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ABSTRACT

Object recognition and motion understanding are key components of perception
that complement each other. While self-supervised learning methods have shown
promise in their ability to learn from unlabeled data, they have primarily focused
on obtaining rich representations for either recognition or motion rather than both
in tandem. On the other hand, latent dynamics modeling has been used in decision
making to learn latent representations of observations and their transformations
over time for control and planning tasks. In this work, we present Midway Network,
a new self-supervised learning architecture that is the first to learn strong visual
representations for both object recognition and motion understanding solely from
natural videos, by extending latent dynamics modeling to this domain. Midway
Network leverages a midway top-down path to infer motion latents between video
frames, as well as a dense forward prediction objective and hierarchical structure to
tackle the complex, multi-object scenes of natural videos. We demonstrate that after
pretraining on two large-scale natural video datasets, Midway Network achieves
strong performance on both semantic segmentation and optical flow tasks relative
to prior self-supervised learning methods. We also show that Midway Network’s
learned dynamics can capture high-level correspondence via a novel analysis
method based on forward feature perturbation. Code is provided at this link!

1 INTRODUCTION

Animals and humans are able to recognize objects and predict their motion by observing the dynamic
world with little to no supervision. Inspired by this capability, research in deep learning has made
significant progress in emulating “learning by observing.” Prior work has shown that observing
objects through time via video streams can serve as a powerful learning signal (Foldidk, (1991}
Wiskott & Sejnowskil 20025 Wang & Gupta, |2015} |Srivastava et al.,|2015)). Others have shown that
self-supervised learning (SSL) methods can learn strong visual representations from vast amounts of
unlabeled data (Goyal et al., [2022;|Oquab et al., 2023 [Fan et al., | 2025).

Among a number of perception abilities attained via observation, object recognition and motion
understanding are two intertwined core components. Recognition allows one to identify the same
object across views to establish correspondence; conversely, motion links the same object across
spacetime to enable learning of its invariant properties (Simonyan & Zisserman, [2014; Xu & Wang,
2021)). However, most prior work on visual SSL has focused on learning representations for either
object recognition or motion understanding, but not both in tandem. Image SSL methods (Chen et al.|
2020b; He et al., 2020; |Grill et al.l [2020; |Caron et al.| 2021 |Assran et al.| [2023)) have demonstrated
strong capabilities in learning semantic representations, but most operate on iconic, i.e., single-subject,
image datasets which are human-curated and additionally lack temporal information to learn motion.
More recently, some have proposed performing SSL on natural videos, which depict real-world
scenes and can approximate the observational perspective of animals. Nonetheless, these methods
either do not utilize motion transformations for training (Gordon et al., 2020} Venkataramanan et al.,
2024) or rely on external optical flow networks to incorporate motion as a learning signal (Xiong
et al.,|2021; Wang et al.,2025)). On the other hand, self-supervised methods that focus on learning
motion as a pixel-correspondence (Liu et al., | 2019; Jonschkowski et al., 20205 Luo et al., 2021} |Stone
et al., [2021)) or cross-view reconstruction task (Weinzaepfel et al.| [2023) result in poor semantic
representations. Only a few works aim to learn both semantic and motion features (Bardes et al.,
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Figure 1: (a) Traditional SSL methods focus on learning representations for object recognition and
lean on curated, iconic image data for training. (b) Dense SSL methods extend training to natural
videos, but either do not utilize motion transformations (Gordon et al., 2020; |Venkataramanan et al.}
2024]) for training or rely on external networks to incorporate motion (Xiong et al., |2021; [Wang et al.|
2025)). (c) Our proposed Midway Network jointly learns representations of semantics and motion
from solely natural videos via latent dynamics modeling. The learned image-level representations
can be used towards downstream object recognition and motion understanding tasks.

2023)), but these methods still depend on curated, iconic image data for training. How can we jointly
learn rich representations for object recognition and motion understanding solely from natural videos?

Theories in neuroscience have proposed that animals use internal inverse and forward dynamics
models and future sensory prediction, i.e., predictive coding, to perform motor control, planning,
and perception (Shidara et al., 1993} |Miall & Wolpert, |1996; Wolpert et al., 1998} |Rao & Ballard,
1999; [Friston, [2005). Works in decision making have also suggested using latent dynamics modeling
for representation learning, but focus on control and planning tasks in simulated and lab environ-
ments (Brandfonbrener et al., 2023} |Schmidt & Jiang, 2024; |Cui et al., 2024). Together, these studies
point to latent dynamics modeling as a natural mechanism for learning useful representations of
visual observations and their transformations over time, e.g., motion.

Building on this observation, we propose Midway Network, a new SSL architecture that is the first
to learn both recognition and motion understanding solely from natural videos, by extending latent
dynamics modeling to this domain. Midway Network is centered around a midway top-down path,
which infers motion latents between video frames via inverse dynamics that are subsequently used to
condition the forward predictions. We rely on two design choices in order to better model the complex,
multi-object scenes in natural videos. First, we formulate the forward prediction objective over dense
features, rather than global features like in previous works (Cui et al.,[2024). Second, Midway Net-
work introduces a hierarchical architecture with backward and lateral layers to refine the motion latents
and representations over multiple feature levels, inspired by optical flow networks (Sun et al., [2018)).

Midway Network shows strong capability of learning image-level representations for object
recognition and motion understanding after pretraining on large-scale natural video datasets. In
particular, Midway Network outperforms prior SSL methods on optical flow tasks while also
achieving competitive performance on semantic segmentation tasks for both BDD100K (Yu et al.,
2020) and Walking Tours (Venkataramanan et al., 2024)) pretraining. We also show that Midway
Network’s dynamics models can capture high-level correspondence, supported by evidence from
our novel analysis method based on forwarded feature perturbation. Finally, our ablation studies
demonstrate that our hierarchical design components are important for downstream performance.

To summarize, our contributions are:

* We present Midway Network, a novel SSL architecture that is the first to learn rich image-level
representations for object recognition and motion understanding solely from natural videos. It lever-
ages a dense forward prediction objective and hierarchical design to better capture the complexity
of natural videos.

* We show that Midway Network achieves strong performance on both optical flow (FlyingThings,
MPI-Sintel) and semantic segmentation (BDD100K, CityScapes, WT-Sem, ADE20K) when pre-
trained on natural video datasets, compared to prior SSL baselines which only attain substantial
performance in one of the two tasks.

* We demonstrate Midway Network’s ability to capture high-level correspondences between video
frames with evidence from our novel analysis method based on forwarded feature perturbation.
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2 RELATED WORK

Predictive modeling. This work builds upon research in predictive modeling from neuroscience
and deep learning. Many works in neuroscience have explored predictive coding, a theory positing
how the brain continuously predicts future sensory inputs with hierarchical networks to perform
perception (Rao & Ballard, |1999; Rao & Sejnowski, [1999; Lee & Mumford, [2003}; [Friston, |2005;
Summerfield et al.|[2006)). In particular, Friston’s theory (Friston, [2005) describes how perception may
be split into recognition, inferring causes of sensory inputs, which is reminiscent of representation
learning and inverse dynamics, and generation, predicting (future) sensory inputs from causes, which
is akin to forward dynamics. Biological evidence of predictive coding has also been found, such as in
monkey neural cells after receptive field excitation (Livingstone, |1998) and in functional magnetic
resonance imaging data of human subjects following visual stimuli under varying expectation
levels (Egner et al, [2010). In deep learning, prior works such as PredNet (Chalasani & Principel
2013; Lotter et al., 2017) have proposed architectures inspired by predictive coding to perform video
prediction. More generally, there has been a line of research in leveraging prediction of future frames
in videos as a learning objective (Softkyl [1995; [Finn et al.,[2016; |Villegas et al., [2018}; |[Feichtenhofer
et al.,|2022). Others have developed predictive modeling methods that perform video prediction in
latent feature space (Vondrick et al.l|2016; [Bardes et al.,|2024). Midway Network is inspired by these
ideas, extending dynamics-conditioned predictive modeling to natural videos with a new hierarchical
architecture in order to learn rich representations for object recognition and motion understanding.

