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Abstract

Homonymy can easily raise lexical ambigu-001
ity due to the misunderstanding of its multiple002
senses. Correct recognition of homonym sense003
greatly relies on its surrounding context. This004
ambiguous nature makes homonyms an appro-005
priate testbed for examining the contextualiza-006
tion capability of pre-trained (PLM) and large007
language models (LLMs). Considering the008
impact of part-of-speech (POS) on homonym009
disambiguation and the dominance of English010
in word embedding research, this study pro-011
vides a comprehensive layer-wise analysis of012
homonym representations in both English and013
Chinese, spanning same and different POS cat-014
egories, across four families of PLMs/LLMs015
(BERT, GPT-2, Llama 3, Qwen 2.5). Through016
the creation of a synthetic dataset and com-017
putation of disambiguation score (D-Score),018
we found that: (1) no universal layer depth019
excels in differentiating homonym representa-020
tions; (2) bidirectional models produce better021
contextualized homonym representations com-022
pared to much larger autoregressive models;023
(3) most importantly, POS affects homonym024
representations in models in ways that differ025
from human research findings. The individual026
differences between LLMs uncovered in our027
study challenge the simplistic understanding028
of their inner workings. This reveals a com-029
pelling research frontier: conducting controlled030
experiments with purposefully manipulated in-031
puts to enhance the interpretability of LLMs.032
We have made our dataset and codes avail-033
able publicly at https://anonymous.4open.034
science/r/ehril/.035

1 Introduction036

The efficient and economic use of lexical inventory037

results in multiple word senses converging into038

a single lexical item, leading to lexical ambiguity039

(Wang, 2011; Piantadosi et al., 2012). Among these040

lexical items, homonyms represent a common type.041

*These authors contributed equally.

They denote two (or more) semantically and etymo- 042

logically unrelated meanings. For instance, "bank" 043

can refer to a financial institution or the side of a 044

river. 045

Resolution of lexical ambiguity, while rarely 046

conscious in everyday language use, can pose spe- 047

cific challenges to human readers or listeners. Psy- 048

cholinguistic and neuroimaging research suggest 049

that homonyms, with their unrelated meanings, of- 050

ten make comprehension more difficult (Frazier 051

and Rayner, 1990; Rodd, 2018; Huang and Lee, 052

2018). 053

Lexical ambiguity also poses challenges to dis- 054

tributional semantic models, though the nature of 055

these difficulties differs from those encountered 056

in human language processing (Lake and Mur- 057

phy, 2023). Early static word representation mod- 058

els such as LSA (Deerwester et al., 1990) and 059

Word2Vec (Mikolov et al., 2013) cannot be mod- 060

ulated by surrounding contexts after the training 061

process. Different senses of a word must share 062

the same representation, hindering its ability to dif- 063

ferentiate word senses. Contextualized word rep- 064

resentations and language models such as ELMo 065

(Peters et al., 2018) and BERT (Devlin et al., 2019) 066

were proposed to address the problem. Followed 067

by this development, modern PLMs and LLMs are 068

all contextualized language models. 069

Contextualized word representations from these 070

models are influenced by its surrounding contexts, 071

allowing the representations to vary instead of re- 072

main static. The context can be preceding tokens 073

in autoregressive models like GPT (Radford et al., 074

2019), or both preceding and following tokens in 075

bidirectional, autoencoding models like BERT (De- 076

vlin et al., 2019). Homonyms, which greatly rely 077

on their surrounding context to be accurately un- 078

derstood, serve as appropriate candidates to experi- 079

ment on the contexutalization capability of PLMs 080

and LLMs. 081

Besides, the difference between homonyms 082
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whose senses belong to the same or different syn-083

tactic categories or parts of speech (POS) also war-084

rants attention (MacDonald et al., 1994). For exam-085

ple, ’fly’ can serve as both a noun (a small insect)086

and a verb (to move through air). Electrophysiolog-087

ical responses and blood-oxygen-level-dependent088

(BOLD) signals, as observed during lexical ambi-089

guity processing, are significantly influenced by090

POS variability, according to previous research091

(Federmeier et al., 2000; Gennari et al., 2007).092

Homonyms with different POS senses elicit greater093

neural activation compared to those with the same094

POS meanings, suggesting a greater cognitive re-095

source demand for syntactic category processing096

(Grindrod et al., 2014). Given these findings in097

human language processing, it becomes interesting098

to explore whether these two types of homonyms099

would be represented differently in language mod-100

els, as they are in the human brain.101

Our main contributions are:102

• Constructed a new Chinese dataset to facilitate103

homonym representation analysis.104

• Presented a cross-linguistic analysis on the105

layer-wise, contextualized representations of106

Chinese and English homonyms across vari-107

ous families of PLMs and LLMs.108

• Contributed to a deeper understanding on how109

homonyms are represented in language mod-110

els, specifically on how POS modulates model111

representations.112

2 Related Works113

Our present work is largely related to previous stud-114

ies on the investigation of the contextualization115

capabilities of PLMs. Contextualized embeddings116

were found to be able to capture the nuanced seman-117

tic information encoded from English dictionary118

(Chang and Chen, 2019). It can also be used to119

predict human behaviours and explain variances120

of human judgements on meanings (Wilson and121

Marantz, 2022; Rivière et al., 2024). A study that122

focuses on polysemes and homonyms revealed that123

while word embeddings can differentiate ambigu-124

ous words in terms of cosine similarity, the dis-125

tinctive power was much less compared to human126

ratings (Haber and Poesio, 2021). It suggests the127

limitations of word embeddings. The distance be-128

tween ambiguous word embeddings were found129

to show different trajectories across model layers,130

which in turn depended on the architectural factors131

including but not limited to model size (Rivière 132

et al., 2024). 133

Ethayarajh (2019) analyzed the contextual word 134

representations in ELMo, BERT and GPT-2. It was 135

found that the representations were more context- 136

specific in the higher layers, consistent with previ- 137

ous studies (Peters et al., 2018; Liu et al., 2019a; 138

Clark et al., 2019). Additionally, Ethayarajh (2019) 139

observed that the word embeddings in language 140

models suffered from anisotropy, referring to as the 141

non-uniform distribution of the embeddings in the 142

embedding space. They proposed subtracting the 143

cosine similarity from the baseline computed form 144

the text materials to create an adjusted measure that 145

enhances interpretability. 146

While there is existing research on contextuality 147

and lexical ambiguity, our work makes significant 148

contributions in several ways. For instance, unlike 149

Sevastjanova et al. (2021), who did not explicitly 150

focus on identifying homonymous words within a 151

large corpus, we specifically targeted homonyms 152

with different meanings by developing our own 153

dataset. We compared the performance of 21 mod- 154

els across four model families, varying in size 155

(from 110M to 8B) and architecture, which is more 156

extensive than the few models used in Ethayarajh 157

(2019) and Rivière et al. (2024). We proposed an 158

angle-based disambiguation score to account for 159

the nonlinearity of cosine similarity. Furthermore, 160

we investigated the impact of POS on the contex- 161

tualized embeddings by controlling the selected 162

homonyms. 163

Last but not least, our work extends contextual- 164

ized embeddings analysis to Chinese, unlike previ- 165

ous studies which have predominantly focused on 166

English (Haber and Poesio, 2021) and other West- 167

ern languages like Spanish (Rivière et al., 2024). 168

With a logographic writing system, a single sino- 169

gram can often represent multiple meanings de- 170

pending on its surroundings (Wang, 1973; Huang 171

and Lee, 2018; Wang et al., 2023). This inherent 172

ambiguity in Chinese sinograms makes it an ideal 173

testbed for exploring the capabilities and limita- 174

tions of contextualized representations. 175

3 Methods 176

3.1 Synthetic data construction 177

Existing datasets did not adequately address how 178

language models represent homonyms in context, 179

especially for the Chinese language. Therefore, 180

we created custom datasets containing English 181
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Figure 1: An example prompt for generating sentence
pairs that illustrate the distinct meanings of homonyms.
Details are provided in the Appendix A.

