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ABSTRACT

Active learning aims to construct an effective training set by iteratively curat-
ing the most informative unlabeled data for annotation, which is practical in
low-resource tasks. Most active learning techniques in classification rely on the
model’s uncertainty or disagreement to choose unlabeled data. However, pre-
vious work indicates that existing models are poor at quantifying predictive un-
certainty, which can lead to over-confidence in superficial patterns and a lack of
exploration. Inspired by the cognitive processes in which humans deduce and pre-
dict through causal information, we propose a novel Explainable Active Learning
framework (XAL) for low-resource text classification, which aims to encourage
classifiers to justify their inferences and delve into unlabeled data for which they
cannot provide reasonable explanations. Specifically, besides using a pre-trained
bi-directional encoder for classification, we employ a pre-trained uni-directional
decoder to generate and score the explanation. A ranking loss is proposed to en-
hance the decoder’s capability in scoring explanations. During the selection of
unlabeled data, we combine the predictive uncertainty of the encoder and the ex-
planation score of the decoder to acquire informative data for annotation.

As XAL is a general framework for text classification, we test our methods on
six different classification tasks. Extensive experiments show that XAL achieves
substantial improvement on all six tasks over previous AL methods. Ablation
studies demonstrate the effectiveness of each component, and human evaluation
shows that the model trained in XAL performs surprisingly well well in explaining
its prediction.

1 INTRODUCTION

Active learning (AL) is a machine-learning paradigm that efficiently acquires data for annotation
from a (typically large) unlabeled data pool and iteratively trains models (Lewis & Catlett, [1994;
Margatina et al., 2021). AL frameworks have attracted considerable attention from researchers due
to their high realistic values reduce the data annotation costs by concentrating the human labeling
effort on the most informative data points, which can be applied in low-resources tasks (Lewis &
Catlett, |1994; [Settles, |2009; |Zhang et al., |2022b)).

Most previous AL methods rely on model predictive uncertainty or disagreement for the unlabeled
data, and the most uncertain data are believed to be the most informative and worthful ones to be
annotated (Lewis, 1995} Houlsby et al., 2011} Margatina et al., 2021; Zhang et al., 2022a). How-
ever, previous studies have indicated that existing models struggle to accurately quantify predictive
uncertainty (Guo et al., [2017}; |Lakshminarayanan et al.| |2017), leading to overconfidence and in-
sufficient exploration, i.e., models tend to choose data instances that are uncertain yet repetitively
uninformative (Margatina et al., 2021)). This issue arises because training can lead cross-entropy-
based classifiers to learn superficial or spurious patterns (Guo et al.l [2022; 2023} |Srivastava et al.,
2020), rather than the causal information between inputs and labels.

In the context of cognitive science and psychological science, humans make decisions or inferences
by exploring causal information (Frye et al., |[1996; Joycel |1999; Rottman & Hastie} [2014)). For ex-
ample, when learning to differentiate animals, humans do not merely rely on statistical features such
as colors or feathers. They also consider the creatures’ habits, such as dietary patterns, and kinship,
such as the species of the parents, to engage in causal reasoning, thereby determining the species of
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Figure 1: Data selection strategy in Explainable Active Learning (XAL). Previous work selects the
unlabeled data mostly relying on the model’s uncertainly (a), but XAL proposes to further leverage
the model’s explanation of its prediction (b).

the organism. Explaining the reasons behind the classification also enhances the justification of the
inference confidence. Intuitively, explanations of the causal information can help the model confirm
whether it understands how to make classifications. It motivates us to encourage classifiers to learn
the causal information behind inferences and to explore unlabeled data for which the model cannot
provide reasonable explanations. In doing so, the model can learn the causal relationships between
labels and texts and reduce reliance on superficial patterns, which leads to improved generalization
and more effective exploration within AL frameworks. The main intuition is illustrated in Figure [T}

Given the above observations, we introduce an Explainable Active Learning Framework (XAL) for
text classification tasks. This framework consists of two main components: the training process and
the data selection process. Primarily, we adopt a pre-trained bi-directional encoder for classification
and a pre-trained uni-directional decoder to generate and score explanations that serve as expressions
of causal information in human language. In the training phase, we use the classification labels and
explanations to optimize the model parameters. Besides, to further enhance the decoder’s ability
to score explanations, we design a ranking loss that optimizes the model to differentiate between
reasonable and unreasonable explanations. To implement this ranking loss, we generate a variety
of explanations (both reasonable and unreasonable) for labeled data by querying ChatGPT with dif-
ferent prompts, thereby eliminating the need for additional human annotation effort. Subsequently,
during the data selection phase, we amalgamate the predictive uncertainty of the encoder and the ex-
planation score of the decoder to rank unlabeled data. The most informative data are then annotated
and incorporated into further training.

We conduct experiments on various text classification tasks, including natural language inference,
paraphrase detection, category sentiment classification, stance detection, (dis)agreement detection,
and relevance classification. Experimental results manifest that our model can achieve substantial
improvement in all six tasks. Ablation studies demonstrate the effectiveness of each component,
and human evaluation shows that the model trained in XAL works well in explaining its prediction.
To our knowledge, we are the first to incorporate the model’s explanation (explanation score) into
evaluating the informativeness of unlabeled data in an AL framework. We will release our code to
facilitate future research.

2 METHOD

2.1 OVERVIEW

Task Formulation We mainly consider a C class text classification task defined on a compact set
X and a label space ) = {1, ..., C}. The data points are sampled i.i.d over the space Z = X x )
as {X;,y;} ~ p., which can be divided into two sets — the labeled set D; and the unlabeled set
D,. At the beginning of an active learning algorithm, only a small number of data points are
randomly selected into the labeled set D; and we have only access to data points in D; for training
the classification model. Then L data from D, are selected for annotation and added to D; (removed
from D,, simultaneously) in M multiple rounds.