Dynamics modeling. Prior works have suggested that animals use internal inverse and forward
dynamics models for motor control and planning (Wolpert et al.| [1995; Miall & Wolpert, |1996;
Flanagan & Wing| 1997 Wolpert et al.| |[1998}; |Kitazawa et al.,|1998; [Jordan & Rumelhart, 2013]).
Inverse and forward dynamics have subsequently been used in works like DynaMo (Cui et al.|
2024) to learn latent visual and action representations for robotic manipulation and control
tasks (Brandfonbrener et al.| 2023} |Chen et al., [2024; |Ye et al., 2025)), but they have only focused on
simulated or controlled environments. World models are a concurrent line of work which learn a latent
dynamics model of the environment to enable efficient policy learning and long-horizon planning, but
prior works such as Dreamer and V-JEPA 2 have relied on ground truth reward signals or actions (Ha
& Schmidhuber, 2018; [Hatner et al.l 2019; [2020; |Schwarzer et al., 20215 [Hu et al., 2023} |Assran
et al., [2025). In particular, DINO-WM (Zhou et al.|, 2024} proposed training a forward dynamics
predictor over DINOvV2 (Oquab et al.| [2023) patch features, but this method also required access to
ground truth actions. More recently, generative models, such as the Genie series, have emerged as a
promising approach for learning world models and interactive environments (Menapace et al., [2022}
Yang et al., | 2024; Parker-Holder et al.,|2024; Sun et al., [2024). Midway Network utilizes inverse and
forward dynamics to tackle a new problem: learning rich image-level representations for recognition
and motion understanding solely from natural videos. It leverages dense forward prediction and a new
hierarchical refinement architecture to capture the complex, multi-object scenes in this data domain.

Visual self-supervised learning. SSL on visual data has enjoyed a long history, from denoising
autoencoders (Vincent et al., 2010; |[Pathak et al., 2016} [Chen et al., [2020a; |He et al.| 2022)) to joint
embedding (Grill et al.,[2020; |Chen et al., |2020b; He et al., [2020; |Caron et al., 2021} |Bardes et al.,
2022)) and joint-embedding predictive (Assran et al.|[2023} |Garrido et al., 2024) models. These works
primarily aim to learn semantic representations from iconic, single-subject images. Following their
success, others have proposed methods to learn from dense, multi-subject images by leveraging losses
on local features (Wang et al., 2021} | Xie et al., 2021; |Bardes et al., 2022; [Zhang et al.|[2023)). While
prior work uses motion from natural videos to learn visual representations (Xiong et al., 2021} |Wang
et al.2025), these approaches either rely on external supervised flow networks or use motion only
to construct training views (Jabri et al., [2020; |Gordon et al.| 2020; [Venkataramanan et al.| [2024).
In contrast, our work also jointly learns representations of the motion transformations themselves.
A separate line of work focuses on learning motion as a cross-view pixel correspondence (Liu
et al.l 2019; Jonschkowski et al., [2020; |[Luo et al., 2021} [Stone et al.l 2021)) or reconstruction
task (Weinzaepfel et al.} 2022} 2023)); however, the resulting features have poor recognition capability.
Video SSL methods (Tong et al.l[2022; [Wei et al., 2022; Bardes et al., 2024) tackle learning clip-level
representations for action recognition tasks, whereas Midway Network and our baselines target image-
level representations. While a few video SSL works (Qing et al., [2022) also explore hierarchical
designs for learning, these hierarchies are only related to the temporal structure of videos for sampling
training pairs. Finally, MC-JEPA seeks to learn both semantic and motion features (Bardes et al.|
2023)), but unlike Midway Network, it still relies on curated, iconic image data for training.
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Figure 2: Midway Network employs a hierarchical design in which the midway path infers motion
latents m between source and target features in a top-down manner. Within each level of this
hierarchy, backward layers with top-down and lateral connections refine the source features z!.
Forward prediction blocks, conditioned on the refined features v} and motion latents m!*1, predict

the dense target features 2! 1, and the prediction loss £ gy, jointly trains all components at each level.
3  MIDWAY NETWORK

We present Midway Network, a new SSL architecture that uses latent dynamics modeling to learn rep-
resentations for object recognition and motion understanding solely from natural videos. At the heart
of Midway Network is a midway path that infers motion latents to describe the transformation between
a source and target video frame. The visual encoder extracts features from the raw video frames, and
the backward layers refine these features with lower-level information in a top-down manner. The for-
ward dynamics model, conditioned on the source frame backward features and motion latents, predicts
the dense target frame features, and the resulting prediction error is used to jointly train all components
of the model. Midway Network employs a hierarchical design, where the forward prediction objective
is placed at multiple feature levels, and the forward predictions from higher feature levels are used
as the input to refine the motion latents at lower levels. The architecture is illustrated in Figure 2}
and the computations for the dense forward prediction objective are summarized in Algorithm [T}

Preliminaries. The model inputs are pairs Algorithm 1 Dense forward prediction objective.

of source and target video frames, x; and
z¢+1. Following the SSL knowledge distilla-
tion paradigm (Grill et al., [2020} |Caron et al.,
2021)), we encode the video frames into features
using source and target networks, z; = fo(x)
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Motion latents via midway path. The midway path aims to learn motion latents that capture the
transformation between observations over time via inverse dynamics. Specifically, the midway inverse
dynamics model is a transformer that takes in previous motion latents 7!+ and the source and target
features 2! and 2! 41 as input, and outputs the motion latents m! for the next level. The motion latents

accumulate over levels, i.e. m! = midway(m'*!, 2}, 2! ;) + m!T. The initial motion latents are

learnable tokens. For every level besides the top level, we use the output of the higher level’s forward
prediction, éé, instead of the features zﬁ as input. Thus, the model learns to refine the motion latents
in a top-down manner, conditioned on the higher-level predictions. This design is motivated by how
prior optical flow methods (Sun et al., 2018} Jonschkowski et al., 2020) would use intermediate flow
estimates to warp features before computing cost volumes, which would subsequently be used to

refine flow predictions at lower levels.
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Backward features. Prior works, from Ladder Networks (Valpola, [2015) to PooDLe (Wang et al.,
2025)), have proposed backward layers with top-down and lateral connections to relieve higher-level
features of the burden of encoding low-level details. In this work, backward layers are used to refine
features in a top-down manner by using lateral connections to incorporate lower-level information.
Specifically, the backward layers are transformer blocks that use cross-attention (Lin et al.,[2022)),

where laterally-connected features 2! are used as queries that attend to higher-level backward features

vi“, which serve as keys and values.

Dense forward prediction. The forward dynamics model is also a transformer that takes in backward
features v! and motion latents m!*! as input, concatenated along the spatial dimension, and predicts
the dense features of the target frame. The dense forward prediction objective is then to minimize
the prediction error between the predicted features 2! 1 and the realized target features zi,1. The
prediction error is the mean squared error between the normalized dense predictions and targets:

Lhyn =121 =z 3. (1)

Forward prediction gating. In a standard transformer block, the input :
token value is always propagated forward due to the residual connection

— this biases the computation towards the identity mapping. However, - -

. . Gating Multi-Head
we would like the forward transformer model to learn whether the object Unit Pt
captured by an input token has moved, i.e., if its features can be computed T
from tokens at other spatial locations, rather than defaulting to the identity L I

location. Thus, we introduce learnable gating units for the residual vy
connection in the transformer layers of the forward dynamics model. 4 "
The gating unit is a multi-layer perceptron that learns a vector-wise gating
weight between 0 and 1 for the residual connection of each input token  Fjgyre 3: Attention layer
of v;. Specifically, the transformer block is modified with gating unit g ith gating unit on v;.
such that the input to the feedforward network, h, is computed as:

h = g(x) - © + Attention(x). 2)
We do not use gating units in the first transformer block to provide sufficient information for initial
estimates of attention, nor do we use them for the motion latents m to fully propagate the motion
information. In our experiments, we find that the gating units improve semantic feature quality and
interpretability of the learned dynamics models, as shown in Section #.4}

Invariance objective. We utilize an additional joint-embedding invariance objective over smaller
crops to encourage the visual encoder to learn semantic features, following PooDLe (Wang et al.|
2025)). In our experiments, we use the DINO (Caron et al., [2021]) objective with projection heads on
top of the source and target networks. This can be viewed as a form of regularization for the features
that are subsequently used in the latent dynamics modeling.

