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Abstract
Protein language models trained on raw amino
acid sequences have demonstrated impressive suc-
cess in various protein function prediction tasks.
One explanation for this success is that language
modeling for amino acid sequences captures the
local evolutionary fitness landscape and, there-
fore, encourages the models to extract rich in-
formation about the structure and function of a
protein. Yet, detecting distant evolutionary re-
lationships from sequences alone is a challenge.
In this work, we conduct a comprehensive study
examining the effects of training protein models
on nineteen types of expertly-curated function an-
notations in Swiss-Prot. We find that different
annotation types had varying effects on the qual-
ity of the learned representations, with some even
degrading the model’s performance. However, by
incorporating a carefully-selected subset of anno-
tation types, we are able to improve the model’s
function prediction performance. Notably, un-
like existing protein models, our approach either
matches or outperforms the widely-used bioin-
formatics tool BLAST in annotating previously
uncharacterized proteins.

1. Introduction
Advances in sequencing technologies have enabled the dis-
covery of over 250 million protein sequences. Despite this
wealth of sequence information, only a very small fraction
- less than 0.25% of the UniProt Knowledgebase (Consor-
tium, 2020) - have comprehensive and expertly-curated an-
notations describing their functions. Performing wet-lab ex-
periments to obtain functional annotations on such a massive
scale is simply not feasible due to prohibitive amounts of
time, money, and resources it would consume. As a result, it
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has become important to develop computational techniques
that can reliably transfer functional information from the
relatively tiny annotated subset to the astronomically larger
group of proteins whose functions remain uncharacterized.

The exponentially growing number of unannotated proteins
has inspired the development of protein language models
(PLMs) (Rives et al., 2021a; Lin et al., 2023a; Elnaggar
et al., 2021b). Similar to the language modelling approach
for human languages, PLMs are trained to learn a joint prob-
ability distribution over sequences of amino acids. This
approach necessitates the models to learn the mutation pat-
terns and evolutionary statistics of proteins. The underly-
ing premise is that by doing so, the models can link an
amino acid sequence to its three-dimensional structure and
functional characteristics based on the fundamental biologi-
cal rules of ”sequence→structure→function”. PLMs have
demonstrated remarkable success across a wide array of
protein-related tasks, including remote homology detection
(Rives et al., 2021a), prediction of secondary structures (Lin
et al., 2023a), enzyme commission number (Yu et al., 2023)
and affinity maturation (Hie et al., 2024).

Despite this success, it remains unclear if training on se-
quence information only is the optimal strategy to learn
generalizable biochemical principles that govern structure
and function (Vu et al., 2023). The relationship between
a protein’s amino acid sequence and its biochemical func-
tion can be complex and multi-layered. Crucial factors like
three-dimensional folding and molecular interactions can
substantially influence a protein’s functionality in ways that
may not be immediately evident from the sequence itself.
What’s more, the pretraining objective of PLMs focuses
on amino acids themselves, lacking broader contextual in-
formation about the protein as a whole. This “local-level”
pretraining approach may not optimally align with tasks
aimed at predicting protein function at a global level. There-
fore, leveraging additional types of data other than the amino
acid sequence could potentially enhance PLMs’ ability to
accurately predict protein functions.

Motivated by previous works that utilized function annota-
tions to improve protein representations (Xu et al., 2023;
Liu et al., 2023; Zhang et al., 2022; You et al., 2018), we
conduct a comprehensive study examining the effects of
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Improving Protein Representations with Text Annotations

training on nineteen types of expertly-curated functional an-
notations in Swiss-Prot. These annotations directly contain
the information about the fundamental functional properties
of proteins, such as their domain structures, family classi-
fications and binding sites. Our results show that different
types of annotations have highly variable impacts on the
quality of the learned representations. Strikingly, we dis-
covered that some annotation types actually hindered the
model’s performance. This implies that simply integrating
all available annotation data would potentially lead to sub-
optimal performance, which underscores the importance of
our study.

We then present a flexible fine-tuning framework, PAIR,
to improve the quality of protein representations with our
carefully-selected types of function annotations. PAIR em-
ploys a text decoder to direct the fine-tuning process of
the encoder, enabling the learned protein representations to
better align with the annotated functional information. Com-
pared with the previous works, our model is more straight-
forward and adaptable, capable of handling any type of text
annotations.

Our results have demonstrated that PAIR substantially im-
proves the representational quality of PLMs for function
predictions. Notably, we employed a temporal data split
on UniProtKB-Swiss-Prot to evaluate the representations’
predictive capabilities for uncharacterized proteins. We find
that PAIR outperforms the base PLM by over 10% across a
diverse range of nine function prediction tasks. Moreover,
PAIR exhibits strong generalization on the tasks absent from
its training data, which indicates PAIR learned generalizable
representations across different aspects of protein function.

In a comparison against BLAST (Altschul et al., 1990), the
de-facto sequence searching algorithm in bioinformatics,
PAIR either matches or surpasses BLAST across all tasks,
while all other PLMs we tested do worse. We also find
that PAIR demonstrates more substantial advantages over
BLAST when predicting the proteins with low sequence
similarity to the training set. Moreover, PAIR is more com-
putationally efficient than BLAST as we can pre-compute
and store the representations of the training set. We envision
that PAIR could be used as a useful computational tool to an-
notate uncharacterized proteins’ functions and also inspire
more effective pretraining strategies for protein language
models.

2. Related Work
2.1. Computational techniques for protein labelling

Detecting protein sequence homology using sequence simi-
larity is the standard approach to identifying functions that
are common between proteins. A common way to do so is
determining pairwise alignment across large sets of labeled

sequences to retrieve similar protein sequences to a query
using the Basic Local Alignment Search Tool (BLAST) algo-
rithm (Altschul et al., 1990). BLAST is a carefully-designed
heuristics-based algorithm that approximates the optimal
alignment between sequences. Other methods include Hid-
den Markov Models (HMMs)(Söding, 2005) and integrate
other information like protein family, amino acid compo-
sition and evolutionary information (Altschul et al., 1997;
Chou, 2005; Steinegger et al., 2019; Wang et al., 2017).
These methods are the state-of-the-art of classical represen-
tation methods. While they are reliable for proteins that have
high sequence similarity (> 25%), they struggle at remote
homology detection – accurate classification of sequences
that have low similarity to the current databases. This has
motivated the emergence of deep learning efforts (Kulmanov
et al., 2018; Hou et al., 2018; Almagro Armenteros et al.,
2017; Li et al., 2018; Ryu et al., 2019).

2.2. Protein language models

Recently, numerous studies on self-supervised learning on
large-scale protein sequences were reported in the literature
(Rives et al., 2021b; Elnaggar et al., 2021a; Alley et al.,
2019; Rao et al., 2019). Such works usually use exist-
ing language model architectures and training objectives
from natural language processing (NLP), and are therefore
frequently called protein language models (PLMs) (Un-
sal et al., 2022; Vu et al., 2023). The hope is that bio-
chemical and physicochemical principles that underlie se-
quence–structure–function relationships can be captured and
be used to predict the functional properties of proteins (Yu
et al., 2023; Radivojac et al., 2013; Rao et al., 2019; Unsal
et al., 2022; Xu et al., 2022).

