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Abstract

Large Language Models (LLMs) have achieved001
significant advancements in various natu-002
ral language processing tasks. However,003
they are susceptible to generating hallucina-004
tions—fabricated or inaccurate statements pre-005
sented as factual information—which can un-006
dermine their reliability in high-stakes appli-007
cations. To address this issue, we propose a008
new inference-stage HiCD method to improve009
hallucination mitigation. It aims to inject hard-010
to-detect hallucinations to enhance the robust-011
ness of contrastive decoding during inference.012
An adversarial-aware strategy is introduced for013
finetuning hallucination models to effectively014
learn more precise and diverse hallucination015
patterns from available hallucination data. This016
enhances the contrastive decoding process, en-017
abling more effective identification and filter-018
ing of erroneous content. We evaluate HiCD on019
four various hallucination benchmarks. Experi-020
mental results show significant improvements021
on all metrics consistently, proving the effec-022
tiveness and superiority of HiCD for hallucina-023
tion mitigation.024

1 Introduction025

Large Language Models (LLMs) have demon-026

strated substantial progress in a range of natu-027

ral language processing (NLP) tasks, including028

question answering, knowledge-grounded dialogue,029

and reasoning-intensive problem solving (Touvron030

et al., 2023; Achiam et al., 2023). However, despite031

these achievements, LLMs frequently produce hal-032

lucinations—outputs that contain inaccuracies or033

fabrications presented as factual information (Bang034

et al., 2023; Ji et al., 2023). Such hallucinations035

pose significant risks, particularly in high-stakes036

domains such as legal consultation, medical advice,037

and specialized technical support, where factual038

reliability is essential.039

Various strategies have been pursued to miti-040

gate hallucinations. Some works emphasized data-041

(a) Previous methods usually 
perform false penalty for 
factually correct tokens, leading 
to hallucination.

2005
2004

2003

2005
2004

2003

(b) We attempt to offer accurate 
penalty for all tokens, successfully 
alleviating hallucination.

2005
2004

2003

Hallucination space

Factual space 

×

In which year was the 'Boxing DayTsunami' in 
the Indian Ocean?

2004. Contrast

Contrast

×

Target logits 

Hallucination logits 

Hallucination logits

2005
2004

2003
×

Final logits (e.g., ICD)

2005
2004

2003

Final logits (Ours)

Hallucination samples 
generated from ICD

Hallucination samples 
generated from ours

Original outputs of LLMs

Hard hallucination samples 
generated from ours

LLMs

Query

Figure 1: An illustration showing how over-penalization
of factually correct tokens leads to hallucination

centric methods, such as curating training sets or 042

integrating external knowledge to guide models to- 043

ward factual correctness (Sun et al., 2023; Shuster 044

et al., 2021). These methods typically require sub- 045

stantial computational overhead and may not gen- 046

eralize well beyond the data distributions observed 047

during training (Ren et al., 2023; Borgeaud et al., 048

2022). Recently, increasing attention has focused 049

on mitigating hallucinations at the inference stage 050

(Li et al., 2023b; Chuang et al., 2023; Kai et al., 051

2024; Zhang et al., 2023). They usually examine 052

differences across multiple candidate outputs via 053

contrastive decoding strategies for hallucination 054

mitigation during inference. Inference-stage meth- 055

ods can be more flexible and less resource-intensive 056

than strategies that rely solely on enhancing train- 057

ing data or model parameters. 058

However, the above inference-stage methods 059

may suffer from the precision of hallucination to- 060

kens, leading to limited contrastive performance 061

during inference. Specifically, hallucinations in 062

LLMs are highly diverse (Huang et al., 2023). Fine- 063

tuning with the scarcity of hallucination data often 064

leads to a suboptimal hallucination model, which 065

struggles to generalize well and fails to provide 066
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subtle and precise hallucination patterns (Wang067