and Chinese sentences composed with homonyms182

via LLMs and validated with experts, following183

the procedures from previous studies (Schick and184

Schütze, 2021; Yu et al., 2023). It is noted that all185

homonyms we used in the current paper are also186

homographs and homophones, as they do not differ187

in both orthographical and phonological represen-188

tations. Details can be found in Appendix A.1.189

To select appropriate homonyms, we referred to190

existing and established resources. For English,191

we referred to the British eDom Norms database192

(Maciejewski and Klepousniotou, 2016). For Chi-193

nese, due to the lack of a suitable existing dataset,194

we curated one on our own by collecting possible195

homonyms from a comprehensive Chinese dictio-196

nary XianDai HanYu CiDian (7th Edition). After197

identifying the homonym candidates, we designed198

a prompt protocol to instruct LLMs to construct199

sentences. An example is shown in Figure 1, with200

the full prompt in Appendix A.2 and A.3.201

For sentence generation, we employed GPT-4o202

(OpenAI, 2024) for English and ChatGLM4 (GLM203

et al., 2024) for Chinese. For each homonym, we204

generated 20 sentences, with 10 sentences corre-205

sponding to each of its two senses. Three linguistic206

experts (including two of the authors) manually ex-207

amined all sentences, especially for Chinese. 100208

homonyms were selected for this study, with half of209

them having the same POS for both of their senses210

and the other half having different POS.211

3.2 Metrics212

3.2.1 Angular similarity between homonyms213

To obtain layer-wise homonym representations, the214

prepared sentences were fed into pre-trained lan-215

guage models to extract token-level representations. 216

Word-level representations were derived by mean 217

pooling on token-level representations, as it had 218

been shown to achieve satisfactory performance 219

to determine word similarity (Bommasani et al., 220

2020). While cosine similarity between word rep- 221

resentations is commonly used to assess the close- 222

ness of semantic meanings, we opted to compute 223

the angular similarity. This choice was made be- 224

cause the cosine similarity varies nonlinearly as 225

higher values represent progressively smaller an- 226

gular differences (see Figure 4 for visualization). 227

Angle-based measures have also been shown to im- 228

prove embedding performance (Cer et al., 2018). 229

The angular similarity is defined as in Equation 1: 230

AngSim = 90− arccos(CosSim)× 180
π

(1) 231

where CosSim is the cosine similarity between 232

any two word representations. 233

To properly assess contextual disambiguation of 234

homonyms, it is essential to consider both same- 235

sense and cross-sense similarities. While consider- 236

ing the cross-sense similarity alone, if one observes 237

that it is close to the baseline, the intuition might 238

be that the model shows satisfactory contextual- 239

ization capability because the model treats senses 240

as distinct as random words. However, this intu- 241

ition cannot be confirmed without examining same- 242

sense similarity. If a model successfully encodes 243

the word sense information, it is expected that the 244

similarity between same-sense representations to 245

be higher than that of the cross-sense. Therefore, it 246

is essential to consider the difference between the 247

same-sense similarity and cross-sense similarity, 248

but not either one of them. By examining both met- 249

rics alongside their difference, we can quantify how 250

well a model uses context to differentiate between 251

various word senses while maintaining consistent 252

representations for the same sense. The same-sense 253

and cross-sense angular similarity are defined as in 254

Equation 2 and 3 respectively. 255

AngSimsame(l, w) = E
[∑n

i,j=1
i ̸=j

g(fl(w
s
i ), fl(w

s
j ))

]
(2) 256257

AngSimcross(l, w) = E
[∑n

i=1

∑n
j=1 g(fl(w

1
i ), fl(w

2
j ))

]
(3) 258

where both of them are the averaged angular 259

similarity between hidden representations of the 260

same or different senses of the homonym w at layer 261

l. g is the angular similarity function (Equation 262

1); fl is the function to map from a homonym in 263
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a sentence to its hidden representation at layer l;264

