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Abstract

Large Language Models (LLMs) have achieved
significant advancements in various natu-
ral language processing tasks. However,
they are susceptible to generating hallucina-
tions—fabricated or inaccurate statements pre-
sented as factual information—which can un-
dermine their reliability in high-stakes appli-
cations. To address this issue, we propose a
new inference-stage HiCD method to improve
hallucination mitigation. It aims to inject hard-
to-detect hallucinations to enhance the robust-
ness of contrastive decoding during inference.
An adversarial-aware strategy is introduced for
finetuning hallucination models to effectively
learn more precise and diverse hallucination
patterns from available hallucination data. This
enhances the contrastive decoding process, en-
abling more effective identification and filter-
ing of erroneous content. We evaluate HiCD on
four various hallucination benchmarks. Experi-
mental results show significant improvements
on all metrics consistently, proving the effec-
tiveness and superiority of HiCD for hallucina-
tion mitigation.

1 Introduction

Large Language Models (LLMs) have demon-
strated substantial progress in a range of natu-
ral language processing (NLP) tasks, including
question answering, knowledge-grounded dialogue,
and reasoning-intensive problem solving (Touvron
etal., 2023; Achiam et al., 2023). However, despite
these achievements, LLMs frequently produce hal-
lucinations—outputs that contain inaccuracies or
fabrications presented as factual information (Bang
et al., 2023; Ji et al., 2023). Such hallucinations
pose significant risks, particularly in high-stakes
domains such as legal consultation, medical advice,
and specialized technical support, where factual
reliability is essential.

Various strategies have been pursued to miti-
gate hallucinations. Some works emphasized data-
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Figure 1: An illustration showing how over-penalization
of factually correct tokens leads to hallucination

centric methods, such as curating training sets or
integrating external knowledge to guide models to-
ward factual correctness (Sun et al., 2023; Shuster
et al., 2021). These methods typically require sub-
stantial computational overhead and may not gen-
eralize well beyond the data distributions observed
during training (Ren et al., 2023; Borgeaud et al.,
2022). Recently, increasing attention has focused
on mitigating hallucinations at the inference stage
(Li et al., 2023b; Chuang et al., 2023; Kai et al.,
2024; Zhang et al., 2023). They usually examine
differences across multiple candidate outputs via
contrastive decoding strategies for hallucination
mitigation during inference. Inference-stage meth-
ods can be more flexible and less resource-intensive
than strategies that rely solely on enhancing train-
ing data or model parameters.

However, the above inference-stage methods
may suffer from the precision of hallucination to-
kens, leading to limited contrastive performance
during inference. Specifically, hallucinations in
LLMs are highly diverse (Huang et al., 2023). Fine-
tuning with the scarcity of hallucination data often
leads to a suboptimal hallucination model, which
struggles to generalize well and fails to provide



subtle and precise hallucination patterns (Wang
et al., 2023). As a result, factually accurate tokens
are prone to be over-penalized during contrastive
decoding, leading to suboptimal performance for
hallucination mitigation. As shown in Figure 1, the
imprecise hallucination logits outputted by previ-
ous works may perform false penalty for the factual-
correct token (i.e., 2024). Therefore, a more effec-
tive fine-tuning strategy for hallucination model
needs to be explored for capturing more precise
and diverse hallucination samples, accordingly to
improve the effectiveness of contrastive decoding.

In this paper, we propose a new inference-stage
method, Hard Hallucination-Induced Contrastive
Decoding (HiCD), to improve hallucination mit-
igation. Our HiCD aims to inject hard-to-detect
hallucinations to enhance the robustness of con-
trastive decoding during inference. We design a
new adversarial-aware finetuning strategy for hallu-
cination models to explore more hard hallucination
samples. These samples usually are similar to fac-
tually correct tokens but deviate in subtle ways.
As shown in Figure 1, they lie near the decision
boundary between factual correctness and halluci-
nation in the model’s prediction space. To achieve
this, we utilize adversarial perturbations to encour-
age factually correct samples beyond the limited
hallucination dataset to more accurately approach
hallucination boundaries (Goodfellow et al., 2014).
This process reduces the prediction probabilities of
correct tokens in a controlled manner, preventing
the model from overfitting to specific hallucination
patterns. Based on hallucination LLMs finetuned
by our strategy, during the contrastive decoding
phase, the model avoids erroneously penalizing
factually correct tokens, resulting in outputs that
are more reliable and factually consistent. Impor-
tantly, HiCD achieves these improvements without
requiring extensive data curation or large-scale re-
training, offering a scalable and practical solution
for mitigating hallucination issues in LLMs.

