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Abstract

The spread of abusive speech on social media001
influenced by genders, religions and context002
is a persistent challenge for hate speech detec-003
tion. Previous researches focused on model-004
centric approaches and often overlooked the005
differences in how models and humans inter-006
pret offensive data. We propose a different007
approach that takes into account this predic-008
tion discrepancy for detecting hate speech more009
accurately. We advocate for the exclusion of010
sentences from the training dataset that are eas-011
ily classified as hate speech by models but are012
challenging for humans. Our experiments on013
various datasets confirms that it is better to con-014
sider human agreement levels during the data015
preprocessing to improve the model general-016
ization. This deviation underlines the unique017
challenges of hate speech domains, emphasiz-018
ing the importance of datasets that reflect both019
model interpretations and human consensus.020
The analysis highlights the significance of a021
balanced dataset preparation approach to en-022
hance the effectiveness and reliability of hate023
speech detection.024

1 Introduction025

Warning: This paper discusses and contains026

content that can be offensive or upsetting.027

028

Implicit hate speech detection depends signif-029

icantly on subjectivity, where the perception of030

whether content is hateful can vary depending on031

the context. A seemingly innocuous statement,032

such as "Honestly, I hate college but one benefit is033

you get a good sleeping schedule; it’s 3:20 now, and034

I’m not even feeling tired," illustrates the complex-035

ity of identifying content that may carry underlying036

hateful sentiments based on the perspective of the037

reader. Early research faced challenges in handling038

context, leading to studies that relied on lexicon-039

based approaches to identify patterns in words or040

phrases (Ding et al., 2008; Lee et al., 2018; Bonta041

et al., 2019). More recent efforts have focused on 042

generalizing implicit hate speech detection (Lud- 043

wig et al., 2022; Kim et al., 2022) and have intro- 044

duced methods aimed at enhancing out-of-domain 045

performance. Furthermore, it has been emphasized 046

that hate datasets should not be judged based on 047

a single opinion but rather annotated to reflect di- 048

verse viewpoints (Assimakopoulos et al., 2020). 049

In the realm of offensive language, it is suggested 050

that removing data deemed incorrect may overlook 051

the critical roles of subjectivity, bias, and ambi- 052

guity (Leonardelli et al., 2021). It is also argued 053

that even incorrectly annotated data should be pre- 054

served for its potential learning value (Leonardelli 055

et al., 2023). Research is also moving towards ap- 056

proaching hate data from a human-centric perspec- 057

tive Kocoń et al. (2021), contrasting with attempts 058

to generalize from a data-centric viewpoint Ram- 059

poni and Tonelli (2022). While recent research 060

has extensively explored data quality, studies fo- 061

cusing on the interplay between human subjectivity 062

and model understanding remain scarce. Our goal 063

is to incorporate both model-centric and human- 064

centric perspectives to measure generalization per- 065

formance within the hate domain, conduct in-depth 066

analysis from the viewpoint of subjectivity—an 067

essential characteristic of offensive language de- 068

tection—and propose related methodologies. Fol- 069

lowing the approach outlined in Swayamdipta et al. 070

(2020), we plan to observe training dynamics and 071

experimentally divide a dataset into three groups 072

(easy, ambiguous, hard) based on confidence and 073

variability, aiming to enhance the detection process. 074

The contributions of this study are threefold: 075

1. It underscores the critical role of data prepro- 076

cessing within hate speech domains, advocat- 077

ing for methodologies that enhance model 078

learning outcomes through refined dataset 079

preparation. 080

2. It validates the proposed approach through 081
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Figure 1: Overview of the methodology for hate speech dataset analysis: The approach categorizes data into easy,
hard, and ambiguous sets based on model perspectives, incorporating human agreement levels to refine these into
six distinct categories. The method emphasizes discarding categories without model-human consensus to enhance
data quality.

rigorous cross-dataset evaluations, illustrating082

the robustness of our methodology and its po-083

tential applicability in diverse contexts.084

3. It highlights the necessity of incorporating a085

human-centric perspective in the analysis of086

datasets , particularly those that models find087

easy to interpret but humans find challenging,088

thus ensuring a more effective and empathetic089

framework for hate speech detection.090

2 Related Works091

2.1 Training Dynamics092

Recent works have delved into the challenge of093

detecting online toxicity, acknowledging that while094

subjectivity in data labels introduces complexity,095

efforts have been made to mitigate bias (Garg et al.,096

2023). These studies provide evidence that mod-097

els trained on data characterized as easy data can098

often outperform those trained solely on more com-099

plex datasets (Hase et al., 2024). This revelation100

underscores the premise of our research and sug-101

gests that models which focus on data that is more102

readily learnable could exhibit enhanced robust-103

ness. Such a perspective endorses a refined strat-104

egy for data selection that considers not just the105

challenge posed by a dataset but also the potential106

for learning efficacy from simpler data configura-107

tions. Swayamdipta et al. (2020) adopts training108

dynamics to chart the learning trajectories of mod-109

els across various datasets. Central to this approach 110

are the metrics of confidence and variability. Con- 111

fidence C quantifies the model’s certainty in its 112

prediction for a specific data point, while variabil- 113

ity V monitors the fluctuation in this confidence 114

over training epochs. These concepts are formally 115

defined as: 116

C =
1

N

N∑
i=1

P (yi|xi), 117

V =

√√√√ 1

N − 1

N∑
i=1

(P (yi|xi)− C)2. 118

Here, P (yi|xi) is the probability assigned by 119

the model to the correct label yi for data point xi 120

over N epochs. These metrics assist in differentiat- 121

ing data points that are Easy-to-Learn(EtL), Hard- 122

to-Learn(HtL), and Ambiguous-to-Learn(AtL), fa- 123

cilitating a focused method for improving dataset 124

integrity and, consequently, model performance. 125

Additionally, Figure 2 presents a data map gener- 126

ated using the SBIC dataset to visualize the train- 127

ing dynamics, illustrating how data points are dis- 128

tributed among these categories. 129

2.2 Refining Natural Language Models 130

through Annotator Insights 131

The quality of annotated data in supervised learn- 132

ing, especially for tasks like offensive language 133
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Figure 2: Data Map of the SBIC dataset for hate
speech detection. This map represents training dynam-
ics, where the x-axis denotes variability and the y-axis
denotes model confidence. The color coding of points
reflects the prediction accuracy such that low variability
and high confidence suggest Easy-to-Learn regions, and
the opposite implies Hard-to-Learn areas. The high vari-
ability regions are categorized as Ambiguous-to-Learn.