Model Architecture Following previous work (Devlin et al., |2018), we adopt a pre-trained bi-
directional encoder as the backbone for classification. In addition to the encoder, a corresponding
uni-directional decoder is applied to generate and score the explanation for the label prediction. Dur-
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Figure 2: Our proposed XAL framework, which can be divided into two main parts — the training
process (red arrows) and the data selection process (blue arrows). The training process aims to train
the encoder-decoder model to learn classification and explanation generation. The data selection
process aims to select unlabeled data using predictive entropy and explanation scores.

ing training, we construct k different explanations e,, i.e., {e, };,7 = 0, ..., k — 1, for each example
{x;,y:}, where e is the reasonable explanation and {e,~(} are k — 1 unreasonable explanations. We
leave the construction process of explanations in Section [2.4] for further descriptions. Before that,
we will first present the model training and data selection in Section [2.2] and Section [2.3] respec-
tively. The framework of the proposed XAL is shown in Figure |Z| and the workflow can be found in
Algorithm [T}

2.2 TRAINING

For each text input x (we omit all the subscripts of ¢ for simplicity in this subsection), we first
prepend it with a special token [CLS] and then obtain the contextual representation by feeding it
into the encoder. The contextual representation of the jth token is calculated as:

h; = Encoder([CLS] + x)[j]. (1)

The representation for [CLS], i.e., hy is taken as the sentence representation and fed into the classifi-
cation layer, which is composed of a linear layer and a softmax function. The probability distribution
on label space ) can be formulated as:

P(y|x) = Softmax(Linear(hg)). (2)
The cross-entropy loss is adopted to optimize the encoder parameters:
Las ==Y P(ylx) log P(y|x). 3)

Additionally, on the decoder side, the model is trained with teacher forcing to generate the golden
explanation ey. The generation loss is calculated as:

['gen = - Z lOg P(eO,t|ha e0,<t)' (4)
t

To make the decoder a good scorer to rank the reasonable and unreasonable explanations, we ad-
ditionally adopt a ranking loss to optimize the decoder. In particular, the model is trained to rank
between reasonable and unreasonable explanations. The ranking loss can be formulated as:

Lrank = Y maz(0,pr — po), 5)
r>0
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Figure 3: The process to generate diverse explanations from LLMs. We can obtain reasonable and
unreasonable explanations by querying ChatGPT with correct and incorrect labels, respectively.

where p, is the explanation score for e,, which is calculated as the length-normalized conditional

log probability:
_ Zt lOgP(er,t|Xa er,<t) (6)
T [le. |

The hyper-parameters are adopted to balance the weights of each loss, and the overall loss is for-
malized as follows:

L= ‘Ccls + )\l‘cgen + )\2£rank~ @)

2.3 DATA SELECTION

After training the model in each iteration, we can obtain an intermediate model 7. To select the
informative data in the unlabeled set D,,, we adopt a combination of the predictive entropy and
explanation score. Specifically, for each raw data x; € D,,, we first generate the explanation e; by
selecting the top-1 output in the beam search. Then, we calculate the explanation score p; as Eq. [f]
and the predictive entropy ¢; as Eq. 3] The final score s; for example x; is calculated as the weighted
sum of the normalized explanation score and predictive entropy:

A e P n 1 e’
LAY e LAY e
where the A is the hyper-parameter to balance the explanation score and the predictive entropy.

With the final score for each example, we rank the whole unlabeled instances and select the top L
instances for annotation.

Sq

®)

2.4 GENERATION OF GOLDEN EXPLANATIONS

With the advancement of LLMs, previous work has shown that LLMs are good at reasoning (Bang
et al.,|2023}; |Rajasekharan et al., 2023). Inspired by these studies, we take the LLMs, such as Chat-
GPT and GPT4, as the teacher models, and query them to generate explanations for each selected
labeled data, eliminating the annotation cost of human labor. In particular, we design slightly dif-
ferent prompt templates for different tasks, and the prompt for each task is shown in Appendix [A]
Taking stance detection as an example, its prompt template is designed as ‘The stance of this tweet to
the target {Target} is {Label}, explain the reason within 50 words’, where the Target is the corre-
sponding stance target, and the Label is the classification label. The final query to the teacher model
is the concatenation of the text and the prompt. We construct a reasonable explanation by feeding
the golden label into the query and generate several unreasonable explanations by feeding wrong
labels. Figure [3]shows an example that we generate explanations by querying ChatGPT, where we
can observe that ChatGPT could provide different explanations according to the label we offer it.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

In our experiments, we directly utilize a pre-trained encoder-decoder language model for its strong
ability in text understanding and generation. Specifically, we adopt the officially released pre-trained
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Task Dataset #Labels Train Dev  Test
Natural Language Inference RTE (Bentivogli et al.||2009) 2 2,240 250 278
Paraphrase Detection MRPC (Dolan et al., [2004) 2 3,667 409 1,726
Stance Detection COVIDI19 (Glandt et al.,|2021) 3 4,533 800 800
Category Sentiment Classification ~MAMS (Jiang et al.| [2019) 3 7,090 888 901
(Dis)agreement Detection DEBA (Pougué-Biyong et al.| 3 4,617 578 580
2021)
Relevance Classification CLEF (Kanoulas et al.,[2017) 2 7,847 981 982

Table 1: All the six text classification tasks used in our experiments.

FLAN-T5-Large model (Chung et al.|2022) from Huggingface All models in our experiments are
trained on a single GPU (Tesla V100) using the Adam optimizer (Kingma & Ba, 2014). We set the
learning rate at le-4, with a linear scheduler. The batch size is consistently set to 1 across all tasks.
The models are trained for 10 epochs in each iteration. Hyper-parameters A;, A2, and A are set to
0.1, 0.01, and 0.5, respectively, based on preliminary experiments. The performance for all tasks is
evaluated based on macro-averaged F1. The reported results are the average of three initial sets D
and three random seeds.