2.3. Protein representation learning with text
annotations

In an effort to enrich the pretrained protein representations,
several works have augmented the training pipeline with
modalities such as natural language descriptions. A pioneer-
ing work is DeepText2GO, which uses abstracts from the
National Library of Medicine and homology information
together to predict GO annotations of protein sequences
(You et al., 2018). Another example is the OntoProtein
model, which jointly optimizes the embedding of the GO
knowledge graph, composed of text descriptions, and the
protein sequence embedding using contrastive learning dur-
ing pre-training (Zhang et al., 2022). Both works mentioned
are trained using a single source of annotations.

The work most closely related to ours is ProtST (Xu et al.,
2023). ProtST employs a combination of four training ob-
jectives: masked protein modeling, InfoNCE contrastive
loss, protein-to-text masked language modeling, and text-
to-protein masked language modeling. ProtST is trained
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ACTIVITY REGULATION
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Expressed
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45,240
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Up-regulated in
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as heat shock.

24,942
INDUCTION

Figure 1. Overview of annotation types in our training data. We parsed nineteen types of annotations from Swiss-Prot February 2023.
Each box contains the name of the annotation type, the number of proteins having that type, and an example underneath.

on four types of annotations: function, name, subcellular
location and family. In comparison to ProtST, our approach
offers three distinct advantages: 1) We leveraged the entire
Swiss-Prot database and trained on a more extensive set of
annotation types. 2) Our training loss formulation is sig-
nificantly simpler, while obtaining superior results. 3) We
conducted a more rigorous evaluation using a temporal data
split and held-out proteins.

3. Data
In order to collect high-quality annotations to train PAIR,
we created a database of canonical amino acid sequences
and function annotations from Swiss-Prot. We downloaded
the version of Swiss-Prot published in February 2023, which
contains annotations for 569,213 proteins with varying text
annotations, such as name, family and organism. In total,
we then parsed 19 types of annotations from Swiss-Prot as
shown in Figure 1. We deliberately held out the annotation
types enzyme commission number (EC) and Gene Ontology
(GO) from our training set to evaluate the model’s perfor-
mance on tasks it has not been trained on. The details of
how we parsed each category can be found in Section E.

Dataset split. We then generated a train/validation data
split based on sequence similarity, as random splitting could
give falsely high results if the same sequence (from e.g.
different organisms) exists in both training and validation,

making it harder to detect overfitting. For this, we obtained
the 2023-02 UniRef50 cluster centers with a member in
Swiss-Prot 2023-02. Then, we ran MMseqs21 on the cluster
centers using a similar search as in Lin et al. (2023b) with
a sequence similarity threshold of 10%: --min-seq-id
0.1 --alignment-mode 3 --max-seqs 300
-s 7 -c 0.8 --cov-mode 0. We randomly selected
10% of the resulting UniRef50 reference sequences and
generated the validation set by combining the members of
those UniRef50 clusters that were present in Swiss-Prot
2023-02. The remaining 90% of reference sequences were
used to create the training set in the same way. For the test
set, we used a temporal split by taking the proteins from the
Swiss-Prot January 2024 (2024-01) snapshot that had been
added since Swiss-Prot 2023-02. This was to mimic the
real-world setting of annotating newly discovered proteins.

4. Model
The core component of PAIR is a transformer-based encoder-
decoder model (Rothe et al., 2020), where the encoder takes
the amino acid sequence as the input and the decoder outputs
the associated text annotation. The encoder can be initial-
ized with pretrained protein encoders such as ESM (Rives
et al., 2021a; Lin et al., 2023a) and ProtT5 (Elnaggar et al.,
2021b), and the decoder can be initialized by language mod-

1https://github.com/soedinglab/MMseqs2
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els trained on biomedical text (for example, SciBert (Beltagy
et al., 2019a)). To model the relationship between the pro-
tein sequence and the function annotation, we then added
cross-attention that attends to each amino acid from the text
token. During training, the parameters of the encoder, de-
coder, and cross-attention are updated jointly so the model
can learn to generate the function annotations of the input
amino acid sequences.

Let x = (x1, · · · , xn) denote one input protein sequence
and y = (y1, · · · , ym) denote the target text annotation.
Each xi is an amino acid and each yi is a text token. The
encoder first maps (x1, · · · , xn) to a sequence of continu-
ous representations VN ∈ Rn×d through N self-attention
blocks, where n is the sequence length and d is the repre-
sentation dimension. VN is then passed to the decoder to
generate the text annotation y in an auto-regressive fashion.

Each attention block of the decoder consists of a self-
attention layer followed by a cross-attention layer. In cross-
attention, the queries of the attention come from the pre-
vious self-attention layer, and the keys and values come
from the output of the encoder. Note that in the case where
the encoder and the decoder output representation of dif-
ferent lengths, we add a linear projection head on the en-
coder side to map its representation to the same dimension
as the decoder. After going through a stack of attention
blocks, the decoder outputs a continuous representation rk
for the position k. We then project rk with a linear head
to compute the logits over the vocabulary of the decoder.
At the end, we minimize the cross-entropy loss between
this logit and one-hot encoding of the true token yk. To
obtain the final protein representation, we averaged all the
amino acid representations from the last layer of the pro-
tein encoder. Our implementation of the model follows
transformers.EncoderDecoderModel from Hug-
gingface (Wolf et al., 2019). The details of our model archi-
tectures can be found in Section A.

Pretrained Models. We studied pretrained protein models
from two model families: ProtT5 (Elnaggar et al., 2021b)
and ESM (Rives et al., 2021a) (Lin et al., 2023a). ProtT5
adopts the architecture of Transformer-XL (Dai et al., 2019)
and is trained on UniRef100 (Suzek et al., 2015). We only
used the encoder component of ProtT5 with 1.5 billion
parameters. We picked two model variants of ESM: ESM1b
(Rives et al., 2021a) and ESM2-650M (Lin et al., 2023a).
They use the same architectures as BERT (Devlin et al.,
2018) and are trained with the masked language modelling
loss on UniParc (Consortium, 2020). We initialized the
decoder with SciBERT (Beltagy et al., 2019b), which was
trained on 1.14 million biomedical and engineering papers
from Semantic Scholar.
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Figure 2. PAIR uses an attention-based sequence-to-sequence
architecture. The encoder and the decoder are initialized by the
pretrained models. A randomly-initialized cross-attention layer is
then added between the encoder and the decoder. During training,
the encoder, decoder and the cross-attention are updated jointly
to generate the annotations of the input amino acid sequences. To
obtain the final protein representation, we averaged all amino acid
representations from the last layer of the protein encoder.

5. Evaluation
To comprehensively assess the representation quality, we
curated nine important function annotation tasks from Swiss-
Prot. For each task, we performed k-nearest neighbors (k-
NN) on the embedding space. This process is analogous
to the sequence searching method commonly employed
in bioinformatics. Specifically, for a query protein in the
validation set, we assigned it the labels of the closest k
protein(s) in the training set based on Euclidean distance. k-
NN is a simple discriminator that does not require additional
training, which makes it a convenient and fair method for
representation evaluations. For all tasks, we used k = 1.

Below, we present a brief description of each task, how we
parsed the label(s), and what we used as evaluation metrics.

Gene Ontology annotations (GO). GO is a major bioin-
formatics initiative to unify the representation of genes
and gene product attributes (including proteins) across all
species. It provides a controlled, hierarchical vocabulary
to describe three aspects of protein annotations: molecular
function (GO-MF), biological process (GO-BP), and cel-
lular component (GO-CC). We parsed GO labels from the
<feature type="GO"> tag in the downloaded Swiss-
Prot XML. Similar to Kulmanov & Hoehndorf (2022), we
only kept the annotations with tags denoting that the labels
were validated from real-world experiments. Our evaluation
follows Kulmanov & Hoehndorf (2022).