detection, is critically influenced by the nuances134

of human annotation. Studies reveal that both the135

inherent bias of crowd workers and the variability136

in annotator agreement significantly impact model137

performance and generalization (Leonardelli et al.,138

2021). Recently, Leonardelli et al. (Leonardelli139

et al., 2023) highlight the importance of integrating140

annotator disagreement to capture the diverse inter-141

pretations of offensive language, enriching model142

training with a broader spectrum of human judg-143

ment (Leonardelli et al., 2021). This perspec-144

tive is echoed by Leonardelli et al. (2023), who145

argues that removing or altering annotations within146

the data is detrimental, potentially stripping the147

dataset of its rich diversity of opinion and expres-148

sion. Leonardelli et al. (2021) explore how biases149

in crowdsourced annotations, driven by personal150

opinions, can skew data quality, advocating for mit-151

igation strategies that enhance dataset integrity and,152

consequently, model reliability. Together, these in-153

sights underscore the dual necessity of accounting154

for linguistic discrepancies and mitigating annota-155

tion biases, suggesting a paradigm where nuanced156

annotation analysis becomes central to developing157

robust natural language models.158

Figure 3: Bar plots illustrating the distribution of agree-
ment levels across the categories of easy-to-learn within
the SBIC dataset.

3 Method 159

Our proposed methodology, termed EASY (En- 160

hanced Analysis Approach for Implicit Hate 161

Speech Yield), integrates both model perspectives 162

and human subjectivity in analyzing hate speech 163

data. We employ a training dynamics approach 164

on datasets that include human agreement levels, 165

categorizing data into three primary types: EtL, 166

HtL, and AtL from a model’s perspective. To fur- 167

ther refine this classification, we incorporate hu- 168

man judgment by subdividing these categories into 169

’Consensual’ and ’Non-Consensual’ regions based 170

on the agreement level calculated using the for- 171

mula |0.5− offensiveYN|. This measure assesses 172

the perceived offensiveness by human annotators, 173

leveraging indicators like ’offensiveYN’. 174

We first define Easy-to-Learn (EtL) as follows, 175

with the definitions for the remaining categories 176

provided in Table 2. 177

EtL Consensual: Sections where both models and 178

humans agree on ease of classification. To under- 179

stand the impact of data imbalance(Padurariu and 180

Breaban, 2019), we explored training on 25%, 50%, 181

and 75% of this data. As shown in Figure 3, the 182

distribution of data across categories indicates a 183

significant imbalance, with 9461 instances in EtL 184

Consensual. We conducted experiments with these 185

varying proportions to examine the effects of data 186

imbalance on model performance. 187

EtL Non-Consensual: This category includes sen- 188

tences that are considered easy by the model but 189

difficult for humans to classify. Specifically, these 190

are cases where the sentences may involve implicit 191

hate speech, making their classification ambigu- 192

ous even for humans. For instance, the sentence 193

“How do you stop a baby from crawling in cir- 194

cles? You nail its other hand to the floor.” could 195

be perceived as dark humor, which some might 196
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Dataset Train Refined Train (ours) Test
SBIC 35,424 33,077 4,691
OLID 19,826 19,352 2,479
ETHOS 798 699 100
DynaHate - - 4,120
ToxiGen - - 8,960

Table 1: Datasets used in the experiments. Training
involved only SBIC, OLID, and ETHOS, which include
human agreement levels. Note that ToxiGen and Dyna-
HATE were not used as training datasets because they
do not include human agreement levels.