3.2 TASKS AND DATASET

We conduct experiments on six different text classification tasks and the data statistics for each task
are shown in Table ﬁ (1) Natural Language Inference aims to detect whether the meaning of one
text is entailed (can be inferred) from the other text; (2) Paraphrase Detection requires identifying
whether each sequence pair is paraphrased; (3) Category Sentiment Classification aims to identify
the sentiment (Positive/Negative/Neutral) of a given review to a category of the target such as food
and staff; (4) Stance Detection aims to identify the stance (Favor/Against/Neutral) of a given text
to a target; (5) (Dis)agreement Detection aims to detect the stance (Agree/Disagree/Neutral) of one
reply to a comment; (6) Relevance Classification aims to detect whether a scientific document is
relevant to a given topic. Appendix [A]demonstrates the details of six datasets with examples.

3.3 BASELINES

To demonstrate the effectiveness of our proposed method, we compare XAL with the following
seven AL baselines: (1) Random uniformly selects unlabeled data for annotation; (2) Max-Entropy
(ME) (Lewis, |1995; [Schohn & Cohnl 2000) calculates the predictive entropy in the current model
and selects data with max entropy ; (3) Bayesian Active Learning by Disagreement (BALD)
(Houlsby et al.l [2011) exploits the uncertainty of unlabeled data by applying different dropouts at
test time; (4) Breaking Ties (BK) (Scheffer et al.|[2001) selects instances with the minimum margin
between the top two most likely probabilities ; (5) Least Confidence (L.C) (Culotta & McCallum,
2005) adopts instances whose most likely label has the least predictive confidence; (6) Coreset
(Sener & Savaresel [2018; |Chai et al.| [2023) treats the data representations in the labeled pool D,,
as cluster centers, and the unlabeled data with the most significant L2 distance from its nearest
cluster center are selected for annotation; (7) Contrastive Active Learning (CAL) (Margatina et al.,
2021) selects instances with the maximum mean Kullback-Leibler (KL) divergence between the
probability distributions of an instance and its m nearest neighbors.

4 RESULTS AND DISCUSSION

4.1 MAIN RESULTS

‘We mainly consider two different settings: (1) Given the data selection budget, we observe the trend
of changes in model performance; (2) Given the performance upper bound, we observe the number
of required instances that the model needs to achieve 90% of the upper-bound performance.

Thttps://huggingface.co/

Without losing generality, we randomly split the training set in RTE, and MRPC into train/dev set with pro-
portion 9:1. In DEBA, we adopt the topic of climate change for experiments. The selected data and generated
explanations will be released for reproduction.
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Figure 4: Results given the data selection budget 500 instances in six text classification tasks, where
100 instances are selected for annotation in each iteration. Here we plot the specific values of XAL
and the second significant performance when using 500 instances, and the detailed performance
values can be found in Appendix

Given Data Selection Budget Following previous work (Zhang et al.,[2017;[Schroder et al.,[2022),
we set the data selection budget as 500 instances and select 100 instances for annotation in each
iteration. The results are presented in Figure f] We can observe that the proposed XAL model
consistently outperforms other active learning methods. For instance, in the RTE task, our model
attains a macro-F1 score of 83.02% at the end, which is 3.58% higher than the second-best result
(BK at 79.44%). Similarly, in the DEBA task, XAL surpasses the second-best result (BK at 57.78%)
by 2.13%. These results demonstrate the effectiveness of our XAL framework in addressing text
classification tasks. We also evaluate ChatGPT on these datasets in the zero-shot setting, where the
macro-F1 scores on test sets are 77.42%, 72.46%, 61.28%, 66.67%, 48.96% and 46.41% for RTE,
MRPC, MAMS, COVID19, DEBA, and CLEF, respectively. The models with supervised fine-
tuning of less than 500 labeled data in XAL significantly outperform ChatGPT on these datasets,
which indicates that our model can achieve satisfactory performance with low resources and cost.

In the stance detection task, while the model does not significantly outperform the baselines at
the beginning (possibly due to the relatively high complexity of the task), it still exhibits stronger
performance with a data count of 300-500, which underscores the effectiveness of the data selection
in XAL. In the CLEF dataset, we notice that the performance of baseline models is notably unstable
due to the significant imbalance in label distribution (the ratio between relevant and irrelevant is
approximately 1:21). However, our XAL model achieves superior performance and more consistent
improvements over baselines during the data selection process, which validates the effectiveness of
our model structure and data selection strategy, even in challenging scenarios of imbalanced data.

Given Performance Upper Bound It’s also valuable to evaluate the amount of data required for
models to achieve comparable performance with those trained on the entire training dataset. Specifi-
cally, we begin with an initial labeled set of 100 instances and select a certain number of instances to
annotate in each selection iterationEL and cease the AL process once the model performance reaches
90% of the upper-bound performance. Experimental results are depicted in Figure |5|*| As observed,
XAL requires the least amount of data to reach the performance goal. For instance, in the DEBA
task, XAL necessitates an average of 461.11 data points, which is 55.56 less than the second lowest
value (BK-516.67). To conclude, XAL models only require 6%, 3%, 16%, and 10% of the data
from RTE, MRPC, COVID19, and DEBA tasks respectively to achieve 90% performance of models

3To balance the training efficiency and the performance gap, we set the selection number as 50.
*For ease of presentation and training efficiency, we only report results on four tasks.
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Figure 6: Results of ablation study in the six text classification tasks. We select 100 instances in
each iteration and conduct 4 iterations (the same with Section [d.T)). The results are measured using
macro-F1 scores and they are the average values on three different initial sets ; and three different
random seeds.

that are trained on the entire datasets, which significantly reduces the annotation cost. These results
show that the proposed XAL is very cost-efficient in selecting informative unlabeled data.