Enzyme Commission number (EC). The EC numbering
system is a classification mechanism for the enzymes based
on the chemical reactions they catalyze. It consists of 4
digits, each of which represents a progressively more re-
fined categorization. We obtained the EC numbers from
the tags of <feature type="EC">. Then we removed
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any numbers with fewer than 4 digits. We also removed
numbers if they contained the character “n”, which indicates
that the annotation has not yet been officially assigned. We
used F1 as the evaluation metric for this task.

Recommended protein name (Name). Gane et al. (2023)
showed that if the protein name can be predicted, it can
give information about its function. Inspired by this, we
extracted the recommended name of the protein from the
<protein>/<recommendedName>/<fullName>
tag. For evaluation, we computed the exact match accuracy.

UniProt protein family (Family). A protein family is a
set of proteins with common evolutionary origin. UniProt
assigns a family name based on information from ex-
ternal protein family databases, sequence similarity and
analysis tools, and literature. This is documented in
the ”Sequence similarities” section on UniProt, and typ-
ically appears as a sentence ”Belongs to the XX fam-
ily”. We parsed the family name from the <comment
type="similarity">/<text> tags and computed
the exact match accuracy during evaluation.

Pfam domains (Domain). A protein domain is a
distinct structural and functional unit within a protein
structure. We extracted the Pfam domain annotations
from <dbReference type="Pfam">/<property
type="entry name"> tags. We used F1 as the eval-
uatiion metrics.

Active sites. Active sites are related to the enzymatic be-
haviour and describe which protein components are involved
in catalytic reactions. On UniProt, this information exists
as a table where one column is a residue number and an-
other describes the residue role (e.g. “proton acceptor”,
“eletrophile”). We extracted the residue roles from the
<feature type="active site"> tags in the XML
file. We used F1 as the evaluation metric.

Binding sites. This task studies the interaction between
proteins and small ligands, such as metals and cofactors.
We extracted the names of the ligands within <feature
type="binding site"><ligand> tags and used F1

as the evaluation metric.

6. Results
6.1. PAIR’s representation quality depends on the

annotation type

The category of the function annotations plays a vital role
in determining the effectiveness of the learned representa-
tions. Prior research has not rigorously examined which
specific types of annotations are most beneficial for learning
high-quality protein representations. To bridge this gap, our
initial study systematically evaluates the impact of different
annotation data types on the learned representation qual-

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Improvement over ESM2-150M

Organism
Tissue specificity

Induction
Activity regulation

Biophysicochemical properties
Subcellular locations

Paper titles
PTMs
Sites

Subunits
Active sites

Cofactors
Keywords

Alternative names
Binding sites

Recommended name
Function

UniProt protein family
Pfam domains

Combined annotations
ANNOTATION TYPE

Single Epoch Training

Task
GO-BP
GO-CC
GO-MF
EC
Active sites
Binding sites
Domain
Family
Name

Figure 3. Annotation types play an important role in the qual-
ity of learned representations. Each row corresponds with the
performance change on the 10% validation set after fine-tuning
ESM2-150M on the corresponding category. Bars on the right
indicate improved performance over the base ESM2-150M for that
specific task, while bars extending to the left indicate a perfor-
mance degradation. We find that different annotation types had
varying effects on the quality of the learned representations, with
some annotation types even degrading the model’s performance.

ity. For a fair comparison, we fine-tuned ESM2-150M on
each annotation type separately for one epoch with the same
hyperparameters on the training set, and evaluated the per-
formance of the nine function prediction tasks (introduced
in Section 5) on the validation set. These results are shown
in Table 1.

Figure 3 summarizes the change of performance after train-
ing on each annotation category, compared with the original
ESM2-150M. Out of the 19 annotation types we collected,
training on 14 of them led to improved performance. Among
them, Pfam domain, UniProt protein family and Recom-
mended name resulted in the largest performance gains.
Moreover, it is remarkable that these performance gains are
observed in tasks that the model was not specifically fine-
tuned on. This shows PAIR’s ability to learn useful protein
representations that can generalize beyond the domains it
was trained on.

On the other hand, the performance on the evaluation de-
creased after being fine-tuned on Organism, Tissue speci-
ficity, Biophysicochemical properties, Induction and Activity
regulation annotations. We speculate that this performance
degradation can be attributed to two reasons: a) organism
and tissue specificity represent higher levels of biological
organization. Training on them provides little to no infor-
mation about a protein’s molecular functions. b) as shown
in Figure 1, less than 5% of the proteins have the annota-
tions Biophysicochemical properties, Induction and Activity
regulation, which means they do not provide sufficient infor-
mation for the model to learn generalizable representations.
Additionally, the Biophysicochemical properties of a protein
may be too vague for predicting its function (i.e. if we the
know the optimal pH of a protein is 9.0, that would not be
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informative about what the protein does).

Based on the findings above, we removed these 5 annota-
tion categories from the training set. We then investigated
whether it is better to train on the remaining 14 types by
combining them all together compared to training on them
individually. We fine-tuned ESM2-150M on those annota-
tions for one epoch and show the performance in the first
row of Figure 3. The result indicates that training on all of
them yields superior performance compared to training on
any single annotation, demonstrating that there is comple-
mentary information across different annotation categories.

6.2. PAIR improves function annotations for
uncharacterized proteins
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Figure 4. PAIR improves function predictions. PAIR consis-
tently improves upon base models when predicting (a) five function
annotation categories in the training set, (b) four function annota-
tion categories not in the training set, and (c) five tasks in the exter-
nal benchmarks. Each spider plot shows the performance of PAIR
compared to the base model it was finetuned on. We plot exact per-
formance values for the baseline models in white, PAIR(ESM1b)
in pink, PAIR(ESM2-650M) in orange, and PAIR(ProtT5) in blue.
To better visualize the performance differences across tasks of
different scales, we use Z-score normalization to scale the plots,
as in Karamcheti et al. (2024).

Training details. We then fine-tuned three larger models
(ESM2-650M , ESM1b and ProtT5) with PAIR on the com-
bined 14 annotations. We denote each fine-tuned model as
PAIR(ESM2-650M), PAIR(ESM1b) and PAIR(ProtT5). To
save memory, we trained our model in the half-precision

format of bfloat16 (Kalamkar et al., 2019). Our training is
performed on an HPC cluster of AMD M100 GPU nodes.
Each node consist of eight 32GB M100 GPUs. We trained
2 ESM models on 4 nodes, and ProtT5 on 8 nodes. For
protein sequences longer than 1024 amino acids, we ran-
domly sampled window of 1024 amino acids. For the text
annotation, we truncated the token length to 128. We used
the AdamW optimizer ((Loshchilov & Hutter, 2018)) with
a learning rate of 1e− 4 and a weight decay of 1e− 4. We
clipped the gradient norm to 1. Our total batch size across
all GPUs was 160 for ESM and 128 for ProtT5 . We trained
ESM2-650M and ESM1b for 50, 000 steps, and ProtT5 for
30, 000 steps.

We tuned hyperparameters for each model based on the aver-
age performance of the validation set on the nine evaluation
tasks. Afterwards, we re-trained with the same hyperpa-
rameters on the whole February-2023 Swiss-Prot. In order
to simulate the real-world scientific discovery process, we
generated a temporal test set for model evaluations. Our
test set includes all 1631 proteins that were added to Swiss-
Prot after the training set was published (those that were
introduced between February 2023 and January 2024). The
results can be found in Table 2.

