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Abstract

The spread of abusive speech on social media
influenced by genders, religions and context
is a persistent challenge for hate speech detec-
tion. Previous researches focused on model-
centric approaches and often overlooked the
differences in how models and humans inter-
pret offensive data. We propose a different
approach that takes into account this predic-
tion discrepancy for detecting hate speech more
accurately. We advocate for the exclusion of
sentences from the training dataset that are eas-
ily classified as hate speech by models but are
challenging for humans. Our experiments on
various datasets confirms that it is better to con-
sider human agreement levels during the data
preprocessing to improve the model general-
ization. This deviation underlines the unique
challenges of hate speech domains, emphasiz-
ing the importance of datasets that reflect both
model interpretations and human consensus.
The analysis highlights the significance of a
balanced dataset preparation approach to en-
hance the effectiveness and reliability of hate
speech detection.

1 Introduction

Warning: This paper discusses and contains
content that can be offensive or upsetting.

Implicit hate speech detection depends signif-
icantly on subjectivity, where the perception of
whether content is hateful can vary depending on
the context. A seemingly innocuous statement,
such as "Honestly, I hate college but one benefit is
you get a good sleeping schedule; it’s 3:20 now, and
I’m not even feeling tired," illustrates the complex-
ity of identifying content that may carry underlying
hateful sentiments based on the perspective of the
reader. Early research faced challenges in handling
context, leading to studies that relied on lexicon-
based approaches to identify patterns in words or
phrases (Ding et al., 2008; Lee et al., 2018; Bonta

et al., 2019). More recent efforts have focused on
generalizing implicit hate speech detection (Lud-
wig et al., 2022; Kim et al., 2022) and have intro-
duced methods aimed at enhancing out-of-domain
performance. Furthermore, it has been emphasized
that hate datasets should not be judged based on
a single opinion but rather annotated to reflect di-
verse viewpoints (Assimakopoulos et al., 2020).
In the realm of offensive language, it is suggested
that removing data deemed incorrect may overlook
the critical roles of subjectivity, bias, and ambi-
guity (Leonardelli et al., 2021). It is also argued
that even incorrectly annotated data should be pre-
served for its potential learning value (Leonardelli
et al., 2023). Research is also moving towards ap-
proaching hate data from a human-centric perspec-
tive Kocon et al. (2021), contrasting with attempts
to generalize from a data-centric viewpoint Ram-
poni and Tonelli (2022). While recent research
has extensively explored data quality, studies fo-
cusing on the interplay between human subjectivity
and model understanding remain scarce. Our goal
is to incorporate both model-centric and human-
centric perspectives to measure generalization per-
formance within the hate domain, conduct in-depth
analysis from the viewpoint of subjectivity—an
essential characteristic of offensive language de-
tection—and propose related methodologies. Fol-
lowing the approach outlined in Swayamdipta et al.
(2020), we plan to observe training dynamics and
experimentally divide a dataset into three groups
(easy, ambiguous, hard) based on confidence and
variability, aiming to enhance the detection process.
The contributions of this study are threefold:

1. It underscores the critical role of data prepro-
cessing within hate speech domains, advocat-
ing for methodologies that enhance model
learning outcomes through refined dataset
preparation.

2. It validates the proposed approach through
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Figure 1: Overview of the methodology for hate speech dataset analysis: The approach categorizes data into easy,
hard, and ambiguous sets based on model perspectives, incorporating human agreement levels to refine these into
six distinct categories. The method emphasizes discarding categories without model-human consensus to enhance

data quality.

rigorous cross-dataset evaluations, illustrating
the robustness of our methodology and its po-
tential applicability in diverse contexts.

3. It highlights the necessity of incorporating a
human-centric perspective in the analysis of
datasets , particularly those that models find
easy to interpret but humans find challenging,
thus ensuring a more effective and empathetic
framework for hate speech detection.

2 Related Works

2.1 Training Dynamics

Recent works have delved into the challenge of
detecting online toxicity, acknowledging that while
subjectivity in data labels introduces complexity,
efforts have been made to mitigate bias (Garg et al.,
2023). These studies provide evidence that mod-
els trained on data characterized as easy data can
often outperform those trained solely on more com-
plex datasets (Hase et al., 2024). This revelation
underscores the premise of our research and sug-
gests that models which focus on data that is more
readily learnable could exhibit enhanced robust-
ness. Such a perspective endorses a refined strat-
egy for data selection that considers not just the
challenge posed by a dataset but also the potential
for learning efficacy from simpler data configura-
tions. Swayamdipta et al. (2020) adopts training
dynamics to chart the learning trajectories of mod-

els across various datasets. Central to this approach
are the metrics of confidence and variability. Con-
fidence C' quantifies the model’s certainty in its
prediction for a specific data point, while variabil-
ity V' monitors the fluctuation in this confidence
over training epochs. These concepts are formally
defined as:

|
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Here, P(y;|z;) is the probability assigned by
the model to the correct label y; for data point z;
over N epochs. These metrics assist in differentiat-
ing data points that are Easy-to-Learn(EtL), Hard-
to-Learn(HtL), and Ambiguous-to-Learn(AtL), fa-
cilitating a focused method for improving dataset
integrity and, consequently, model performance.
Additionally, Figure 2 presents a data map gener-
ated using the SBIC dataset to visualize the train-
ing dynamics, illustrating how data points are dis-
tributed among these categories.