n is 10; w1
i and w2

j correspond to the homonym265

of meaning 1 and meaning 2 in the i-th and j-th266

sentence.267

3.2.2 Adjusting for anisotropy268

There is an ongoing debate regarding the impli-269

cations of anisotropy. Some studies propose that270

it is beneficial (Biś et al., 2021; Hämmerl et al.,271

2023), while others argue it could be potentially272

detrimental and impair task performance (Ding273

et al., 2022; Rudman and Eickhoff, 2024; Mickus274

et al., 2024). Although we recognize the signifi-275

cance of anisotropy and various anisotropy mea-276

sures, our study does not aim to resolve this debate.277

Instead, we follow a similar approach as in Etha-278

yarajh (2019), which involves adjusting the similar-279

ity measure for anisotropy through a baseline com-280

puted as the similarity between randomly sampled281

words. We computed the same-sense and cross-282

sense baseline as the angular similarity between the283

randomly sampled words within each set of sen-284

tences and between the two sets, respectively (De-285

tails can be found in Appendix C). Since different286

sentences vary in linguistic features/information287

(syntax, vocabulary, etc.), both the baseline and an-288

gular similarity would be affected. Correcting the289

angular similarity with their respective baselines290

can therefore isolate the observed measure from291

other linguistic factors.292

3.2.3 Disambiguation score (D-score)293

After computing the both same-sense and294

cross-sense adjusted angular similarity295

(AngSimAdjsame and AngSimAdjcross),296

we computed their difference and termed it as the297

disambiguation score (D-score):298

D-score = AngSimAdjsame −AngSimAdjcross
(4)299

The D-score is our primary measure in this study.300

It measures how much the model relies on con-301

text to modulate representations (contextual dis-302

ambiguation). A larger D-score indicates robust303

disambiguation, while a smaller D-score suggests304

poor differentiation, the model either conflates305

senses or is insensitive to the context.306

3.3 Models307

Experiments were conducted on 21 models from308

four different model families: BERT (Devlin et al.,309

2019; Liu et al., 2019b; He et al., 2023), GPT-2310

(Radford et al., 2019), Llama3 (Dubey et al., 2024),311

and Qwen (Yang et al., 2024). More details are 312

listed in Table 1 and 3. Due to tokenization is- 313

sue, bert-base-chinese was not included in the En- 314

glish analyses, bert-base-uncased and bert-large- 315

uncased were not included in the Chinese analyses. 316

4 Analyses 317

The results on layer-wise representation of En- 318

glish and Chinese homonyms are shown in Fig- 319

ure 2, showing the averaged D-score over all 320

homonyms. Table 1 shows layers at which the D- 321

scores are highest. Hereafter we will describe the 322

layer depth as: lower (Layer Depth (%) ≤ 33%); 323

middle (%33 < Layer Depth (%) ≤ 67%) and 324

higher (67% < Layer Depth (%)). The details 325

of all statistical analyses conducted in this Sec- 326

tion can be found in Appendix D, all multiple 327

comparisons were corrected via FDR (Benjamini 328

and Hochberg, 1995). All results, tables and fig- 329

ures can be found in our online repository https: 330

//anonymous.4open.science/r/ehril/. 331

4.1 Contextualization of English homonyms 332

Linear mixed effect models were fitted to examine 333

the difference of the best D-score (D-scorebest here- 334

after) between models (details can be found in Ap- 335

pendix D.1). For BERT model family (Devlin et al., 336

2019; Liu et al., 2019b; He et al., 2023), the layer- 337

wise D-score trajectories differ drastically among 338

models. RoBERTa based models show relatively 339

poor D-scores at around 10 with comparatively flat 340

trajectories across layers. The three BERT based 341

models (Devlin et al., 2019), in contrast, show in- 342

creasing D-score in middle layers and plateaued 343

in higher layers. In general, BERT-based models 344

perform best in the middle and higher layers (Table 345

1). deberta-v3-large has the highest D-scorebest 346

(25.32, ps < .001) among BERT model family at 347

the middle layer. 348

For GPT2 family (Radford et al., 2019), the 349

layer-wise D-score trajectories of all four models 350

increase from lower layers and peak in higher lay- 351

ers. The two larger models exhibit different pat- 352

terns where they show sudden spikes of D-score 353

at the final layer, leading to their significantly 354

better performance compared to smaller models 355

(ps < .001). This behaviour is not observed in 356

the two smaller models. Numerically, gpt2-xl has 357

the highest D-scorebest at 15.83 at the final layer, 358

although not significantly different from gpt2-large 359

(p = .865). 360
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Figure 2: Average D-score between the contextualized representation pairs of English (upper) and Chinese (lower)
homonyms across different language models. The x-axis indicates the relative layer depth, computed as the layer
number divided by the total number of layers for each model. Note that between English and Chinese, the scale of
the y-axis is different.

English Chinese

Model Family Model Parameters Layer Layer Depth (%) Layer Depth D-score Layer Layer Depth (%) Layer Depth D-score

BERT

bert-base-uncased 110M 7.00 58.30 middle 18.50 — — — —
bert-large-uncased 340M 15.00 62.50 middle 20.81 — — — —
bert-base-chinese 102M — — — — 12.00 100.00 higher 9.63
bert-base-multilingual-uncased 167M 12.00 100.00 higher 14.65 12.00 100.00 higher 4.96
roberta-base 125M 11.00 91.70 higher 11.36 9.00 75.00 higher 1.04
roberta-large 355M 21.00 87.50 higher 13.04 15.00 62.50 middle 1.03
xlm-roberta-base 278M 10.00 83.30 higher 7.82 11.00 91.70 higher 4.04
xlm-roberta-large 560M 23.00 95.80 higher 9.57 23.00 95.80 higher 5.15
deberta-v3-base 183M 5.00 41.70 middle 24.44 8.00 66.70 middle 6.50
deberta-v3-large 434M 12.00 50.00 middle 25.32 15.00 62.50 middle 6.79
mdeberta-v3-base 278M 6.00 50.00 middle 18.04 11.00 91.70 higher 10.56

GPT2

gpt2 124M 9.00 75.00 higher 9.57 6.00 50.00 middle 1.93
gpt2-medium 355M 17.00 70.80 higher 8.44 16.00 66.70 middle 1.55
gpt2-large 774M 36.00 100.00 higher 15.72 26.00 72.20 higher 2.49
gpt2-xl 1.5B 48.00 100.00 higher 15.83 29.00 60.40 middle 2.53

Llama3
Llama-3.2-1B 1B 4.00 25.00 lower 14.77 16.00 100.00 higher 5.61
Llama-3.2-3B 3B 6.00 21.40 lower 16.86 23.00 82.10 higher 6.66
Llama-3.1-8B 8B 6.00 18.80 lower 16.87 24.00 75.00 higher 6.65

Qwen2.5
Qwen2.5-1.5B 1.5B 8.00 28.60 lower 15.11 9.00 32.10 lower 6.43
Qwen2.5-3B 3B 14.00 38.90 middle 14.89 14.00 38.90 middle 6.99
Qwen2.5-7B 7B 8.00 28.60 lower 13.99 10.00 35.70 middle 6.89

Table 1: The best layer of representing English and Chinese homonyms of each model based on D-score. The model
with the highest D-score within each model family is in boldface for two languages. Layer Depth is categorized as:
lower (Layer Depth (%) ≤ 33%); middle (33% < Layer Depth (%) ≤ 67%) and higher (67% < Layer Depth (%)).

For Llama3 family (Dubey et al., 2024), the D-361

score trajectories of the three models almost over-362

lap with each other. All three lines show a rapid363

increase in the lower layers, reaching a global peak364

and then decreasing in the middle layers, following365

a small peak in the later layers. Compared to the366

two larger models, the 1B model exhibits a signifi-367

cantly smaller peak at the lower layers (ps < .001).368

The 8B model also shows a sharp increase at the fi- 369

nal layer, similar to the two larger models of GPT2. 370

The highest D-scorebest is observed in Llama-3.1- 371

8B (16.87) at the lower layer. 372

For Qwen2.5 family (Yang et al., 2024), similar 373

to Llama3 family, the layer-wise D-score trajec- 374

tories are similar across all three models, which 375

increase in lower layers, peak in lower to middle 376

5



Figure 3: A heatmap showing the t-ratio computed from the post-hoc comparisons between same-POS D-score
and different-POS D-score. Multiple comparisons were corrected via FDR (Benjamini and Hochberg, 1995).
Nonsignificant results are marked with a cross.

layers and retrace in higher layers. In contrast to377

1.5B and 7B, the 3B model exhibits a two-stage378

ascent at the lower layers and reaches its peak at379

a somewhat middle layer. While Qwen2.5-1.5B380

has the highest D-scorebest (15.11), the D-scorebest381

from all three models are not significantly different382

(ps > .05).383

4.2 Contextualization of Chinese homonyms384

The results on layer-wise representation of Chinese385

homonyms are shown in the lower row of Figure386

2 and Table 1. For BERT model family, it can387

be observed that the layer-wise D-score trajecto-388

ries differ among BERT, RoBERTa and DeBERTa389

based models. BERT based models show a mono-390

tonically increasing trend, achieving the best score391

in the final layer. RoBERTa based models show392

relatively poor performance with the highest D-393

scorebest only reaching around 5. DeBERTa based394

models exhibit two minor peaks in the middle layer395

and higher layer, with the optimal score observed in396

the middle layer. mdeberta-v3-base has the highest397

D-scorebest (10.56) among BERT model family at398

higher layer. bert-base-chinese, the original BERT399

model variant pre-trained on Chinese Wikipedia400

(Devlin et al., 2019), also has a high D-scorebest at401

9.63 at a higher layer (Table 1). The two models402

exhibit significantly better performance than others403

(ps < .001), although they are not significantly404

different from each other.405

Within the GPT2 family, the D-score trajectories406

are almost entirely flat, with their maximum in a 407

wide range spanning middle layers. While the two 408

larger models have relatively higher D-scorebest, 409

the D-scorebest are not significantly different within 410

the family (ps > .05). 411

For Llama3 family, the 3B and 8B models show 412

similar D-scorebest (p = .989) values, which are 413

significantly better than that of the 1B version 414

(ps < .001). The layer-wise D-score trajectories 415

are similar across all three models. The D-scores 416

increase rapidly in the lower layers and peak in 417

the lower to middle layers. After that, they decline 418

until reaching a plateau and maintain similar scores 419

in the middle and higher layers. Llama3.2-3B has 420

the highest D-scorebest at 6.66 at a higher layer. 421

For Qwen2.5 family, the layer-wise D-score tra- 422

jectories are similar across all three models, which 423

increase rapidly in lower layers, reach a plateau 424

in lower and middle layers, and then decline in 425

higher layers. The three models exhibit similar D- 426

scorebest (ps > .05). The highest D-scorebest is 427

observed in Qwen2.5-3B at a middle layer. 428

4.3 Layer-wise comparisons of English and 429

Chinese homonym representations 430

First of all, the main effect of language was found 431

to be significant via linear mixed effect models 432

fitted per language model, in which the D-scores 433

computed from English homonym representations 434

were significantly higher than from Chinese (Ta- 435

ble 5, Appendix D.2). This suggests that the in- 436
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cluded LLMs are better at contextualizing English437

