,‘51)71"2:KtN]pH2:Kt (,‘Sl)[f(r)]

E

M=

SleallNP;,\jl_l7F2:KtNPH2:Kt('Isl)[f(r)] - Eslwp,llwﬂh;rl,FQ:KtN]P’HZ:Kt (.\sl)[f(r)]~ 45)

h=1

Let l;, = (s1,01,-..,5h,an). We also define 7y, 1 is a policy of my at step h. For the gap in the
above equation when i = 1,

]Eslwp,llwngl,F2¢Kt~PH2:Kt (<|sl)[f(F)] - ]Eslwp,lwﬂvfl,r2:Kt~PH2’Kt (-s1) [F ()]
= E51~pEllegl’F2:Kt ~prZKe (.|sl)[f(r)} - E51~pE11NPg1 ’F2:KtN]PJH2:Kt (,|Sl)[f(F)]
=0. (46)

Now we consider h > 2. For simplicity, we omit the expectation expression for s%:K ¢, which is the
initial state vector for I'2%Xt_and T'2*K* in what follows. Then we have

]El~PZLl LFI)] - E1~P;§1 [f(T)]
= ESINP’lh_W@;‘l (-|s1) [E1~P211 [f D) lh—1] = ElNle D) lh—1]]
= ]ES1~P7lh71~fP?Zrl (*]s1) [EShNP('\Sh—lvah—l) {Eah,wﬂh,l('lshvlh,—l) {]EZNH”Zl_l [f(r)”h*l’ Sh; ah]”

_Esh,"/ﬁlitC'Sh_l,ah_l) [Eah’vﬂ'h,l('\sh,lhfﬂ |:El~P:£1 [f(]'—‘)”hflv Sh, ah]:|:|]

S Bt BT (1) ll‘}lgg (P(s[sh—1,an—1) — Pe(s|sp—1,an—1))V(s)
seS

SE i BT () [I‘}lgg b]P’,t(ShlaahlaV)] , 47
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where the last inequality is obtained from E(). From (@3)), {#6), and [@7), we have

]Eslwp I‘~IPH(-|sl)[f(F)] - ]Eslwpyll,\,ﬁgl(.‘51)5F2:Kt~PH2:Kt (-]s1) [f(F)]

S By [A(0)] ~ Epops (D)
h=1
H

<D Bt BT (o [ (5h-1,an1)]
h=2

H
Esl’vlhl"@:l (-Is1) Z I‘?g\))( vat (Sh—l,h Ah—1,1, V)

IN

H-1
=E, 1B (fs1) E bet(8h,1, ants Vih,t)
h=1

From the above, we can show the following inequalities:

ES1~p’F~]P’“ |81)[ ( )] ]ESINP,IINP (|51)’F21Kt~PH2:Kt(.lsl)[f(r)]
rH—1 1

SE, BT (s1) be.t(Sh.1,ani, Vini) | s
[ h=1

Esle7llN@:1(,‘sl)7F2:Kt ~prZiEe [f(r)] - Esl,\,pJ"l:QN@{Ilﬁ(,|81)7F3:Kt,\,]p1‘133kt (-s1) [f(F)]
1 -

SESIN,;JN@?(~|S1) E bp e (Sh,is an,ts Vi) |
L h=1

EslNP7F1;Kt_1NﬁP$P1:Kt—1(.‘sl)JKtN]p"Kt [f(r)] - ESINPIN@?(.‘SI)U(F)}
H-1

SE, BT (s E be,t(Sn,1, an, Vin,i)

By summing the above inequalities, we have

H-1
Eslwp,FNPH(<|Sl)[f(r)]iEsleyf‘N@{[(.Lgl)[f(F)] < Z B mp i nBr ([51) [Z bp,t(Sh,1, an,i, Vin)
mell h=1

By following the same procedure, we can easily show that

)

H-1
B o (sl (D] =Esy wprapn(fsy Lf (D] < > By npinbr(lsy) [Z be,t(8h,1, ant, Vini)
mell h=1

which concludes the proof. u

We can show that 2=er % @®(0) 4 non-decreasing function with respect to v; € R as follows. We
1""2151* exp(vy)

fé) vy exp(v;) v} exp(vy)
< __uiexplvy) _ Y exp\v)
consider ’Ul for [ S I" such that v Ul Since d'ul 1 Zler exp(07) > O, we have 1 Zlel" exp(v1)
1),’Jr exp(vr)

T e () Let Uz/,t = ¢¢(1) "0, + 284 be (1 )HH;L Under E;, we can observe that v; ; < 7y,