We conduct experiments on four truthfulness as-
sessments and knowledge-seeking datasets for hal-
lucination alleviation evaluation. The experimen-
tal results demonstrate HiCD’s effectiveness, with
consistent improvements on multiple benchmarks
(e.g., +4.08% MC2 on TruthfulQA and +9.03%
on FACTOR Expert) across diverse tasks. Addi-
tionally, ablation and parameter analyses highlight
the crucial role of adversarial training and optimal
hyperparameters, indicating HiCD’s broad applica-
bility for enhancing factual fidelity and mitigating

hallucinations in large language models.

Our contributions are threefold: 1) we propose a
new inference-stage HiCD method to improve hal-
lucination mitigation. It injects hard-to-detect hal-
lucinations to enhance the robustness of contrastive
decoding during inference. 2) A new adversarial-
aware finetuning strategy for hallucination models
is designed to precisely capture more diverse and
hallucination patterns from available hallucination
data. 3) Experiments on four hallucination datasets
demonstrate the effectiveness and superiority of
HiCD for hallucination mitigation.

2 Related Work

2.1 Hallucination in Large Language Models

Large Language Models (LLMs) are prone to gen-
erating hallucinations—fabricated or inaccurate
statements presented as factual (Achiam et al.,
2023; Ji et al., 2023). These hallucinations can
be broadly categorized into factual and faithful-
ness hallucinations. Factual hallucinations emerge
when the model’s output contradicts established
real-world knowledge (Bang et al., 2023; Hu
et al., 2023), while faithfulness hallucinations oc-
cur when the model’s response deviates from given
instructions or the provided source context (Dale
et al., 2023; Shi et al., 2023). Eliminating both
types of hallucinations is critical for real-world
applications, especially in high-stakes domains de-
manding reliable and truthful information.

Initial efforts to mitigate hallucinations often em-
phasized data- and model-centric strategies. Data-
centric approaches involve refining training cor-
pora—either curating higher-quality data or incor-
porating external knowledge sources—to encour-
age factual correctness (Sun et al., 2023; Shuster
et al., 2021; Lin et al., 2022). Model-centric meth-
ods aim to modify training objectives, sometimes
leveraging techniques like reinforcement learn-
ing from human feedback to align model outputs
with human judgment (Wang and Sennrich, 2020;
Ouyang et al., 2022). While these methods can
reduce certain types of hallucinations, they often
require extensive data preparation, large-scale re-
training, may not generalize well to complex, sub-
tle errors that lie near decision boundaries.

To address these issues more efficiently, re-
searchers have turned to inference-stage interven-
tions. Post-hoc decoding strategies can be applied
at generation time without modifying the under-
lying parameters. By using contrastive signals or
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Figure 2: Overview of our HiCD framework. In the adversarial finetuning phase, we induce hard-to-detect
hallucinations through gradient-based perturbations, resulting in a weaker “hallucination” model. During inference,
contrastive decoding combines outputs from the original and hallucination models, filtering out fabricated content

and enhancing factual fidelity

other dynamic generation criteria, these approaches
aim to identify and filter out hallucinatory content
as it emerges (Chang et al., 2023). However, exist-
ing inference-stage methods often rely on hallucina-
tions that are easy to induce or naturally occurring.
Such limited sets of negative examples fail to repre-
sent the full spectrum of challenging hallucinations
that can occur in practice. As a result, these meth-
ods struggle with difficult, subtle hallucinations in
more complex, real-world scenarios.