2.2 Refining Natural Language Models
through Annotator Insights

The quality of annotated data in supervised learn-
ing, especially for tasks like offensive language
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Figure 2: Data Map of the SBIC dataset for hate
speech detection. This map represents training dynam-
ics, where the x-axis denotes variability and the y-axis
denotes model confidence. The color coding of points
reflects the prediction accuracy such that low variability
and high confidence suggest Easy-to-Learn regions, and
the opposite implies Hard-to-Learn areas. The high vari-
ability regions are categorized as Ambiguous-to-Learn.

detection, is critically influenced by the nuances
of human annotation. Studies reveal that both the
inherent bias of crowd workers and the variability
in annotator agreement significantly impact model
performance and generalization (Leonardelli et al.,
2021). Recently, Leonardelli et al. (Leonardelli
et al., 2023) highlight the importance of integrating
annotator disagreement to capture the diverse inter-
pretations of offensive language, enriching model
training with a broader spectrum of human judg-
ment (Leonardelli et al., 2021). This perspec-
tive is echoed by Leonardelli et al. (2023), who
argues that removing or altering annotations within
the data is detrimental, potentially stripping the
dataset of its rich diversity of opinion and expres-
sion. Leonardelli et al. (2021) explore how biases
in crowdsourced annotations, driven by personal
opinions, can skew data quality, advocating for mit-
igation strategies that enhance dataset integrity and,
consequently, model reliability. Together, these in-
sights underscore the dual necessity of accounting
for linguistic discrepancies and mitigating annota-
tion biases, suggesting a paradigm where nuanced
annotation analysis becomes central to developing
robust natural language models.
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Figure 3: Bar plots illustrating the distribution of agree-
ment levels across the categories of easy-to-learn within
the SBIC dataset.

3 Method

Our proposed methodology, termed EASY (En-
hanced Analysis Approach for Implicit Hate
Speech Yield), integrates both model perspectives
and human subjectivity in analyzing hate speech
data. We employ a training dynamics approach
on datasets that include human agreement levels,
categorizing data into three primary types: EtL,
HtL, and AtL from a model’s perspective. To fur-
ther refine this classification, we incorporate hu-
man judgment by subdividing these categories into
"Consensual’ and *Non-Consensual’ regions based
on the agreement level calculated using the for-
mula |0.5 — offensiveYN|. This measure assesses
the perceived offensiveness by human annotators,
leveraging indicators like offensiveYN’.

We first define Easy-to-Learn (EtL) as follows,
with the definitions for the remaining categories
provided in Table 2.

EtL Consensual: Sections where both models and
humans agree on ease of classification. To under-
stand the impact of data imbalance(Padurariu and
Breaban, 2019), we explored training on 25%, 50%,
and 75% of this data. As shown in Figure 3, the
distribution of data across categories indicates a
significant imbalance, with 9461 instances in EtL
Consensual. We conducted experiments with these
varying proportions to examine the effects of data
imbalance on model performance.

EtL Non-Consensual: This category includes sen-
tences that are considered easy by the model but
difficult for humans to classify. Specifically, these
are cases where the sentences may involve implicit
hate speech, making their classification ambigu-
ous even for humans. For instance, the sentence
“How do you stop a baby from crawling in cir-
cles? You nail its other hand to the floor.” could
be perceived as dark humor, which some might



Dataset Train Refined Train (ours) Test
SBIC 35,424 33,077 4,691
OLID 19,826 19,352 2,479
ETHOS 798 699 100
‘DynaHate - - 4,120
ToxiGen - - 8,960

Table 1: Datasets used in the experiments. Training
involved only SBIC, OLID, and ETHOS, which include
human agreement levels. Note that ToxiGen and Dyna-
HATE were not used as training datasets because they
do not include human agreement levels.

find amusing while others might see it as offen-
sive. Such implicit hate speech requires a nuanced
understanding of context, suggesting that these sen-
tences, confidently classified as easy-to-learn by
the model, might actually reflect biases that war-
rant further investigation. Thus, we removed these
sentences to explore how their exclusion affects
model performance.

Our experimental setup involves fine-tuning
serveral pre-trained models, and we analyze the re-
sults across various categories using multiple mod-
els to ensure robust findings. The methodology
and its comprehensive framework are depicted in
Figure 1, illustrating the intersection of machine
learning precision and human interpretative com-
plexity. This approach aims to enhance the model’s
accuracy by aligning it more closely with nuanced
human insights into what constitutes hate speech.

4 Experimental Results

4.1 Datasets

We conduct binary text classification to delve into
the nuances of implicit hate speech datasets. For
training, we utilize datasets that incorporate human
agreement levels, specifically the Social Bias Infer-
ence Corpus (SBIC), Offensive Language Identi-
fication Dataset (OLID), and Online Hate Speech
Detection Dataset (ETHOS). These datasets are an-
notated with agreement scores ranging from 0.0 to
1.0, reflecting a spectrum of human consensus on
the offensiveness of content. For testing, we em-
ploy the DYNA HATE and ToxiGen datasets. De-
tailed information about the sizes of these datasets
can be found in Table 1.

* SBIC (Sap et al., 2020) dataset provides a
rich collection of social media posts anno-
tated with structured implications about a
wide range of demographic groups.

* OLID (Zampieri et al., 2019) is a hierarchical
dataset that aims to classify offensive texts on
social media into various categories and tar-
gets, making it a valuable resource for under-
standing the multifaceted nature of offensive
language.