et al., 2023). As a result, factually accurate tokens068

are prone to be over-penalized during contrastive069

decoding, leading to suboptimal performance for070

hallucination mitigation. As shown in Figure 1, the071

imprecise hallucination logits outputted by previ-072

ous works may perform false penalty for the factual-073

correct token (i.e., 2024). Therefore, a more effec-074

tive fine-tuning strategy for hallucination model075

needs to be explored for capturing more precise076

and diverse hallucination samples, accordingly to077

improve the effectiveness of contrastive decoding.078

In this paper, we propose a new inference-stage079

method, Hard Hallucination-Induced Contrastive080

Decoding (HiCD), to improve hallucination mit-081

igation. Our HiCD aims to inject hard-to-detect082

hallucinations to enhance the robustness of con-083

trastive decoding during inference. We design a084

new adversarial-aware finetuning strategy for hallu-085

cination models to explore more hard hallucination086

samples. These samples usually are similar to fac-087

tually correct tokens but deviate in subtle ways.088

As shown in Figure 1, they lie near the decision089

boundary between factual correctness and halluci-090

nation in the model’s prediction space. To achieve091

this, we utilize adversarial perturbations to encour-092

age factually correct samples beyond the limited093

hallucination dataset to more accurately approach094

hallucination boundaries (Goodfellow et al., 2014).095

This process reduces the prediction probabilities of096

correct tokens in a controlled manner, preventing097

the model from overfitting to specific hallucination098

patterns. Based on hallucination LLMs finetuned099

by our strategy, during the contrastive decoding100

phase, the model avoids erroneously penalizing101

factually correct tokens, resulting in outputs that102

are more reliable and factually consistent. Impor-103

tantly, HiCD achieves these improvements without104

requiring extensive data curation or large-scale re-105

training, offering a scalable and practical solution106

for mitigating hallucination issues in LLMs.107

We conduct experiments on four truthfulness as-108

sessments and knowledge-seeking datasets for hal-109

lucination alleviation evaluation. The experimen-110

tal results demonstrate HiCD’s effectiveness, with111

consistent improvements on multiple benchmarks112

(e.g., +4.08% MC2 on TruthfulQA and +9.03%113

on FACTOR Expert) across diverse tasks. Addi-114

tionally, ablation and parameter analyses highlight115

the crucial role of adversarial training and optimal116

hyperparameters, indicating HiCD’s broad applica-117

bility for enhancing factual fidelity and mitigating118

hallucinations in large language models. 119

Our contributions are threefold: 1) we propose a 120

new inference-stage HiCD method to improve hal- 121

lucination mitigation. It injects hard-to-detect hal- 122

lucinations to enhance the robustness of contrastive 123

decoding during inference. 2) A new adversarial- 124

aware finetuning strategy for hallucination models 125

is designed to precisely capture more diverse and 126

hallucination patterns from available hallucination 127

data. 3) Experiments on four hallucination datasets 128

demonstrate the effectiveness and superiority of 129

HiCD for hallucination mitigation. 130

2 Related Work 131

2.1 Hallucination in Large Language Models 132

Large Language Models (LLMs) are prone to gen- 133

erating hallucinations—fabricated or inaccurate 134

statements presented as factual (Achiam et al., 135

2023; Ji et al., 2023). These hallucinations can 136

be broadly categorized into factual and faithful- 137

ness hallucinations. Factual hallucinations emerge 138

when the model’s output contradicts established 139

real-world knowledge (Bang et al., 2023; Hu 140

et al., 2023), while faithfulness hallucinations oc- 141

cur when the model’s response deviates from given 142

instructions or the provided source context (Dale 143

et al., 2023; Shi et al., 2023). Eliminating both 144

types of hallucinations is critical for real-world 145

applications, especially in high-stakes domains de- 146

manding reliable and truthful information. 147

Initial efforts to mitigate hallucinations often em- 148

phasized data- and model-centric strategies. Data- 149

centric approaches involve refining training cor- 150

pora—either curating higher-quality data or incor- 151

porating external knowledge sources—to encour- 152

age factual correctness (Sun et al., 2023; Shuster 153

et al., 2021; Lin et al., 2022). Model-centric meth- 154

ods aim to modify training objectives, sometimes 155

leveraging techniques like reinforcement learn- 156

ing from human feedback to align model outputs 157

with human judgment (Wang and Sennrich, 2020; 158

Ouyang et al., 2022). While these methods can 159

reduce certain types of hallucinations, they often 160

require extensive data preparation, large-scale re- 161

training, may not generalize well to complex, sub- 162

tle errors that lie near decision boundaries. 163

To address these issues more efficiently, re- 164

searchers have turned to inference-stage interven- 165

tions. Post-hoc decoding strategies can be applied 166

at generation time without modifying the under- 167

lying parameters. By using contrastive signals or 168
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Figure 2: Overview of our HiCD framework. In the adversarial finetuning phase, we induce hard-to-detect
hallucinations through gradient-based perturbations, resulting in a weaker “hallucination” model. During inference,
contrastive decoding combines outputs from the original and hallucination models, filtering out fabricated content
and enhancing factual fidelity