4 EXPERIMENTS

We evaluate Midway Network by pretraining on large-scale natural video datasets, BDD100K (Yu
et al., |2020) and Walkings Tours (WT) (Venkataramanan et al.| 2024}, and evaluating the learned
image and motion latent representations on downstream semantic segmentation and optical flow tasks.
In our experiments, we study whether Midway Network learns good visual features for both object
recognition and motion understanding. We further analyze how each component of Midway Network
contributes to downstream performance and what information does its dynamics models capture.

4.1 SETUP

Pretraining. We pretrain Midway Network on two large-scale video datasets from different domains.
BDD100K (Yu et al.l 2020) is a dataset of 100,000 dashcam driving videos collected in varying
weather, lighting, and time-of-day conditions from New York and the San Francisco Bay Area. Each
video is 40 seconds long at 720p and 30 fps. We pretrain on all 70,000 videos in the train split.
Walking Tours (WT) (Venkataramanan et al., 2024) is a dataset of 10 first-person YouTube walking
videos collected in various cities of Europe and Asia, with outdoor and indoor scenes, and natural
transitions in lighting and location. The videos range from 59 minutes to 2 hours 55 minutes, at
720p and 30 fps. We pretrain on the Venice video following DoRA (Venkataramanan et al., [2024)’s
original setup.!

'Due to computational constraints, we did not pretrain on all 10 videos.
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Downstream evaluations. We evaluate Midway Network’s pretrained representations on semantic
segmentation tasks to gauge object recognition capability. For BDD pretraining, we perform
linear and UperNet readout on the BDD and CityScapes (Cordts et al., 2016) benchmarks
following FlowE (Xiong et al.| 2021). For WT pretraining, we perform UperNet finetuning
on the WT-Sem (Wang et al.l [2025) and ADE20K (Zhou et al.l |2017) benchmarks following
DoRA (Venkataramanan et al. [2024) and PooDLe (Wang et al.| [2025). For linear readout only,
we use the backward layer features following PooDLe. We also evaluate Midway Network on
optical flow tasks to assess motion understanding. We follow CroCo v2 (Weinzaepfel et al.,
2023)’s finetuning evaluation protocol, replacing their binocular decoder with our midway inverse
dynamics and forward dynamics models — baselines without binocular components also use the
dynamics models, but with randomly initialized weights. We finetune models pretrained on BDD
on TartanAir (Wang et al., 2020), MPI-Sintel (Butler et al., 2012), FlyingThings (Mayer et al.,
2016)), and FlyingChairs (Dosovitskiy et al.l 2015 datasets, and evaluate on the corresponding
validation splits of FlyingThings and MPI-Sintel. We report mean intersection-over-union (mloU)
and pixel-level accuracy (Acc) for semantic segmentation, and endpoint error (EPE) for optical flow.
More details on evaluation settings are provided in Appendix [B]

Baselines. We compare Midway Network to iconic image SSL methods (DINO, iBOT (Caron et al.,
2021} Zhou et al.| [2021))), multi-object SSL methods (DoRA, PooDLe (Venkataramanan et al.| [2024;
Wang et al., 2025))), and masked reconstruction methods (CroCo v2, VideoMAE, MAE (Weinzaepfel
et al.,[2023; Tong et al.;,[2022;|He et al., 2022)). DoRA uses 8-frame clips for training, VideoMAE uses
16-frame clips, and iBOT and MAE use single frames. Midway Network and all other baselines learn
from pairs of frames. We also implement a modified version of DynaMo (Cui et al., [2024)) that uses
VIiT-S as the encoder and includes the DINO invariance objective. We use official implementations to
pretrain the baselines on BDD and WT. All baselines are trained on 224 x 224 resolution, except for
PooDLe in Table[2] which uses 512 x 1024.

Implementation. We use ViT-S and ViT-B sized vision transformers for our visual encoders. For
the midway inverse dynamics, forward dynamics, and backward models, we use decoder-only
transformers (Vaswani et al.| 2017), with the backward layers using cross-attention (Lin et al., [2022)
blocks. We largely follow the guidelines provided by PooDLe (Wang et al., 2025) on data sampling
from natural videos. Specifically, we sample pairs of frames 0.5 ~ 1 seconds apart, one per video per
epoch for BDD, and 0.5 seconds apart, for all possible pairs per epoch for WT-Venice. For the dense
forward prediction objective, we sample larger crops of area range [0.2, 0.4] at the same location
for both frames. We take smaller initial crops of area range [0.05, 0.2] at the same location for both
frames, from which global and local crops are sampled for the DINO joint-embedding objective. All
crops are resized to 224 x 224 resolution. Appendix [B|provides more details on implementation,
compute resources, and comparisons of training cost across the different methods.

4.2 SEMANTIC SEGMENTATION AND OPTICAL FLOW RESULTS

Table 1: Semantic segmentation and optical flow evaluations for BDD100K 224 x 224 resolution
pretraining. Sem. Seg. is conducted with frozen backbone and optical flow is conducted with
finetuning. "DynaMo is modified to use a ViT-S encoder and DINO objective.

BDD100K Sem. Seg. Cityscapes Sem. Seg. Optical Flow
Method Arch  Ep. Linear UperNet Linear UperNet FlyingThings MPI-Sintel
" | tmloU tAcc tmloU fAcc | tmloU tAcc tmloU tAcc | |EPE(c) J[EPE(f) |EPE(c) |EPE(f)

PooDLe (Wang et al.}[2025' R50 300 35.1 87.8 47.4 91.0 448 890 592 934 - - - -
iBOT (Zhou et al.|[2021] VIiT-S 800 27.2 85.4 355 88.7 320 86.2 440 903 18.5 18.0 13.0 13.7
DINO (Caron et al. 2021} VIiT-S 300 36.7 89.3 49.3 92.0 41.5 90.4 579 93.3 16.8 13.8 115 10.8
VideoMAE (Tong et al.]2022) ViT-S 300 7.8 50.3 10.9 58.6 6.4 449 1.7 62.9 16.2 16.1 7.2 7.6
CroCo v2 (Weinzaeptel et al.;2023] VIiT-S 300 21.2 80.0 31.9 87.0 240 815 375 89.0 9.7 9.4 5.1 58
DoRA (Venkataramanan et al.|2024]  ViT-S 300 304 87.2 40.8 90.0 36.2 88.2 513 91.9 16.5 15.1 11.5 11.9
DynaMo" (Cui et al.;[2024] VIiT-S 300 36.8 89.4 474 91.7 41.2 90.3 57.2 93.1 - - - -
Midway (enc. only) VIiT-S 300 - - - - - - - - 16.6 13.5 11.7 10.9
Midway ViT-S 300 397 903 504 924 43.0 909 585 935 73 6.8 4.1 4.9
DINO (Caron et al. 2021} ViT-B 300 440 909 53.8 92.7 48.5 91.7 627 942 17.4 14.8 12.1 14.1
CroCo vZ (Weinzaeptel et al.}2023] ~ ViT-B 300 163 724 265 844 182 750 28.9 846 6.1 5.8 3.0 3.8
Midway ViT-B 300 482 91.6 552 931 511 921 622 94.0 7.0 6.4 4.1 4.8

BDD100K pretraining. Table|l|shows results on BDD100K and CityScapes semantic segmentation,
and FlyingThings and MPI-Sintel optical flow benchmarks after BDD100K pretraining. Notably,
Midway Network is the only model to perform well on both semantic segmentation and optical flow
tasks overall. For semantic segmentation, Midway Network outperforms all baselines on BDD 100K,
and its learned visual features also transfer well to CityScapes, where they are competitive with the
best-performing baseline, PooDLe, which relies on an external supervised optical flow network. Note
that even without the backward network, our model achieves 39.2 mloU and 90.1 Acc on BDD100K
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Image Ground Truth Midway Network PooDLe
DINO CroCo v2 DoRA DynaMo

Figure 4: Visualization of BDD semantic segmentation UperNet readout. Midway Network is able to
produce cleaner object boundaries, particularly for the cyclist on the right.