« ETHOS (Mollas et al., 2022), derived from
YouTube and Reddit comments, offers both bi-
nary and multi-label classification challenges,
showcasing the varied dimensions of hate
speech across different platforms.

DYNAHATE (Vidgen et al., 2020) introduces
a novel approach to dataset creation by includ-
ing examples specifically designed to chal-
lenge hate speech detection models, thus en-
hancing their adaptability and robustness.

ToxiGen (Hartvigsen et al., 2022) presents
a large-scale machine-generated dataset fo-
cused on adversarial and implicit hate speech
detection, leveraging advanced language mod-
els for data generation.

In this analysis, we refine our approach by pre-
processing the datasets to focus solely on the posts
(sentences) and their associated offensive YN labels,
which allows us to perform binary classification on
whether content is considered hate speech or not.
This preprocessing step ensures that we leverage
only the most pertinent columns for our analysis,
thus enhancing the relevance of our training and
evaluation phases.

4.2 Baseline Experimental Setup

In our experimental framework, we employ sev-
eral baseline models to establish a comprehensive
understanding of performance across different ar-
chitectures and setups. The primary models used
are BERT ! (Devlin et al., 2018; Saleh et al., 2023)
and its specialized derivative, HateBERT ? (Caselli
et al., 2020), known for their effectiveness in pro-
cessing natural language and detecting hate speech
nuances. Additionally, we include domain-specific
models like ToxiGen-RoBERTa to diversify our
experimental insights. We conduct experiments
with multiple seeds, ranging from three to five, to
ensure the robustness and reproducibility of our
results. The learning rate is set to 5e-6, with batch

"https://huggingface.co/google-bert/bert-base-uncased
Zhttps://huggingface.co/GroNLP/hateBERT



Agreement Level- Confidence correlation

NI
= T
.

0.4

-

0.2

EtL N-C EtLC AtL N-C AtLC

Agreement Level

HtL N-C HtL C

Figure 4: Correlation between agreement levels and
model confidence and variability across EtL, HtL, and
AtL categories within the SBIC dataset. The plot shows
the agreement and confidence correlation. On the x-axis,
’N-C’ represents Non-Consensual, while *C’ stands for
Consensual.

sizes varying between 16 and 30 to optimize com-
putational efficiency and learning dynamics. We
utilize NVIDIA RTX4090 GPUs with a batch size
of 30 per device. The labels in datasets featuring
human agreement levels are processed as floating-
point numbers ranging from 0.0 to 1.0. We utilize
a thresholding approach where scores above 0.5
are classified as hate (1) and those below as not
hate (0). For our evaluation metrics, we rely on
Accuracy and the F1 score to assess both the pre-
cision and recall capabilities of our models com-
prehensively. Optimization is performed using the
AdamW optimizer, which is noted for its effec-
tiveness in fine-tuning large pre-trained models.
Detailed configurations of our experimental setup,
including hyperparameters and additional method-
ological nuances, are meticulously documented in
the appendix A of this paper. This extensive setup
allows us to conduct a deep analysis of how differ-
ent configurations impact performance, particularly
focusing on the interplay between model outputs
and the subjective interpretation of hate speech by
humans.

5 EASY: Enhanced Analysis Approach
for Implicit Hate Speech Yield

5.1 EtL Analysis

One of the significant challenges within the hate
speech domain is the generalization of implicit
hate speech detection. Research is conducted using
methods such as debiasing and contrast learning to
address these issues (Badjatiya et al., 2019). We
hypothesize that removing data considered easy by
the model but challenging from a human perspec-
tive can improve performance levels without the
need for direct fine-tuning of the model’s architec-
ture. Currently, we examine the actual differences
between the Consensual and Non-Consensual re-
gions of the EtL data trained on the SBIC using
training dynamics. Both data groups are found to
have confidence levels around 0.8 (figure 4).

5.1.1 Linguistic Patterns in EtL Dataset

In our analysis, we explore the linguistic patterns
inherent in the Easy-to-Learn (EtL) dataset, sub-
dividing it into ’EtL Consensual’ and ’EtL. Non-
Consensual’ based on the consensus level of an-
notators. We extract the top keywords from each
subset to understand the thematic content and lin-
guistic intensity of the discussions.
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Figure 5: Words clouds for EtL. Consensual Dataset

EtL Consensual The EtL Consensual’ subset,
which corresponds to content typically agreed upon
as non-offensive or mildly offensive by both mod-
els and humans, exhibited frequent occurrences of
everyday terms intertwined with explicit language.
Figure 5 illustrates the top keywords, which in-
clude:
* General terms: 'one’ ‘time’,
ee’, 'go’
» Explicit content: *f*cking’, ’b*tch’, *f*ck’

, ‘people’, day’,

e Race-related terms: ’black’, *white’, "Jew’,
"black people’



* Emotive expressions: ’like’, want’, 'need’,

"good’

This subset is characterized by a more direct and
overt expression, reflecting clear stances or opin-
ions.
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Figure 6: Words clouds for EtL. Non-Consensual
Dataset
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EtL Non-Consensual Conversely, the ’EtL. Non-
Consensual’ subset includes terms that often relate
to sensitive societal topics, showcasing a broader
spectrum of subjects and higher emotional intensity.
The top keywords from Figure 6 include:

» Explicit content: ’f*cking’, 'n*gga’, "b*tch’,
f*ck’, ’shit’, "h*e’, "a*s’

¢ General terms:
an’, ’kid’

’people’, women’, ’girl’,

* Discriminatory language: Often implicit
through the context in which even common-
place words are used.