4.2 ABLATION STUDY

We conduct an ablation study to investigate the impact of each module in our model. The results
are displayed in Figure[f] Firstly, we conduct a comparison among ME, ME-Exp, and XAL, where
ME-Exp has the same model structure as XAL but it selects the unlabeled data with the predicted
classification entropy. We observe that ME-Exp can achieve superior performance on most datasets
compared to ME, which demonstrates the effectiveness of using explanations. However, XAL fur-
ther achieves noticeably better performance over ME-Exp, indicating that the improvement in XAL
comes not only from the introduction of explanations but also from the data selection strategy (with
explanation scores). Next, we compare XAL with a version that removes the ranking loss (w/o Rank
in Figure[6). XAL also achieves better performance on most datasets and with different numbers of
labeled data, indicating that the ranking loss can enhance the effectiveness of data selection in the
AL process. Furthermore, the performance of selecting data solely using the explanation score but
without using predictive entropy is also illustrated in Figure [6] (w/o ME). We observe that removing
ME leads to significant performance drops on most datasets, implying that the predictive entropy
and explanation score can complement each other.
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To further evaluate how the ranking loss works in XAL, we also compare the model’s capability to
rank explanations between XAL and its counterpart without ranking loss. Experimental results show
that XAL achieves superior performance. For instance, the ranking accuracy in RTE and MRPC for
XAL are 73.93% and 78.62%, which are 5.36% and 4.30% higher than those without ranking loss,
respectively (more details are shown in Appendix [D.4). These results suggest that the ranking loss
can enhance the model’s ability to score the explanations.

4.3 EXPLANATION GENERATION

We also carry out experiments to analyze

how the generation of explanations im- 100 300 300 200 500
pacts model performance. Specifically, ~ME 5275 5745 63.72 6628 69.15
we replace ChatGPT with ALPACA-7B  ~ ChatGPT ~ = 60.79 6347 6851 7154 7324
(Taori et al.,[2023)), and GPT4E]t0 generate ~ ALPACA-7B  59.52 61.75 67.77 71.12 72.24
explanations on the MAMS dataset. The GPT4 59.67 6428 69.51 7296 74.63

results are presented in Table[2] It’s note-
worthy that the model using GPT4 gener-  Taple 2: Model performance on MAMS using different
ation achieves superior performance com- explanation generations. We compare the performance

pared to the one using ChatGPT, suggest- in a certain initial set and random seed.
ing that GPT4 can generate more useful

and informative explanations in XAL. We also observe that the ALPACA-7B can also provide useful
explanations to some extent and enhance the model performance compared with ME. This suggests
that LLMs, when used as an assistant in XAL, can provide consistent explanation generation and
enhance model performance. The results of human annotation are also discussed in Appendix [E]

4.4 HUMAN EVALUATION ON INTERPRETABILITY

We evaluate our model’s ability to explain its prediction by examining the consistency between the
generated explanation and the classification label. Specifically, we randomly select 50 test instances
and use the model trained on 500 instances (see Section[d.T)) to generate the labels and explanations.
Then we ask humans to infer the classification labels based solely on the generated explanations.
The consistency is measured by whether the human-inferred label equals the label predicted by the
model. We report the consistency rate across all the test sets: MRPC-94%, RTE-94%, COVID19-
96%, DEBA-94%, MAMS-94%, CLEF-100%. We find that the consistency rates on all six tasks
exceed 94%, which demonstrates that XAL explains its classification prediction very well. Case
studies for the generated explanations and the predicted labels are presented in Appendix [F

4.5 REPRESENTATION VISUALIZATION

To understand the potential of XAL in exploring informative unlabeled data, we use t-SNE (van der,
Maaten & Hinton, [2008)) to “visualize” the data selection procedure of ME and XAL on the task
DEBA. Specifically, with the intermediate model in Section@(trained with 200 labeled instances),
100 instances from the unlabeled set D,, are then selected for annotation. Then, we feed all the
labeled and unlabeled instances into the model and get their sentence representations (hg in Eq. [I)).
Finally, we apply the t-SNE toolkit to map these representations into a two-dimensional embedding
space, which is shown in Figure [8| We can observe that the unlabeled data selected by ME is only
distributed around the decision boundary, which shows that the model can only select the high-
uncertainty data it believes. However, the proposed XAL can select more diverse data, some of
which are wrongly classified by the current model. These results demonstrate that the data selection
strategy in XAL can identify more informative data. More visualizations are shown in Appendix [G|

5 RELATED WORK

Text Classification. Recently, LLMs of generative schema have shown excellent performance in
various NLP tasks including text classification (Min et al., [2022; Mgller et al.l 2023). However,
some studies show that in-context learning based on LLMs (Radford et al., 2019} Brown et al.| 2020)

>https://openai.com/gpt-4
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Figure 7: t-SNE visualizations of contextual representations in the data selection process on DEBA.
To facilitate identification, we have outlined the areas of labeled data with dashed squares. The col-
ors, i.e. red, blue, and green, refer to the golden labels of positive, negative, and neutral, respectively.

suffers from practical issues such as high computation costs for inference (Liu et al} [2022), over-
sensitive to example choices and instruction wording (Gao et al., [2020; |Schick & Schiitze 2021)
uninterpretable behaviors (Zhao et al.,[2021; Min et al.,|2022). How to develop small and explainable
classifiers is still in demand, since LLMs can also be easily confused and uninterpretable.

Active Learning is widely studied in the natural language processing area, ranging from text classi-
fication (Roy & McCallum, [2001;|Zhang et al.,[2017;|Maekawa et al.,[2022), and sequence labeling
(Settles & Cravenl 2008)) to text generation (Zhao et al.l 2020). We mainly focus on the task of
text classification in this paper. Previous methods can be roughly divided into informativeness-
based selection strategies, representativeness-based selection strategies, and hybrid selection strate-
gies (Zhang et al., |2022a)). The most mainstream methods, i.e., informativeness-based methods, are
mostly characterized using model uncertainty, disagreement, or performance prediction, which suf-
fers from over-confidence and a lack of exploration (Guo et al.,[2017;Margatina et al., 2021)). On the
other hand, the representativeness-based methods rely on model inputs such as the representations
of texts, which tends to select simple data samples and results in unsatisfactory performance (Roy
& McCallum, 2001; Margatina et al., 2021).