2.2 Contrastive Decoding

Contrastive Decoding (CD) (Li et al., 2023b) in-
troduced a novel perspective for improving genera-
tion quality by contrasting outputs from a stronger
model against those from a weaker model. Build-
ing on this idea, Chuang et al. (2023) proposed
contrasting outputs from different Transformer lay-
ers to enhance factual accuracy, while Kai et al.
(2024) incorporated self-attention mechanisms to
identify and mitigate uncertain predictions. To fur-
ther refine factual outputs, Zhang et al. (2023) sug-
gested inducing hallucinations and then contrasting
them to filter out inaccuracies. Similarly, Xu et al.
(2024) decoupled identification and classification
tasks to reduce hallucinations in medical informa-
tion extraction, and Gema et al. (2024) introduced
a method that contrasts outputs from a base model

and a masked model with retrieval heads to mitigate
hallucinations.

However, existing contrastive decoding methods,
such as Induce-then-Contrast Decoding (ICD), are
constrained by the limited availability of hallucina-
tion data, which is insufficient to fully influence the
extensive knowledge acquired by large language
models during pretraining. This limitation hampers
their ability to effectively identify and mitigate sub-
tle or complex hallucinations that closely resemble
truthful content. Consequently, these methods may
inadvertently penalize factually correct tokens, re-
ducing their accuracy and reliability in real-world
applications where distinguishing between factual
information and fabrications is critical. Addressing
these challenges requires more sophisticated strate-
gies that can generate richer and more nuanced
negative examples, thereby enabling a more pre-
cise approximation of the true decision boundaries
between accurate and erroneous outputs.

3 Hard Hallucination-Induced
Contrastive Decoding (HiCD)

Consider a standard text generation setting where
an LLM receives an input sequence r =
(1, x9,...,2r) and generates an output sequence
y = (y1,y2,--.,yr). Without additional



constraints, the LLM may produce hallucina-
tions—tokens or phrases unsupported by factual
evidence. These hallucinations degrade the trust-
worthiness and reliability of the generated text.

As shown in Figure 2, our proposed framework,
Hard Hallucination-Induced Contrastive Decoding
(HiCD), aims to reduce hallucinations by leverag-
ing contrastive decoding between a strong model
and a weaker, adversarially trained model.

3.1 Inducing Hard Hallucinations

As hallucinations in LL.Ms are highly diverse and
subtle. Previous works (Zhang et al., 2023) in-
ducing potential hallucination in a suboptimal way
usually falsely penalized precision factual tokens,
leading limited alleviation performance. To cap-
ture hard hallucination samples for better contrast-
ing, we design a new adversarial-aware finetuning
strategy to capture hard hallucination samples for
better contrastive decoding during generation of
target LLMs. Specifically, we first employ few-
shot prompting techniques to generate misleading
or incorrect responses from a factual dataset. We
then go further by integrating adversarial training
to push the weaker model—referred to as the “hal-
lucination LLM”—towards producing more intri-
cate, boundary-like hallucinations that are harder
to distinguish from truthful outputs.

Formally, let D = {(s;,u;,0;)}/" be the fine-
tuning dataset, where s; is the system prompt, u;
is the user input, and o; is the target output. The
initial fine-tuning objective is:

m
argminZ—logp(oi | si,uis 0+ A0), (1)
A

where 6 denotes the original model parameters. Af-
ter this step, we incorporate adversarial perturba-
tions to shape A so that the weaker model be-
comes more inclined to produce complex halluci-
nations.

By introducing adversarial training during fine-
tuning, the weaker model’s errors become more
refined and deceptive, rather than simple and eas-
ily detectable. We employ the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) to per-
turb the input embeddings x:

x' = x+ e sign (VxL(x,7)), (2)
where e controls the perturbation magnitude, and
L is the loss function. This pushes the model’s

decision boundaries, increasing uncertainty and
promoting the production of subtle hallucinations.