¢ Calls to action or emotions: *want’, ‘need’,

’hate’, ’love’

This group highlights the complexities of defining
hate speech, where the context or the presence of
certain keywords escalates the sensitivity of the
content.

5.1.2 Implications for Hate Speech Detection

This comparative study suggests the necessity
for granulated categorization within hate speech
datasets. By segmenting the datasets into more
manageable sub-groups based on explicitness and
societal sensitivity, we can fine-tune hate speech
detection models for improved performance and
better understanding of the complexities involved.

Moreover, our research advocates for incorporat-
ing a data selection process that factors in human
subjectivity and annotator consensus. This strategy

Categories

EtL Consensual

EtL Non-Consensual
AtL Consensual

AtL Non-Consensual
HtL Consensual

HtL Non-Consensual

Description

Easy for both models and humans.

Easy for models but difficult for humans.
Unclear for both models and humans.
Unclear for models but easy for humans.
Difficult for both models and humans.
Difficult for models but easy for humans.

Table 2: Description of data categories used in the study.

not only aids in reducing model bias but also en-
riches the models’ capability to discern between
overt and subtle forms of hate speech.

5.2 In-depth Analysis

Our hypothesis posits that by considering both
human-centric and model-centric perspectives dur-
ing data preprocessing, the quality of the data im-
proves, thereby enhancing the generalization per-
formance for implicit hate speech detection. To this
end, data initially classified from a model-centric
standpoint is reprocessed to incorporate human-
centric subjectivity. We conduct an extensive eval-
uation using various datasets and ablation studies
to analyze the results, which are detailed further in
the appendix A. The robustness of our hypothesis
is tested by training on three datasets and testing
on five different datasets. This approach not only
reinforces the reliability of our findings but also
allows us to test the applicability across different
language models. We categorize the dataset that
reflects subjectivity into six major groups. The
characteristics and definitions of these categories
are detailed in Table 2.

5.2.1 Performance Results

Overall, as presented in Table 3, EASY demon-
strates performance improvements in most Out-of-
Domain (OOD) tests. The BERT model, pretrained
on the SBIC dataset, exhibits a maximum perfor-
mance increase of 6.04%pt in the OLID dataset.
Additional gains are observed in DynaHate by
3.99%pt and ToxiGen by 3.24%pt, confirming the
impact on generalization performance. Testing on
the smallest dataset we train, ETHOS, shows the
most significant change, with a maximum improve-
ment of 10.31%pt.

To validate our hypothesis further, we conduct
tests using other language models, such as Hate-
BERT and ToxiGen-RoBERTa. The results, gen-
erally showing improved or similar performance
levels, are detailed in Table 4.

Furthermore, as indicated in Appendix A, ad-
justing the quantity of EtL. Consensual data does



Train
Test SBIC OLID ETHOS
baseline Ours baseline Ours baseline Ours
SBIC 80.12+14 79.77+12 | 7078 £47 71.63+3.0 | 53.29+73 65.81 £32
OLID 43.80+95 4984 +£29 | 90.03+1.0 9283 +21 | 36.14+9.0 43.07 £9.0
ETHOS || 63.05+25 63.16 +0.7 | 58.37 +47 60.02 £08 | 68.81 +52 71.87 +£5.7
DynaHate || 63.44 57 67.42+23 | 66.85+80 68.47 +46 | 51.554+29 61.86+1.5
ToxiGen 52.87 +88 56.12 +63 | 30.77 £66 61.65+63 | 31.80 £12.1 40.44 +9.0

Table 3: Performance Comparison: F1 Score Performance Comparison of BERT-uncased Trained on SBIC, OLID,

ETHOS Dataset Across Different Datasets and Conditions

Model Condition SBIC (ID) DynaHate (OOD) ETHOS (OOD) OLID (OOD) ToxiGen (OOD)
HateBERT *Baseline (100% train) 84.64 £0.3 60.79 £ 0.5 71.65 + 1.1 68.38 0.5 59.73 +£03
HateBERT w/o EtL Non-Consensual 84.76 +0.2 60.94 + 0.4 72.94 £ 0.8 67.52 £0.6 60.41 +0.5
ToxiGen_Roberta *Baseline (100% train) 84.98 +0.3 6393 +14 73.12 £2.0 68.52 +1.2 75.15 £05
ToxiGen_Roberta w/o EtL Non-Consensual 85.19 +0.4 64.14 +19 74.48 + 1.7 67.79 £ 1.0 75.30 £ 1.0

Table 4: F1 Score Comparison Across Models and Conditions, Based on Training with the SBIC Dataset

not significantly affect performance, suggesting
that removing EtL. Non-Consensual data is more
crucial. Despite comprising only 2,347 out of
35,424 data points in the SBIC dataset, the EtL
Non-Consensual category shows the highest per-
formance improvement. These results suggest that
when models easily predict labels for data that hu-
mans find difficult to judge as offensive, it may
indicate misdirection in model training. Therefore,
enhancing the quality of the EtL-classified dataset
can significantly impact the overall dataset quality,
underscoring the importance of improving EtL data
quality.