homonyms. It is of no surprise since many of the438

models were all pre-trained with English-dominant439

data. For Chinese homonym representations, mod-440

els involving multilingual and Chinese training data441

and achieve better D-Scores, such as mdeberta-v3-442

base and bert-base-Chinese. We suggest that this443

can be attributed to the fact that these models in-444

cluded a significant portion of Chinese data in the445

pre-training phase. On the other hand, as discussed446

in Section 2, unlike alphabets, each sinogram in447

Chinese can represent multiple meanings which448

can lead to the two-sinogram word becoming a449

homonym (Huang and Lee, 2018). For instance,450

"一/yi" can be both "one" and "first". And the451

homonym "一线/yi xian" can be interpreted into452

"one piece of" or "battlefront" based on its context.453

It is possible this inherent sinogram-level ambi-454

guity is not captured by the models, causing the455

lower performance of word-sense disambiguation456

in Chinese.457

Across languages, the layer-wise D-score tra-458

jectories from the same model families show both459

similarities and differences. For instance, BERT460

and DeBERTa based models tend to excel in higher461

layers for both English and Chinese. In contrast,462

the trajectories observed from GPT-2 models show463

significant differences between languages. Trajec-464

tories from English homonyms show an increasing465

trend from lower to higher layers, while those from466

Chinese homonyms show an inverted U-shaped467

trend with a broad peak at middle layers.468

Similar trajectories may suggest that models em-469

ploy comparable strategies for homonym contex-470

tualization in both English and Chinese, possibly471

indicating the use of language-universal features472

or processing mechanisms. Conversely, divergent473

trajectories imply that models adapt their approach474

based on language-specific characteristics, recog-475

nizing that different linguistic cues or structures476

may be more relevant for homonym disambigua-477

tion in one language versus another. Further re-478

search with linguistically well-designed sentences479

would be needed to confirm these hypotheses about480

the models’ internal representations.481

4.4 Does increasing model size help with482

differentiating homonym representations?483

While larger models generally perform better than484

smaller models in language tasks (Kaplan et al.,485

2020), this is not always observed in our results.486

As we observed from Table 1, in terms of English487

homonym disambiguation, larger models in BERT 488

and GPT2 families indeed performed better. Llama- 489

3.2-3B, however, exhibited a similar performance 490

as Llama-3.1-8B; the smallest model of Qwen fam- 491

ily even performed best. For Chinese homonym 492

disambiguation, in the GPT2 family the largest 493

model performed best, though gpt2 is still better 494

than gpt2-medium. As such, the homonym disam- 495

biguation capability did not consistently scale with 496

the size of the language models in general. 497

4.5 How does model architecture affect 498

homonym representations? 499

PLMs and LLMs can roughly be divided into bidi- 500

rectional or autoregressive models (Yang, 2019). 501

This division is based on which part of the con- 502

text that these models can attend on. Of the four 503

model families, only the BERT model family is 504

bidirectional, while others are autoregressive. 505

Regarding English homonym representations, 506

the bidirectional deberta-v3-large model has the 507

highest D-score among all models tested, surpass- 508

ing autoregressive models that are around 16 times 509

larger (Llama-3.1-8B and Qwen2.5-7B). This result 510

is even more significant given that deberta-v3-base 511

was pre-trained on a much smaller dataset (same as 512

RoBERTa (He et al., 2023)) than those of LLama3 513

and Qwen2.5 model families. 514

Regarding Chinese homonym disambiguation, 515

the multilingual mdeberta-v3-base performed the 516

best, while both deberta-v3-base and deberta-v3- 517

large also performed at a similar level as the best 518

model from Qwen and Llama family. This re- 519

sult highlights the need of multilingual data in 520

homonym disambiguation other than English, as 521

well as the strength of bidirectional architecture. 522

4.6 Do same or different parts of speech affect 523

homonym representations? 524

In our main analyses, the D-score were compared 525

across homonyms regardless of their POS. To fur- 526

ther investigate how POS might modulate the D- 527

score, we fitted a linear mixed effect model per 528

language and PLM/LLM with D-score being the de- 529

pendent variable, layer and POS as the independent 530

variables, and a word-specific random intercept (de- 531

tails can be found in Appendix D.3). The interac- 532

tion effects between POS and layer were significant 533

except for gpt2, gpt2-large, gpt2-xl and roberta- 534

large on Chinese homonyms (Table 6). Post-hoc 535

pairwise comparisons were conducted to examine 536

at which layer the differences (different-POS D- 537
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score − same-POS D-score) were significant. A538