find amusing while others might see it as offen-197

sive. Such implicit hate speech requires a nuanced198

understanding of context, suggesting that these sen-199

tences, confidently classified as easy-to-learn by200

the model, might actually reflect biases that war-201

rant further investigation. Thus, we removed these202

sentences to explore how their exclusion affects203

model performance.204

Our experimental setup involves fine-tuning205

serveral pre-trained models, and we analyze the re-206

sults across various categories using multiple mod-207

els to ensure robust findings. The methodology208

and its comprehensive framework are depicted in209

Figure 1, illustrating the intersection of machine210

learning precision and human interpretative com-211

plexity. This approach aims to enhance the model’s212

accuracy by aligning it more closely with nuanced213

human insights into what constitutes hate speech.214

4 Experimental Results215

4.1 Datasets216

We conduct binary text classification to delve into217

the nuances of implicit hate speech datasets. For218

training, we utilize datasets that incorporate human219

agreement levels, specifically the Social Bias Infer-220

ence Corpus (SBIC), Offensive Language Identi-221

fication Dataset (OLID), and Online Hate Speech222

Detection Dataset (ETHOS). These datasets are an-223

notated with agreement scores ranging from 0.0 to224

1.0, reflecting a spectrum of human consensus on225

the offensiveness of content. For testing, we em-226

ploy the DYNA HATE and ToxiGen datasets. De-227

tailed information about the sizes of these datasets228

can be found in Table 1.229

• SBIC (Sap et al., 2020) dataset provides a230

rich collection of social media posts anno-231

tated with structured implications about a232

wide range of demographic groups.233

• OLID (Zampieri et al., 2019) is a hierarchical 234

dataset that aims to classify offensive texts on 235

social media into various categories and tar- 236

gets, making it a valuable resource for under- 237

standing the multifaceted nature of offensive 238

language. 239

• ETHOS (Mollas et al., 2022), derived from 240

YouTube and Reddit comments, offers both bi- 241

nary and multi-label classification challenges, 242

showcasing the varied dimensions of hate 243

speech across different platforms. 244

• DYNAHATE (Vidgen et al., 2020) introduces 245

a novel approach to dataset creation by includ- 246

ing examples specifically designed to chal- 247

lenge hate speech detection models, thus en- 248

hancing their adaptability and robustness. 249

• ToxiGen (Hartvigsen et al., 2022) presents 250

a large-scale machine-generated dataset fo- 251

cused on adversarial and implicit hate speech 252

detection, leveraging advanced language mod- 253

els for data generation. 254

In this analysis, we refine our approach by pre- 255

processing the datasets to focus solely on the posts 256

(sentences) and their associated offensiveYN labels, 257

which allows us to perform binary classification on 258

whether content is considered hate speech or not. 259

This preprocessing step ensures that we leverage 260

only the most pertinent columns for our analysis, 261

thus enhancing the relevance of our training and 262

evaluation phases. 263

4.2 Baseline Experimental Setup 264

In our experimental framework, we employ sev- 265

eral baseline models to establish a comprehensive 266

understanding of performance across different ar- 267

chitectures and setups. The primary models used 268

are BERT 1 (Devlin et al., 2018; Saleh et al., 2023) 269

and its specialized derivative, HateBERT 2 (Caselli 270

et al., 2020), known for their effectiveness in pro- 271

cessing natural language and detecting hate speech 272

nuances. Additionally, we include domain-specific 273

models like ToxiGen-RoBERTa to diversify our 274

experimental insights. We conduct experiments 275

with multiple seeds, ranging from three to five, to 276

ensure the robustness and reproducibility of our 277

results. The learning rate is set to 5e-6, with batch 278

1https://huggingface.co/google-bert/bert-base-uncased
2https://huggingface.co/GroNLP/hateBERT
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Figure 4: Correlation between agreement levels and
model confidence and variability across EtL, HtL, and
AtL categories within the SBIC dataset. The plot shows
the agreement and confidence correlation. On the x-axis,
’N-C’ represents Non-Consensual, while ’C’ stands for
Consensual.

sizes varying between 16 and 30 to optimize com-279

putational efficiency and learning dynamics. We280

utilize NVIDIA RTX4090 GPUs with a batch size281

of 30 per device. The labels in datasets featuring282

human agreement levels are processed as floating-283

point numbers ranging from 0.0 to 1.0. We utilize284

a thresholding approach where scores above 0.5285

are classified as hate (1) and those below as not286

hate (0). For our evaluation metrics, we rely on287

Accuracy and the F1 score to assess both the pre-288

cision and recall capabilities of our models com-289

prehensively. Optimization is performed using the290

AdamW optimizer, which is noted for its effec-291

tiveness in fine-tuning large pre-trained models.292

Detailed configurations of our experimental setup,293

including hyperparameters and additional method-294

ological nuances, are meticulously documented in295

the appendix A of this paper. This extensive setup296

allows us to conduct a deep analysis of how differ-297

ent configurations impact performance, particularly298

focusing on the interplay between model outputs299

and the subjective interpretation of hate speech by300

humans.301

5 EASY: Enhanced Analysis Approach 302

for Implicit Hate Speech Yield 303

5.1 EtL Analysis 304

One of the significant challenges within the hate 305

speech domain is the generalization of implicit 306

hate speech detection. Research is conducted using 307

methods such as debiasing and contrast learning to 308

address these issues (Badjatiya et al., 2019). We 309

hypothesize that removing data considered easy by 310

the model but challenging from a human perspec- 311

tive can improve performance levels without the 312

need for direct fine-tuning of the model’s architec- 313

ture. Currently, we examine the actual differences 314

between the Consensual and Non-Consensual re- 315

gions of the EtL data trained on the SBIC using 316

training dynamics. Both data groups are found to 317

have confidence levels around 0.8 (figure 4). 318

5.1.1 Linguistic Patterns in EtL Dataset 319

In our analysis, we explore the linguistic patterns 320

inherent in the Easy-to-Learn (EtL) dataset, sub- 321

dividing it into ’EtL Consensual’ and ’EtL Non- 322

Consensual’ based on the consensus level of an- 323

notators. We extract the top keywords from each 324

subset to understand the thematic content and lin- 325

guistic intensity of the discussions. 326

Figure 5: Words clouds for EtL Consensual Dataset

EtL Consensual The ’EtL Consensual’ subset, 327

which corresponds to content typically agreed upon 328

as non-offensive or mildly offensive by both mod- 329

els and humans, exhibited frequent occurrences of 330

everyday terms intertwined with explicit language. 331

Figure 5 illustrates the top keywords, which in- 332

clude: 333

• General terms: ’one’, ’people’, ’day’, ’time’, 334

’see’, ’go’ 335

• Explicit content: ’f*cking’, ’b*tch’, ’f*ck’ 336

• Race-related terms: ’black’, ’white’, ’Jew’, 337

’black people’ 338
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• Emotive expressions: ’like’, ’want’, ’need’,339