5.2.2 Ablation Study

In addition to testing our initial hypothesis, Ap-
pendix A.4, which presents the results of experi-
ments that involved various combinations of the
categories defined in Table 2. For example, the
configuration without (w/o) EtL Non-Consensual,
AtL Consensual, and HtL Consensual involved re-
moving all datasets where human and model per-
spectives differ and training solely on the remain-
ing data. The results predominantly showed a de-
cline in performance. Specifically, removing only
AtL Consensual, where both models and humans
find the data difficult, and training without EtL
Non-Consensual resulted in a maximum perfor-
mance drop of up to 7.9 %pt. This suggests that
data deemed difficult by both models and humans
should be used as training material.

Moreover, training solely on EtL. Consensual,
where human and model perspectives align, also

resulted in a slight decrease in performance. This
indicates that datasets perceived as easy by models
might mislead the training direction. Training only
on AtL Consensual data led to a significant drop in
performance, and excluding AtL Consensual from
training also resulted in substantial performance de-
creases. This highlights the influence of these data
when trained alongside other datasets. Through a
series of 19 ablation studies, we have demonstrated
that removing the EtL. Non-Consensual category
has the most significant impact on improving gen-
eralization performance.

5.3 Discussion

5.3.1 Implications of Dataset Quality

This research is predicated on the notion that per-
formance in the task of implicit hate speech de-
tection can be enhanced not through modifications
to the model itself but by improving the quality
of the dataset. Our research employs a data map-
ping methodology, classifying data into three areas
based on human agreement levels: Easy-to-Learn
(EtL), Hard-to-Learn (HtL), and Ambiguous-to-
Learn (AtL). The analysis confirms that focusing
on the quality of data within the EtL area is crucial.

However, we acknowledge ongoing concerns
regarding the reliability of the human agreement
level. Since the agreement level is an average of
labels provided by multiple annotators, a single
outlier can significantly alter the average, even if
all other annotators agree. Additionally, poor per-
formance in offensive data detection tasks may be
attributed to a lack of contextual understanding



or inadequate grasp of English slang, which can
similarly affect human annotators, leading to po-
tential mislabeling if they do not fully comprehend
a sentence. Therefore, attention must also be given
to datasets where the agreement level is measured
low (EtL Non-Consensual, AtL. Consensual, HtL
Consensual). As shown in Appendix A.4, train-
ing exclusively on datasets from each area reveals
that training only with HtL Consensual results in
the lowest performance, whereas removing HtL
Consensual data (w/o HtL Consensual) does not
significantly enhance performance. This suggests a
need for further differentiation within datasets clas-
sified as AtL Consensual and HtL Consensual. For
instance, analyzing the standard deviation of the
agreement level might help determine whether the
low level is due to a divergence of opinions among
annotators or the extreme labeling by an individual,
thus potentially extracting true HtL data. In con-
clusion, enhancing the dataset quality, especially
by scrutinizing and refining data in low agreement
areas, can significantly impact the performance and
reliability of implicit hate speech detection models.

5.3.2 Insights from the HtL Category

As depicted in Figure 7, the data map of the HtL
classified subset does not concentrate within a sin-
gular region. Instead, it exhibits a well-distributed
spread across three distinct areas: high confidence
with low variability, high variability, and low con-
fidence with low variability. This distribution con-
trasts with the data map generated using the en-
tire dataset (see Figure 2), where the delineation
of regions is significantly more pronounced. The
observed pattern aligns closely with the phenom-
ena reported in existing literature (Swayamdipta
et al., 2020). The presence of data points within the
high confidence, low variability zone, yet catego-
rized as HtL, intimates that these instances may not
have exhibited strong confidence in the overall data
map. Nevertheless, objectively, these could be con-
sidered easy-to-learn. This discrepancy suggests
a need for further research to understand the un-
derlying factors contributing to such classification
anomalies.

5.3.3 Comparison with Other Domain

We extended our analysis to datasets outside the
hate domain to ascertain the specificity of our ap-
proach’s effectiveness. The SST dataset (Socher
et al., 2013), when compared to the SBIC dataset,
exhibited substantially less overlap in regions of
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Figure 7: Hard-to-Learn Non-Consensual Datamap

ambiguity. This indicated a clearer demarcation
between the different classifications in a general
domain setting. We adopted the same methodology
of segmenting the data into ’Consensual’ and *Non-
Consensual’ areas and evaluated the F1 scores ac-
cordingly. The removal of EtL. Non-Consensual
data in a non-hate domain, specifically when com-
pared to the baseline, resulted in a performance
decrement of 8.6%pt, confirming that our method’s
applicability is particularly pronounced within the
hate domain.

6 Conclusion

In this study, we acknowledge the inherent noise
present in hate speech datasets, largely attributable
to the subjective nature of annotations. To address
this issue, our approach has not been to refine the
model but to enhance the quality of the dataset
itself. Through empirical analysis, we identified
factors contributing to the degradation of model per-
formance by developing a datamap that illustrates
the agreement level among annotators across three
categories: easy-to-learn, hard-to-learn, ambiguous.
Our findings suggest that sentences categorized as
easy-to-learn, while having low-agreement among
human annotators—indicating instances where hu-
man judgement finds difficulty, yet model does not—
constitute poor-quality data. By training our clas-
sifier to disregard these sentences, we observed a
notable improvement of model performance. Thus,
we experimentally demonstrated that improving
the quality of the dataset alone can improve model
performance, which we expect will be useful for
future research on dataset refinement.