IN
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vj . Then, from the above and Lemma we can show that

R,(II;,p;) =E *
(15 1) sivp PP (fs1) 1+Zzerexp(vz,t) ( Uz,t)]

= Eswp,rwn*(-\sl)

SE, s + blP’ Shis Qhl, Vil
510, PP (¢|51) _1+ZlereXP(vlt) Ce e t(sntant, Ven)
r _ H-1

Zz rUlteXP( lt)
<E I N o+ b Vi
Bl NI S T R Pt (Sh,ts ants Ven,t)
r _ _ H-1
2 ter Ut exp(v,¢)
<E Sy S — + bp.¢(Sh.1, an,t, Vini
s1~p, DB, (os1) _1+Zler‘ exp(Ty;,1) e t(snpsan, Vi)
r _ H-1
Z ULt exp(vl t)
S Eg mp, TPl (s1) 1 el — + 2bp 1 (Sh,1, @bty Viht)
+ 2 erexp(Uie) i o
Sier theesplof,)
S Eg mp, TPt (s1) £ & o 20p,t(Sh,1, anyts Vi) | s
+ > er exp(y] 7t) i

(48)

where the second equality is obtained from p; , = v; ¢, and the third last inequality is obtained from
the algorithm’s policy selection rule.

Since p;; = th from the algorithm and ylft < vy ¢ under E}, we have

Pier i exp(une) L) < i)
Re(Ie, pe) = By, wprmere (s ’ ’
1~p,I 7( I 1) 1 _|_ ZlEF eXp(Ul7t)]].( S Ul,t)
dler exp(u)
=Eg np TP (s 49
sip DB o) S exp(ury) ()

From (@8) and (@9), under E; we have
Ry(IT7, pr) — Re(Iy, py)

v exp(v] ) e vl exp(vre)
2ier Vi l/,t ter Ui Jrzz%m sns s Vi)
L+ er exp(vl’t) 1+ Zlef‘ exp(vi,i) e

S Eginp TP (sh)

Sier, vl exp(vy,) e, v exp(v
=Er, |7 N = +ZZ2th (Sh,ts@n,ts Vin,)
+ 2 er, exp(v,) 143, exp(v P
_Er, Zlerf ”Z cexp(v ,t) Zlert Q:t eXP(vl/,t) Zzert Qz,t eXp(vl/,t) B Zzer,, QlJ,rt exp(vy¢)
1+ ZZGF exp(v; t) 1+ Zlen exp(vfyt) I+ Zlel‘t exp(vlct) 1+ Zlel‘t exp(vi,t)
H—1
+ Er, Z Z 20p.¢(Sh,1, ahts Vi) (50)
€T, h=1

Let ¢y (1) = ¢4(1) — Eynp, 5, (|70 [0 (I')]. By following the proof steps in Lemmas and
with vy, — v, = O(B, ||¢t(l)||H;1), we can show that
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T

> E

t=1

L+ er, exp(y; t) 1+ er, exp(v; ;)

)

< Zlert ’Ull,-"t_ eXp(Ul/,t) Zler Ul t eXp(Ul/ ¢)

)

+

1+ Zler exp(v; t) I+ Zler exp(vy,¢)

1

ZZEFt ”l + exp(v] ,t) Zlel“ Ul +exp(v,¢) ) 1(E,)

T
-0 (ZE (22 (xR, + a3 012, )

+Br 37 Py, U p0) (160D + ||&5t<Z>H;1)) 1(E)

)

lely
=0 | BB VT [ max o],
te[T)
d
Hrr [ D P (UTepe) [ D Y P (e polloe)3- + 52,
te[T] el te[T] el
~ 3 ~( 3 a3
=0 (E[Br,] dT/n+; =0 |(d> T/n+; : (51

From (50) and (31) and Lemma[T8] we have

T
Z]E [(Re(I}, pf) — Re(Ile, pi) ) L(EY)]
=1
Zler Uﬁ‘ exp(vy ;) Zler vl+t exp(v
E — : S + 20p.¢ (5,1, an,1s Vin
t;{; <1 + e, exp(vl’,t) 142 er, exp(v lezl;t hz:l ! bat) | 1)

=0 (dg\/T/KJ—l— Vdp KHT log(N (Fp, 1/THEK, || - ||o0)) + Cf) .