Figure 4a plots the performance difference between each
base model and the PAIR-enhanced model on predicting
the in-distribution function annotations on the temporal
test set. The result demonstrates that PAIR consistently
improves upon all those tasks for the three models. Aver-
aged over all models, PAIR outperforms the base model
by 10.89%, 12.53%, 10.55%, 8.49%, 9.84% in predicting
family, name, domain, binding sites and active sites, re-
spectively. ESM2-650M has the largest improvement with
15.10%, 13.56%, 17.31%, 13.55%, 12.41% respectively.

Figure 4b evaluates on the tasks not appearing in PAIR’s
training set, namely EC and GO. In terms of EC predic-
tions, PAIR improves ESM2-650M, ESM1b and ProtT5
by 19.39%, 7.47% and 11.89% respectively. PAIR also
improves all three subontologies of GO consistently
across all models, with an average improvement of
7.08%, 12.12%, 5.84% for GO-CC, GO-MF, GO-BP.

6.3. PAIR improves remote homology detections and
drug-target interactions

We then evaluated PAIR on five external benchmarks: binary
localization (Almagro Armenteros et al., 2017), subcellular
location (Almagro Armenteros et al., 2017), fold (Hou et al.,
2018), DAVIS (Davis et al., 2011) and BindingDB (Liu et al.,
2007). The first there are classification tasks for protein
functions. A detailed description of these benchmarks can
be found in Appendix Section B. We split the training and
test set according to Xu et al. (2022), which deliberately
lowered the similarity between training and test to evaluate
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ProtT5-XL
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PAIR(ESM2-650M)
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PAIR(ProtT5-XL)
Model

Performance across all models and tasks

Task
GO-BP
GO-CC
GO-MF
EC
Active sites
Binding sites
Domains
Family
Name

Figure 5. PAIR is on-par with or superior to BLAST in an-
notating uncharacterized proteins. Each row represents the
performance compared to BLAST of an individual model on the
test set. Bars extending to the right imply an improvement over
BLAST for the corresponding task, whereas bars extending to the
left indicate inferior performance. PAIR(ProtT5) emerges as the
sole model that either matches or surpasses BLAST’s performance
across all the evaluated tasks.

the model’s generalization for remote homologous proteins.
For the localization tasks, the training and test set share
no higher than 30% sequence similarity. For fold, entire
superfamilies are held out in the test set from the training set.
Figure 4c shows that PAIR-enhanced model outperforms
the original model in all but one set-ups.

DAVIS and BindingDB are drug-target interaction (DTI)
tasks where the goal is to predict the binding affinity be-
tween a molecule and the target protein. We obtained the
representations for a molecule-protein pair by concatenating
the protein representation with the molecule representation,
which we obtained from Text+ChemT5 (Christofidellis et al.,
2023). We split the dataset so that there is no overlap of
protein sequences across training, validation and test. We
repeated this random split 50 times and report the average.
Figure 4c shows that PAIR improves the DTI predictions
for all models over the two datasets.

6.4. PAIR outperforms BLAST

Furthermore, we compared PAIR with the de facto sequence
searching method in bioinformatics, BLAST (basic local
alignment search tool (Altschul et al., 1990)). First, we
find that the base models (ESM and ProtT5) perform signifi-
cantly worse than BLAST, as shown in Figure 5. Even when
compared with the best-performing base model ESM1b ,
BLAST still outperforms it on eight of the nine tasks. In
the case of EC predictions, BLAST surpassed ESM1b by a
substantial margin of 10.54%. However, after fine-tuning
with our approach, PAIR(ProtT5) emerges as the sole model
that either equals or surpasses BLAST’s performance across
the evaluated tasks. As illustrated in Figure 5, PAIR(ProtT5)
outperformed BLAST on six tasks and achieved comparable
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Figure 6. PAIR demonstrates larger advantages over BLAST
when predicting the proteins with low similarity. The x-axis
represents the maximum sequence similarity between a test sample
and the training set. The y-axis depicts the performance difference
between the model and BLAST, where positive values indicate
superior performance compared with BLAST. The lighter blue
line corresponds to the original ProtT5 model, while the darker
line represents PAIR(ProtT5). The results show that our approach
exhibits superior performance when predicting the test samples
with low sequence similarity to the training data.

results on the remaining three. In addition, we compared
PAIR with ProtST (Liu et al., 2023). ProtST also provides a
framework to fine-tune the protein encoders on text annota-
tions. Figure 6 shows that PAIR consistently outperforms
ProtST across tasks given the same pretrained model.

We also examined the performance of PAIR and BLAST
across varying degrees of sequence similarity in the test set,
where sequence similarity is defined as the percent identity
to the top-1 BLAST hit. Our results in Figure 6 indicate that
PAIR exhibits superior performance with the low-similarity
sample. This finding is particularly promising because low
similarity samples pose a greater challenge for sequence
similarity alignments, and this fact suggests that PAIR learns
complementary information to BLAST.

Furthermore, we evaluate our approach against BLAST
on the five external benchmarks. It is not feasible to
apply BLAST to the drug-target interaction task since
it involves predicting relationships between two entities,
whereas BLAST is designed for single-instance predic-
tion tasks. For the other benchmark tasks, our method
demonstrates substantially superior performance compared
to BLAST (binary localization: 73.76, subcellular location:
53.73, fold: 2.92). We attribute the poor performance of
BLAST to the relatively small size of the other datasets and
minimal overlap between their training and test sets, which
is a scenario where BLAST faces challenges. Our approach
seems to generalize better to previously unseen data when
training examples are limited.

Moreover, PAIR can be more computationally efficient than
BLAST. Running the BLAST algorithm is computationally
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Figure 7. PAIR improves few-shot EC classifications. We train a
linear classifier on the frozen embeddings with 1, 2, 4, or 8 training
samples per EC class. The light blue line represents the base
protein models and the dark line represents the PAIR-enhanced
models. PAIR-enhanced models outperform the baseline models
across all shots. The gap between the PAIR and baseline models
becomes larger as the number of training examples decreases.

expensive, whereas in our approach, we can pre-compute
and store the representations of the training set, after which
performing k-nearest neighbor predictions is a highly effi-
cient operation. This allows our method to make predic-
tions much more rapidly compared to having to run the full
BLAST algorithm for every new example.

6.5. PAIR improves low-resource enzyme function
predictions

We trained a linear classifier on top of PAIR and the base
model’s embeddings to predict EC numbers in a few-shot
setting. We selected enzymes from our Swiss-Prot 2023
dataset that were annotated with a single EC number and be-
longed to EC classes with at least 10 members. We randomly
split them into train (80%), validation (10%) and test (10%)
subsets. For each EC class in the training set, we sampled k
training samples, where k ∈ {1, 2, 4, 8} and trained a linear
classifier to predict the enzyme class. We tuned the learning
rate from the values of {1e− 2, 1e− 3, 1e− 4, 1e− 5} on
the validation set and plotted the performance on the test
set in Figure 7. We repeated this 10 times for each shot and
plotted the standard deviation as error bars. We find that
across all k training shots and all base models, there is a
clear improvement using PAIR compared with the base mod-
els. Even with 1-shot, PAIR embeddings achieve at least
85% accuracy, compared to 67-77% for the baseline mod-
els. As the number of training shots increases, performance
for all models goes up, but PAIR embeddings consistently
maintain superior performance.