other dynamic generation criteria, these approaches169

aim to identify and filter out hallucinatory content170

as it emerges (Chang et al., 2023). However, exist-171

ing inference-stage methods often rely on hallucina-172

tions that are easy to induce or naturally occurring.173

Such limited sets of negative examples fail to repre-174

sent the full spectrum of challenging hallucinations175

that can occur in practice. As a result, these meth-176

ods struggle with difficult, subtle hallucinations in177

more complex, real-world scenarios.178

2.2 Contrastive Decoding179

Contrastive Decoding (CD) (Li et al., 2023b) in-180

troduced a novel perspective for improving genera-181

tion quality by contrasting outputs from a stronger182

model against those from a weaker model. Build-183

ing on this idea, Chuang et al. (2023) proposed184

contrasting outputs from different Transformer lay-185

ers to enhance factual accuracy, while Kai et al.186

(2024) incorporated self-attention mechanisms to187

identify and mitigate uncertain predictions. To fur-188

ther refine factual outputs, Zhang et al. (2023) sug-189

gested inducing hallucinations and then contrasting190

them to filter out inaccuracies. Similarly, Xu et al.191

(2024) decoupled identification and classification192

tasks to reduce hallucinations in medical informa-193

tion extraction, and Gema et al. (2024) introduced194

a method that contrasts outputs from a base model195

and a masked model with retrieval heads to mitigate 196

hallucinations. 197

However, existing contrastive decoding methods, 198

such as Induce-then-Contrast Decoding (ICD), are 199

constrained by the limited availability of hallucina- 200

tion data, which is insufficient to fully influence the 201

extensive knowledge acquired by large language 202

models during pretraining. This limitation hampers 203

their ability to effectively identify and mitigate sub- 204

tle or complex hallucinations that closely resemble 205

truthful content. Consequently, these methods may 206

inadvertently penalize factually correct tokens, re- 207

ducing their accuracy and reliability in real-world 208

applications where distinguishing between factual 209

information and fabrications is critical. Addressing 210

these challenges requires more sophisticated strate- 211

gies that can generate richer and more nuanced 212

negative examples, thereby enabling a more pre- 213

cise approximation of the true decision boundaries 214

between accurate and erroneous outputs. 215

3 Hard Hallucination-Induced 216

Contrastive Decoding (HiCD) 217

Consider a standard text generation setting where 218

an LLM receives an input sequence x = 219

(x1, x2, . . . , xL) and generates an output sequence 220

y = (y1, y2, . . . , yT ). Without additional 221

3



constraints, the LLM may produce hallucina-222

tions—tokens or phrases unsupported by factual223

evidence. These hallucinations degrade the trust-224

worthiness and reliability of the generated text.225

As shown in Figure 2, our proposed framework,226

Hard Hallucination-Induced Contrastive Decoding227

(HiCD), aims to reduce hallucinations by leverag-228

ing contrastive decoding between a strong model229

and a weaker, adversarially trained model.230

3.1 Inducing Hard Hallucinations231

As hallucinations in LLMs are highly diverse and232

subtle. Previous works (Zhang et al., 2023) in-233

ducing potential hallucination in a suboptimal way234

usually falsely penalized precision factual tokens,235

leading limited alleviation performance. To cap-236

ture hard hallucination samples for better contrast-237

ing, we design a new adversarial-aware finetuning238

strategy to capture hard hallucination samples for239