From P(ES$.) = O(1/T) and E§ C ES, ..., C ES, we can conclude the proof by
T T
Y EUR(I, pp) — Re(Uep))L(E)] < Y P(EF) =
t=1 t=1

A.6 PROOF OF LEMMA [4]

+ exp(u;
Here we utilize some proof techniques in|Lee & Oh|(2024). Let Q(u) = % and uf =
i€5;

[uj , = i € S¢]. Then by applying a second-order Taylor expansion, there exists §; = (1 — c)uy + ¢ty
for some ¢ € (0, 1) such that

Ziest Q;,_t exp(ﬂ;t) _ Ziest Qz_t eXP(U?,t)
1+ ZieSt CXp(ﬂ(i,t) 1+ Zies exp(u ft)

=" ViQud) (@, , — ul ZZ Vi Qe Wy —uiy).  (52)

i€S 1651 JES:
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Let z;, ; = 04 and w;, ; = Oq implying 2;, + = 024. Then for the first order term in the above, we
have

Z viQ(u]tj)(ﬂ;,t - “];,t)

1€ES
= > o P )@, — ) = Y ol Pua(ul) Pra(uf) (@, — b )
€St 1,jES
= > VOB Pin () (120 (0i,0) | o + el 1)
1€Sy )
— > VOB P () Py () (125,09 | gt + e 1)
1,JESt
= Z 2\/56ty;ftpi’t(uf)
i€S}

% (zietse) o = 32 Proab) 5050l
JES:

> Palup)

JESt

H;i)

For the first two terms in the above, we have

||zi,t(pi,t)”Ht—1 - Z Pj’t(uij)”Zj,t(pj,t)HHt—l
JES:

— e idllg = 3 Pz

JjE€SU{io}
= ||Zz‘,t(Pi,t)||H;1 = Ejp, o+ C1S0p0) [sz,t(pj,t)HHt’l}
< Nzia i)l = B 1) (250 ®30)])

<

H;*

2it(Pist) = Bjup, oo (150,90 (25,6 (D4,0)] HH_l ;
t
where the first inequality is obtained from Jensen’s inequality and the last inequality is from ||a| =

lla — b+ b|| < |la— b|| + ||b]|. By following the proof steps in (H.1), (H.2), (H.3), and (H.4) in[Lee
& Oh|(2024), we can show that

Z Q:tpi,t(uf) ‘

2it(Pist) = Ejmp, e (150,p0) [Zj,t(pm)]H

i€S; H!
<Y Piud) ‘ zit(Pit) = Bjp, oo (150,p0) [256 (Pit)] ‘H,l
i€S: ¢

=0 <Bn rlnaXszt(pm)llH v+ Br, IinaXHZthH i+ P ISt,pt)Z-,tIIHt—1> )

1€St
where the first inequality is obtained from 0 < Q:rt < 1 under F;.

Then, likewise, we can show that

> vl Puad) {lwilg-r = D Pre(ud)llegel -

1€St JES
<Y Pia(uf) ‘ Tig = Ejnp, ou (1S0,00) [zj,t]HH,l
1ES vt
=0 (ﬁn Enax [E23 tHH 1 + Br, Enax 1z, t||H ! + Z .0, (i[St, pe) ||, tHH > :
1€ES:
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Putting the above results together, for the first-order term, we have

Z ViQ(ug) (W — wit)

1€ES

2 2 ~ 2 ~ 2
-0 (5 ma 2 (i) o i o) + B2, (e Bl o+ me [Tl )

+p-, Z P |St7pt (”Zz tHH—l + ”xz t||H—1)> . (53)

1€St

Now we provide a bound for the second order term. By following the proof steps in (H.6) in|Lee &
Oh|(2024) with 0 < v . < lunder E;, we can show that

5 E (@ — i) VigQE) (W, — i) = O <ﬂ3t (max ||z, ¢ (pie) |3, -1 + max fﬂi,tllfql)> :
iE€ES t 1€ESY v,t
1,jESt
(54)

Then we can conclude the proof by (32), (33), and (34).

A.7 PROOF OF LEMMA[7]

For 1 <t <ty — 1, since p; ; = 0 from the algorithm, we have y; ; ~ Py(-|S¢, p1) = P, 9*( |St,pt)
Then from Lemma 1 in|Lee & Oh|(2024), for 1 < ¢t < ¢5, we can show that P(E;) > 1 — =