Explanation Information, as external knowledge, has been proven useful for a wide range of tasks
in natural language processing (Hase & Bansall 2022). |Hase et al.[(2020) used explanations as ad-
ditional information and directly fed them into models. Narang et al.|(2020) and |Shen et al.| (2023)
took the explanations as outputs and trained NLP models to generate them. How to leverage expla-
nations is still an open problem (Hase & Bansal, 2022). In the active learning schema, some studies
also attempt to leverage the explanations (Liang et al., |2020; [Wang et al., [2021)), but they mainly
focus on promoting the generalization abilities of models trained on low-resource data. For exam-
ple,|[Liang et al.| (2020) uses external explanation to optimize the decision boundary between labels
for image classification using a semantic knowledge grounding module. Unlike the aforementioned
studies, in this paper, we explore how to leverage the explanations to identify informative unlabeled
data for annotation.

6 CONCLUSION

In this paper, we proposed a novel Explainable Active Learning (XAL) framework for text clas-
sification, which aims to encourage classifiers to justify their inferences and delve into unlabeled
data for which they cannot provide reasonable explanations. Experiments demonstrated that XAL
achieves substantial improvements compared with previous AL methods. Despite achieving much
improvement, we still notice that there are some limitations in our method (see Appendix [H). In the
future, we will try to handle these limitations and test our methods on more tasks.
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A  TASKS AND CORRESPONDING PROMPTS

We show the tasks and examples for experiments in Table |3} including natural language inference,
paraphrase detection, category sentiment classification, stance detection, (dis)agreement detection,
and relevance classification. We also show the prompts we used for explanation generation through

querying ChatGPT (Table ).

Task

Text

Natural Language Inference

Sentence 1: Danny Kennedy, Greenpeace campaigns director, said:
”The burden of proof in the Scott Parkin expulsion case lies morally
with the Commonwealth, to prove that he is a danger. When the Gov-
ernment brought in anti-terror legislation, they promised the public that
these laws would only be used to confront a real and present risk of a
terrorist attack, not a sweep-all approach against citizens. Peace is not
terrorism. Peace is not a threat to national security. No democratic gov-
ernment should expel a foreign citizen because [it] opposes his political
opinions.”

Sentence 2: Greenpeace director said that peace is terrorism.

Label: Not Entailment.

Paraphrase Detection

Sentence 1: Last week the power station’s US owners, AES Corp,
walked away from the plant after banks and bondholders refused to ac-
cept its financial restructuring offer .”,

Sentence 2: "The news comes after Drax’s American owner, AES Corp.
AES.N, last week walked away from the plant after banks and bond-
holders refused to accept its restructuring offer.

Label: Paraphrase/Semantic Equivalent.

Category Sentiment Classification

Text: I left feeling unsatisfied, except for having a nice chance to people
watch in the cozy atmosphere with my over-priced pasta bolognese.
Target: Ambience

Label: Positive

Stance Detection

Text: Michigan is fining individuals 500$ for not wearing a mask in
public. How do y’all feel about this? Curious because I am torn about
being so forceful but agree that people should wear masks. #MaskOn.
Target: Face Mask

Label: Favor

(Dis)agreement Detection

Text 1: True, but with lower power usage, you have less heat to dissi-
pate, meaning you can overclock it even more.

Text 2: AMD creates a chip that saves energy by over 31 times. Some-
one show this to r/PCMasterRace cause we need to switch to AMD.
Label: Agree.

Relevance Classification

Document: 99mtechnetium penicillamine: a renal cortical scanning
agent. 99mTechnetium penicillamine, a renal cortical imaging agent,
can be used to provide a rapid, safe, and non-invasive assessment of
renal morphology and the renal vascular supply. Since this agent is
not excreted significantly during the imaging procedure cortical scans
of high quality can be obtained without image deterioration owing to
a superimposed collecting system. These scans, which are clearly su-
perior in anatomical detail to earlier scans using 1311 hippuran, can
be obtained along with the 1311 hippuran renogram when the patient
comes to the nuclear medicine department. Herein we demonstrate the
anatomical detail it is now possible to achieve by presenting the cortical
renal scans and accompanying radiograms from 5 patients with differ-
ent renal pathology.

Topic: Procalcitonin, C-reactive protein, and erythrocyte sedimentation
rate for the diagnosis of acute pyelonephritis in children.

Label: Not Relevant.

Table 3: Tasks and examples for experiments.
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Task

Prompts

Label set

Natural Language
Inference

Paraphrase Detec-
tion

Category Sentiment
Classification
Stance Detection

(Dis)agreement
Detection

Relevance Classifi-
cation

Sentence 1: {Text 1}. Sentence 2: {Text 2}. Sentence
1 can {Label} sentence 2, explain the reason within 50
words.

Sentence 1: {Text 1}. Sentence 2: {Text 2}. The
relation between the above two sentences is {Label},
explain the reason within 50 words.

{Text}.

{Text}. The stance of this tweet to the target { Target}
is {Label}, explain the reason within 50 words.
Sentence 1: {Text 1}. Sentence 2: {Text 2}. The
stance of sentence 2 is {Label} to sentence 1, explain
the reason within 50 words.

{Document}. The scientific document is {Label}’ to
the research topic {Topic}, explain the reason within
100 words.

{Entail, Not Entail }

{Paraphrase ~ Equivalent,
Not Paraphrase Equiva-
lent}
{Positive, Negative, Neu-
tral}
{Favor, Neutral, Against}

{Agree, Neutral, Disagree}

{Relevant, Not Relevant}

Table 4: The prompts we adopted for the tasks in our experiments.

B EXPLANATION EXAMPLES

C ALGORITHM

We show the detailed algorithm of XAL in Algorithm 1]

Algorithm 1 Explainable Active Learning Algorithm

1: Initialization: dataset D,,, iteration steps M, selective number L, training epoch 7.
: Randomly select L data from D,,, denoted as D and remove them in D,,.
: Annotate the data x; € D; for y; with human annotators.
: Query ChatGPT for diverse explanations y;" for the data {x;, y§} € Ds.

cm=1.
: repeat
m+—m+1

2
3
4
5: Add {x;,y¢,y?"} € D to Dy, and empty the set Ds.
6
7
8

9:  Initialize an explainable classifier m and ¢t = 0.