’good’340

This subset is characterized by a more direct and341

overt expression, reflecting clear stances or opin-342

ions.343

Figure 6: Words clouds for EtL Non-Consensual
Dataset

EtL Non-Consensual Conversely, the ’EtL Non-344

Consensual’ subset includes terms that often relate345

to sensitive societal topics, showcasing a broader346

spectrum of subjects and higher emotional intensity.347

The top keywords from Figure 6 include:348

• Explicit content: ’f*cking’, ’n*gga’, ’b*tch’,349

’f*ck’, ’shit’, ’h*e’, ’a*s’350

• General terms: ’people’, ’women’, ’girl’,351

’man’, ’kid’352

• Discriminatory language: Often implicit353

through the context in which even common-354

place words are used.355

• Calls to action or emotions: ’want’, ’need’,356

’hate’, ’love’357

This group highlights the complexities of defining358

hate speech, where the context or the presence of359

certain keywords escalates the sensitivity of the360

content.361

5.1.2 Implications for Hate Speech Detection362

This comparative study suggests the necessity363

for granulated categorization within hate speech364

datasets. By segmenting the datasets into more365

manageable sub-groups based on explicitness and366

societal sensitivity, we can fine-tune hate speech367

detection models for improved performance and368

better understanding of the complexities involved.369

Moreover, our research advocates for incorporat-370

ing a data selection process that factors in human371

subjectivity and annotator consensus. This strategy372

Categories Description
EtL Consensual Easy for both models and humans.
EtL Non-Consensual Easy for models but difficult for humans.
AtL Consensual Unclear for both models and humans.
AtL Non-Consensual Unclear for models but easy for humans.
HtL Consensual Difficult for both models and humans.
HtL Non-Consensual Difficult for models but easy for humans.

Table 2: Description of data categories used in the study.

not only aids in reducing model bias but also en- 373

riches the models’ capability to discern between 374

overt and subtle forms of hate speech. 375

5.2 In-depth Analysis 376

Our hypothesis posits that by considering both 377

human-centric and model-centric perspectives dur- 378

ing data preprocessing, the quality of the data im- 379

proves, thereby enhancing the generalization per- 380

formance for implicit hate speech detection. To this 381

end, data initially classified from a model-centric 382

standpoint is reprocessed to incorporate human- 383

centric subjectivity. We conduct an extensive eval- 384

uation using various datasets and ablation studies 385

to analyze the results, which are detailed further in 386

the appendix A. The robustness of our hypothesis 387

is tested by training on three datasets and testing 388

on five different datasets. This approach not only 389

reinforces the reliability of our findings but also 390

allows us to test the applicability across different 391

language models. We categorize the dataset that 392

reflects subjectivity into six major groups. The 393

characteristics and definitions of these categories 394

are detailed in Table 2. 395

5.2.1 Performance Results 396

Overall, as presented in Table 3, EASY demon- 397

strates performance improvements in most Out-of- 398

Domain (OOD) tests. The BERT model, pretrained 399

on the SBIC dataset, exhibits a maximum perfor- 400

mance increase of 6.04%pt in the OLID dataset. 401

Additional gains are observed in DynaHate by 402

3.99%pt and ToxiGen by 3.24%pt, confirming the 403

impact on generalization performance. Testing on 404

the smallest dataset we train, ETHOS, shows the 405

most significant change, with a maximum improve- 406

ment of 10.31%pt. 407

To validate our hypothesis further, we conduct 408

tests using other language models, such as Hate- 409

BERT and ToxiGen-RoBERTa. The results, gen- 410

erally showing improved or similar performance 411

levels, are detailed in Table 4. 412

Furthermore, as indicated in Appendix A, ad- 413

justing the quantity of EtL Consensual data does 414
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Test
Train

SBIC OLID ETHOS
baseline Ours baseline Ours baseline Ours

SBIC 80.12 ± 1.4 79.77 ± 1.2 70.78 ± 4.7 71.63 ± 3.0 53.29 ± 7.3 65.81 ± 3.2

OLID 43.80 ± 9.5 49.84 ± 2.9 90.03 ± 1.0 92.83 ± 2.1 36.14 ± 9.0 43.07 ± 9.0

ETHOS 63.05 ± 2.5 63.16 ± 0.7 58.37 ± 4.7 60.02 ± 0.8 68.81 ± 5.2 71.87 ± 5.7

DynaHate 63.44 ± 5.7 67.42 ± 2.3 66.85 ± 8.0 68.47 ± 4.6 51.55 ± 2.9 61.86 ± 1.5

ToxiGen 52.87 ± 8.8 56.12 ± 6.3 30.77 ± 6.6 61.65 ± 6.3 31.80 ± 12.1 40.44 ± 9.0

Table 3: Performance Comparison: F1 Score Performance Comparison of BERT-uncased Trained on SBIC, OLID,
ETHOS Dataset Across Different Datasets and Conditions

Model Condition SBIC (ID) DynaHate (OOD) ETHOS (OOD) OLID (OOD) ToxiGen (OOD)
HateBERT *Baseline (100% train) 84.64 ± 0.3 60.79 ± 0.5 71.65 ± 1.1 68.38 ± 0.5 59.73 ± 0.3

HateBERT w/o EtL Non-Consensual 84.76 ± 0.2 60.94 ± 0.4 72.94 ± 0.8 67.52 ± 0.6 60.41 ± 0.5

ToxiGen_Roberta *Baseline (100% train) 84.98 ± 0.3 63.93 ± 1.4 73.12 ± 2.0 68.52 ± 1.2 75.15 ± 0.5

ToxiGen_Roberta w/o EtL Non-Consensual 85.19 ± 0.4 64.14 ± 1.9 74.48 ± 1.7 67.79 ± 1.0 75.30 ± 1.0

Table 4: F1 Score Comparison Across Models and Conditions, Based on Training with the SBIC Dataset