Training alternates between clean and adversari-
ally perturbed examples. The combined objective
is:

(Lxy)+ L, y), (3

1
ﬁtotal = 5
resulting in a hallucination LLM that naturally gen-
erates a richer, set of more challenging negative
examples for the subsequent contrastive decoding

step.

3.2 Contrastive Decoding

Having obtained the stronger model 6 and the ad-
versarially fine-tuned weaker model &', we apply
contrastive decoding (Li et al., 2023b) to their out-
puts. At each timestep ¢, both models compute the
conditional probability of the next token x;. We
define the contrastive score as:

Fi =logp(xy | w<4;0) — MNogp(xy | w243 0'),
“)
where A controls the balance between the two mod-
els. This score amplifies tokens favored by the
stronger model while suppressing those preferred
by the weaker, hallucination-prone Evil LLM.

To further refine token selection, we employ the
adaptive relative top filtering mechanism (Li et al.,
2023b). Specifically, at each timestep ¢, we define
a valid token set Vy,1iq based on the probabilities
predicted by the strong model 6:

logp(as | x<1;0) =

maxlog p(w | z<;6) +logy
&)

where v € (0, 1] is a hyperparameter that deter-

mines the filtering threshold. This ensures that only

tokens whose log probabilities are within log « of

the highest log probability are retained.

Vyalid = {wt eV

After determining Vy,id, we apply a softmax
over the contrastive scores F;(x¢) for z; € Wyalig:

exp(Fi(zy))
2V EXP(Fe(2))

p(wy | x<t) = 5 (6)

By restricting the candidate tokens to this valid
set and then normalizing with respect to the con-
trastive scores, the final output distribution is more
factual and less susceptible to subtle hallucinations
introduced by the factually weaker LLM.

}



Setting Value

Model Llama2-7B-Base
Epochs 5

Device NVIDIA Tesla A100 80GB
Total Batchsize 256

Learning Rate 5x107*

LoRA Target Gprojs Kproj, Uproj

Table 1: Finetuning settings for building the factually
weaker model.

4 Experiments

4.1 Experimental Setup

Datasets Following previous work (Chen et al.,
2024), we evaluate our method on truthfulness-
related datasets (i.e., TruthfulQA, and FACTOR)
and knowledge-seeking datasets (i.e., TriviaQA,
and NQ). TruthfulQA (Lin et al., 2022) is a
benchmark designed to assess the truthfulness
of language models, comprising 817 multiple-
choice questions across 38 categories. FACTOR
(Muhlgay et al., 2023) evaluates the factual accu-
racy of large language models in text completion
tasks, consisting of two subsets: Wiki-FACTOR
with 2,994 examples from Wikipedia and News-
FACTOR with 1,036 examples from news articles.
TriviaQA (Joshi et al., 2017) contains over 650K
question-answer pairs sourced from trivia web-
sites, accompanied by evidence documents from
Wikipedia and web sources. Natural Questions
(NQ) (Kwiatkowski et al., 2019), developed by
Google, includes around 300K human-generated
questions with annotated short and long answers
derived from Wikipedia.

Evaluation Metrics We employ multiple-choice
accuracy metrics to assess model performance on
the truthfulness-related dataset, i.e., Truthful QA.
Specifically, MC1 evaluates whether the model as-
signs the highest probability to the correct answer,
while MC2 measures the total normalized proba-
bility mass the model assigns to correct answers.
MC3 combines accuracy and consistency across
multiple questions to gauge the model’s overall
reliability. For FACTOR, we experiment on its
three subsets—News, Wiki, and Expert—and uti-
lize accuracy as the sole evaluation metric to assess
the text completion performance of large language
models. Following Joshi et al. (2017), we adopt
Exact Match (EM) and F1 score as evaluation
metrics to measure the correctness of the model’s
responses on knowledge-seeking datasets, i.e., Triv-
1aQA and NQ.