Table 2: Semantic segmentation and optical flow evaluations for WT-Venice 224 x 224 resolution
pretraining. Sem. Seg. and optical flow are conducted with finetuning. "PooDLe on 512 x 1024
resolution pretraining from their original table (Wang et al., 2025). “iBOT results taken from
DoRA (Venkataramanan et al.,[2024).

‘WT-Sem Sem. Seg. | ADE20K Sem. Seg. Optical Flow
UperNet UperNet FlyingThings MPI-Sintel

Method Arch  Ep. | 10U fAce | fmloU  fAcc | JEPE(c) JEPE(f) JEPE(c) JEPE (D)
PooDLe" ( g R50 20 13.7 854 36.6 719

iBOT (Zhou et al.| ViT-S 100 - - 339 - - - - -
MAE (e et al.][2022] VIT-S 100 8.9 81.5 24.1 714 17.6 16.4 111 11.8
VideoMAE (Tong VIiT-S 100 33 67.9 7.8 55.6 15.9 15.8 7.0 7.4
DINO (Caron et al.] VIiT-S 100 11.0 83.0 292 74.7 155 14.0 124 13.8
CroCo v2 m ViT-S 100 11.3 84.4 32.0 75.7 9.6 9.1 59 6.4
DoRA (Venkataramanan et al.|[2024 ViT-S 100 13.6 85.7 352 71.7 17.9 13.3 124 12.4
Midway ViT-S 100 13.1 854 334 76.9 7.7 74 5.2 6.6

linear readout, continuing to outperform the baselines. Midway Network also surpasses all baselines’
performance on FlyingThings and MPI-Sintel optical flow. As shown by Midway Network (enc. only),
performance on optical flow drops drastically if we do not initialize the midway inverse and forward
dynamics models with the pretrained weights, indicating that the dynamics models have learned
features that are useful towards motion estimation. We also demonstrate that Midway Network’s
downstream performance also scales with larger model sizes, from ViT-S to ViT-B. While CroCo
v2 edges out Midway Network on optical flow for ViT-B, Midway Network does not suffer the
same tradeoff on semantic segmentation performance as CroCo v2. Figure ] and Figure [5|compare
predicted segmentation masks for BDD100K, and optical flow for FlyingThings and MPI-Sintel,
respectively, across different methods.

Walking Tours pretraining. Table[2]shows results on WT-Sem and ADE20K semantic segmentation,
and FlyingThings and MPI-Sintel optical flow benchmarks after WT-Venice pretraining. Again,
Midway Network is the only method to achieve strong, competitive performance on both semantic
segmentation and optical flow tasks. Note that PooDLe was pretrained at high resolution (512 x 1024)
and utilized external supervised optical flow networks. We include additional visualizations of
predicted segmentation masks and optical flow for WT-Venice pretraining in Appendix [C|

Source Target Ground Truth Midway Network CroCo v2 DINO

Figure 5: Visualization of FlyingThings and MPI-Sintel optical flow evaluations after finetuning.
Midway Network is able to generate more accurate optical flow predictions compared to CroCo v2.
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Table 3: Ablation studies on Midway Network components evaluated on BDD100K semantic
segmentation linear readout and MPI-Sintel optical flow finetuning.

Variant | Latent Dynamics Backward Multi-Level Refinement Gating | tmloU |EPE
| Base model 28.3 6.2
2 v 30.4 44
3 v v 30.0 5.0
4 v v v 30.4 52
5 v v v v 31.1 39
6 Full model 4 v v v v 31.5 4.1
7 No backward v v v v 30.4 3.7
8 No multi-level v v v v 30.3 5.2
9 No refinement v v v v 30.8 5.1

4.3 ABLATION STUDIES

We perform a series of ablation studies, shown in Table 3] where we cumulatively add components of
Midway Network until we reach the full model. For the ablations, we pretrain variants of Midway
Network on BDD100K for 100 epochs and evaluate on BDD semantic segmentation with linear
readout and on MPI-Sintel optical flow (clean renderings) after finetuning on FlyingChairs and
FlyingThings following CroCo V2 and prior optical flow methods. For reference, we run 5 seeds
for the full model (row 6), and obtain a standard deviation of 0.06 on mIoU and 0.08 on EPE. More
technical details are found in Appendix [B]

First, we find that adding latent dynamics modeling immediately adds a large boost to performance
(row 2). Next, we observe that the hierarchical structure of the backward network and multi-level
learning work together with motion latent refinement to provide further gains on both recognition and
motion understanding (row 5). Finally, using gating units improves recognition (row 6) as well as
visual interpretability of the learned dynamics, as shown in Figure[6] We also see that removing any
of the introduced design components from Midway Network harms performance by a decent margin
(rows 7 - 9). Additional ablations on model capacity are shown in Appendix [A]

4.4 ANALYSIS OF DYNAMICS

Source Target Heatmap Source Target Heatmap

Figure 6: Heatmaps from forwarded feature perturbation. Features are perturbed at green squares
in Source, which are also depicted in Target at the same location to highlight the motion between
frames. Midway Network without gating units exhibits identity bias (bottom right, red border).

To probe the extent to which Midway Network has learned dynamics after pretraining on natural
videos, we introduce a new analysis method based on forwarded feature perturbation. First, we encode
a pair of frames to get features z; and z;1 and compute motion latents m between them, as usual.
Then, we sample a random vector r ~ A(0, 1) and "perturb” a selected spatial feature by associating
7 as a tangent vector to the selected feature in the source frame. We perform forward prediction to
propagate the perturbation to the predicted target features’ tangent vectors — the propagation is done
via forward mode automatic differentiation. The cosine similarity between the random vector and the
tangent vectors of the predicted features then represents the sensitivity of each spatial feature in the
target frame to the initial perturbation. This process is repeated k times, and the similarity scores are
averaged to obtain a final heatmap over the target frame spatial locations. In Figure[6] we observe that
the highest similarity regions in Target correctly correspond with the initial perturbation locations in
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Midway forward
perturbation

DINO-IN1K
feature similarity

Midway forward
perturbation

DINO-IN1K

; R
)
feature similarity ‘f,’ FiEert

Figure 7: High-level tracking using forwarded feature perturbation and/or feature similarity. Midway
Network is able to track high-level regions such as the cyclist’s foot (top row, pink square).

Source (green square), indicating that the dynamics models can capture high-level correspondences.
We also see that Midway Network without gating units (bottom right, red border) learns an incorrect
identity mapping where the highest similarity region is the same location as the initial perturbation.