heatmap showing the t-ratio resulted from the com-539

parisons was shown in Figure 3, and the layers540

where the t-ratios were largest were shown in Table541

7. A higher t-ratio suggests that the difference ob-542

served is more robust, and less likely to be caused543

by random noises. In other words, the POS infor-544

mation contributes more to the prediction of the545

D-score when the t-ratio is higher. First of all, it546

can be observed that almost all t-ratios were pos-547

itive, indicating that the different-POS D-scores548

were always larger than the same-POS D-scores.549

These results results suggest that the two meanings550

of same-POS homonyms are more challenging for551

models to differentiate than those of different-POS552

homonyms. Intriguingly, this finding contrasts with553

previous studies on humans, which showed that554

different-POS homonyms elicited greater neural555

activations and required higher cognitive efforts556

(Grindrod et al., 2014). Our analysis indicates that557

PLMs and LLMs are actually more adept at repre-558

senting different-POS homonyms.559

This contrast between human and machine could560

potentially be attributed to the underlying process-561

ing mechanism. While humans need to actively562

switch between grammatical frameworks to inter-563

pret different-POS homonyms (Federmeier et al.,564

2000), the models already possess all relevant POS565

information in the embedding space during in-566

ference without a switching process. However,567

this benefit in resolving different-POS homonyms568

might be an obstacle for resolving same-POS569

homonyms in models.570

Second, it can be observed from Figure 3 that the571

t-ratios resulted from English homonym compar-572

isons were much larger than that of Chinese. This573

difference may lie in the fact that the markedness of574

POS information are asymmetric between English575

and Chinese (Greenberg, 1966; Wang, 1973). For576

instance, the plural form or past tense are marked577

by inflectional suffixes in English, while it is un-578

marked in Chinese. For instance, "关门 (guan579

men)" can function both as a verb (to close the580

door) and as a noun (the gate of a pass). No addi-581

tional suffix will be added when it is used to express582

plural meaning in its noun function, such as "他583

们要在所有的关门设防 (ta men yao zai suo you584

de guan men she fang) / they will set up defences585

at all gates of the pass)". It is possible that the586

marked POS information in its orthographic rep-587

resentation of English is encoded and stored in its588

hidden representations during training, which lacks589

in Chinese. It is likely that this additional embed- 590

ded POS information in English helps improving 591

models’ performance in contextualizing homonym 592

representations. 593

Third, it can be observed that the best POS layers 594

(where the POS contributes the most, Figure 3) and 595

the best D-score layers (where the D-score is the 596

highest, Table 1) are not always equal (more details 597

can be found in Table 7). For English, the best POS 598

layers almost always are the earlier layer (except 599

for bert-base-uncased). For Chinese, this pattern 600

can still be observed (e.g., mdeberta-v3-base), al- 601

beit less consistent for other models. Language, 602

as a complex adaptive system, employs various 603

strategies, such as POS, word order and contex- 604

tual cues to address lexical ambiguity (Mufwene 605

et al., 2017) that arises from the reuse of existing 606

forms (Ogura and Wang, 2022). Our results indi- 607

cate that, beyond relying on POS information at 608

lower layers, the models also incorporate other lin- 609

guistic information at higher layers to enhance their 610

disambiguation performance. 611

5 Conclusion 612

We presented a comprehensive analysis on En- 613

glish and Chinese homonym representations, span- 614

ning same and different POS categories, across 21 615

PLMs and LLMs in four model families. Patterns 616

of layer-wise trajectories of D-Score were found 617

to differ across models and languages, suggesting 618

that these different models might excel differently 619

in encoding distinct levels of linguistic informa- 620

tion (e.g., meanings, POS, etc..) towards encoding 621

distinct homonym representations. Model archi- 622

tecture and pretraining data portion are important 623

factors as bidirectional and multilingual models 624

excel in homonym disambiguation. We also high- 625

lighted the functional role of POS in word-sense 626

disambiguation as models disambiguate same-POS 627

homonyms better than different-POS homonyms. 628

Intriguingly, this is opposite to what have been 629

observed in human studies. To conclude, the indi- 630

vidual differences between LLMs complicate our 631

understanding of their inner workings, there is a 632

need to conduct rigorous, controlled experiments 633

using purposefully manipulated input, in order to 634

enhance interpretability in future LLM research. 635

6 Limitations 636

Several limitations of this study need to be ad- 637

dressed. Firstly, LLM-generated sentences may 638
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be biased and unnatural. Although most English639

sentences and all Chinese sentences were manually640

examined, this examination was limited to seman-641

tic acceptability and syntactic correctness. This642

unnatural issue is particularly pronounced for low-643

frequency homonyms.644

Secondly, to facilitate the computation of simi-645

larity for target words, all English sentences were646

restricted to using the base form of homonyms.647

This constraint creates an artificial situation where648

English homonyms must rely solely on context for649

POS differentiation, without the benefit of mor-650

phological strategies such as suffixation. As a re-651

sult, this limitation may reduce the observed differ-652

ences between English and Chinese in representing653

homonyms with the same or different POS, given654

that Chinese inherently has limited morphologi-655

cal variation. Future studies should compare these656

two types of homonyms using sentences with more657

diverse morphological transformations.658

Thirdly, while we observed that LLMs per-659

formed differently in representing same-POS and660

different-POS homonyms compared to findings661

from human research, our study lacks direct human-662

related data for comparison. A recent dataset on663

English with human judgments on meaning relat-664

edness has been developed, finding that humans665

and models perform similarly in word-sense dis-666

ambiguation (Trott and Bergen, 2021). Future re-667

search should examine whether similar phenom-668

ena can be observed in the Chinese context and669

directly compare model performance with human670

judgments across languages.671
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A Appendix1122

A.1 Procedures for constructing the synthetic1123

dataset1124

To select appropriate English homonyms, we re-1125

ferred to an existing dataset, the British eDom1126

Norms database (Maciejewski and Klepousniotou,1127

2016). The database includes 100 homonyms that1128

have two unrelated meanings, with the relative fre-1129

quency of each meaning rated by 100 monolingual1130

British-English native speakers aged from 19 - 391131

(mean 28.1 ± 5.3). This dataset also provided psy-1132

cholinguistic properties such as semantic distance1133

and relatedness, which is valuable for comparing1134

the similarities and differences in language process-1135

ing between humans and machines. For Chinese,1136

due to the lack of a suitable existing dataset, we cu-1137

rated one on our own. We first collected all possible1138

homonyms from a comprehensive Chinese dictio-1139

nary XianDai HanYu CiDian (7th Edition), whose1140

two or three meanings are semantically and etymo-1141

logically unrelated. We then applied strict criteria,1142

excluding words used in early vernacular Chinese,1143

rare Buddhist terms, dialects, and those that could1144

be variant sinograms, polyphonic sinograms, or1145

elements of synonyms. This process yielded 3291146

Chinese homonyms, including 130 with different1147

POS and 193 with the same POS.1148

After identifying the homonym candidates, we1149

designed a prompt protocol for each homonym to1150

instruct LLMs to construct sentences demonstrat- 1151

ing the specified meanings of the target homonym. 1152

Both English and Chinese prompts follow the same 1153

general structure. Note that the exact communi- 1154

cation flow between the human expert and LLMs 1155

differed for Chinese and English; details are pro- 1156

vided in Appendix A.2 and A.3. Besides here is 1157

one key difference: English prompts require that 1158

the written form of the target homonym remains 1159

unchanged across different meanings or contexts 1160

(e.g., no inflections, capitalization, etc.), whereas 1161

Chinese prompts do not include this requirement. 1162

This distinction arises because Chinese homonyms 1163

consistently use the same characters regardless of 1164

their different meanings or contexts. 1165

To build the dataset, we generated 20 sentences 1166

for each homonym, with 10 sentences correspond- 1167

ing to each of its two meanings. The Chinese 1168

sentences required additional scrutiny due to occa- 1169

sional inconsistencies in adhering to the specified 1170

meanings. Consequently, three linguistic experts 1171

(including two of the authors) manually examined 1172

all Chinese sentences. Any ungrammatical and 1173

incorrect sentences that did not include the tar- 1174

get homonyms or failed to represent the intended 1175

meanings were manually modified or replaced with 1176

newly generated sentences to ensure dataset qual- 1177

ity. Additionally, we confirmed that each sentence 1178

includes the targeted homonym only once. The 1179

average accuracy rates of generated sentences are 1180

94.97% for Chinese homonyms whose meanings 1181

belong to the same POS and 90.47% for those be- 1182

longing to different POS. 1183

A.2 English prompt example for sentence 1184

construction 1185

This section illustrates prompts used for generating 1186

English sentence pairs containing target homonyms. 1187

Note that only the human expert instruction is man- 1188

ually input by the authors. To ensure independence 1189

between generations, the chat history is cleared 1190

before generating each new 10 sentences for each 1191

meaning of the homonym. 1192

Human expert: Please generate ten sentences 1193

using word "lean" and the semanteme of “lean” 1194

here is "to bend or incline ". The length of each 1195

generated sentence is around 15 words. Please do 1196

not change the morphological structure of the word 1197

"fan". Do not capitalize the letters of the word 1198

"fan". Do not add a clitic to the word “fan”. 1199

GPT-4o: 1. She likes to lean against the old oak 1200

tree while reading her favorite book. 2. The tall 1201
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grass would often lean towards the ground during1202

the strong summer winds. 3. He would lean for-1203

ward in his chair to get a better view of the board.1204

4. You could see the tower slightly lean to one side1205

after the earthquake. 5. As the sun set, the flowers1206

began to lean towards the fading light. 6. During1207

the concert, fans would lean over the barricades to1208

get closer to the stage. 7. The tired hiker decided to1209

lean on his walking stick for a brief rest. 8. The cat1210

loves to lean its body against the warm window on1211

cold days. 9. Watching the game, he would often1212

lean closer to the screen in excitement. 10. The old1213

bookshelf started to lean due to the weight of the1214

heavy books.1215

Human expert: Please generate ten sentences1216

using word "lean" and the semanteme of “lean”1217

here is " having little flesh ". The length of each1218

generated sentence is around 15 words. Please do1219

not change the morphological structure of the word1220

"fan". Do not capitalize the letters of the word1221

"fan". Do not add a clitic to the word “fan”.1222

GPT-4o: 1. The greyhound, known for being1223

lean, darted across the field with incredible speed.1224

2. Her lean figure, honed by years of ballet, moved1225

gracefully across the stage. 3. After months of1226

training, his once bulky frame transformed into a1227

lean, muscular build. 4. The stray cat was lean,1228

surviving on scraps it found in the alleyways. 5.1229

Despite his lean body, he had incredible strength1230

and endurance from years of rock climbing. 6.1231

The lean wolves hunted in packs, their slender bod-1232

ies moving silently through the forest. 7. The1233

fashion model’s lean silhouette was highlighted by1234

the tailored dress she wore. 8. His diet consisted1235

mainly of lean meats and vegetables to maintain1236

his slim physique. 9. The marathon runner’s lean1237

legs carried her swiftly to the finish line. 10. The1238

lean boxer danced around the ring; his agility un-1239

matched by his heavier opponents.1240

A.3 Chinese prompt example for sentence1241

construction1242

This section illustrates prompts used for gener-1243

ating Chinese sentence pairs containing target1244

homonyms. The prompt structure follows a pre-1245

defined system protocol developed by the authors,1246

which consists of three initial instructions: two1247

provided by human experts and one input from1248

GLMchat. These instructions guide the subsequent1249

sentence generation process (Table 2).1250

B Visualization of comparison between 1251

cosine similarity and angular similarity 1252

The cosine similarity varies nonlinearly as higher 1253

values represent progressively smaller angular dif- 1254

ferences, as shown in Figure 4.