Comparison Methods. We evaluate the effec-
tiveness of our proposed method by comparing it
against the following baselines: (1) Greedy Decod-
ing: A default approach where the highest probabil-
ity token is selected at each step without additional
decoding techniques. (2) Induced Task Inference
TD) (Li et al., 2024): This method enhances gen-
eralization by applying task-specific adjustments
during inference, refining predictions based on
task-relevant cues. (3) Contrastive Decoding
(CD) (Li et al., 2023b): Aims to reduce halluci-
nations by contrasting outputs from a strong model
and a weaker model, emphasizing reliable predic-
tions while penalizing non-factual ones. (4) Di-
rect Qutput Layer Adaptation (DoLa) (Chuang
et al., 2023): Focuses on adjusting the model’s out-
put layer to improve factual accuracy, particularly
for knowledge-intensive tasks. (5) Induce-then-
Contrast Decoding (ICD) (Zhang et al., 2023):
Integrates hallucination induction with contrastive
decoding, leveraging a weakened model to penalize
incorrect predictions and reinforce factual outputs.
(6) Activation Decoding (AD) (Shi et al., 2024):
Amplifies the influence of contextual information
over a language model’s prior knowledge by em-
ploying a contrastive output distribution, improving
faithfulness in tasks requiring external knowledge
integration.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
GPU using the Llama?2 series models. The scal-
ing factor A in Equation 4 was set to 1.8 for op-
timal results on the Truthful QA dataset. For the
FACTOR dataset, the best results were achieved
with A\ values of 0.35. We leverage Llama2-7B-
Chat as the original model to conduct the experi-
ments and fine-tune Llama2-7B-Base to create a
factually weaker model, following a similar setup
to (Zhang et al., 2023). Specifically, we use the
HaluEval dataset(Li et al., 2023a) to fine-tune the
weaker model. LoRA (Hu et al., 2022) is used for
parameter-efficient fine-tuning and hallucination
injection. The LLaMA-Factory framework (Zheng
et al., 2024) is also employed for fine-tuning. De-
tails of the fine-tuning process and hyperparameters
are provided in Table 1.

4.2 Main Results

Overall results on four datasets for hallucination
mitigation are shown in Table 2. The proposed
HiCD achieves the best performance on all datasets



Method Truthful QA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1
Greedy 37.62 5460 28.12 65.05 5696 66.10 46.50 46.50 23.49 2145
ITI (Li et al., 2024) 37.01 5466 27.82 5328 43.82 51.69 - - - -
CD (Li et al., 2023b) 28.15 54.87 2975 6457 5847 67.12 4730 3858 26.03 19.38
DoLa (Chuang et al., 2023) 3297 60.84 2950 64.32 57.63 67.30 47.08 4594 24.01 22.15
AD (Shi et al., 2024) 3390 51.62 2578 61.87 53.84 6228 48.55 4824 2434 2235
ICD (Zhang et al., 2023) 46.32 69.08 41.25 70.75 5840 6694 5046 50.33 2559 23.94
HiCD (Ours) 47.00 7316 46.26 71.23 59.17 7415 5091 50.67 26.20 24.40
Improve (%) +9.38 +18.56 +18.14 +6.18 +2.21 +8.05 +4.41 +4.17 +2.71 +2.95

Table 2: Overall results of different inference-based methods on four benchmarks. We reimplement all methods
according to their open-source codes under the same environment except for ITI. The Llama2-13B-Chat vs. 7B-
Chat setting is used in experiments of CD. For ICD and our HiCD, we follow Zhang et al. (2023) and finetune
Llama2-7B-Base as a weaker model for contrasting with Llama2-7B-Chat. The best performances are bolded.

in terms of all evaluation metrics. This demonstrate
the superiority of our model on ensuring the truth-
fulness of responses but also effectively retrieving
and reasoning over factual information in open-
domain settings. Specifically, for truthfulness-
related datasets, compared the the baseline Greedy,
HiCD achieves improvements of +9.4%, +18.6%,
and 18.1% on MC1, MC2, and MC3 scores on
Truthful QA. For knowledge-seeking tasks, HICD
outperforms the baseline by +4.4% EM and 4.2%
F1 scores. Besides, compared to other decoding
strategies, HiCD contrasts with hard hallucination-
induced models, leading to better mitigation perfor-
mance on all datasets.