In the real-world, many EC classes are unstudied and have
very few annotations. We further investigated the perfor-
mance of one-shot learning with PAIR embeddings for low-
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Figure 8. PAIR improves one-shot EC classifications for low-
resource enzymes. We train a linear classifier on 1 training sample
per EC class for low-resource EC numbers (those that have 3-9
samples in the entire dataset). We repeat each experiment for
10 random seeds. We find that the PAIR outperforms each base-
line protein language model significantly (** indicates p < 0.02
according to a Wilcoxon signed-rank test).

resource EC numbers. We considered the subset of Swiss-
Prot 2023 containing EC classes with 3-9 members. We then
split them into training (1 sample per EC class), validation
(1 sample per EC class) and test (remaining samples) sets
and fine-tuned a linear classifier to predict the EC number.
We show performance on the test set in Figure 8, compar-
ing the performance of PAIR embeddings to embeddings
from the corresponding baseline. We find that even in low-
resource settings, PAIR embeddings obtain close to 85%
accuracy on average, which is significantly higher than base-
line models (p < 0.02). This demonstrates that functional
annotations can significantly enhance the performance of
protein embeddings, especially in scenarios where training
data is limited.

7. Conclusion
We introduce PAIR, a flexible fine-tuning framework de-
signed to improve the representational quality of protein
language models. We then conducted an extensive study
examining the impact of training on diverse annotation types
derived from the Swiss-Prot database. Our findings demon-
strate that fine-tuning PAIR on the collective set of anno-
tation types yields substantial improvements in the protein
function prediction capabilities on a temporal split, even in
functional tasks that the model was not trained on, as well
as on external datasets. This motivates our future directions
in that diverse types of protein information and modalities,
even if seemingly unrelated to target tasks, should be inves-
tigated as important resources in the language modelling
paradigm.
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Improving Protein Representations with Text Annotations

A. Model
We used an attention-based sequence-to-sequence architecture proposed in (Vaswani et al., 2017). The encoder and the
decoder are initialized by the pretrained models. A randomly-initialized cross-attention is then added between the encoder
and the decoder, which enables the decoder to gather relevant information from each position of the input sequence. Our
implementation follows transformers.EncoderDecoderModel from Huggingface (Wolf et al., 2019).

The core building block of the sequence-to-sequence model is the attention mechanism. The attention function maps a query
vector Q and set of key-value vector pairs (K,V ) to an output vector. The output is computed as a weighted sum of the
value vectors V . Each weight is calculated by a similarity function between Q and K. Vaswani et al. (2017) used the scaled
dot product as the similarity function:

Attention(Q, K, V) = softmax(QKT

√
dk
)V

It has proven advantageous to perform multiple attention operations in parallel, called multi-head attention mechanism.
Specifically, the queries Q, keys K, and values K are linearly projected h times using distinct learned linear transformations.
The outputs of these h parallel attention computations are then combined, typically through concatenation and linear
projection, to yield the final attended representation.

Multihead(Q, K, V) = Concat(head 1, ..., head h) W

where head i = Attention(QWQ
i ,KWK

i , V WV
i )

Let x = (x1, · · · , xn) denote the input protein sequence and y = (y1, · · · , ym) denote the output text annotation. Each xi is
an amino acid and each yi is a text token. The encoder first maps (x1, · · · , xn) to a sequence of continuous representations
VN ∈ Rn×d through N self-attention blocks, where n is the sequence length and d is the representation dimension.
Self-attention is a special attention mechansim where the query, key and value all come from the previous layer of the
encoder Vj−1. It allows the model to learn the interaction between different amino acids. The self-attention computation at
layer j is defined as:

Self-attention j (Vj−1) = MultiHead(Vj−1, Vj−1, Vj−1)

After the encoder processes the protein sequence, the representation of the last layer VN is then passed to the decoder
to generate the text annotation y in an auto-regressive fashion. The training objective is to maximize the probability of
predicting the next token correctly for each position:

m∏
k=0

P (yk|, y1, · · · , yk−1)

Different from the encoder, the attention block of the decoder consists of a self-attention layer followed by a cross-attention
layer. The self-attention layer is similar to the encoder except that it operates on the prefix (y1, · · · , yk−1). It means the
decoder cannot attend to the tokens after the current position k. After the self-attention layer, the representations Uk are then
passed to the cross-attention to incorporate the information from the encoder. In cross-attention, the queries of the attention
come from the previous self-attention layer Uk, and the keys and values come from the output of the encoder VN :

Cross-attention k (VN, Uk) = MultiHead(Uk, VN, VN)

Note that in the case where the encoder and the decoder output representation of different lengths, we add a linear projection
head on the encoder side to map its representation to the same dimension as the decoder.

After going through a stack of attention blocks, the decoder then outputs a continuous representation rk for the position k.
We then projected rk using a linear head to compute the logits over the vocabulary of the decoder. At the end, we minimized
the cross-entropy loss between this logit and one-hot encoding of the true token yk to maximize P (yk|, y1, · · · , yk−1).

B. External benchmarks
Binary localization (Almagro Armenteros et al., 2017). This is a binary classification task that predicts whether a protein
is ”membrane-bound” or ”soluble”. We followed the training (5161), test (1746), validation (1727) split by Xu et al. (2022).
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Improving Protein Representations with Text Annotations

The dataset is split to test the model’s generalization behaviour across homologous proteins.The protein sequences undergo
a clustering process based on a 30% sequence identity threshold, after which they are partitioned into five distinct subsets.
Four of these subsets are utilized for training and validation, while the remaining fold is reserved for test. The evaluation
metrics is accuracy.

Subcellular Localization (Almagro Armenteros et al., 2017). This is a more fine-grained version of Binary localization.
The task asks to classify the locations of a protein in a cell into ten categories: cell membrane, cytoplasm, endoplasmic
reticulum, golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plastid, extracellular. We used the same the split
of Xu et al. (2022) (training: 8945, val: 2248, test: 2768). The split was conducted in a similar way as binary localization to
test the model’s ability to correctly predict the subcellular localization of homologous proteins. The evaluation metrics is
accuracy.

Fold (Hou et al., 2018). The task aims to aims to categorize the global structural topology of a protein into one of the 1194
distinct fold designations. We used the original split in Hou et al. (2018) (training: 12312, validation: 736, test: 718). To
construct the test set, entire superfamilies are held out from the training and validation. This approach enables an assessment
of the model’s capability to identify proteins exhibiting similar structural topology despite dissimilar sequences, i.e. remote
homology detection. The evaluation metrics is accuracy.

Drug Target Interaction (Liu et al., 2007) (Davis et al., 2011). The effect of a small-molecule drug is primarily determined
by its binding affinity with the target protein. The drug-target interaction prediction task seeks to computationally predict
the interaction activity score between a protein sequence and a small molecule. We used two datasets for this task: DAVIS
(Davis et al., 2011) and BindingDB (Liu et al., 2007). Both datasets are regression tasks that predict the equilibrium
dissociation constant (Kd) of a protein-molecule pair. The smaller the KD value, the greater the binding affinity of that pair
is. We downloaded both datasets from Therapeutics Data Commons (Huang et al., 2021). We used the pearson correlarion
coefficient following Huang et al. (2021). Pearson Correlarion Coefficient measures how linearly correlated between the
predictions x and the targets y:

r(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

We applied cold-start split (Huang et al., 2021) on the protein sequences to split the datasets into training/validation/test
with a ratio of 6 : 2 : 2. The cold split is a split method for multi-instance prediction problems that involve two types of
entities such as protein and molecules. We first partitioned data based on only the protein sequences into training, validation,
and test sets. Then, all pairs associated with the entities in each set are correspondingly assigned to the respective training,
validation, and test splits. This split makes sure that there are no overlapped protein sequences across different partitions, so
we can evaluate the model’s generalization for unseen proteins.