Figure 4: Cosine similarity vs. angular similarity. Co-
sine similarity varies nonlinearly: higher values repre-
sent progressively smaller angular differences.

1255

C Computation of the angular similarity 1256

baseline 1257

Following a similar approach as in Ethayarajh 1258

(2019), we calculated a baseline as the averaged an- 1259

gular similarity between randomly sampled words 1260

from two distinct sentences. This baseline serves 1261

to create an adjusted measure for better interpreta- 1262

tion of results. Similar to Section 3.2.1, we com- 1263

puted both same-sense and cross-sense baseline. 1264

For brevity, we will only introduce the computa- 1265

tion for the cross-sense baseline as follows. Define 1266

s1i and s2j as the i-th and j-th sentences composed 1267

of the two meanings of a homonym w: w1 and w2. 1268

We then randomly sampled words ri and rj from 1269

s1i and s2j respectively, and computed their angular 1270

similarity. The sampling was done 30 times for 1271

each combination of s1i and s2j . Finally, the base- 1272

line for homonym w was computed as the average 1273

of all angular similarity values across all samples 1274

and combinations of sentences. This process is 1275

14



described in Equation 5:1276

Baseline(l, w) = E

∑
i,j

g(fl(ri), fl(rj))


s1i = [r11, r

1
2, ..., r

1
k], s

2
j = [r21, r

2
2, ..., r

2
k]

r1i ̸= w1
i , r

2
j ̸= w2

j
(5)1277

where g and fl are defined as in Equation 3, k is1278

the number of words in the corresponding sentence.1279

D Statistical analyses1280

We have conducted various statistical analyses to1281

support our claims in the main text. All statistical1282

tests were conducted via custom R (R Core Team,1283

2021) script. Linear mixed effect models and post-1284

hoc comparisons were conducted with the lme41285

(Bates et al., 2014) and emmeans (Lenth, 2025).1286

All multiple comparisons were corrected via FDR1287

(Benjamini and Hochberg, 1995).1288

D.1 Contextualization of English and Chinese1289

homonyms1290

In Section 4.1 and 4.2, we conducted two statisti-1291

cal analyses to backup our claims and descriptions1292

over the D-score trajectories. Firstly, we examined1293

whether the main effect of layer was significant for1294

all models and languages. For each model and lan-1295

guage, a linear mixed effect model was constructed1296

as in Equation 6:1297

D-score ∼ layer + (1|word) (6)1298

An omnibus F -test was then conducted for each1299

fitted model, the results are shown in Table 4, where1300

the main effects of layer were significant for all1301

models and languages. Second, to examine the1302

differences between the best D-score (notated as D-1303

scorebest in the main text) across models, we fitted1304

one linear mixed effect model per language, with1305

D-scorebest being the dependent variable, model as1306

the independent variable and word-specific random1307

intercept. The model is shown in Equation 7.1308

D-scorebest ∼ model + (1|word) (7)1309

We then conducted post-hoc pairwise compar-1310

isons between every two models. Considering1311

the substantial number of comparisons involved,1312

the result table has been uploaded in our publicly1313

available repository (https://anonymous.4open.1314

science/r/ehril/)1315

D.2 Layer-wise comparisons of English and 1316

Chinese homonym representations 1317

In Section 4.3, we conducted one statistical analy- 1318

sis, aiming to illustrate the overall differences be- 1319

tween the computed D-scores from the English and 1320

Chinese homonym representations. A linear mixed 1321

effect model was fitted per language model, with 1322

D-score as the dependent variable, language and 1323

layer as independent variables, with a word-specific 1324

random intercept, as in Equation 8: 1325

D-score ∼ language ∗ layer + (1|word) (8) 1326

After that, post-hoc comparisons were conducted 1327

to examine the averaged differences between the 1328

two languages across all layers. The results are 1329

shown in Table 5. 1330

D.3 Do same or different parts of speech 1331

affect homonym representations? 1332

In Section 4.6, we conducted one statistical analy- 1333

sis, aiming to examine how POS information might 1334

modulate the D-scores. For each model and lan- 1335

guage, we fitted a linear mixed effect model, with 1336

D-score as the dependent variable, layer and POS 1337

as independent variables, with a word-specific ran- 1338

dom intercept. The model is shown in Equation 1339

9: 1340

D-score ∼ layer ∗ POS + (1|word) (9) 1341

Type III ANOVA results of each model are 1342

shown in Table 6. Post-hoc pairwise compar- 1343

isons were conducted to examine at which layer 1344

the differences (different-POS D-score − same- 1345

POS D-score) were significant. The results are 1346

visualized in Figure 3 as a heatmap in the main 1347

text. Considering the substantial number of com- 1348

parisons involved, the result table has been up- 1349

loaded in our publicly available repository (https: 1350

//anonymous.4open.science/r/ehril/). 1351
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prompt translation

Human expert
你是一名语言学家，非常擅长回答与词汇歧义相关的问题，
你的任务解释同形词的意思并用同形词造句。
请问“上任”是个同形词吗？

You are a linguist who is very good at answering questions related to lexical ambiguity,
and you have been tasked with explaining the meaning of homonyms and making sentences with them.
Is ‘shàngrèn’ a homonym?

GLMchat
是的，“上任”是一个同形词。
它有两个意思，一个是“动词，指官吏就职”，
一个是指“名词，称前一任的官吏”。

Yes, ‘shàngrèn’ is a homonym that has two meanings.
One means ‘verb, to bend or incline’
and the other means ‘noun, the predecessor.

Human expert
请分别用“上任”造二十个句子，
其中十个句子表达“动词，指官吏就职”的意思，
另外十个句子表达“名词，称前一任的官吏”的意思。

Please use ‘lean’ to make twenty sentences,
ten of which express the meaning of ‘verb, to take a post’
and the other ten express the meaning of ‘noun, the predecessor’.