We may also use forwarded feature perturbation as a form of high-level tracking. First, for
consecutive pairs of frames, we compute perturbation heatmaps over the target spatial features by
individually perturbing each spatial feature in the source frame. Then, for the first frame of the
video, we select an initial location and take the top-5 locations in the next frame with the highest
perturbation heatmap scores; from these locations, we select the one with the highest feature
similarity. This process repeats with the newly selected location until we have a track across all
frames. Figure [7]shows these tracking results in comparison to selecting the next location based
on highest feature similarity with DINO 2021) pretrained on ImageNet (IN1K). Despite
being trained in latent space, Midway Network is able to roughly track high-level regions over time,
whereas the DINO-IN1K feature similarity baseline tracks quickly diverge.

5 CONCLUSION

Object recognition and motion understanding are complementary aspects of perception, yet most
self-supervised methods have focused on learning representations for only one facet. We aim to
bridge this gap by extending latent dynamics modeling to the natural video domain. In this work,
we propose Midway Network, the first self-supervised learning architecture to learn representations
for both recognition and motion solely from natural videos, leveraging an inverse dynamics midway
path, a dense forward prediction objective, and a hierarchical structure to capture the complex,
multi-object scenes. Midway Network learns strong image-level representations for both recognition
and motion, and in many cases, outperforms prior approaches on semantic segmentation and optical
flow estimation. We have demonstrated that Midway Network can be used across different video
datasets and scales well with larger models — training on more diverse data and continuing to scale
model capacity could further improve performance. An exciting avenue for future work is to leverage
the motion and dynamics captured by Midway Network for real-world planning tasks. Possible next
steps towards this direction include incorporating action-labeled data and using Midway Network’s
forward dynamics predictor within a world modeling framework.



Under review as a conference paper at ICLR 2026

REFERENCES

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

Mahmoud Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili,
Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud,
Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov,
Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma,
Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, and Nicolas Ballas. V-jepa 2:
Self-supervised video models enable understanding, prediction and planning. arXiv preprint
arXiv:2506.09985, 2025.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regularization
for self-supervised learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=xm6YD62D1Ub.

Adrien Bardes, Jean Ponce, and Yann LeCun. Mc-jepa: A joint-embedding predictive architecture for
self-supervised learning of motion and content features. arXiv preprint arXiv:2307.12698, 2023.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video. Transactions on Machine Learning Research, 2024.

David Brandfonbrener, Ofir Nachum, and Joan Bruna. Inverse dynamics pretraining learns good
representations for multitask imitation. In Advances in Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=k JMGHTo8Cs.

Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source
movie for optical flow evaluation. In European Conference on Computer Vision, 2012.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, and Armand Joulin.
Emerging properties in self-supervised vision transformers. In IEEE International Conference on
Computer Vision, 2021.

Rakesh Chalasani and Jose C Principe. Deep predictive coding networks. arXiv preprint
arXiv:1301.3541, 2013.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pp. 1691—
1703. PMLR, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, 2020b.

Yi Chen, Yuying Ge, Yizhuo Li, Yixiao Ge, Mingyu Ding, Ying Shan, and Xihui Liu. Moto: Latent
motion token as the bridging language for robot manipulation. arXiv preprint arXiv:2412.04445,
2024.

MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox and
benchmark. https://github.com/open—-mmlab/mmsegmentation), 2020.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition, 2016.

Zichen Jeff Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, and Lerrel Pinto. Dynamo: In-domain
dynamics pretraining for visuo-motor control. In Advances in Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=vUrOuc6NR3.

10


https://openreview.net/forum?id=xm6YD62D1Ub
https://openreview.net/forum?id=kjMGHTo8Cs
https://github.com/open-mmlab/mmsegmentation
https://openreview.net/forum?id=vUrOuc6NR3

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In /IEEE International Conference on Computer Vision, 2015.

Tobias Egner, Jim M Monti, and Christopher Summerfield. Expectation and surprise determine neural
population responses in the ventral visual stream. Journal of Neuroscience, 30(49):16601-16608,
2010.

David Fan, Shengbang Tong, Jiachen Zhu, Koustuv Sinha, Zhuang Liu, Xinlei Chen, Michael Rabbat,
Nicolas Ballas, Yann LeCun, Amir Bar, et al. Scaling language-free visual representation learning.
arXiv preprint arXiv:2504.01017, 2025.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as
spatiotemporal learners. In Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=UaXD4A13mdbl

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. Advances in Neural Information Processing Systems, 2016.

J Randall Flanagan and Alan M Wing. The role of internal models in motion planning and con-
trol: evidence from grip force adjustments during movements of hand-held loads. Journal of
Neuroscience, 17(4):1519-1528, 1997.

Karl Friston. A theory of cortical responses. Philosophical transactions of the Royal Society of
London. Series B, Biological sciences, 360:815-36, 04 2005. doi: 10.1098/rstb.2005.1622.

Peter Foldidk. Learning invariance from transformation sequences. Neural Computation, 1991.

Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, and Yann
LeCun. Learning and leveraging world models in visual representation learning, 2024. URL
https://arxiv.org/abs/2403.00504.

Daniel Gordon, Kiana Ehsani, Dieter Fox, and Ali Farhadi. Watching the world go by: Representation
learning from unlabeled videos, 2020.

Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Ishan Misra, Levent Sagun, Armand
Joulin, and Piotr Bojanowski. Vision models are more robust and fair when pretrained on uncurated
images without supervision, 2022. URL https://arxiv.org/abs/2202.08360.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. In Advances in Neural Information
Processing Systems, 2020.

David Ha and Jiirgen Schmidhuber. World models. In Advances in Neural Information Processing
Systems, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555-2565, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URLhttps://openreview.net/forum?id=S110TC4tDSl

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16000-16009, June 2022.

11


https://openreview.net/forum?id=UaXD4Al3mdb
https://arxiv.org/abs/2403.00504
https://arxiv.org/abs/2202.08360
https://openreview.net/forum?id=S1lOTC4tDS

Under review as a conference paper at ICLR 2026

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv preprint
arXiv:2309.17080, 2023.

Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang, Ka Chun Cheung, Hongwei Qin, Jifeng
Dai, and Hongsheng Li. FlowFormer: A transformer architecture for optical flow. European
Conference on Computer Vision, 2022.

Allan Jabri, Andrew Owens, and Alexei A Efros. Space-time correspondence as a contrastive random
walk. Advances in Neural Information Processing Systems, 2020.

Rico Jonschkowski, Austin Stone, Jonathan Barron, Ariel Gordon, Kurt Konolige, and Anelia
Angelova. What matters in unsupervised optical flow. In European Conference on Computer
Vision, 2020.

Michael I Jordan and David E Rumelhart. Forward models: Supervised learning with a distal teacher.
In Backpropagation, pp. 189-236. Psychology Press, 2013.

Shigeru Kitazawa, Tatsuya Kimura, and Ping-Bo Yin. Cerebellar complex spikes encode both
destinations and errors in arm movements. Nature, 392(6675):494-497, 1998.

Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual cortex. Journal of
the Optical Society of America A, 20(7):1434-1448, 2003.

Hezheng Lin, Xing Cheng, Xiangyu Wu, and Dong Shen. Cat: Cross attention in vision transformer.
In IEEE International Conference on Multimedia and Expo, 2022.

Pengpeng Liu, Michael R. Lyu, Irwin King, and Jia Xu. Selflow: Self-supervised learning of optical
flow. In CVPR, 2019.

Margaret S Livingstone. Mechanisms of direction selectivity in macaque v1. Neuron, 20(3):509-526,
1998.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video
prediction and unsupervised learning. In International Conference on Learning Representations,
2017.

Kunming Luo, Chuan Wang, Shuaicheng Liu, Haogiang Fan, Jue Wang, and Jian Sun. Upflow:
Upsampling pyramid for unsupervised optical flow learning. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition, pp. 1045-1054, 2021.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy, and
Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition, 2016.