10:  repeat

11: t+—t+1

12: Calculate optimization loss using data {x;, y¢,y/"} € D;.
13: Optimize the explainable classifier 7.

14: untilt > T

15:  Calculate the predictive entropy p; and explanation scores ¢; of data x; € D,, uing Eq. [6]
16:  Calculate the rank score using Eq. [§]

17:  Select L data with the largest score from D,, to D;.
18:  Annotate the data in D,, following the steps 3-5.

19: until m > M

Qutput: Explainable classifier 7.
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Input Label Explanation

RTE Not En- Sentence 1 states that the Nobel prizes are the
Sentence 1: The main institutionalised forms tailment  main forms of recognition for various fields,
of recognition for those who have made a sig- including peace. However, sentence 2 only
nificant contribution in the fields of physics, mentions that candidates have been chosen for
chemistry, medicine, literature, as well as for the Nobel Peace Prize, without specifying if
those working for peace (and more recently in they have actually received the prize. There-
the area of economics), are the Nobel prizes. fore, sentence 2 does not necessarily follow
Sentence 2: Nobel Peace Prize candidates from sentence 1.

have been chosen.

Entailment Sentence 1 can entail sentence 2 because sen-
tence 1 mentions that one of the main forms
of recognition for those working for peace is
the Nobel prizes. Therefore, it is reasonable
to assume that candidates for the Nobel Peace
Prize have been chosen.

MRPC Equiva- The two sentences provide similar informa-
Sentence 1: Maddox, 87, cracked two ribs lent tion but are expressed differently. Sentence
when he fell about 10 days ago at an assisted 1 mentions that Maddox fell about 10 days
living home where he was recovering from in- ago, while Sentence 2 specifies that the fall
testinal surgery, Virginia Carnes said. occurred earlier this month. Despite the slight
Sentence 2: Maddox, who had battled cancer difference in wording, both sentences convey
since 1983, cracked two ribs earlier this month the same meaning.

when he fell at an assisted living home where

he was recovering from surgery.

Not The reason why the two sentences are not

Equiva- paraphrases or semantic equivalents is be-

lent cause they provide different information about
the timing and reason for Maddox’s rib injury.
In the first sentence, it mentions that Mad-
dox fell about 10 days ago while recovering
from intestinal surgery, whereas the second
sentence states that he fell earlier this month
while recovering from surgery without speci-
fying the exact time frame.

COVID19 Favor The stance of this tweet towards face masks is

Tweet: Placed2nd @AngelaBelcamino Omg favorable. The reason for this is that the tweet

people say I have to wear a mask and I'm cry- expresses support for wearing masks to save

ing because I have to wear a mask to save lives lives and criticizes those who oppose wearing

boo hoo!! MAGALts are stupid!!! masks, referring to them as "”"MAGAts™” (a
term often used to describe supporters of for-
mer President Donald Trump).”

Against The reason behind the stance against face
masks in this tweet seems to be frustration
and ridicule towards those who oppose wear-
ing masks. The tweet suggests that the per-
son finds the idea of wearing masks to save
lives unnecessary and mocks those who sup-
port it, particularly referring to them as ””MA-
GAts,”” a derogatory term for supporters of
former President Trump.

Neutral The tweet expresses a neutral stance towards

face masks by mocking the idea of crying over
having to wear one. While it criticizes MAGA
supporters, it does not explicitly state a neg-
ative or positive opinion about face masks
themselves.”

Table 5: Diverse explanations generated from ChatGPT. The golden label is marked in bold.
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D DETAILED RESULTS

D.1 MAIN RESULTS

Random ME BALD BK LC Coreset CAL XAL
RTE
100 67.34 67.34 6734 6734 67.34 67.34 67.34  73.40
200 70.64 7337 68.06 72.80 7291 71.12 7222 78.22
300 72.16 76.15 71.09 76.85 75.60 74.90 74.81  80.51
400 74.71 7835 73.11 7690 78.15 75.16 76.15  81.50
500 75.54 77.69 7430 79.44 79.22 77.69 7542  83.02
MRPC
100 69.80 69.80 69.80 69.80 69.80 69.80 69.80 75.31
200 75.44 7626 7395 76.35 77.10 76.54 76.22  80.73
300 78.12 80.14 76.07 80.23 79.87 79.39 78.52 81.31
400 80.28 80.74 77.64 8195 81.21 79.85 79.76  82.76
500 80.63 80.90 7990 8233 81.53 80.06 80.60 83.91
MAMS
100 56.73 56.73 56.73 56.73 56.73 56.73 56.73 59.32
200 61.77 63.01 5875 6234 62.83 62.59 61.89 66.19
300 66.38 6590 62.68 66.92 66.72 64.83 6596 69.16
400 67.88 69.44 6433 69.67 69.74 68.93 67.54 171.74
500 70.05 7123  66.69 7178 71.83 69.50 69.59 74.04
COVIDI19
100 52.29 5229 5229 5229 52.29 52.29 5229 52.24
200 57.19 5484 53,19 5722 55.67 56.18 55.67 57.57
300 57.95 59.80 5474 60.10 58.45 58.18 58.45 60.48
400 59.85 61.73 5598 6230 61.38 60.62 61.38 63.63
500 61.78 6430 56.01 6436 64.48 61.45 64.48 67.16
DEBA
100 42.09 42.09 42.09 42.09 42.09 42.09 42.09 46.21
200 50.60 48.74 46.81 50.65 49.73 49.18 4926 53.16
300 53.93 5243  51.54 54.87 54.57 53.97 53.43 57.35
400 57.03 56.58 53.18 57.02 57.15 56.37 55.06 58.03
500 57.45 5725 55.66 5778 57.64 56.95 55.82 5991
CLEF
100 57.72 5772 5772 5772 5772 57.72 57.72  60.02
200 57.95 59.50 57.38 59.82 58.44 59.62 60.67 60.13
300 57.37 60.23 58.80 60.66 61.72 59.60 58.44 61.97
400 60.04 63.52 59.14 6348 63.81 61.46 59.04 63.97
500 61.04 62.57 59.03 64.66 65.16 59.84 61.53 66.94

Table 6: Main results in the six text classification tasks.
and conduct 4 iterations. The results are measured using macro-F1 scores and they are the average

We select 100 instances in each iteration

values on three different initial sets [D; and three different random seeds.