Limitations

We propose a data refinement strategy that con-
currently considers model confidence and human
agreement, promoting learning through meticulous
analysis. However, the reliability of the agreement
level must also be addressed. The agreement level
is the mean of the values labeled by multiple anno-
tators, and thus, if even one annotator mistakenly
provides an extreme outlier, the average can be sig-
nificantly skewed, despite uniformity from other
annotators. Nonetheless, our data cleaning strategy
demonstrates that excluding "EtL. Non-Consensual’
data can facilitate improvements in model perfor-
mance. Investigating approaches to manage annota-
tors with distinctly prominent opinions represents
a promising avenue for future work.
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A Appendix

A.1 Details in Models

BERT: BERT, a transformer-based machine
learning technique developed by Google, is consid-
ered to be well-suited for tasks in the hate speech
domain. This suitability is largely due to the model
being trained on extensive and diverse text corpora,
including Wikipedia and BookCorpus, which pro-
vide a broad linguistic foundation for understand-
ing complex language patterns and nuances.

HateBERT: HateBERT is a version of the BERT
model, specifically trained to detect hate speech
by leveraging over one million posts from banned
communities on Reddit. Developed through a col-
laboration between the University of Groningen,
the University of Turin, and the University of Pas-
sau, this model enhances the detection of offensive
and harmful language across various platforms.

ToxiGen-RoBERTa: ToxiGen-RoBERTa? is a
specialized adaptation of RoBERTa trained to iden-
tify toxic language. It has been fine- tuned to better
understand the nuances and context of offensive

3https://huggingface.co/tomh/toxigen_roberta
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and harmful language, making it highly effective
for tasks involving hate speech detection and online
safety monitoring.

A.2 Data Preprocessing

In our study, we performed a standardized prepro-
cessing procedure on multiple datasets including
OLID, SBIC, DynaHate, ToxiGen, and ETHOS, to
ensure the uniformity of data and to remove any
elements that could potentially bias the outcomes
of our hate speech detection models. The following
steps were systematically applied to each dataset:

1. Removal of Binary Indicators: We removed
the binary indicators (e.g., leading "b’") from
strings which are typical artifacts from byte
encoding.

. Elimination of User Mentions and URLs:
All user mentions (e.g., "@user") and URLs
were stripped from the texts to prevent any
personal identification and to focus solely on
the content of the communications.

. Cleaning of Special Characters and HTML
Tags: Special characters, HTML tags, and
emojis were removed to standardize the text
for analysis. This includes stripping of trans-
port and map symbols, flags, and other emoti-
cons that do not contribute to the meaning of
the text.

Punctuation and Whitespace Normaliza-
tion: We retained only word characters, dig-
its, single quotes, and whitespaces. All other
punctuations were removed, and multiple
spaces, tabs, and new lines were reduced to a
single space to maintain text consistency.

Each dataset required minor adaptations in pre-
processing to accommodate the specific format of
the data source. For instance:

* In datasets with columns named ‘tweet‘ and
‘class®, these were renamed to ‘post‘ and
‘offensive YN respectively, with the ‘offen-
siveYN* binary flag adjusted to O for non-
offensive and 1 for offensive entries.

In datasets like those with ‘comment® and
‘isHate‘, renaming and adjustments were simi-
lar, ensuring that labels are consistent across
all datasets.


https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486

The processed data retained only the necessary
columns, namely ‘offensiveYN*‘ and ‘post‘, and
each post was cleaned using the defined text clean-
ing function. This uniform preprocessing approach
allows for a more accurate and fair comparison of
model performance across different datasets. This
comprehensive preprocessing ensures that the data
used in our experiments are free from common
textual noise and standard across all datasets, thus
enhancing the reliability of our findings.

A.3 [Experimental Setup

Our experimental framework leverages the BERT-
based architectures such as BERT-uncased and
HateBERT, along with domain-specific models like
ToxiGen-RoBERTa, to address the task of implicit
hate speech detection across various datasets in-
cluding SBIC, OLID, DynaHate, ETHOS, and Tox-
iGen. The training configurations are meticulously
set to ensure consistency and reproducibility across
evaluations.

e Hardware Configuration: All models are
trained on systems equipped with NVIDIA
RTX4090 GPUs, with operations performed
on CUDA-enabled devices unless specified
otherwise.

e Training Parameters: The models are
trained for up to 8 epochs, with a learning
rate of 5 x 1075 and a batch size of 30. These
parameters were selected to balance training
speed and system capabilities.

* Evaluation Strategy: Evaluation during
training is conducted at the end of each epoch,
and comprehensive validation is performed
on multiple datasets to assess generalization
across different contexts.

¢ Optimization: Gradient accumulation is uti-
lized to stabilize training updates, with the
AdamW optimizer managing weight updates.
The training employs a linear warmup strat-
egy over the initial steps to mitigate early large
gradient updates.

* Regularization: Training includes techniques
such as weight decay and learning rate decay
to prevent overfitting on the training data.

* Reproducibility: To ensure the reproducibil-
ity of our results, we employ a total of five
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random seeds for initializing the training pro-
cess. The reported results in all tables are the
average outcomes across these seeds, provid-
ing a robust measure of model performance
and stability.

This setup enables rigorous analysis of model
performance across varied and complex hate
speech scenarios, ensuring that findings are robust
and broadly applicable.