better contrastive decoding during generation of240

target LLMs. Specifically, we first employ few-241

shot prompting techniques to generate misleading242

or incorrect responses from a factual dataset. We243

then go further by integrating adversarial training244

to push the weaker model—referred to as the “hal-245

lucination LLM”—towards producing more intri-246

cate, boundary-like hallucinations that are harder247

to distinguish from truthful outputs.248

Formally, let D = {(si, ui, oi)}mi=1 be the fine-249

tuning dataset, where si is the system prompt, ui250

is the user input, and oi is the target output. The251

initial fine-tuning objective is:252

argmin
∆θ

m∑
i=1

− log p(oi | si, ui; θ +∆θ), (1)253

where θ denotes the original model parameters. Af-254

ter this step, we incorporate adversarial perturba-255

tions to shape ∆θ so that the weaker model be-256

comes more inclined to produce complex halluci-257

nations.258

By introducing adversarial training during fine-259

tuning, the weaker model’s errors become more260

refined and deceptive, rather than simple and eas-261

ily detectable. We employ the Fast Gradient Sign262

Method (FGSM) (Goodfellow et al., 2015) to per-263

turb the input embeddings x:264

x′ = x+ ϵ · sign (∇xL(x, y)) , (2)265

where ϵ controls the perturbation magnitude, and266

L is the loss function. This pushes the model’s267

decision boundaries, increasing uncertainty and 268

promoting the production of subtle hallucinations. 269

Training alternates between clean and adversari- 270

ally perturbed examples. The combined objective 271

is: 272

Ltotal =
1

2

(
L(x, y) + L(x′, y)

)
, (3) 273

resulting in a hallucination LLM that naturally gen- 274

erates a richer, set of more challenging negative 275

examples for the subsequent contrastive decoding 276

step. 277

3.2 Contrastive Decoding 278

Having obtained the stronger model θ and the ad- 279

versarially fine-tuned weaker model θ′, we apply 280

contrastive decoding (Li et al., 2023b) to their out- 281

puts. At each timestep t, both models compute the 282

conditional probability of the next token xt. We 283

define the contrastive score as: 284

Ft = log p(xt | x<t; θ)− λ log p(xt | x<t; θ
′),
(4) 285

where λ controls the balance between the two mod- 286

els. This score amplifies tokens favored by the 287

stronger model while suppressing those preferred 288

by the weaker, hallucination-prone Evil LLM. 289

To further refine token selection, we employ the 290

adaptive relative top filtering mechanism (Li et al., 291

2023b). Specifically, at each timestep t, we define 292

a valid token set Vvalid based on the probabilities 293

predicted by the strong model θ: 294

Vvalid =

{
xt ∈ V

∣∣∣∣ log p(xt | x<t; θ) ≥
max
w

log p(w | x<t; θ) + log γ

}
(5) 295

where γ ∈ (0, 1] is a hyperparameter that deter- 296

mines the filtering threshold. This ensures that only 297

tokens whose log probabilities are within log γ of 298

the highest log probability are retained. 299

After determining Vvalid, we apply a softmax 300

over the contrastive scores Ft(xt) for xt ∈ Vvalid: 301

p(xt | x<t) =
exp(Ft(xt))∑

x∈Vvalid
exp(Ft(x))

. (6) 302

By restricting the candidate tokens to this valid 303

set and then normalizing with respect to the con- 304

trastive scores, the final output distribution is more 305

factual and less susceptible to subtle hallucinations 306

introduced by the factually weaker LLM. 307
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Setting Value
Model Llama2-7B-Base
Epochs 5
Device NVIDIA Tesla A100 80GB
Total Batchsize 256
Learning Rate 5× 10−4

LoRA Target qproj, kproj, vproj

Table 1: Finetuning settings for building the factually
weaker model.