4.3 Ablation Study

To evaluate the effectiveness of our adversarial
training in inducing precise hallucinations and en-
hancing contrastive decoding, we conduct an ab-
lation study by comparing our HiCD with the
following ablation models: 1) w/ Adv Perturb.
refers to replacing adversarial perturbations with
random perturbations during the fine-tuning of the
hallucination-induced models. 2) w/o Perturb. in-
dicates removing the adversarial perturbations en-
tirely during fine-tuning.

The ablation results on TruthfulQA and FAC-
TOR are presented in Table 3. The full HICD model
achieves the best performance across all metrics
on both datasets, showing the effectiveness of each
component for building hallucination LLMs. In-
corporating adversarial perturbations enhances the
generation of precise and diverse hallucinations. In
this way, HiCD enables more effective filtering of
factual inaccuracies, leading to more reliable and
factually consistent outputs.

TruthfulQA FACTOR

Method MCI MC2 MC3 News Wiki Expert
HiCD 4700 7316 4626 7123 59.07 74.15
wlo Adv Perturb. 3831 6556 37.23 5588 3892  55.50
wlo Perturb. 4632 69.08 4125 7075 5840 66.94

Table 3: Ablation results on TruthfulQA and FACTOR.

Truthful QA
Method %truth %info %truth*info %reject
CD 70.21 42.25 19.23 29.98
ICD 62.85 77.65 41.16 23.50
HiCD 63.71 78.03 42.24 23.13

Table 4: Evaluation results on generative tasks using
"GPT-judge" for Truthful QA.

4.4 Generation Task Evaluation

Following Lin et al. (2022), we also evaluate our
method on the Truthful QA dataset using “GPT-
judge” to assess both factual accuracy and infor-
mativeness. This evaluation yields four metrics:
truth, info, a combined truth&info, and the reject
rate. Table 4 presents the evaluation results on
generative tasks for CD, ICD, and our proposed
HiCD approach. Compared to ICD, HiCD achieves
a +0.38% increase in info, a +1.08% increase in
truth&info, and a -0.37% decrease in reject, indicat-
ing that HiCD produces more informative, factually
consistent responses.

4.5 Efficiency Analysis

We compare the inference efficiency of different
inference-stage methods, i.e., a baseline greedy de-
coding, CD, ICD, and our proposed HiCD. The
baseline employs on a Llama2-7B-Chat model.
The measured times reflect approximate overhead
trends rather than a strict one-to-one comparison,
as the CD experiment uses a Llama2-13B-Chat vs.
7B-Chat configuration, while both ICD and HiCD



Method Decoding Latency (s)
Baseline 138.4 (x1.00)
CD 357.6 (x2.58)
ICD 402.4 (x2.91)
HiCD 384.7 (x2.78)

Table 5: Inference time comparison across different
decoding strategies.

rely on a Llama2-7B-Chat model with a finetuned
Llama2-7B-Base weaker model.

As shown in Table 5, the baseline decoding takes
approximately 138.4s. Under the CD setting, in-
creasing complexity leads to about a 2.58% slow-
down. For ICD and HiCD, which directly compare
a 7B-Chat strong model to a finetuned 7B-Base
weaker model, the overhead is roughly 2.91x and
2.78x respectively. Although these configurations
differ, the general pattern holds: more sophisticated
contrastive strategies incur additional computation.
Notably, HiCD offers improved factual fidelity over
ICD while slightly reducing the slowdown from the
baseline, indicating a more balanced trade-off be-
tween accuracy and efficiency.

4.6 Parameter Analysis

We experiment to analyze the impact of two critical
hyperparameters in HiCD: the perturbation magni-
tude e and the scaling factor A. Results of parameter
analysis on TruthfulQA are shown in Figure 3.