Willi Menapace, Stéphane Lathuiliere, Aliaksandr Siarohin, Christian Theobalt, Sergey Tulyakov,
Vladislav Golyanik, and Elisa Ricci. Playable environments: Video manipulation in space and
time. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3584-3593, 2022.

R Chris Miall and Daniel M Wolpert. Forward models for physiological motor control. Neural
networks, 9(8):1265-1279, 1996.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Jack Parker-Holder, Philip Ball, Jake Bruce, Vibhavari Dasagi, Kristian Holsheimer, Chris-
tos Kaplanis, Alexandre Moufarek, Guy Scully, Jeremy Shar, Jimmy Shi, Stephen Spencer,
Jessica Yung, Michael Dennis, Sultan Kenjeyev, Shangbang Long, Vlad Mnih, Harris
Chan, Maxime Gazeau, Bonnie Li, Fabio Pardo, Luyu Wang, Lei Zhang, Frederic Besse,
Tim Harley, Anna Mitenkova, Jane Wang, Jeff Clune, Demis Hassabis, Raia Hadsell,

12



Under review as a conference paper at ICLR 2026

Adrian Bolton, Satinder Singh, and Tim Rocktdschel. Genie 2: A large-scale foun-
dation world model. 2024. URL https://deepmind.google/discover/blog/
genie-2-a-large-scale-foundation-world-model/.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 2536-2544, 2016.

Zhiwu Qing, Shiwei Zhang, Ziyuan Huang, Yi Xu, Xiang Wang, Mingqgian Tang, Changxin Gao,
Rong Jin, and Nong Sang. Learning from untrimmed videos: Self-supervised video representation
learning with hierarchical consistency. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In
IEEE International Conference on Computer Vision, 2021.

Rajesh Rao and Dana Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 2:79-87, 02 1999. doi:
10.1038/4580.

Rajesh Rao and Terrence J Sejnowski. Predictive sequence learning in recurrent neocortical circuits.
In S. Solla, T. Leen, and K. Miiller (eds.), Advances in Neural Information Processing Systems, vol-
ume 12. MIT Press, 1999. URL https://proceedings.neurips.cc/paper_files/
paper/1999/file/b865367fc4c0845c0682bddbbebebfdc—Paper.pdfl

Dominik Schmidt and Minqi Jiang. Learning to act without actions. In International Conference on
Learning Representations, 2024.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
R Devon Hjelm, Philip Bachman, and Aaron Courville. Pretraining representations for data-
efficient reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL |https:
//openreview.net/forum?id=XpSAvlvnMal

M Shidara, K Kawano, H Gomi, and M Kawato. Inverse-dynamics model eye movement control by
purkinje cells in the cerebellum. Nature, 365(6441):50-52, 1993.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. Advances in Neural Information Processing Systems, 2014.

William Softky. Unsupervised pixel-prediction. Advances in Neural Information Processing Systems,
1995.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using Istms. In International Conference on Machine Learning, pp. 843—852.
PMLR, 2015.

Austin Stone, Daniel Maurer, Alper Ayvaci, Anelia Angelova, and Rico Jonschkowski. Smurf: Self-
teaching multi-frame unsupervised raft with full-image warping. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition, pp. 3887-3896, 2021.

Christopher Summerfield, Tobias Egner, Matthew Greene, Etienne Koechlin, Jennifer Mangels, and
Joy Hirsch. Predictive codes for forthcoming perception in the frontal cortex. Science, 314(5803):
1311-1314, 2006.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

Yihong Sun, Hao Zhou, Liangzhe Yuan, Jennifer J. Sun, Yandong Li, Xuhui Jia, Hartwig Adam,
Bharath Hariharan, Long Zhao, and Ting Liu. Video creation by demonstration, 2024. URL
https://arxiv.org/abs/2412.09551l

13


https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/
https://proceedings.neurips.cc/paper_files/paper/1999/file/b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/b865367fc4c0845c0682bd466e6ebf4c-Paper.pdf
https://openreview.net/forum?id=XpSAvlvnMa
https://openreview.net/forum?id=XpSAvlvnMa
https://arxiv.org/abs/2412.09551

Under review as a conference paper at ICLR 2026

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European
Conference on Computer Vision, 2020.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. VideoMAE: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Harri Valpola. From neural pca to deep unsupervised learning. In Advances in Independent Component
Analysis and Learning Machines. 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Shashanka Venkataramanan, Mamshad Nayeem Rizve, Jodo Carreira, Yuki M Asano, and Yannis
Auvrithis. Is imagenet worth 1 video? learning strong image encoders from 1 long unlabelled video.
In International Conference on Learning Representations, 2024.

Ruben Villegas, Dumitru Erhan, Honglak Lee, et al. Hierarchical long-term video prediction without
supervision. In International Conference on Machine Learning, 2018.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and
Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11(12), 2010.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Anticipating visual representations from
unlabeled video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

Alex N. Wang, Chris Hoang, Yuwen Xiong, Yann LeCun, and Mengye Ren. Poodle: Pooled and
dense self-supervised learning from naturalistic videos. In International Conference on Learning
Representations, 2025.

Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish
Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2020.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In IEEE International Conference on Computer Vision, 2015.

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
for self-supervised visual pre-training. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph Feichtenhofer.
Masked feature prediction for self-supervised visual pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022.

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora,
Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Revaud Jérdme. Croco: Self-supervised
pre-training for 3d vision tasks by cross-view completion. In NeurlPS, 2022.

Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy, Yohann Cabon, Vaibhav Arora, Romain Brégier,
Gabriela Csurka, Leonid Antsfeld, Boris Chidlovskii, and Jérome Revaud. CroCo v2: Improved
Cross-view Completion Pre-training for Stereo Matching and Optical Flow. In ICCV, 2023.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural computation, 14(4):715-770, 2002.

Daniel M Wolpert, Zoubin Ghahramani, and Michael I Jordan. An internal model for sensorimotor
integration. Science, 269(5232):1880-1882, 1995.

Daniel M Wolpert, R Chris Miall, and Mitsuo Kawato. Internal models in the cerebellum. Trends in
cognitive sciences, 2(9):338-347, 1998.

14



Under review as a conference paper at ICLR 2026

Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propagate yourself:
Exploring pixel-level consistency for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.

Yuwen Xiong, Mengye Ren, Wenyuan Zeng, and Raquel Urtasun. Self-supervised representation
learning from flow equivariance. In IEEE International Conference on Computer Vision, 2021.

Jiarui Xu and Xiaolong Wang. Rethinking self-supervised correspondence learning: A video
frame-level similarity perspective. In IEEE International Conference on Computer Vision, pp.
10075-10085, 2021.

Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kael-
bling, Dale Schuurmans, and Pieter Abbeel. Learning interactive real-world simulators. In
International Conference on Learning Representations, 2024.

Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Se June Joo, Jianwei Yang, Baolin Peng, Ajay Man-
dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, Lars Liden, Kimin Lee, Jianfeng Gao, Luke
Zettlemoyer, Dieter Fox, and Minjoon Seo. Latent action pretraining from videos. In International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=VYOez2eBQeh.

Fisher Yu, Haofeng Chen, Xin Wang, Wengqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan,
and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Shaofeng Zhang, Feng Zhu, Rui Zhao, and Junchi Yan. Patch-level contrasting without patch
correspondence for accurate and dense contrastive representation learning. In International
Conference on Learning Representations, 2023.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, 2017.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning, 2024. URL https://arxiv.org/abs/2411,
04983l

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot: Image
bert pre-training with online tokenizer. In International Conference on Learning Representations,
2021.

15


https://openreview.net/forum?id=VYOe2eBQeh
https://openreview.net/forum?id=VYOe2eBQeh
https://arxiv.org/abs/2411.04983
https://arxiv.org/abs/2411.04983

Under review as a conference paper at ICLR 2026

APPENDIX
A ADDITIONAL RESULTS

A.1 LONGER PRETRAINING

We provide additional experiments on WT-Venice pretraining below. Table 4] shows that Midway
Network’s downstream performance continues to improve with longer pretraining.