A.3.1 Datamap Setup

The configuration for the data mapping via training
dynamics is outlined as follows. The settings were
chosen to optimize the performance of the BERT
model in classifying textual data into predefined
categories based on their ease of learning:

* Learning Rate (LR): 5 x 10~°
* Number of Training Epochs: 6
* Patience for Early Stopping: 3
* Model Name: bert-base-uncased

e Random Seed: A random seed was used to
ensure reproducibility of the results.

These parameters were set to fine-tune the model
on the dataset, considering both the complexity of
the language understanding task and the computa-
tional efficiency.

A.4 Dataset Specific Results



Condition SBIC (OOD) DynaHate (OOD) Ethos (ID) Olid (OOD) Toxigen (OOD)

*Baseline (100% train) 0.611 £0.04 0.581 £0.03 0.879 £0.02  0.649 £ 0.01 0.520 £ 0.04
w/o EtL Non-Consensual 0.616 +0.05 0.576 +0.04 0.805 +£0.04  0.647 £0.01 0.527 +0.06
w/o EtL Non-Consensual & EtL Consensual 75% 0.692 +0.05 0.670 +0.03 0.586 £0.07  0.389 +0.05 0.307 £0.11
w/o EtL Non-Consensual & EtL Consensual 50% 0.676 +0.03 0.649 +0.02 0.555 £0.04 0.363 +0.02 0.218 £0.07
w/o EtL Non-Consensual & EtL Consensual 25% 0.571 £0.18 0.507 £0.22 0.446 £ 021  0.308 £0.14 0.238 £0.19
EtL Consensual 0.012 £ 0.01 0.049 +0.04 0.055 £0.05 0.141 £0.13 0.208 +0.22
EtL Non-Consensual 0.011 +0.01 0.045 +0.05 0.041 £0.05 0.111 +0.14 0.173 £0.22
AtL Consensual 0.727 £ 0.00 0.690 =+ 0.02 0.660 +0.01  0.478 +0.03 0.569 =+ 0.08
AtL Non-Consensual 0.068 +0.04 0.136 £ 0.06 0.335 £ 0.06  0.240 £ 0.05 0.276 £0.10
HtL Consensual 0.732 £ 0.00 0.709 =+ 0.00 0.657 £0.00  0.508 £ 0.01 0.655 +0.02
HtL Non-Consensual 0.646 +0.03 0.630 +0.03 0.496 £0.08 0.328 +0.06 0.216 £0.20
w/o EtL Consensual & HtL Non-Consensual & AtL Non-Consensual 0.732 £ 0.00 0.710 =+ 0.00 0.658 £0.00 0.514 £ 0.00 0.665 =+ 0.00
w/o EtL Non-Consensual & HtL Consensual & AtL Consensual 0.007 £ 0.01 0.009 +0.02 0.008 £0.02  0.014 £ 0.03 0.006 =+ 0.01
w/o HtL Non-Consensual 0.043 £0.02 0.111 £0.03 0.186 +£0.04  0.259 £+ 0.06 0.346 £ 0.09
w/o AtL Non-Consensual 0.034 +0.03 0.057 £ 0.05 0.116 £0.10 0.122 +0.10 0.132 £0.13
w/o HtL Non-Consensual & AtL Non-Consensual 0.022 £ 0.01 0.075 £0.03 0.101 £0.07  0.206 + 0.10 0.141 £ 0.10
w/o EtL Non-Consensual & HtL Non-Consensual 0.160 + 0.07 0.173 £0.07 0.253 £0.09  0.160 £ 0.08 0.120 £ 0.10
w/o EtL Non-Consensual & AtL Non-Consensual 0.308 £0.23 0.275 £0.22 0.287 £020 0.206 +0.14 0.195 £0.17
w/o EtL Non-Consensual & HtL Non-Consensual & AtL Non-Consensual ~ 0.270 +0.14 0.277 £ 0.08 0.333 £0.13  0.290 £0.10 0.315 £0.20

Table 5: Performance Comparison of BERT uncased Model Trained on the ETHOS Dataset Across 19 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.