D.2 GIVEN UPPER BOUND

We show the average number of data required for the model to achieve 90% performance of those
trained on all the training data.

D.3 ABLATION STUDY

D.4 CAPACITY OF SCORE

To assess our model’s capability to distinguish between reasonable and unreasonable explanations,
we evaluate its ranking performance on the test set. Specifically, after four iterations of the AL
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Random ME BK Coreset CAL XAL

RTE 388.80 28333 255.56  344.44 37778 133.33
MRPC 227.78 22222 211.11  216.67 205.56  122.22
COVID19 1305.56 877.78 888.89 117222 1088.89 761.11
DEBA 605.56 59444 516.67 594.44 566.67  461.11

Table 7: The detailed experimental results about how much data queried by AL methods can the
model achieve 90% performance of the models trained on the whole training data. In each iteration,
we select 50 data. The model performances trained on the whole training sets are, (a) RTE — 83.11%),
(b) MRPC - 84.74%, (c) COVID19 — 75.45%, and (d) DEBA — 65.71%. The green triangles refer
to the average values of the nine-times experiments.

ME  ME-Exp w/oRank w/oME XAL

RTE
100 67.34 72.09 72.77 71.96 73.40
200 73.37 76.68 76.17 75.10  78.22
300 76.15 80.23 80.22 75.77 80.51
400 78.35 80.05 80.42 78.46 81.50
500 77.69 80.08 82.01 78.36 83.02
MRPC
100 69.80 71.58 75.18 75.64 75.31
200 76.26 77.32 80.37 80.53 80.73
300 80.14 80.93 81.50 82.19 81.31
400 80.74 82.72 82.40 81.61 82.76
500 80.90 82.09 83.02 82.42 83.91
MAMS
100 56.73 59.77 60.69 60.73 59.32
200 63.01 64.57 65.90 65.11 66.19
300 65.90 69.32 69.79 69.32 69.16
400 69.44 71.71 71.38 70.83 71.74
500 71.23 72.97 72.79 71.71 74.04
COVID19
100 52.29 50.83 50.94 51.19 52.24
200 54.84 54.13 55.56 55.25 57.57
300 59.80 58.48 58.51 59.48 60.48
400 61.73 62.63 62.66 61.53 63.63
500 64.30 63.88 64.29 6290  67.16
DEBA
100 42.11 45.06 47.16 45.48 46.21
200 48.74 51.86 52.26 53.11 53.16
300 52.43 55.74 57.15 56.59 57.35
400 56.58 57.51 57.65 57.35 58.03
500 57.25 58.08 59.09 59.11 59.91
CLEF
100 57.72 57.74 57.91 57.99 60.02

200 59.50 59.24 57.80 58.63 60.13
300 60.23 63.00 61.58 60.58 61.97
400 63.52 63.78 63.40 61.87 63.97
500 62.57 66.20 65.57 62.35 66.94

Table 8: Detailed results of ablation study in the six text classification tasks. We select 100 instances
in each iteration and conduct 4 iterations. The results are measured using macro-F1 scores and they
are the average values on three different initial sets D; and three different random seeds.

process as per section[d.1] we prompt ChatGPT to generate diverse explanations for the test data and
score them using Eq. [6] In each test step, we feed both a reasonable and an unreasonable explanation
to our model and calculate the accuracy in predicting the reasonable ones based on the computed
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RTE MRPC MAMS COVID19 DEBA CLEF
w Ranking Loss 73.93  78.62 68.64 62.25 59.78  90.73
w/o Ranking Loss  68.57  74.32 62.04 58.34 55.04 87.39

Table 9: The performance of scoring the explanations w/o ranking loss.

explanation score (Table [J). As seen in the results, the model incorporating ranking loss achieves
superior performance compared to the model without it. For instance, the accuracy in RTE and
MRPC are 73.93% and 78.62% in the model with ranking loss, which are 5.36% and 4.30% higher
than those without ranking loss, respectively. The improvement in prediction accuracy suggests that
the ranking loss can enhance the model’s ability to score the reasonability of explanations.

E HUMAN ANNOTATION

We also carry out experiments to analyze how the human generation of explanations impacts model
performance. Specifically, we replace ChatGPT with human annotation to generate explanations
on the MAMS dataset. For human annotation, three PhD students specializing in NLP annotate the
labels and explanations. Specifically, the models achieve the macro-F1 scores of RTE-62.13, MRPC-
63.36, MAMS-67.38, COVID19-69.70, and CLEF-71.56, which are relatively lower compared to
ChatGPT, which could be due to inconsistent annotation styles among annotators and changes in the
annotation scheme from the original dataset (Gilardi et al.,[2023; Zhu et al.| 2023)). The results also
demonstrate the effectiveness of explanation generation through LLMs in XAL.
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F CASE STUDY

F.1 MODEL GENERATION

Some generation cases are shown from the models trained for 500 data in the AL process of Section
In these cases, we can find that our model can generate reasonable explanations for the label,
which indicates the interpretability of our inference. But in some cases such as the case iv., although
the explanation generates the correct label Agree, it explains the label with a wrong reason, which
implies that the explainer does not perform perfectly in the small number of data. But it also indicates
that we can enhance the model performance in inference and generation by selecting the data with
unreasonable explanations through human beings.