GLMchat

以下是使用“上任”这个词来表示“动词，指官吏就职”的10个句子：
1. 他刚上任不久，还在熟悉新的工作环境。
2. 市长上任后，立即开始着手解决交通拥堵问题。
3. 新上任的校长对教育改革充满热情。
4. 经过严格的选拔，她终于在上任成为了部门的负责人。
5. 他上任的第一天，就给全体员工开了一个鼓舞人心的会议。
6. 这位年轻的法官上任后，受到了社会各界的关注。
7. 上任仅一周，他已经展现出了出色的领导能力。
8. 她上任后，推动了公司的技术创新。
9. 他刚上任就被派去处理一个棘手的案子。
10. 上任以来，他一直致力于改善市民的生活质量。
以下是使用“上任”这个词来表示“名词，称前一任的官吏”的10个句子：
1. 我们需要分析上任领导留下的政策，看看有哪些需要改进。
2. 上任市长在位期间，城市的基础设施得到了很大的改善。
3. 新市长表示，他将继承上任市长的良好传统。
4. 上任经理的离职，给公司带来了不少挑战。
5. 他试图了解上任留下的工作计划，以便更好地继续推进项目。
6. 上任部长在任时，推出了一系列受欢迎的教育政策。
7. 员工们对上任领导的离开感到非常惋惜。
8. 这座大桥是上任政府投资建设的。
9. 她在评价上任领导的工作时，给予了高度的评价。
10. 上任领导在离任前，留下了一套完善的管理体系。

Here are 10 sentences that use the word ‘shàngrèn’ to mean ‘verb, to bend or incline’:
1. He has just taken office and is still familiarizing himself with his new working environment.
2. The mayor began to tackle the problem of traffic congestion as soon as he took office. 3.
3. The new headmaster is enthusiastic about education reform. 4.
4. After a rigorous selection process, she finally became the head of the department
on her first day in office.
5. On his first day in office, he gave a pep talk to all the staff.
6. The young judge received a lot of attention from the community when he took office.
7. After only one week in office, he has already demonstrated excellent leadership skills.
8. She has promoted technological innovation in the company since she took office.
9. He was assigned to a difficult case just after he took office.
10. Since taking office, he has been working to improve the quality of life of the citizens.
Here are 10 sentences that use the word ‘shàngrèn’ to mean ‘noun, the predecessor’:
1. We need to analyse the policies left behind by the previous leader to see what needs to be improved.
2. During the previous mayor’s tenure, the city’s infrastructure was greatly improved. 3.
3. The new mayor said that he would carry on the good traditions of the previous mayor.
4. The departure of the previous manager has created a number of challenges for the company.
5. He tried to understand the work programme left behind by his predecessor
so that he could better continue with the project.
6. When the previous minister was in office, he introduced a number of popular education policies.
7. The employees were very sorry to see the previous leader leave.
8. The bridge was invested in by the previous government.
9. She spoke highly of the work of the previous leader.
10. The previous leader left behind a sound management system before he left office.

Table 2: Prompts used for generating Chinese sentence pairs containing target homonyms.

Model family
Languages

Number of layer Parameters
English Chinese

BERT

bert-base-uncased 12 110M
bert-large-uncased 24 340M

bert-base-chinese 12 102M
bert-base-multilingual-uncased 12 167M

roberta-base 12 125M
roberta-large 12 355M

xlm-roberta-base 12 278M
xlm-roberta-large 12 560M
deberta-v3-based 12 183M
deberta-v3-large 12 434M

mdeberta-v3-based 12 278M

GPT

gpt2 12 124M
gpt2-medium 24 355M

gpt2-large 36 774M
gpt2-xl 48 1.5B

Llama
Llama-3.2-1B 16 1B
Llama-3.2-3B 28 3B
Llama-3.1-8B 32 8B

Qwen
Qwen-2.5-1.5B 28 1.5B
Qwen-2.5-3B 36 3B
Qwen-2.5-7B 28 7B

Table 3: List of models included in our analyses. All models are available on Huggingface via the transformers
library (Wolf et al., 2020).
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Model Language Factor df1 df2 F -ratio p-value
bert-base-uncased en layer 11.000 1,089.000 275.838 < 0.001∗∗∗

bert-large-uncased en layer 23.000 2,277.000 347.023 < 0.001∗∗∗

bert-base-chinese zh layer 11.000 1,089.000 176.867 < 0.001∗∗∗

bert-base-multilingual-uncased en layer 11.000 1,089.000 241.625 < 0.001∗∗∗

bert-base-multilingual-uncased zh layer 11.000 1,089.000 112.165 < 0.001∗∗∗

roberta-base en layer 11.000 1,089.000 105.724 < 0.001∗∗∗

roberta-base zh layer 11.000 1,089.000 9.527 < 0.001∗∗∗

roberta-large en layer 23.000 2,277.000 266.928 < 0.001∗∗∗

roberta-large zh layer 23.000 2,277.000 28.143 < 0.001∗∗∗

xlm-roberta-base en layer 11.000 1,089.000 209.648 < 0.001∗∗∗

xlm-roberta-base zh layer 11.000 1,089.000 126.957 < 0.001∗∗∗

xlm-roberta-large en layer 23.000 2,277.000 268.824 < 0.001∗∗∗

xlm-roberta-large zh layer 23.000 2,277.000 148.892 < 0.001∗∗∗

deberta-v3-base en layer 11.000 1,089.000 230.244 < 0.001∗∗∗

deberta-v3-base zh layer 11.000 1,089.000 103.987 < 0.001∗∗∗

deberta-v3-large en layer 23.000 2,277.000 338.160 < 0.001∗∗∗

deberta-v3-large zh layer 23.000 2,277.000 143.651 < 0.001∗∗∗

mdeberta-v3-base en layer 11.000 1,089.000 139.872 < 0.001∗∗∗

mdeberta-v3-base zh layer 11.000 1,089.000 91.247 < 0.001∗∗∗

gpt2 en layer 11.000 1,089.000 158.189 < 0.001∗∗∗

gpt2 zh layer 11.000 1,089.000 11.645 < 0.001∗∗∗

gpt2-medium en layer 23.000 2,277.000 133.047 < 0.001∗∗∗

gpt2-medium zh layer 23.000 2,277.000 9.674 < 0.001∗∗∗

gpt2-large en layer 35.000 3,465.000 206.389 < 0.001∗∗∗

gpt2-large zh layer 35.000 3,465.000 4.265 < 0.001∗∗∗

gpt2-xl en layer 47.000 4,653.000 128.006 < 0.001∗∗∗

gpt2-xl zh layer 47.000 4,653.000 6.147 < 0.001∗∗∗

Llama-3.2-1B en layer 15.000 1,485.000 97.628 < 0.001∗∗∗

Llama-3.2-1B zh layer 15.000 1,485.000 82.293 < 0.001∗∗∗

Llama-3.2-3B en layer 27.000 2,673.000 85.032 < 0.001∗∗∗

Llama-3.2-3B zh layer 27.000 2,673.000 83.865 < 0.001∗∗∗

Llama-3.1-8B en layer 31.000 3,069.000 70.306 < 0.001∗∗∗

Llama-3.1-8B zh layer 31.000 3,069.000 82.185 < 0.001∗∗∗

Qwen2.5-1.5B en layer 27.000 2,673.000 111.454 < 0.001∗∗∗

Qwen2.5-1.5B zh layer 27.000 2,673.000 56.554 < 0.001∗∗∗

Qwen2.5-3B en layer 35.000 3,465.000 130.752 < 0.001∗∗∗

Qwen2.5-3B zh layer 35.000 3,465.000 56.042 < 0.001∗∗∗

Qwen2.5-7B en layer 27.000 2,673.000 99.746 < 0.001∗∗∗

Qwen2.5-7B zh layer 27.000 2,673.000 56.780 < 0.001∗∗∗

Table 4: Testing the main effect of layer per language and PLM/LLM (∗∗∗: ≤ .001, ∗∗: ≤ .01, ∗: ≤ .05). Multiple
comparisons corrected via FDR (Benjamini and Hochberg, 1995). Details of model fitting can be found in Appendix
D.1.
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Model contrast estimate SE df t-ratio p-value
bert-base-multilingual-uncased en - zh 6.130 0.530 198.000 11.570 < 0.001∗∗∗