C. Baselines
BLAST. Basic Local Alignment Search Tool (BLAST) is a widely-used bioinformatics tool that allows users to compare
an input or query sequence against a predefined database of sequences to find the most similar one (Altschul et al., 1990).
BLAST uses heuristics on local protein regions to approximate the Smith-Waterman algorithm in order to increase the
speed of alignment. For each query, BLAST returns similar sequences in the database above a specified significance
threshold (E-value), which represents the number of hits with a similar alignment score that could be found by chance
in a random database of a similar size. We used BLASTp, which is specialized for comparing protein sequences. We
downloaded the BLASTp executable 2. For each downstream task, we created a BLAST database from sequences in
Swiss-Prot 2023-02 that had a label for the given task: makeblastdb -in swissprot202302 {task}.fasta
-out {task} database -dbtype prot. For each query sequence in the test set, we ran the BLAST algorithm
to obtain a list of sequence hits from the database: blastp -query swissprot202401 {task}.fasta -db
{task} database -evalue 1000. Note that we set a high E-value to ensure that each query sequence had a hit. We
then took the hit with the lowest E-value (most significant) as the closest training sequence and used it for evaluation.

2 https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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ProtST. ProtST is a multi-modal protein language model that was trained to align protein sequences with four types of
natural language descriptions from Swiss-Prot (Function, Subcellular Location, Family, Name) (Xu et al., 2023). This model
was the first to show that pre-training on both sequences and text descriptions can boost performance on downstream protein
tasks. We build on this work by incorporating several more annotation categories and reducing the loss function to a simple
next token prediction loss, and show that even with a simpler framework, the incorporating more annotations results in better
performance. We obtained ProtST embeddings from their model checkpoints 3.

ProtBert. ProtBert is a BERT-based protein language model trained on 217 million unlabelled amino acid sequences from
UniRef100 using a masked language modelling loss (Elnaggar et al., 2021a). We obtained the model from HuggingFace 4

and followed the same sequence pre-processing. We set the maximum length to 1026 (1024 for amino acids and 2 for special
tokens).

Galactica. Galactica is a decoder-only Transformer model trained on 48 million scientific papers, textbooks, websites, and
other sources of scientific information (Taylor et al., 2022), outperforming several large language models on a range of
science and math tasks. We obtained embeddings from Galactica-6.7B 5 by using the same prompt format as in Taylor et al.
(2022). We set the maximum length to 1026 (1024 for amino acids and 2 for special tokens) and averaged the embeddings
from the last hidden state.

GPT. GPT models have previously demonstrated domain knowledge in biology and chemistry (AI4Science & Quantum,
2023; Bran et al., 2023; Mirza et al., 2024). To create the most similar settings as ours, we followed AI4Science & Quantum
(2023) and used API calls to obtain embeddings from GPT-3 (text-embedding-3-large, the most capable GPT
model providing access to embeddings at the time of writing). We structured the prompt using the FASTA format.

D. Results

EC Name GO-CC GO-MF GO-BP Domain Family Binding Active

ESM2-150M 0.292 0.213 0.387 0.317 0.232 0.515 0.436 0.573 0.630
Recommended Name 0.535 0.279 0.385 0.355 0.243 0.704 0.581 0.754 0.774
Domain 0.560 0.282 0.372 0.366 0.244 0.726 0.615 0.738 0.827
Family 0.511 0.281 0.381 0.371 0.248 0.721 0.606 0.754 0.811
Alternative Name 0.518 0.271 0.387 0.357 0.246 0.694 0.568 0.724 0.822
Function 0.527 0.278 0.385 0.360 0.239 0.703 0.584 0.746 0.828
Keywords 0.489 0.273 0.386 0.350 0.237 0.689 0.539 0.764 0.774
Binding sites 0.527 0.274 0.372 0.352 0.238 0.697 0.592 0.756 0.798
Active sites 0.455 0.265 0.366 0.343 0.233 0.648 0.529 0.683 0.800
Sites 0.359 0.245 0.369 0.322 0.227 0.581 0.478 0.624 0.670
Cofactor 0.501 0.266 0.365 0.341 0.233 0.661 0.546 0.709 0.742
Paper title 0.311 0.211 0.394 0.323 0.232 0.502 0.425 0.599 0.608
subunit 0.425 0.271 0.384 0.340 0.236 0.637 0.538 0.629 0.708
PTM 0.326 0.223 0.382 0.303 0.225 0.509 0.435 0.604 0.610
Subcellular location 0.297 0.221 0.403 0.323 0.231 0.499 0.431 0.571 0.621
Induction text 0.229 0.182 0.370 0.268 0.214 0.423 0.362 0.508 0.542
Biophysical 0.284 0.198 0.375 0.294 0.216 0.464 0.398 0.573 0.572
Activity regulation 0.267 0.193 0.368 0.286 0.211 0.439 0.382 0.542 0.567
Tissue 0.231 0.181 0.368 0.276 0.208 0.419 0.357 0.507 0.529
Organism 0.102 0.105 0.361 0.252 0.202 0.262 0.228 0.357 0.376
Combined annotations 0.568 0.296 0.383 0.375 0.249 0.737 0.606 0.766 0.818

Table 1. Validation-set performance of ESM2-150M fine-tuned with different types of annotations.

3https://github.com/DeepGraphLearning/ProtST
4https://huggingface.co/Rostlab/prot_bert
5https://huggingface.co/facebook/galactica-6.7b
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Model EC Name GO-CC GO-MF GO-BP Domain Family Binding Active

Naive 0.003 0.000 0.354 0.185 0.189 0.001 0.000 0.115 0.247
BLAST 0.577 0.147 0.396 0.425 0.304 0.855 0.665 0.652 0.745
ESM2-650M 0.464 0.118 0.395 0.338 0.281 0.722 0.563 0.598 0.669
ESM1b 0.522 0.129 0.378 0.373 0.296 0.809 0.622 0.670 0.709
ProtT5 0.513 0.128 0.398 0.363 0.288 0.801 0.604 0.641 0.706
Prot-BERT 0.392 0.088 0.350 0.251 0.229 0.565 0.427 0.530 0.586
Galactica 0.134 0.047 0.254 0.169 0.162 0.203 0.174 0.235 0.406
GPT 0.068 0.030 0.222 0.126 0.110 0.099 0.099 0.162 0.307
ProtST(ESM2-650M) 0.506 0.126 0.409 0.337 0.295 0.787 0.615 0.616 0.695
ProtST(ESM1b) 0.547 0.131 0.384 0.364 0.297 0.841 0.658 0.679 0.726
PAIR(ESM2-650M) 0.554 0.134 0.442 0.374 0.290 0.847 0.648 0.679 0.752
PAIR(ESM1b) 0.561 0.142 0.402 0.409 0.314 0.862 0.662 0.695 0.772
PAIR(ProtT5) 0.574 0.146 0.415 0.425 0.312 0.869 0.674 0.697 0.765

Table 2. Temporal test-set performance of different models.