Input Golden  Explanation

i. RTE Not Sentence 1 states that Dana Reeve, the widow

Sentence 1: Dana Reeve, the widow of the ac-  Entail- of Christopher Reeve, has died of lung cancer

tor Christopher Reeve, has died of lung cancer = ment at the age of 44. It does not provide any infor-

at age 44, according to the Christopher Reeve mation about what caused Christopher Reeve’s

Foundation. accident. Therefore, sentence 1 does not entail

Sentence 2: Christopher Reeve had an accident. sentence 2.

ii. MRPC Not The reason why the two sentences are not para-

Sentence 1: Air Commodore Quaife said Equiva- phrases or semantic equivalents is because they

the Hornets remained on three-minute alert lent provide different information. Sentence 1 states

throughout the operation. that the Hornets were on three-minute alert dur-

Sentence 2: Air Commodore John Quaife said ing the operation, while Sentence 2 states that

the security operation was unprecedented. the security operation was unprecedented.

iii. MAMS Negative The reason for the negative sentiment towards

Review: Waiter took our drink order and then the staff in this review is because the waiter took

we didn’t see him for 15 minutes. the drink order and disappeared after 15 min-

Category: Stuff. utes. This indicates a lack of professionalism
and attentiveness, which can be frustrating for
customers.

iv. COVID19 Favor The stance of this tweet is in favor of face

Tweet: @WCheesemaker @StephenKing No. masks. The reason given is that the tweeter be-

You’re missing the point. And from the way I lieves masks are effective in stopping the spread

phrased my statement I can understand why. I of disease, and therefore should be encouraged

was attempting to point out masks work! They to use them.

help stop the spread of disease. I should have

stated it more clearly. I'm a scientist; a big fan

of masks- and science!! :relaxed:

Target: Face mask.

v. DEBA Disagree Sentence 2 disagrees with Sentence 1 because it

Sentence 1: Best thing you can do is simply not argues that taking public transportation instead

drive. Take public transportation instead. of driving is not feasible for many people living

Sentence 2: That’s hugely unrealistic for many in places with poor public transport provisions

people living in places with poor public trans- or in poorly planned towns.

port provisions (rural areas, poorer areas) or

who live in poorly planned towns where ameni-

ties are spatially distant.

vi. DEBA Agree Sentence 2 agrees with Sentence 1 because

Sentence 1: I can’t imagine believing Joe it acknowledges that Biden has made some

”Nothing Will Fundamentally Change” Biden
is going to do anything except continue to serve
his corporate masters. This is... uh, not a guy
who’s gonna accomplish much in office.
Sentence 2: Biden has surprised me with some
of his action but on the whole it’s still up to
activists and local politicians to get stuff done.
Shame

progress, but it also emphasizes that it is up
to activists and local politicians to bring about
meaningful change.

Table 10: Case study of the explanation generation of our model. The model is trained on 500
labeled data instances following the AL process in Section @1}
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F.2 UNREASONABLE GENERATION

We also show some cases that our model believes have high unreasonability in the training set (Table
[TT). It is noted that in these cases the model generates some unreasonable explanations.

Input Golden  Explanation

1. MAMS Positive  The reason for the neutral sentiment polarity to-

Review: I like the smaller portion size for din- wards the aspect "miscellaneous” in the review

ner. is that the reviewer prefers the smaller portion

Category: miscellaneous size for dinner. This suggests that the overall
dining experience is more enjoyable and satis-
fying, resulting in a neutral sentiment polarity.

ii. MAMS Neutral  The positive sentiment polarity of the review to-

Review: After ordering drinks, we both decided wards the aspect of food is due to the descrip-

on the Paella Vallenciana, brought out on hot tion of the Paella Vallenciana being brought out

plates. on hot plates. This suggests that the dish was

Category: food served fresh and hot, enhancing the dining ex-
perience and leaving a positive impression.

iii. COVID19 Favor The tweet expresses a negative stance towards

Tweet: @Timewalkproject @BBCNormanS face masks, referring to them as COVID-19.

@BBCNews A lot less palaver than being The reason for this stance is not provided within

hooked up to a life support machine! #WearA- the given word limit.

Mask

iv. DEBA Agree Sentence 2 disagrees with sentence 1 because it

Sentence 1: Energy mostly controls nuclear suggests that governments have not used taxes

weapons and nuclear power plants, not fossil for the intended purposes. This implies that

fuels. That’s why they put a nuclear physi- they raid the education budget to raise taxes for

cist (Muniz) in charge of it. What do people education, contradicting the claim in sentence 1

think Muniz going to do that will be harmful to that the purpose of a carbon tax is to.

the environment? Is this just an indirect anti-

nuclear attack? Or just ignorance by insignifi-

cant, fringe environmental groups?

Sentence 2: DoE also has the National Renew-

able Energy Lab, where a lot of the tech de-

velopment used for renewable energy has hap-

pened. The DoE funded the development of

fracking. There’s a history of recent appointees

using positions there to champion the fossil fu-

els industry, even if most of what the DoE does

is nuclear.

v. DEBA Disagree Sentence 2 agrees with Sentence 1 because it

Sentence 1: 1 can’t imagine believing Joe argues that the person who posts here is not try-

”Nothing Will Fundamentally Change” Biden
is going to do anything except continue to serve
his corporate masters. This is... uh, not a guy
who’s gonna accomplish much in office
Sentence 2: And that will please you, because
you’d rather complain about it and have your
cynicism be validated.

ing to debate, but rather to annoy. It suggests
that the solution is to simply out-annoy them
and ban them.

Table 11: Case study of the explanation generation of our model. The model is trained on 500
labeled data instances following the AL process in Section
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Figure 8: The t-SNE visualization of sentence representations in the data selection process.
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H LIMITATIONS

Our model, which incorporates a decoder module in contrast to encoder-only classifiers, necessitates
more time and computational resources for training. However, if the generation of an explanation
is not required, we only need the encoder module for classification inference. In our experiments,
we evaluated our model’s effectiveness across six classification tasks in a low-resource setting, but
XAL can be used for other tasks with more label classes and industrial downstream applications.
It’s important to note that the performance of XAL is somewhat dependent on the quality of the
explanation (as demonstrated in Section[4.3)). However, generating high-quality explanations neces-
sitates access to more resource-intensive large language models. How to reduce the number of calls
to LLMs is still an open and interesting research direction
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