roberta-base en - zh 8.741 0.395 198.000 22.117 < 0.001∗∗∗

roberta-large en - zh 9.776 0.369 198.000 26.464 < 0.001∗∗∗

xlm-roberta-base en - zh 2.421 0.309 198.000 7.830 < 0.001∗∗∗

xlm-roberta-large en - zh 2.667 0.302 198.000 8.818 < 0.001∗∗∗

deberta-v3-base en - zh 13.706 0.702 198.000 19.512 < 0.001∗∗∗

deberta-v3-large en - zh 11.792 0.567 198.000 20.802 < 0.001∗∗∗

mdeberta-v3-base en - zh 5.295 0.574 198.000 9.232 < 0.001∗∗∗

gpt2 en - zh 4.849 0.583 198.000 8.313 < 0.001∗∗∗

gpt2-medium en - zh 4.504 0.454 198.000 9.915 < 0.001∗∗∗

gpt2-large en - zh 6.623 0.751 198.000 8.820 < 0.001∗∗∗

gpt2-xl en - zh 7.896 0.796 198.000 9.923 < 0.001∗∗∗

Llama-3.2-1B en - zh 8.575 0.795 198.000 10.788 < 0.001∗∗∗

Llama-3.2-3B en - zh 7.900 0.805 198.000 9.817 < 0.001∗∗∗

Llama-3.1-8B en - zh 7.350 0.780 198.000 9.426 < 0.001∗∗∗

Qwen2.5-1.5B en - zh 6.040 0.834 198.000 7.242 < 0.001∗∗∗

Qwen2.5-3B en - zh 5.617 0.783 198.000 7.177 < 0.001∗∗∗

Qwen2.5-7B en - zh 5.371 0.784 198.000 6.852 < 0.001∗∗∗

Table 5: Testing the overall effect of language averaged over all layers per model by the pairwise comparisons
between the D-scores of the two languages (∗∗∗: ≤ .001, ∗∗: ≤ .01, ∗: ≤ .05). Multiple comparisons corrected via
FDR (Benjamini and Hochberg, 1995). Details of model fitting can be found in Appendix D.2.
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Model Language Factor df1 df2 F -ratio p-value
bert-base-uncased en POS:layer 11.000 1,078.000 20.732 < 0.001∗∗∗

bert-large-uncased en POS:layer 23.000 2,254.000 11.595 < 0.001∗∗∗

bert-base-chinese zh POS:layer 11.000 1,078.000 7.248 < 0.001∗∗∗

bert-base-multilingual-uncased en POS:layer 11.000 1,078.000 48.921 < 0.001∗∗∗

bert-base-multilingual-uncased zh POS:layer 11.000 1,078.000 2.635 0.003∗∗

roberta-base en POS:layer 11.000 1,078.000 3.167 < 0.001∗∗∗

roberta-base zh POS:layer 11.000 1,078.000 3.019 0.001∗∗∗

roberta-large en POS:layer 23.000 2,254.000 12.184 < 0.001∗∗∗

roberta-large zh POS:layer 23.000 2,254.000 1.442 0.084
xlm-roberta-base en POS:layer 11.000 1,078.000 16.885 < 0.001∗∗∗

xlm-roberta-base zh POS:layer 11.000 1,078.000 3.693 < 0.001∗∗∗

xlm-roberta-large en POS:layer 23.000 2,254.000 9.831 < 0.001∗∗∗

xlm-roberta-large zh POS:layer 23.000 2,254.000 2.531 < 0.001∗∗∗

deberta-v3-base en POS:layer 11.000 1,078.000 3.627 < 0.001∗∗∗

deberta-v3-base zh POS:layer 11.000 1,078.000 11.075 < 0.001∗∗∗

deberta-v3-large en POS:layer 23.000 2,254.000 2.594 < 0.001∗∗∗

deberta-v3-large zh POS:layer 23.000 2,254.000 8.391 < 0.001∗∗∗

mdeberta-v3-base en POS:layer 11.000 1,078.000 14.018 < 0.001∗∗∗

mdeberta-v3-base zh POS:layer 11.000 1,078.000 3.280 < 0.001∗∗∗

gpt2 en POS:layer 11.000 1,078.000 54.885 < 0.001∗∗∗

gpt2 zh POS:layer 11.000 1,078.000 1.765 0.059
gpt2-medium en POS:layer 23.000 2,254.000 28.487 < 0.001∗∗∗

gpt2-medium zh POS:layer 23.000 2,254.000 2.109 0.002∗∗

gpt2-large en POS:layer 35.000 3,430.000 38.495 < 0.001∗∗∗

gpt2-large zh POS:layer 35.000 3,430.000 0.643 0.949
gpt2-xl en POS:layer 47.000 4,606.000 21.148 < 0.001∗∗∗

gpt2-xl zh POS:layer 47.000 4,606.000 0.973 0.531
Llama-3.2-1B en POS:layer 15.000 1,470.000 11.654 < 0.001∗∗∗

Llama-3.2-1B zh POS:layer 15.000 1,470.000 5.489 < 0.001∗∗∗

Llama-3.2-3B en POS:layer 27.000 2,646.000 8.432 < 0.001∗∗∗

Llama-3.2-3B zh POS:layer 27.000 2,646.000 4.869 < 0.001∗∗∗

Llama-3.1-8B en POS:layer 31.000 3,038.000 8.704 < 0.001∗∗∗

Llama-3.1-8B zh POS:layer 31.000 3,038.000 5.111 < 0.001∗∗∗

Qwen2.5-1.5B en POS:layer 27.000 2,646.000 6.972 < 0.001∗∗∗

Qwen2.5-1.5B zh POS:layer 27.000 2,646.000 3.108 < 0.001∗∗∗

Qwen2.5-3B en POS:layer 35.000 3,430.000 12.456 < 0.001∗∗∗

Qwen2.5-3B zh POS:layer 35.000 3,430.000 2.996 < 0.001∗∗∗

Qwen2.5-7B en POS:layer 27.000 2,646.000 12.519 < 0.001∗∗∗

Qwen2.5-7B zh POS:layer 27.000 2,646.000 2.970 < 0.001∗∗∗

Table 6: Interaction effect between POS and layer (∗∗∗: ≤ .001, ∗∗: ≤ .01, ∗: ≤ .05). Multiple comparisons
corrected via FDR (Benjamini and Hochberg, 1995). Details of model fitting can be found in Appendix D.3.
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English Chinese

Model Family Model Layer (Best POS) Layer (Best D-score) D-score Layer (Best POS) Layer (Best D-score) D-score

BERT

bert-base-uncased 8 7 18.50 — — —
bert-large-uncased 15 15 20.81 — — —
bert-base-chinese — — — 9 12 9.63
bert-base-multilingual-uncased 12 12 14.65 7 12 4.96
roberta-base 4 11 11.36 1 9 1.04
roberta-large 5 21 13.04 4 15 1.03
xlm-roberta-base 8 10 7.82 9 11 4.04
xlm-roberta-large 10 23 9.57 11 23 5.15
deberta-v3-base 4 5 24.44 10 8 6.50
deberta-v3-large 7 12 25.32 23 15 6.79
mdeberta-v3-base 6 6 18.04 6 11 10.56

GPT2

gpt2 9 9 9.57 8 6 1.93
gpt2-medium 16 17 8.44 15 16 1.55
gpt2-large 36 36 15.72 28 26 2.49
gpt2-xl 48 48 15.83 29 29 2.53

Llama3
Llama-3.2-1B 3 4 14.77 14 16 5.61
Llama-3.2-3B 3 6 16.86 23 23 6.66
Llama-3.1-8B 3 6 16.87 22 24 6.65

Qwen2.5
Qwen2.5-1.5B 4 8 15.11 20 9 6.43
Qwen2.5-3B 11 14 14.89 11 14 6.99
Qwen2.5-7B 8 8 13.99 5 10 6.89

Table 7: The layer where the t-ratio computed from the comparison between same-POS D-score and different-POS
D-score is the largest. The columns D-score show the D-score from the best D-score layer, same as Table 1.
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