Table 4: Semantic segmentation and optical flow evaluations for additional experiments on WT-Venice
224 x 224 resolution pretraining. Sem. Seg. and optical flow are conducted with finetuning.

WT-Sem Sem. Seg. | ADE20K Sem. Seg. Optical Flow
UperNet UperNet FlyingThings MPI-Sintel
Method ~ Arch  Ep. | 107 tAce | tmloU  tAcc | JEPE(c) J|EPE() |EPE(c) |EPE(f)
Midway VIT-S 100 13.1 85.4 334 76.9 7.7 74 52 6.6
Midway VIT-S 300 14.8 86.5 36.9 78.2 73 6.9 4.0 5.1

A.2 MODEL CAPACITY ABLATIONS

We investigate how the model capacity of Midway Network’s components affects performance,
namely the midway path and forward dynamics model, shown in Table[5] For reference, Midway
Network uses 4 layers and embedding dimension of 192 for the midway path and 4 layers and
embedding dimension of 384 for the forward dynamics model. Reducing capacity of the midway
path primarily harms optical flow performance. On the other hand, adding capacity (2x midway
dim) improves EPE and hurts mloU, likely because the motion latents can capture more information
from the paired frames, but consequently, the forward prediction objective is made easier with the
increased motion latent size. Performance drops with fewer forward model layers, indicating that
having more model capacity for forward prediction is beneficial.

Table 5: Ablation studies on capacity of Midway Network’s midway path and forward dynamics
model evaluated on BDD100K semantic segmentation linear readout and MPI-Sintel optical flow
finetuning.

Ablation | TmIoU  |EPE
Full model 315 4.1
0.5x midway dim 31.3 6.7
2x midway dim 31.0 33
1-layer midway 31.9 6.9
2-layer midway 31.2 6.4
1-layer forward 29.6 5.0
2-layer forward 30.2 4.8

A.3 FRAME SAMPLING ABLATIONS

We provide additional ablations on the effect of the time gap between sampled frames on pretraining,
shown in Table[f] For reference, Midway Network samples pairs of frames 0.5 ~ 1 seconds apart for
BDD. We observe that Midway Network is relatively robust to training with different time deltas.

Table 6: Ablation studies on time gap used for sampling frames for pretraining, evaluated on
BDD100K semantic segmentation linear readout and MPI-Sintel optical flow finetuning.

0.16sec | 31.0 4.1
0.5 sec 320 43
1 sec 31.2 4.6
2 sec 31.0 49
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A.4 ADE20K LINEAR READOUT

Table[7]shows evaluation results for ADE20K semantic segmentation linear readout. Performance
trends follow the UperNet finetuning results in Table [2} Again, Midway Network is competitive with
baselines, PooDLe and DoRA, and furthermore, it does not rely on an external supervised optical
flow network and can jointly learn representations for motion understanding.

Table 7: ADE20K semantic segmentation linear readout evaluations for WT-Venice 224 x 224
resolution pretraining. TPooDLe on 512 x 1024 resolution pretraining from their original table (Wang
et al., 2025)).

Method Arch  Ep. | tmloU tAcc
PooDLe’ (Wang et al.|[2025} R50 20 14.6 59.0
MAE (He et al./[2022) ViT-S 100 74 551
VideoMAE (Tong et al.|[2022) ViT-S 100 0.8 286
DINO (Caron et al.[[2021) VIiT-S 100 6.9 482
CroCo v2 (Weinzaepfel et al.||2022)  ViT-S 100 42 487
DoRA (Venkataramanan et al.[[2024)  ViT-S 100 14.1 63.5
Midway ViT-S 100 121 613

A.5 OPTICAL FLOW FROZEN READOUT

Table [§|provides evaluation results for optical flow linear readout. Here, the backbone parameters of
each method are frozen and only the DPT (Ranttl et al.|[2021) head is trained using the same data as
the optical flow finetuning experiments. Midway Network’s learned representations again achieve
strong performance relative to the baselines.

Table 8: Optical flow frozen readout evaluations for BDD100K 224 x 224 resolution pretraining.

FlyingThings MPI-Sintel

Method Arch  Ep. | \pppicy |BPE(H) JEPE(c) JEPE (D)

iBOT (Zhou et al.|{2021) ViT-S 800 20.5 20.3 13.9 14.6
DINO (Caron et al.[[2021) ViT-S 300 19.0 17.5 14.0 13.5
VideoMAE (Tong et al.|[2022) VIiT-S 300 20.0 20.0 11.6 12.2
CroCo v2 (Weinzaepfel et al.[|2023) VIiT-S 300 39.2 39.2 24.0 239
DoRA (Venkataramanan et al.[|2024)  ViT-S 300 20.7 20.6 12.6 13.3
Midway (enc. only) VIiT-S 300 18.8 17.0 12.5 11.7
Midway ViT-S 300 20.2 19.3 12.8 12.6
DINO (Caron et al./[2021) ViT-B 300 19.0 17.4 14.2 13.2
CroCo v2 (Weinzaepfel et al.|[2023) ViT-B 300 39.2 39.2 24.0 24.1
Midway ViT-B 300 21.7 20.2 13.7 12.9

B IMPLEMENTATION DETAILS

In this section, we provide additional details on the implementation of Midway Network, the
pretraining and evaluation setups, and compute resources used for our experiments. The experiments
were implemented using the PyTorch framework.

B.1 ARCHITECTURE

The ViT encoders have 12 feature levels, and we perform the dense forward prediction objective
at levels 3, 6, and 9. The midway path infers motion latents with feature inputs at level 12 for the
level 9 objective and refines them as described in Section 2] for levels 6 and 3. The midway inverse
dynamics model at each level is a 4-block transformer with feature dimension of 192, with linear
projectors to map from and to the original feature dimension. We use 10 learnable tokens for the
motion latents. The backward layers are 1-block cross-attention transformers with feature dimension
equal to the dimension of the underlying ViT encoder, i.e. 384 for ViT-S and 768 for ViT-B. The
forward dynamics model at each level is a 4-block transformer with feature dimension equal to the
underlying encoder dimension as well. The learnable gating units are placed at all but the first block.
Each gating unit is a multi-layer perceptron with 1 hidden layer of same dimension as the encoder,
GELU activation, and a final sigmoid activation. To bias the initial gating weights towards 1, i.e. the
original fully-weighted residual connection, we add a bias of 4 to the input of the sigmoid.

We follow DINO (Caron et al.,2021) for implementation of the joint-embedding invariance objective,
using the same projection heads, centering and sharpening operations, and temperature schedules
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as described in their paper. Given that we have 2 paired video frames as input, we can sample 2
global crops and 8 local crops from each frame and compute the loss between crops across frames to
leverage the natural temporal motion augmentation. The loss is also symmetrical, where we compute
the loss for the original frame ordering as well as the reversed ordering. We utilize this setup for the
DINO baseline as well for fair comparison. The final loss is an equal-weighted sum of the dense
forward prediction loss, averaged over the feature levels, and the joint-embedding invariance loss:

L
1 l
L= Z ;:1 Edyn + Linv- (3)

B.2 PRETRAINING

We outline the hyperparameters used for pretraining in Table[9] The hyperparameters largely follow
the DINO (Caron et al.| 2021) training recipe. We use the same hyperparameters for BDD100K and
Walking Tours pretraining. For BDD100K, we utilize repeat sampling following MAE-st (Feichten{
hofer et al., 2022), which samples R = 5 frames each time a video is seen for faster data loading.
Therefore, we treat each pass through the dataset as R epochs.

Table 9: Hyperparameters used for full Midway Network experiments.