Condition DynaHate (OOD) ETHOS (OOD) OLID (ID) SBIC (OOD) ToxiGen (OOD)
*Baseline (100% train) 0.668 +0.08 0.584 +0.05 0.920 £0.01  0.708 +0.05 0.308 + 0.07
w/o EtL Non-Consensual 0.685 +0.05 0.600 =+ 0.01 0.928 +0.02  0.716 +0.03 0.617 +0.06
w/o EtL Non-Consensual & EtL Consensual 75% 0.635 £0.15 0.532 £ 021 0.447 £0.10  0.637 £0.19 0.460 +0.21
w/o EtL Non-Consensual & EtL Consensual 50% 0.696 + 0.02 0.570 £ 0.12 0.464 £0.05  0.607 £0.21 0.535 +0.05
w/o EtL Non-Consensual & EtL Consensual 25% 0.703 + 0.01 0.620 +0.04 0.501 £0.01  0.730 + 0.00 0.502 +0.15
EtL Consensual 0.621 +0.09 0.558 +0.05 0.499 £0.00  0.690 +0.04 0.665 + 0.00
EtL Non-Consensual 0.604 £ 0.15 0.508 +0.18 0.393 £0.16  0.629 £ 0.15 0.554 +0.16
AtL Consensual 0.458 £0.12 0.429 +0.12 0.393 +£0.02 0.552 +0.10 0.496 +0.05
AtL Non-Consensual 0.655 +0.04 0.615 +0.05 0.490 £0.01  0.693 +0.03 0.499 +0.10
HtL Consensual 0412 +£0.18 0.476 +0.04 0.373 £0.03 0465 +0.16 0.592 + 0.06
HtL Non-Consensual 0.576 +£0.18 0.655 +0.03 0.510 £0.01  0.642 +£0.13 0.538 +0.02
w/o EtL Consensual & HtL Non-Consensual & AtL Non-Consensual 0.610 £0.16 0.633 +0.05 0.459 £0.03  0.655+0.13 0.609 +0.05
w/o EtL Non-Consensual & HtL Consensual & AtL Consensual 0.601 +0.16 0.549 +0.12 0.460 +0.07  0.612 +0.20 0.535 +0.13
w/o HtL Non-Consensual 0.704 + 0.01 0.642 +0.02 0.498 £0.02  0.728 £ 0.01 0.631 +0.03
w/o AtL Non-Consensual 0.695 +0.02 0.604 + 0.01 0.484 £ 001  0.719 £ 0.02 0.566 + 0.09
w/o HtL Non-Consensual & AtL Non-Consensual 0.583 +0.18 0.578 +0.06 0.480 £0.02 0.633 +0.15 0.507 +0.09
w/o EtL Non-Consensual & HtL Non-Consensual 0.598 +0.16 0.534 +0.03 0.440 £0.02  0.594 +0.24 0.587 +0.04
w/o EtL Non-Consensual & AtL Non-Consensual 0.688 +0.04 0.558 +0.16 0.476 £0.08  0.715 +0.03 0.545 +0.12
w/o EtL Non-Consensual & HtL Non-Consensual & AtL Non-Consensual 0.688 +0.04 0.619 +0.05 0.490 £0.02  0.722 £ 0.02 0.458 +0.08

Table 6: Performance Comparison of BERT uncased Model Trained on the OLID Dataset Across 19 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.

Condition SBIC (ID) DynaHate (OOD) ETHOS (OOD) OLID (OOD) ToxiGen (OOD)
*Baseline (100% train) 0.801 +0.01 0.634 +0.06 0.630 £ 0.03 0.438 £0.10 0.529 +0.09
w/o EtL Non-Consensual 0.798 +0.01 0.674 +0.02 0.632 +0.01 0.498 =+ 0.03 0.561 + 0.06
w/o EtL Non-Consensual & EtL Consensual 75% 0.795 £ 0.01 0.678 +0.03 0.630 £ 0.01 0.512 +0.02 0.620 +0.04
w/o EtL Non-Consensual & EtL Consensual 50% 0.795 £ 0.02 0.695 +0.01 0.631 +0.02 0.511 £ 0.02 0.534 +0.10
w/o EtL Non-Consensual & EtL Consensual 25% 0.789 +0.02 0.695 +0.01 0.624 +0.02 0.492 +0.04 0.617 + 0.06
EtL Consensual 0.779 +0.02 0.674 +0.02 0.622 +0.01 0.477 £0.03 0.452 +0.17
EtL Non-Consensual 0.739 +0.03 0.628 +0.07 0.587 +0.02 0.435 +0.05 0.484 +0.12
AtL Consensual 0.732 +0.00 0.707 + 0.00 0.606 + 0.00 0.490 =+ 0.01 0.637 +0.04
AtL Non-Consensual 0.684 +0.10 0.577 +0.08 0.560 + 0.09 0.385 £ 0.10 0.471 +0.09
HtL Consensual 0.427 £ 0.11 0.504 £ 0.11 0.370 +0.08 0.396 +0.11 0.447 +0.10
HtL Non-Consensual 0.698 +0.04 0.682 =+ 0.03 0.577 +0.03 0.476 + 0.03 0.561 +0.12
w/o EtL Consensual & HtL Non-Consensual & AtL Non-Consensual 0.742 £ 0.01 0.623 +0.04 0.586 + 0.01 0.479 +0.02 0.506 + 0.06
w/o EtL Non-Consensual & HtL Consensual & AtL Consensual 0.765 +0.05 0.658 =+ 0.07 0.601 + 0.06 0.391 £0.10 0.545 +0.09
w/o HtL Non-Consensual 0.792 +0.02 0.678 + 0.01 0.633 +0.02 0.465 + 0.06 0.482 +0.10
w/o AtL Non-Consensual 0.764 +0.06 0.616 £ 0.15 0.583 +0.09 0.452 £ 0.11 0.515 +0.10
w/o HtL Non-Consensual & AtL Non-Consensual 0.783 +0.02 0.657 +0.05 0.628 + 0.01 0.409 =+ 0.06 0.437 +£0.07
w/o EtL Non-Consensual & HtL Non-Consensual 0.801 +0.01 0.663 =+ 0.04 0.635 +0.01 0.483 =+ 0.06 0.504 +0.05
w/o EtL Non-Consensual & AtL Non-Consensual 0.784 +0.02 0.697 +0.01 0.620 + 0.01 0.469 =+ 0.09 0.530 +0.09
w/o EtL Non-Consensual & HtL Non-Consensual & AtL Non-Consensual  0.796 + 0.01 0.666 = 0.02 0.631 + 0.01 0.444 +0.05 0.443 +0.06

Table 7: Performance Comparison of BERT uncased Model Trained on the SBIC Dataset Across 19 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.
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