not significantly affect performance, suggesting415

that removing EtL Non-Consensual data is more416

crucial. Despite comprising only 2,347 out of417

35,424 data points in the SBIC dataset, the EtL418

Non-Consensual category shows the highest per-419

formance improvement. These results suggest that420

when models easily predict labels for data that hu-421

mans find difficult to judge as offensive, it may422

indicate misdirection in model training. Therefore,423

enhancing the quality of the EtL-classified dataset424

can significantly impact the overall dataset quality,425

underscoring the importance of improving EtL data426

quality.427

5.2.2 Ablation Study428

In addition to testing our initial hypothesis, Ap-429

pendix A.4, which presents the results of experi-430

ments that involved various combinations of the431

categories defined in Table 2. For example, the432

configuration without (w/o) EtL Non-Consensual,433

AtL Consensual, and HtL Consensual involved re-434

moving all datasets where human and model per-435

spectives differ and training solely on the remain-436

ing data. The results predominantly showed a de-437

cline in performance. Specifically, removing only438

AtL Consensual, where both models and humans439

find the data difficult, and training without EtL440

Non-Consensual resulted in a maximum perfor-441

mance drop of up to 7.9 %pt. This suggests that442

data deemed difficult by both models and humans443

should be used as training material.444

Moreover, training solely on EtL Consensual,445

where human and model perspectives align, also446

resulted in a slight decrease in performance. This 447

indicates that datasets perceived as easy by models 448

might mislead the training direction. Training only 449

on AtL Consensual data led to a significant drop in 450

performance, and excluding AtL Consensual from 451

training also resulted in substantial performance de- 452

creases. This highlights the influence of these data 453

when trained alongside other datasets. Through a 454

series of 19 ablation studies, we have demonstrated 455

that removing the EtL Non-Consensual category 456

has the most significant impact on improving gen- 457

eralization performance. 458

5.3 Discussion 459

5.3.1 Implications of Dataset Quality 460

This research is predicated on the notion that per- 461

formance in the task of implicit hate speech de- 462

tection can be enhanced not through modifications 463

to the model itself but by improving the quality 464

of the dataset. Our research employs a data map- 465

ping methodology, classifying data into three areas 466

based on human agreement levels: Easy-to-Learn 467

(EtL), Hard-to-Learn (HtL), and Ambiguous-to- 468

Learn (AtL). The analysis confirms that focusing 469

on the quality of data within the EtL area is crucial. 470

However, we acknowledge ongoing concerns 471

regarding the reliability of the human agreement 472

level. Since the agreement level is an average of 473

labels provided by multiple annotators, a single 474

outlier can significantly alter the average, even if 475

all other annotators agree. Additionally, poor per- 476

formance in offensive data detection tasks may be 477

attributed to a lack of contextual understanding 478
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or inadequate grasp of English slang, which can479

similarly affect human annotators, leading to po-480

tential mislabeling if they do not fully comprehend481

a sentence. Therefore, attention must also be given482

to datasets where the agreement level is measured483

low (EtL Non-Consensual, AtL Consensual, HtL484

Consensual). As shown in Appendix A.4, train-485

ing exclusively on datasets from each area reveals486

that training only with HtL Consensual results in487

the lowest performance, whereas removing HtL488

Consensual data (w/o HtL Consensual) does not489

significantly enhance performance. This suggests a490

need for further differentiation within datasets clas-491

sified as AtL Consensual and HtL Consensual. For492

instance, analyzing the standard deviation of the493

agreement level might help determine whether the494

low level is due to a divergence of opinions among495

annotators or the extreme labeling by an individual,496

thus potentially extracting true HtL data. In con-497

clusion, enhancing the dataset quality, especially498

by scrutinizing and refining data in low agreement499

areas, can significantly impact the performance and500

reliability of implicit hate speech detection models.501

5.3.2 Insights from the HtL Category502

As depicted in Figure 7, the data map of the HtL503

classified subset does not concentrate within a sin-504

gular region. Instead, it exhibits a well-distributed505

spread across three distinct areas: high confidence506

with low variability, high variability, and low con-507

fidence with low variability. This distribution con-508

trasts with the data map generated using the en-509

tire dataset (see Figure 2), where the delineation510

of regions is significantly more pronounced. The511

observed pattern aligns closely with the phenom-512

ena reported in existing literature (Swayamdipta513

et al., 2020). The presence of data points within the514

high confidence, low variability zone, yet catego-515

rized as HtL, intimates that these instances may not516

have exhibited strong confidence in the overall data517

map. Nevertheless, objectively, these could be con-518

sidered easy-to-learn. This discrepancy suggests519

a need for further research to understand the un-520

derlying factors contributing to such classification521

anomalies.522

5.3.3 Comparison with Other Domain523

We extended our analysis to datasets outside the524

hate domain to ascertain the specificity of our ap-525

proach’s effectiveness. The SST dataset (Socher526

et al., 2013), when compared to the SBIC dataset,527

exhibited substantially less overlap in regions of528

Figure 7: Hard-to-Learn Non-Consensual Datamap

ambiguity. This indicated a clearer demarcation 529

between the different classifications in a general 530

domain setting. We adopted the same methodology 531

of segmenting the data into ’Consensual’ and ’Non- 532

Consensual’ areas and evaluated the F1 scores ac- 533

cordingly. The removal of EtL Non-Consensual 534

data in a non-hate domain, specifically when com- 535

pared to the baseline, resulted in a performance 536

decrement of 8.6%pt, confirming that our method’s 537

applicability is particularly pronounced within the 538

hate domain. 539

6 Conclusion 540

In this study, we acknowledge the inherent noise 541

present in hate speech datasets, largely attributable 542

to the subjective nature of annotations. To address 543

this issue, our approach has not been to refine the 544

model but to enhance the quality of the dataset 545

itself. Through empirical analysis, we identified 546

factors contributing to the degradation of model per- 547

formance by developing a datamap that illustrates 548

the agreement level among annotators across three 549

categories: easy-to-learn, hard-to-learn, ambiguous. 550

Our findings suggest that sentences categorized as 551

easy-to-learn, while having low-agreement among 552

human annotators–indicating instances where hu- 553

man judgement finds difficulty, yet model does not– 554

constitute poor-quality data. By training our clas- 555

sifier to disregard these sentences, we observed a 556

notable improvement of model performance. Thus, 557

we experimentally demonstrated that improving 558

the quality of the dataset alone can improve model 559

performance, which we expect will be useful for 560

future research on dataset refinement. 561
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Limitations562