E. Parsing Datasets
In the following subsections, we describe how we parsed various annotations of UniProt. We downloaded a snapshot of
the Swiss-Prot XML from 2023-03 (train/validation). We parsed the raw XML tree once before training. During training,
we generated a data buffer by sampling a set of random proteins and a random annotation category, and then reformatted
the annotations in that category to a text prompt. Each data point was added to the buffer as a dictionary containing the
following information:

Training sample template

protein sequence: Canonical amino acid sequence,
text prompt: Text prompt generated from a single annotation,
pid: UniProt identifier

For a given batch, dictionaries from the buffer were randomly sampled. From each dictionary, we passed the value of the
”protein sequence” key to the protein encoder and use the value of the ”text prompt” key as the target output during training.
In each paragraph below, we describe how we parsed and loaded each annotation category.

Function. The function section on UniProt, which describes any information related to the general function of
the protein described in natural text. To parse the function section, we extracted the contents of all <comment
type="function"><text> tags in the UniProt XML and added them to a list. During training, we loaded the
list of function descriptions. For each description, we first removed any PubMed references. We then remove any sentences
that contain the prefix ”(By similarity)”, as those are inferred from sequence similarity. Finally, we anonymized the
description by replacing any instances of the protein name with ”this protein” to prevent the model from falsely achieving
high performance simply by memorizing the protein name. We found that for each function description, the first sentence is
often a summary of the entire paragraph. Because descriptions could be very long (making it more difficult for the model to
learn), we extracted only the first sentence of each function paragraph and added each to the data buffer separately. An
example of a training sample containing function information is:

Function

protein sequence: MNNINKIFITFLCIELIIGGGGRLLEPLGIFPLRYLLFVFSFILLIFNLVTFN...
text prompt: Function: may link the o-antigen tetrasaccharide units into long chains, giving rise to
typical smooth lps.
pid: P37784

Active sites. This fact type relates to enzymatic behaviour and describes protein sections that are involved in catalytic
reactions. On UniProt, this fact type exists as a table where one column is a residue number and another describes the
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residue role (e.g. proton acceptor, eletrophile). We extracted the name description of the active sites and their locations from
the <feature type="active site"> tags in the XML file and created a dictionary of {residue role: [residue 1,
residue 2]}. During training, we appended all the active sites to the data buffer:

Active Sites

protein sequence: MHKVTKFAIRHLSDKASRFVPKAGVYPKGYAVGGIHCGVKKDGKSLDLAILQNTFGKN...
text prompt: Active site: nucleophile.
pid: Q5AH38

Binding sites. This fact type describes the interaction between protein residues and small ligands, such as metals, cofactors,
and regulators. On UniProt, this fact type exists as a table, with information about the binding site type and location. During
parsing, we extracted the names and locations contained within <feature type="binding site"><ligand>
tags in the XML file and generated a dictionary where the key is the ligand and the values are a list of amino acid locations
where that ligand binds. During training, we sampled a random protein and looped over all of its binding sites, adding each
of them independently to the data buffer using the following format:

Binding Sites

protein sequence: MRRLFTSESVTEGHPDKMCDQISDAILDAILTKDPNARVACETCTTTGLVMVMGEIST...
text prompt: Binding sites: l-methionine
pid: B2TK10

Sites. The sites section on UniProt refers to any notable single amino acid sites on the protein that are not active sites or
binding sites, such as cleavage sites or inhibitory sites. Similar to active sites, we extracted the name description and location
information of all <feature type="site"> tags and stored is as as a dictionary, where the keys are the site names
and values are locations. During training, we loaded these annotations using the structure of the following example:

Sites

protein sequence: MTWRVAVLLSLVLGAGAVPVGVDDPEDGGKHWVVIVAGSNGWYNYRHQADACHA...
text prompt: Sites: reversibly protonated during proton transport.
pid: P69448

Activity regulation. The activity regulation section on UniProt describes mechanisms for regulating the activity of enzymes,
transporters, and transcription factors, through both activation or inhibition. This section exists as natural language sentences.
For a given protein, we extracted the contents of all <comment type="activity regulation"><text> tags
on UniProt. If there were multiple descriptions for a given protein identifier, we combined them into a single description.
During training, we first cleaned the description to remove any PubMed identifiers and added it to the buffer:

Activity Regulation

protein sequence: MAEAEAGGDEARCVRLSAERAKLLLAEVDTLLFDCDGVLWRGETAVPGAPETLR...
text prompt: Inhibited by orthovanadate, beryllium trifluoride, Ca(2+) and EDTA.
pid: Q8CHP8

Biophysicochemical properties. This section describes chemical and physical properties of proteins, includ-
ing: reaction kinetics, light absorption, redox potentials, and dependence on temperature and pH. We ex-
tracted all tags that are children of <comment type="biophysicochemical properties"> from the XML
(for example, <comment type="biophysicochemical properties">/<phDependence>, <comment
type="biophysicochemical properties">/<temperatureDependence>). We then removed any
PubMed identifiers and added them to a list. Most biophysicochemical properties were natural text, but we noticed
that absorption and redox potential tended to only be the numerical value and unit, and so we added the prefixes ”Absorption:
” and ”Redox potential: ” for those properties to provide more context. During training, we added each biophysicochemical
property value to the data buffer separately:
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Biophysicochemical property

protein sequence: MENIMTLPKIKHVRAWFIGGATAEKGAGGGDYHDQGGNHWIDDHIATPMSKYR...
text prompt: Biophysicochemical property: KM is 0.25 mM for L-rhamnonate
pid: Q8ZNF9

Cofactors. This section describes any non-protein entities that are required by the protein to engage in catalytic
activity, such as metal atoms or vitamins. Cofactors were parsed by extracting the contents of the <comment
type="cofactor">/<cofactor>/<name> tags and adding them all to a list. During traing, each cofactor name
was added independently to the data buffer using the following format:

Cofactors

protein sequence: MKHHSLIFLTGFSGSGKSTIGPLLANSLGYDFIDLDQAIEAITGKSVSRIFA...
text prompt: Cofactor: Mg(2+)
pid: A1BER1

Domains. In UniProt, the Domains section describes domain(s) present in a protein. The subsection can provide both
natural descriptions about the general roles of domains in the protein, as well as a list of domains from various external
databases, such as Pfam 6. We extracted the contents of all <comment type="domain">/<text> tags to obtain any
natural language descriptions, as well as all values in <dbReference type="Pfam">/<property type="entry
name"> tags for a given protein and stored them in a list. Because the Pfam domains are abstracted as codes (e.g. ”APP E2”),
we added a step when loading the data to map the Pfam code to its natural language description, obtained from UniProt
documentation 7. For example, the natural language description of ”APP E2” is ”E2 domain of amyloid precursor protein”.
When loading the data, we looped over each domain in the list (both Pfam and natural description) and added it separately to
the data buffer:

Domains

protein sequence: MAEGGSPDGRAGPGSAGRNLKEWLREQFCDHPLEHCEDTRLHDAAYVGDLQTLRSLLQEESYRSR...
text prompt: Domain: Ankyrin repeats (3 copies)
pid: Q9Y576

UniProt protein family.

This subsection identifies the protein family (or families) that the protein belongs to. UniProt assigns a family name based on
information from external protein family databases (such as InterPro 8), sequence similarity and analysis tools, and literature.
This is documented in the ”Sequence similarities” section on UniProt, and typically appears as a sentence ”Belongs to the
XX family”. We parsed the family name from the <comment type="similarity">/<text> tags from the UniProt
XML. In the event of multiple instances, we joined them into a single string. During training, we removed any PubMed IDs
from the string and loaded it into the buffer.