Now, we provide a proof for the time steps ¢ +1 < ¢t < ¢4 for 7 > 2. We utilize the proof
procedure in Lemma 1 in|Lee & Oh|(2024). The main difference lies in focusing on the conditional
probability for a good event in our proof. Under E,_, for ¢, <t < ¢, — 1, since Vi < Vi, WE
have y; ; ~ Py(:|S¢, pt) = P9+ (:|St, pt). Then from Lemma F.1 in the previous work, we can show
that fort, +1 <t < t,4q, withn = %log(K +1)+3and A > 1, we have

t—1 t—1
10 — 0% |13, < 2n (Z fo(07) — f4(0 s+1)> + 10, = 0713, +96V20 Y (1041 — 0,113

s=t, s=t,

t—1 N N
= l0ss1 = Oal13, -
s=t,
(55)

Then from Lemmas 16| and [I7} for any ¢ > 0 with A > 84dn , we can show that with probability at
least 1 — 6,

D Fol87) = £s(Barn)

< (3log(1+ (K +1)t) +3) GZA +2vAlog (2V1 + 2t/5) + 16 (log(zm/(;)f) o
t—1

+ 210; Hé\s - §s+1\|qu + 2V/6cdlog(1 + (t+1)/2)). 56)

By setting ¢ = 2n and with A > 192\/577, we have

t—1 t—1
96v20 Y [uer — 0:)13 + (£ - 1) 2 e =Bl

s=t,

—96@2”95“—9”2 (f—l)ZnesH 0.2,

s=t, s=t,

AN o~ ~
< (90v20-5) 3 1.1 - Bl <o (57
s=t,
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where the first inequality comes from H = Alag. Set § = 1/T2. Then under E;_, from (53), (56),
(57), with probability at least 1 — 1/7"2, we obtain

16: — 073,

<n(6log(1 + (K +1)t) + 6) ng +2v X log (2V1 + 2(T?) + 16 (log(2MT2))2) + 4
+ 4nv/Bedlog(1 + (t+1)/2X) + (|6, — 6%,

< n(6log(l+ (K + 1)) +6) GZA +2V\log (2v1 + 2tT?) + 16 (1og(2mT2))2) an

+ dnV6edlog(1 + (t+1)/2)) + 62 = B2,.

Finally, we can conclude that, for 1 < ¢ < {9, we have P(E;) > 1 — T2’ and for 7 > 2 and
tr +1<t<t;41,wehave P(E:|E; ) > 1— %

A.8 NECESSARY LEMMAS

Lemma 14 (Lemma 12 in/Abbasi-Yadkori et al.| (2011)) Ler A, B, and C be positive semi-
definite matrices such that A = B + C'. Then we have
rT Az det(A)

< .
oz Bx = det(B)

Lemma 15 (Lemma 10 in /Abbasi-YadKori et al.| 2011)) Suppose X1, Xs,...,X; € R? and for
< L. LetVip1 =M + 22:1 XSXST for some \ > 0. Then we have

det(Vir1) < (A+tL?/d))".

We define oy (z) : RSt — RSt such that [0y (2)]; = %. We also denote the probability
j=1€XP{%j

m with 75 := 0. We define a pseudo-

inverse function of O’t() such that o(o+(p)) = p forany ¢ € {p € [0,1]%]|[p]1 < 1}. We
can observe that o7 : R — R where [0} (¢)]; = log(q;/(1 — ||q||1)) for any ¢ € {p €
[0,1]%¢|||p|l1 < 1}. We also define Zs = 0F (Eynp, [0s([2it (p”) wlies.)]) and P, = N (65, (1 +
cH; 1)) for a positive constant ¢ > 0. We define f;(z,y) = Z 1(yie) log([gt(z)] ). Then we
have the following lemmas.

of choosing the outside option as [0:(2)]o =

Lemma 16 (Lemma F.2 inLee & Oh|(2024)) Let§ € (0,1] and A > 1. ForT > 2and t; +1 <
t < tr41, under Ey_, with probability at least 1 — §, we have

i: fé(e*) - Zfs(zsvys)

=t s=1

< (3log(1 + (K 4 1)t) + 3) (EA + 2V )\ log (W) +16 (log (@))7 +2.

Lemma 17 (Lemma F.3 in|Lee & Oh|(2024)) For any ¢ > 0, let A\ > max{2,72cd}. For T > 2
andt; +1 <t <t.i1, under E;_, we have

t—1
Z fs(gsvys) - s s+1 = 20 Z ||9

s=t, s=t,

t+1
1 -
+\/6cdlog( + 3\ )
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Lemma 18 Under E?), we have

T
S bilsnrs anrs Vionir) = O (VA K HT 1og(TN (2, 1/THK, [ [c)) )

t=1r€l;

Proof We can show this proof by using Lemma D.6 in|Chen et al.| (2022)), Lemma 8 in|Ayoub et al.
(2020), and T < K. ]
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