We propose a data refinement strategy that con-563

currently considers model confidence and human564

agreement, promoting learning through meticulous565

analysis. However, the reliability of the agreement566

level must also be addressed. The agreement level567

is the mean of the values labeled by multiple anno-568

tators, and thus, if even one annotator mistakenly569

provides an extreme outlier, the average can be sig-570

nificantly skewed, despite uniformity from other571

annotators. Nonetheless, our data cleaning strategy572

demonstrates that excluding ’EtL Non-Consensual’573

data can facilitate improvements in model perfor-574

mance. Investigating approaches to manage annota-575

tors with distinctly prominent opinions represents576

a promising avenue for future work.577
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A Appendix695

A.1 Details in Models696

BERT: BERT, a transformer-based machine697

learning technique developed by Google, is consid-698

ered to be well-suited for tasks in the hate speech699

domain. This suitability is largely due to the model700

being trained on extensive and diverse text corpora,701

including Wikipedia and BookCorpus, which pro-702

vide a broad linguistic foundation for understand-703

ing complex language patterns and nuances.704

HateBERT: HateBERT is a version of the BERT705

model, specifically trained to detect hate speech706

by leveraging over one million posts from banned707

communities on Reddit. Developed through a col-708

laboration between the University of Groningen,709

the University of Turin, and the University of Pas-710

sau, this model enhances the detection of offensive711

and harmful language across various platforms.712

ToxiGen-RoBERTa: ToxiGen-RoBERTa3 is a713

specialized adaptation of RoBERTa trained to iden-714

tify toxic language. It has been fine- tuned to better715

understand the nuances and context of offensive716

3https://huggingface.co/tomh/toxigen_roberta

and harmful language, making it highly effective 717

for tasks involving hate speech detection and online 718

safety monitoring. 719

A.2 Data Preprocessing 720

In our study, we performed a standardized prepro- 721

cessing procedure on multiple datasets including 722

OLID, SBIC, DynaHate, ToxiGen, and ETHOS, to 723

ensure the uniformity of data and to remove any 724

elements that could potentially bias the outcomes 725

of our hate speech detection models. The following 726

steps were systematically applied to each dataset: 727

1. Removal of Binary Indicators: We removed 728

the binary indicators (e.g., leading "b’") from 729

strings which are typical artifacts from byte 730

encoding. 731

2. Elimination of User Mentions and URLs: 732

All user mentions (e.g., "@user") and URLs 733

were stripped from the texts to prevent any 734

personal identification and to focus solely on 735

the content of the communications. 736

3. Cleaning of Special Characters and HTML 737

Tags: Special characters, HTML tags, and 738

emojis were removed to standardize the text 739

for analysis. This includes stripping of trans- 740

port and map symbols, flags, and other emoti- 741

cons that do not contribute to the meaning of 742

the text. 743

4. Punctuation and Whitespace Normaliza- 744

tion: We retained only word characters, dig- 745

its, single quotes, and whitespaces. All other 746

punctuations were removed, and multiple 747

spaces, tabs, and new lines were reduced to a 748

single space to maintain text consistency. 749

Each dataset required minor adaptations in pre- 750

processing to accommodate the specific format of 751

the data source. For instance: 752

• In datasets with columns named ‘tweet‘ and 753

‘class‘, these were renamed to ‘post‘ and 754

‘offensiveYN‘ respectively, with the ‘offen- 755

siveYN‘ binary flag adjusted to 0 for non- 756

offensive and 1 for offensive entries. 757

• In datasets like those with ‘comment‘ and 758

‘isHate‘, renaming and adjustments were simi- 759

lar, ensuring that labels are consistent across 760

all datasets. 761

10

https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486


The processed data retained only the necessary762

columns, namely ‘offensiveYN‘ and ‘post‘, and763

each post was cleaned using the defined text clean-764

ing function. This uniform preprocessing approach765

allows for a more accurate and fair comparison of766

model performance across different datasets. This767

comprehensive preprocessing ensures that the data768

used in our experiments are free from common769

textual noise and standard across all datasets, thus770

enhancing the reliability of our findings.771

A.3 Experimental Setup772

Our experimental framework leverages the BERT-773

based architectures such as BERT-uncased and774

HateBERT, along with domain-specific models like775

ToxiGen-RoBERTa, to address the task of implicit776

hate speech detection across various datasets in-777

cluding SBIC, OLID, DynaHate, ETHOS, and Tox-778

iGen. The training configurations are meticulously779

set to ensure consistency and reproducibility across780

evaluations.781

• Hardware Configuration: All models are782

trained on systems equipped with NVIDIA783

RTX4090 GPUs, with operations performed784

on CUDA-enabled devices unless specified785

otherwise.786

• Training Parameters: The models are787

trained for up to 8 epochs, with a learning788

rate of 5× 10−6 and a batch size of 30. These789

parameters were selected to balance training790

speed and system capabilities.791

• Evaluation Strategy: Evaluation during792

training is conducted at the end of each epoch,793

and comprehensive validation is performed794

on multiple datasets to assess generalization795

across different contexts.796

• Optimization: Gradient accumulation is uti-797

lized to stabilize training updates, with the798

AdamW optimizer managing weight updates.799

The training employs a linear warmup strat-800

egy over the initial steps to mitigate early large801

gradient updates.802

• Regularization: Training includes techniques803

such as weight decay and learning rate decay804

to prevent overfitting on the training data.805

• Reproducibility: To ensure the reproducibil-806

ity of our results, we employ a total of five807

random seeds for initializing the training pro- 808

cess. The reported results in all tables are the 809

average outcomes across these seeds, provid- 810

ing a robust measure of model performance 811

and stability. 812

This setup enables rigorous analysis of model 813

performance across varied and complex hate 814

speech scenarios, ensuring that findings are robust 815

and broadly applicable. 816

A.3.1 Datamap Setup 817

The configuration for the data mapping via training 818

dynamics is outlined as follows. The settings were 819

chosen to optimize the performance of the BERT 820

model in classifying textual data into predefined 821

categories based on their ease of learning: 822

• Learning Rate (LR): 5× 10−6 823

• Number of Training Epochs: 6 824

• Patience for Early Stopping: 3 825

• Model Name: bert-base-uncased 826

• Random Seed: A random seed was used to 827

ensure reproducibility of the results. 828

These parameters were set to fine-tune the model 829

on the dataset, considering both the complexity of 830

the language understanding task and the computa- 831

tional efficiency. 832

A.4 Dataset Specific Results 833
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Condition SBIC (OOD) DynaHate (OOD) Ethos (ID) Olid (OOD) Toxigen (OOD)
*Baseline (100% train) 0.611 ± 0.04 0.581 ± 0.03 0.879 ± 0.02 0.649 ± 0.01 0.520 ± 0.04