UniProt protein family

protein sequence: MELTITGSGKGISVSDAAFAKDFNEALVHQVVTAYMAAGRQGTKAQKTRSEVS...
text prompt: Belongs to the universal ribosomal protein uL4 family.
pid:A1TYJ8

Keywords. UniProt identifies the most relevant keywords that summarize each protein. These keywords are from a
controlled vocabulary, which are structured into ten higher-level categories: Biological process, cellular component, coding
sequence diversity, developmental stage, disease, domain, ligand, molecular function, post-translational modification,
technical term. During parsing, we extracted keywords for each protein from the <keyword> tags, along with the keyword
ID. We obtained a mapping of each keyword ID to its higher-level category 9. When loading the data during training,

6http://pfam.xfam.org
7https://ftp.uniprot.org/pub/databases/uniprot/previous_major_releases/release-2023_02/

knowledgebase/, Pfam-A.clans.tsv
8 https://www.ebi.ac.uk/interpro/
9https://ftp.uniprot.org/pub/databases/uniprot/previous_major_releases/release-2023_02/

knowledgebase/, keywlist.txt
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we only included keywords if they did not belong to the following categories: ’Technical term’, ’Developmental stage’,
’Biological process’, ’Cellular component’, ’Molecular function’. We excluded ’Technical term’ and ’Developmental stage’
since they are not related to protein function and added noise to the labels. We removed ’Biological process’, ’Cellular
component’, ’Molecular function’ since these are related to GO annotations, which are downstream tasks we evaluated on.

We added each keyword to the data buffer individually:

Keywords

protein sequence: MSLLKMEYNLYAELKKMTCGQPISLFNEDGDFVEVEPGSSFKFLIPKG...
text prompt: BKeyword: ATP-binding
pid:Q8QMT5

Tissue specificity. Tissue specificity describes where mRNA and proteins are expressed in cells or tissue (if the
organism is multicellular) in natural language. We extracted the contents of all <comment type="tissue
specificity">/<text> tags and joined all descriptions into a single string. When loading this annotation dur-
ing training, we removed PubMed references from the description and anonymized it from the protein name. Below is an
example:

Tissue specificity

protein sequence: MLKRKPSNVSEKEKHQKPKRSSSFGNFDRFRNNSLSKPDDSTEAHEG...
text prompt: Tissue specifity: detected in peripheral blood b-cells (at protein level). detected in
spleen, liver and peripheral blood.
pid:Q8QMT5

Organism. Organism is a subsection of the protein taxonomy that identifies the name of the organism the protein was
sourced from. The organism name can consists of the Latin scientific name, followed by the common English name, or only
the common name in the case of viruses. To parse the organism name, we extracted the values of the <organism>/<name
type="common"> and <organism>/<name type="scientific"> tags. When loading the data, we only kept
common organism names. If the name contained information about a bacterial or viral strain (e.g. Influenza A virus (strain
A/Aichi/2/1968 H3N2)), we removed information related to the strain since we did not expect our model to be able to learn
it well.

Organism

protein sequence: MPRTLSLHEITDLLETDDSIEASAIVIQPPENATAPVSDEESGDEEGGTINNLP...
text prompt: Organism: Homo sapiens
pid:Q8N328

Paper titles. The motivation of using paper titles as an annotation category is that they can provide a summary of important
findings related to a protein. The UniProt XML contains paper titles in <reference>/<citation>/<title> tags, as
well as an attribute related to the scope of the paper (e.g. FUNCTION, EXTRACELLULAR COPPER-BINDING DOMAIN)
in <reference key="1">/<scope> tags. We extracted all paper titles and scopes for a protein and added them to a
list. During training, we added each paper title separately to the buffer if its scope contained the word ”FUNCTION”:

Paper Titles

protein sequence: MATMQLQRTASLSALVFPNKISTEHQSLMFVKRLLAVSVSCITYLRGIFPERAYG...
text prompt: Paper title: Hormad1 mutation disrupts synaptonemal complex formation, recombination, and
chromosome segregation in mammalian meiosis.
pid:Q9D5T7

Recommended names. Gane et al. (2023) showed that if the protein name can be predicted, it can give information about
its function. Inspired by this, we extracted the Recommended name of the protein, which is the official protein name agreed
upon by the UniProt consortium. We extracted the name from the <protein>/<recommendedName>/<fullName>
tag. During training, we added it to the data buffer as shown below:
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Recommended names

protein sequence: MPRTLSLHEITDLLETDDSIEASAIVIQPPENATAPVSDEESGDEEGGTINNLPGSLLHTAAYLIQDGSD...
text prompt: Recommended name: PiggyBac transposable element-derived protein 3.
pid:Q8N328

Alternative names. We also included alternative names of the protein, which are synonyms of the recommended name.
We extracted all synonyms from the <alternativeName>/<fullName> tags. During training, we loaded the list of
alternative names for a given protein and joined them into a single prompt:

Alternative names

protein sequence: VYYSGKVDKNGKRGFTATVIPNRGAWLEYETDAKDVVYVRIDRTRKLPVTVLLRA...
text prompt: Alternative names: RNA polymerase subunit beta, Transcriptase subunit beta.
pid:Q63H98

Subunits. Subunits describe quaternary structures of a protein, as well as how they interact with other proteins (protein-
protein interactions) in natural language. We extracted the contents of each <comment type="subunit">/<text>
tag in the UniProt XML and added each description to a list. When loading the data, we removed PubMed references and
the ”(By similarity)” suffix from each description, and add the first sentence of each description as separate entries into the
data buffer. Below is an example:

Subunits

protein sequence: MASANTRRVGDGAGGAFQPYLDSLRQELQQRDPTLLSVA...
text prompt: Subunit: Heterodimer with SRPRA.
pid:Q4FZX7

Post-translational modifications. Post-translational modifications (PTMs) describe covalent modifications to amino acids,
which can modulate the function of a protein. We extracted the PTMs that are described using natural language on UniProt
by parsing the contents of the <comment type="PTM">/<text> tags. During loading, we extracted the first sentence
of the description, anonymized it, removed PubMed substrings, removed any instances of the phrase ”(By similarity)”, and
added it to the data buffer.

PTM

protein sequence: MKTSKLNFLTLVASTGLALAFLSGCTSNTGTTQSAKLYSEEELGLRKATIYNE...
text prompt: PTM: binds 2 heme c groups per subunit.
pid:Q7M963

Subcellular location. This section on UniProt describes the location of the protein in the cell. We extracted the contents of all
<comment type="subcellular location">/<subcellularLocation>/<location> and <comment
type="subcellular location">/<subcellularLocation>/<topology> tags, as well as any natural lan-
guage descriptions in <comment type="subcellular location">/<text> and added them to separate lists
(one for each tag). For each protein, we generated a dictionary with keys ”locations”, ”topologies”, and ”text”, and set the
correspondings lists as values. During data loading, we passed all locations, topologies, and text descriptions separately into
the data buffer.

Subcellular location

protein sequence: MPTSVPRGAPFLLLPPLLMLSAVLAVPVDRAAPPQEDSQATETPDT...
text prompt: Subcellular locations: Cis-Golgi network membrane.
pid:Q02819

Induction. The Induction section is a natural language description of how a protein can be up-regulated or down-regulated
in the presence of inducers or repressors like chemical compounds. We extracted all natural language descriptions from
<comment type="induction">/<text> tags into a single prompt. During data loading, we removed PubMed
substrings from the prompt and anonoymized it before adding it to the buffer.
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Induction

protein sequence: MYVYKRDGRKEPVQFDKITARISRLCYGLDPKHIDAVKVTQRIISGVYEGVTTIELDNLA...
text prompt: cell cycle-regulated with highest activity in s phase. moderately induced by dna-damage.
pid:P21524
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