Effect of Scaling Factor A The scaling factor A
adjusts the influence of the weaker model (i.e., hal-
lucination model) in the contrastive decoding pro-
cess. The optimal value is set to 1.5. By increasing
A, we amplify the penalty imposed by the weaker
model on the strong model’s outputs, thereby en-
hancing the suppression of hallucinations. The fact
indicates that increasing A effectively suppresses
hallucinations by strengthening the contrastive sig-
nal between the strong and weaker models. beyond
a certain threshold, further increasing A may lead
to over-penalization, resulting in a slight decline
in performance due to excessive suppression of
potentially correct tokens.

Effect of Perturbation Magnitude ¢ The pertur-
bation magnitude e controls the strength of adver-
sarial noise during the fine-tuning of the weaker
model. By adjusting €, we influence the extent to
which the model’s decision boundaries are shifted,
thereby affecting the precision and difficulty of
induced hallucinations. Our results indicate that

MC1 Score
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Figure 3: MC1, MC2, and MC3 scores on the Truth-
fulQA dataset for different perturbation magnitudes e
and scaling factors \.

e = 0.005 yields the highest MC scores, effectively
balancing the generation of challenging hallucina-
tions and maintaining the efficacy of contrastive
signals. Smaller perturbations (¢ = 0.0005) do
not sufficiently alter the model’s behavior to pro-
duce hard hallucinations, while larger perturbations
(e = 0.05) may overly degrade the weaker model’s
performance, reducing the effectiveness of con-
trastive decoding in distinguishing factual from
hallucinated content.

4.7 Case Study

We provide a case study from the Natural Ques-
tions dataset to illustrate the effectiveness of our
method. Consider the query: “When was the rock
and roll hall of fame built in Cleveland?” The cor-
rect answer is /995, while a hallucinated answer
is 1986. In this scenario, both the original model
and the ICD approach produce the hallucinated
answer, whereas our method yields the factually
correct output. As shown in Figure 4, we analyze
the token-level probabilities for the key differing
token positions (the second “9” in 1995 and “8” in
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Figure 4: Token-level probability analysis for the query
“When was the rock and roll hall of fame built in Cleve-
land?” at the critical token position where hallucination
occurs

1986): the original model assigns overly high con-
fidence to an incorrect token, while ICD’s weaker
model overcompensates for the correct token, ulti-
mately leading to a hallucination. In contrast, our
weaker model appropriately balances probabilities
for the correct and hallucinated tokens, ensuring
that the final output is both accurate and reliable.

5 Conclusion

We presented Hard Hallucination-Induced Con-
trastive Decoding (HiCD), a novel inference-stage
method that leverages adversarial perturbations
to induce more challenging hallucinations for im-
proved contrastive filtering. By doing so, HiCD
significantly enhances factual fidelity and robust-
ness across multiple benchmarks, including Truth-
fulQA, FACTOR, TriviaQA, and NQ. More precise
and diverse signals are produced by HiCD consis-
tently outperform state-of-the-art baselines, offer-
ing a scalable and practical approach to mitigating
hallucinations in large language models.

6 Limitations

While our proposed HiCD method effectively en-
hances factual fidelity, it introduces additional com-
putational overhead due to adversarial perturba-
tions and refined contrastive decoding. This may
limit its practicality in extremely latency-sensitive
applications. Furthermore, our approach still re-
lies on the availability of a reasonably strong base
model and does not guarantee performance im-
provements when faced with highly adversarial or
domain-specific hallucinations.

Ethical Considerations

Our method involves training a factually weaker
language model that is more prone to generating

hallucinations. While this is effective for improv-
ing hallucination mitigation in LLMs, it raises po-
tential ethical concerns. The weaker model could
be misused to intentionally generate and spread
misinformation or disinformation. To mitigate this
risk, it is important to handle the weaker model re-
sponsibly, restricting access and ensuring it is used
only for research purposes within controlled envi-
ronments. Proper safeguards should be in place to
prevent misuse and protect against the dissemina-
tion of false information.
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