w/o EtL Non-Consensual 0.616 ± 0.05 0.576 ± 0.04 0.805 ± 0.04 0.647 ± 0.01 0.527 ± 0.06

w/o EtL Non-Consensual & EtL Consensual 75% 0.692 ± 0.05 0.670 ± 0.03 0.586 ± 0.07 0.389 ± 0.05 0.307 ± 0.11

w/o EtL Non-Consensual & EtL Consensual 50% 0.676 ± 0.03 0.649 ± 0.02 0.555 ± 0.04 0.363 ± 0.02 0.218 ± 0.07

w/o EtL Non-Consensual & EtL Consensual 25% 0.571 ± 0.18 0.507 ± 0.22 0.446 ± 0.21 0.308 ± 0.14 0.238 ± 0.19

EtL Consensual 0.012 ± 0.01 0.049 ± 0.04 0.055 ± 0.05 0.141 ± 0.13 0.208 ± 0.22

EtL Non-Consensual 0.011 ± 0.01 0.045 ± 0.05 0.041 ± 0.05 0.111 ± 0.14 0.173 ± 0.22

AtL Consensual 0.727 ± 0.00 0.690 ± 0.02 0.660 ± 0.01 0.478 ± 0.03 0.569 ± 0.08

AtL Non-Consensual 0.068 ± 0.04 0.136 ± 0.06 0.335 ± 0.06 0.240 ± 0.05 0.276 ± 0.10

HtL Consensual 0.732 ± 0.00 0.709 ± 0.00 0.657 ± 0.00 0.508 ± 0.01 0.655 ± 0.02

HtL Non-Consensual 0.646 ± 0.03 0.630 ± 0.03 0.496 ± 0.08 0.328 ± 0.06 0.216 ± 0.20

w/o EtL Consensual & HtL Non-Consensual & AtL Non-Consensual 0.732 ± 0.00 0.710 ± 0.00 0.658 ± 0.00 0.514 ± 0.00 0.665 ± 0.00

w/o EtL Non-Consensual & HtL Consensual & AtL Consensual 0.007 ± 0.01 0.009 ± 0.02 0.008 ± 0.02 0.014 ± 0.03 0.006 ± 0.01

w/o HtL Non-Consensual 0.043 ± 0.02 0.111 ± 0.03 0.186 ± 0.04 0.259 ± 0.06 0.346 ± 0.09

w/o AtL Non-Consensual 0.034 ± 0.03 0.057 ± 0.05 0.116 ± 0.10 0.122 ± 0.10 0.132 ± 0.13

w/o HtL Non-Consensual & AtL Non-Consensual 0.022 ± 0.01 0.075 ± 0.03 0.101 ± 0.07 0.206 ± 0.10 0.141 ± 0.10

w/o EtL Non-Consensual & HtL Non-Consensual 0.160 ± 0.07 0.173 ± 0.07 0.253 ± 0.09 0.160 ± 0.08 0.120 ± 0.10

w/o EtL Non-Consensual & AtL Non-Consensual 0.308 ± 0.23 0.275 ± 0.22 0.287 ± 0.20 0.206 ± 0.14 0.195 ± 0.17

w/o EtL Non-Consensual & HtL Non-Consensual & AtL Non-Consensual 0.270 ± 0.14 0.277 ± 0.08 0.333 ± 0.13 0.290 ± 0.10 0.315 ± 0.20

Table 5: Performance Comparison of BERT uncased Model Trained on the ETHOS Dataset Across 19 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.

Condition DynaHate (OOD) ETHOS (OOD) OLID (ID) SBIC (OOD) ToxiGen (OOD)

*Baseline (100% train) 0.668 ± 0.08 0.584 ± 0.05 0.920 ± 0.01 0.708 ± 0.05 0.308 ± 0.07

w/o EtL Non-Consensual 0.685 ± 0.05 0.600 ± 0.01 0.928 ± 0.02 0.716 ± 0.03 0.617 ± 0.06

w/o EtL Non-Consensual & EtL Consensual 75% 0.635 ± 0.15 0.532 ± 0.21 0.447 ± 0.10 0.637 ± 0.19 0.460 ± 0.21

w/o EtL Non-Consensual & EtL Consensual 50% 0.696 ± 0.02 0.570 ± 0.12 0.464 ± 0.05 0.607 ± 0.21 0.535 ± 0.05

w/o EtL Non-Consensual & EtL Consensual 25% 0.703 ± 0.01 0.620 ± 0.04 0.501 ± 0.01 0.730 ± 0.00 0.502 ± 0.15

EtL Consensual 0.621 ± 0.09 0.558 ± 0.05 0.499 ± 0.00 0.690 ± 0.04 0.665 ± 0.00

EtL Non-Consensual 0.604 ± 0.15 0.508 ± 0.18 0.393 ± 0.16 0.629 ± 0.15 0.554 ± 0.16

AtL Consensual 0.458 ± 0.12 0.429 ± 0.12 0.393 ± 0.02 0.552 ± 0.10 0.496 ± 0.05

AtL Non-Consensual 0.655 ± 0.04 0.615 ± 0.05 0.490 ± 0.01 0.693 ± 0.03 0.499 ± 0.10