Hyperparameter Value

Learning rate 5x107*
Learning rate warmup 10 epochs
Learning rate schedule  cosine

Batch size 200
Weight decay 0.04
Weight decay end 0.4
Optimizer AdamW
Betas (0.9, 0.999)
Gradient clip norm 3.0

Drop path rate 0.1

Use FP16 Yes

B.3 BASELINES

We use the official implementations to pretrain the baselines on BDD100K and Walking Tours.
We use the released checkpoints for DINO, DoRA, and PooDLe on Walking Tours; semantic
segmentation finetuning results for MAE, DINO, DoRA, and PooDLe are also from the original table
in PooDLe (Wang et al., 2025).

B.4 EVALUATION

For the semantic segmentation tasks, we follow the ViT-based setup described in PooDLe (Wang et al.}
2025), based on the mmsegmentat ion (Contributors, 2020) codebase. The linear and UperNet
readout setups for BDD100K and CityScapes were originally from FlowE (Xiong et al.,[2021)); the
UperNet finetuning setup for ADE20K was originally from iBOT (Zhou et al.||[2021)).

For the optical flow tasks, we follow the finetuning evaluation setup described in CroCo v2 (Weinza-
epfel et al., 2023)) and use their official implementation. Our main results follow CroCo v2’s setup
for Table 1 from their paper; our ablation studies follow their setup for their Table 11 (“smaller
training data”) to match the settings of other optical flow methods. The primary difference is that
we replace CroCo v2’s decoder with Midway Network’s midway inverse dynamics and forward
dynamics models. We use the following as input to the DPT (Ranftl et al., 2021)) that outputs the
optical flow predictions: dense tokens of encoder feature level 12, dense spatial tokens corresponding
to the target frame processed by the midway model at the highest level of the dense objective, dense
token prediction of the forward model at the highest objective level, and dense token prediction of
the forward model at the lowest objective level. For reference, the midway model processes the
dense spatial tokens from the source and target frames alongside the motion latents. We use this
architecture for all other baselines besides CroCo v2 with randomly initialized weights, as they do
not have binocular components.
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B.5 COMPUTE AND TRAINING COSTS

Table [I0] provides a comparison on training cost in FLOPs per single training example and model
size in parameters for Midway Network and the baseline methods. Midway Network uses less than
half of the FLOPs of prior video data-based learning methods, PooDLe and DoRA. The dynamics
networks of Midway Network use more parameters to capture motion information, but avoid costly
iterative refinement operations used by prior flow methods such as RAFT (Teed & Deng|, 2020) and
FlowFormer (Huang et al.,[2022). Table[TT|shows the compute resources used for the experiments.

Table 10: Training cost (GLOPs per example) and model size (millions of parameters) of Midway
Network and baseline methods.

Method Training cost (GFLOPs) Parameters (millions)

Midway Network  90.8 21.7 (encoder), 36.6 (dynamics networks)
PooDLe 202.3 23.5 (encoder), 12.1 (spatial decoder)
DoRA 202.1 21.7 (encoder)

CroCo v2 6.9 21.7 (encoder), 7.2 (decoder)

DynaMo 68.9 21.7 (encoder), 13.0 (dynamics networks)
VideoMAE 11.6 22.0 (encoder), 2.0 (decoder)

iBOT 353 21.7 (encoder)

DINO 504 21.7 (encoder)

Table 11: Compute resources and time used for Midway Network experiments.

Experiment Epochs Resources Time

BDD100K ViT-S pretraining 300 2 A100 GPUs 66 hours
BDD100K ViT-B pretraining 300 8 RTX A6000 GPUs 27 hours
BDD100K ViT-S ablations 100 2 A100 GPUs 24 hours
Walking Tours ViT-S pretraining 100 4 RTX A6000 GPUs 29 hours
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C MORE VISUALIZATIONS

We show additional visualizations of predictions from the semantic segmentation evaluations in
Figure [§] for CityScapes, Figure [ for WT-Sem, and Figure [I0] for ADE20K, and optical flow
evaluations for models pretrained on Walking Tours in Figure We also provide visualizations
of optical flow evaluations comparing Midway Network and CroCo v2 for different model sizes in

Figure[12]

Image Ground Truth Midway Network PooDLe

DINO CroCo v2 DoRA DynaMo

Figure 8: Visualization of CityScapes semantic segmentation UperNet readout. Midway Network
generates cleaner boundaries, particularly for the crossing pedestrians.

DINO CroCov2 DoRA MAE

Figure 9: Visualization of WT-Sem semantic segmentation UperNet finetuning. Midway Network is
able to produce reasonable segmentation masks, even in cluttered scenes.

Ground Truth Midway Network CroCo v2

Image Ground Truth Midway Network CroCov2

Figure 10: Visualization of ADE20K semantic segmentation UperNet finetuning. Midway Network
generates more accurate segmentation masks compared to CroCo v2.

We also include more examples of the forwarded feature perturbation analysis of Midway Network’s
learned dynamics, with heatmaps in Figure [[3]and high-level tracking in Figure [T4]
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Source Target Ground Truth Midway Network CroCo v2 DINO

Figure 11: Visualization of FlyingThings and MPI-Sintel optical flow evaluations after finetuning for
models pretrained on WT-Venice. Midway Network is able to generate more accurate optical flow
predictions compared to CroCo v2 and DINO.
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Source Target Ground Truth Midway Network CroCov2 Midway Network CroCo v2
ViT-Small ViT-Small ViT-Base ViT-Base

Figure 12: Visualization of FlyingThings and MPI-Sintel optical flow evaluations after finetuning for
Midway Network and CroCo v2 pretrained on BDD for varying model sizes. Moving from ViT-Small
to ViT-Base primarily provides fine-grained improvements in optical flow estimation.

D FORWARDED FEATURE PERTURBATION VISUALIZATION

In Figure[T3] we show comparisons of heatmaps produced by forwarded feature perturbation with
optical flow estimated from RAFT [Teed & Deng| (2020)), an off-the-shelf supervised optical flow
model. For reference, we also provide heatmaps produced by cosine similarity of last-layer dense
features from different models. We convert the heatmaps to optical flow by computing the (X, y)
distance from the target token with highest perturbation or feature similarity to the source token, for
each source token. We show the highest valued target token, “Pred (K=1),” and second highest-valued
target token, “Pred (K=2).” Because forwarded feature perturbation is on the token-level whereas
optical flow maps are on the pixel-level, we sample the optical flow at the center of each token
in the source frame and retrieve the target token that the optical flow maps to in the target frame,
which we denote as “GT (Token).” We see that forwarded feature perturbation produces optical flow
estimates that are less noisy and more well-aligned with the RAFT-predicted optical flow compared to
feature similarity baselines. Observing that the K=1 perturbation heatmap captures more foreground
motion while the K=2 perturbation heatmap captures more background motion, we also try retrieving
the top-2 highest perturbation similarity target tokens and selecting the token with highest feature
similarity in row 2, “Pred (K=2).”
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Source Target Heatmap Source Target Heatmap

Figure 13: Heatmaps for forwarded feature perturbation in Source (green squares); shown in Target at
the same location to highlight motion. The learned dynamics can capture high-level correspondence,
such as the right taillight of the black car (bottom left).

Midway forward
perturbation

DINO-IN1K
feature similarity

Midway forward
perturbation

DINO-IN1K
feature similarity

Figure 14: High-level tracking using forwarded feature perturbation and/or feature similarity. Midway
Network is able to track high-level regions through motion transformations, such as the back of the
toddler (top row, pink square).
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Source Target GT (Pixel) GT (Token) Pred (K=1) Pred (K=2)

Figure 15: Optical flow estimates (Pred) derived from forwarded feature perturbation similarity and
feature similarity heatmaps compared to RAFT-predicted optical flow maps (GT) on BDD.
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