HtL Consensual 0.412 ± 0.18 0.476 ± 0.04 0.373 ± 0.03 0.465 ± 0.16 0.592 ± 0.06

HtL Non-Consensual 0.576 ± 0.18 0.655 ± 0.03 0.510 ± 0.01 0.642 ± 0.13 0.538 ± 0.02

w/o EtL Consensual & HtL Non-Consensual & AtL Non-Consensual 0.610 ± 0.16 0.633 ± 0.05 0.459 ± 0.03 0.655 ± 0.13 0.609 ± 0.05

w/o EtL Non-Consensual & HtL Consensual & AtL Consensual 0.601 ± 0.16 0.549 ± 0.12 0.460 ± 0.07 0.612 ± 0.20 0.535 ± 0.13

w/o HtL Non-Consensual 0.704 ± 0.01 0.642 ± 0.02 0.498 ± 0.02 0.728 ± 0.01 0.631 ± 0.03

w/o AtL Non-Consensual 0.695 ± 0.02 0.604 ± 0.01 0.484 ± 0.01 0.719 ± 0.02 0.566 ± 0.09

w/o HtL Non-Consensual & AtL Non-Consensual 0.583 ± 0.18 0.578 ± 0.06 0.480 ± 0.02 0.633 ± 0.15 0.507 ± 0.09

w/o EtL Non-Consensual & HtL Non-Consensual 0.598 ± 0.16 0.534 ± 0.03 0.440 ± 0.02 0.594 ± 0.24 0.587 ± 0.04

w/o EtL Non-Consensual & AtL Non-Consensual 0.688 ± 0.04 0.558 ± 0.16 0.476 ± 0.08 0.715 ± 0.03 0.545 ± 0.12

w/o EtL Non-Consensual & HtL Non-Consensual & AtL Non-Consensual 0.688 ± 0.04 0.619 ± 0.05 0.490 ± 0.02 0.722 ± 0.02 0.458 ± 0.08

Table 6: Performance Comparison of BERT uncased Model Trained on the OLID Dataset Across 19 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.

Condition SBIC (ID) DynaHate (OOD) ETHOS (OOD) OLID (OOD) ToxiGen (OOD)
*Baseline (100% train) 0.801 ± 0.01 0.634 ± 0.06 0.630 ± 0.03 0.438 ± 0.10 0.529 ± 0.09

w/o EtL Non-Consensual 0.798 ± 0.01 0.674 ± 0.02 0.632 ± 0.01 0.498 ± 0.03 0.561 ± 0.06

w/o EtL Non-Consensual & EtL Consensual 75% 0.795 ± 0.01 0.678 ± 0.03 0.630 ± 0.01 0.512 ± 0.02 0.620 ± 0.04

w/o EtL Non-Consensual & EtL Consensual 50% 0.795 ± 0.02 0.695 ± 0.01 0.631 ± 0.02 0.511 ± 0.02 0.534 ± 0.10

w/o EtL Non-Consensual & EtL Consensual 25% 0.789 ± 0.02 0.695 ± 0.01 0.624 ± 0.02 0.492 ± 0.04 0.617 ± 0.06

EtL Consensual 0.779 ± 0.02 0.674 ± 0.02 0.622 ± 0.01 0.477 ± 0.03 0.452 ± 0.17

EtL Non-Consensual 0.739 ± 0.03 0.628 ± 0.07 0.587 ± 0.02 0.435 ± 0.05 0.484 ± 0.12

AtL Consensual 0.732 ± 0.00 0.707 ± 0.00 0.606 ± 0.00 0.490 ± 0.01 0.637 ± 0.04

AtL Non-Consensual 0.684 ± 0.10 0.577 ± 0.08 0.560 ± 0.09 0.385 ± 0.10 0.471 ± 0.09

HtL Consensual 0.427 ± 0.11 0.504 ± 0.11 0.370 ± 0.08 0.396 ± 0.11 0.447 ± 0.10

HtL Non-Consensual 0.698 ± 0.04 0.682 ± 0.03 0.577 ± 0.03 0.476 ± 0.03 0.561 ± 0.12

w/o EtL Consensual & HtL Non-Consensual & AtL Non-Consensual 0.742 ± 0.01 0.623 ± 0.04 0.586 ± 0.01 0.479 ± 0.02 0.506 ± 0.06

w/o EtL Non-Consensual & HtL Consensual & AtL Consensual 0.765 ± 0.05 0.658 ± 0.07 0.601 ± 0.06 0.391 ± 0.10 0.545 ± 0.09

w/o HtL Non-Consensual 0.792 ± 0.02 0.678 ± 0.01 0.633 ± 0.02 0.465 ± 0.06 0.482 ± 0.10

w/o AtL Non-Consensual 0.764 ± 0.06 0.616 ± 0.15 0.583 ± 0.09 0.452 ± 0.11 0.515 ± 0.10

w/o HtL Non-Consensual & AtL Non-Consensual 0.783 ± 0.02 0.657 ± 0.05 0.628 ± 0.01 0.409 ± 0.06 0.437 ± 0.07

w/o EtL Non-Consensual & HtL Non-Consensual 0.801 ± 0.01 0.663 ± 0.04 0.635 ± 0.01 0.483 ± 0.06 0.504 ± 0.05

w/o EtL Non-Consensual & AtL Non-Consensual 0.784 ± 0.02 0.697 ± 0.01 0.620 ± 0.01 0.469 ± 0.09 0.530 ± 0.09

w/o EtL Non-Consensual & HtL Non-Consensual & AtL Non-Consensual 0.796 ± 0.01 0.666 ± 0.02 0.631 ± 0.01 0.444 ± 0.05 0.443 ± 0.06

Table 7: Performance Comparison of BERT uncased Model Trained on the SBIC Dataset Across 19 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.
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Figure 8: Hard-to-Learn Consensual Datamap

Figure 9: Hard-to-Learn Non-Consensual Datamap
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Figure 10: ETHOS Datamap

Figure 11: OLID Datamap
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Figure 12: SST-2 Datamap
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