4 Experiments308

4.1 Experimental Setup309

Datasets Following previous work (Chen et al.,310

2024), we evaluate our method on truthfulness-311

related datasets (i.e., TruthfulQA, and FACTOR)312

and knowledge-seeking datasets (i.e., TriviaQA,313

and NQ). TruthfulQA (Lin et al., 2022) is a314

benchmark designed to assess the truthfulness315

of language models, comprising 817 multiple-316

choice questions across 38 categories. FACTOR317

(Muhlgay et al., 2023) evaluates the factual accu-318

racy of large language models in text completion319

tasks, consisting of two subsets: Wiki-FACTOR320

with 2,994 examples from Wikipedia and News-321

FACTOR with 1,036 examples from news articles.322

TriviaQA (Joshi et al., 2017) contains over 650K323

question-answer pairs sourced from trivia web-324

sites, accompanied by evidence documents from325

Wikipedia and web sources. Natural Questions326

(NQ) (Kwiatkowski et al., 2019), developed by327

Google, includes around 300K human-generated328

questions with annotated short and long answers329

derived from Wikipedia.330

Evaluation Metrics We employ multiple-choice331

accuracy metrics to assess model performance on332

the truthfulness-related dataset, i.e., TruthfulQA.333

Specifically, MC1 evaluates whether the model as-334

signs the highest probability to the correct answer,335

while MC2 measures the total normalized proba-336

bility mass the model assigns to correct answers.337

MC3 combines accuracy and consistency across338

multiple questions to gauge the model’s overall339

reliability. For FACTOR, we experiment on its340

three subsets—News, Wiki, and Expert—and uti-341

lize accuracy as the sole evaluation metric to assess342

the text completion performance of large language343

models. Following Joshi et al. (2017), we adopt344

Exact Match (EM) and F1 score as evaluation345

metrics to measure the correctness of the model’s346

responses on knowledge-seeking datasets, i.e., Triv-347

iaQA and NQ.348

Comparison Methods. We evaluate the effec- 349

tiveness of our proposed method by comparing it 350

against the following baselines: (1) Greedy Decod- 351

ing: A default approach where the highest probabil- 352

ity token is selected at each step without additional 353

decoding techniques. (2) Induced Task Inference 354

(ITI) (Li et al., 2024): This method enhances gen- 355

eralization by applying task-specific adjustments 356

during inference, refining predictions based on 357

task-relevant cues. (3) Contrastive Decoding 358

(CD) (Li et al., 2023b): Aims to reduce halluci- 359

nations by contrasting outputs from a strong model 360

and a weaker model, emphasizing reliable predic- 361

tions while penalizing non-factual ones. (4) Di- 362

rect Output Layer Adaptation (DoLa) (Chuang 363

et al., 2023): Focuses on adjusting the model’s out- 364

put layer to improve factual accuracy, particularly 365

for knowledge-intensive tasks. (5) Induce-then- 366

Contrast Decoding (ICD) (Zhang et al., 2023): 367

Integrates hallucination induction with contrastive 368

decoding, leveraging a weakened model to penalize 369

incorrect predictions and reinforce factual outputs. 370

(6) Activation Decoding (AD) (Shi et al., 2024): 371

Amplifies the influence of contextual information 372

over a language model’s prior knowledge by em- 373

ploying a contrastive output distribution, improving 374

faithfulness in tasks requiring external knowledge 375

integration. 376

Implementation Details All experiments are 377

conducted on a single NVIDIA Tesla A100 80GB 378

GPU using the Llama2 series models. The scal- 379

ing factor λ in Equation 4 was set to 1.8 for op- 380

timal results on the TruthfulQA dataset. For the 381

FACTOR dataset, the best results were achieved 382

with λ values of 0.35. We leverage Llama2-7B- 383

Chat as the original model to conduct the experi- 384

ments and fine-tune Llama2-7B-Base to create a 385

factually weaker model, following a similar setup 386

to (Zhang et al., 2023). Specifically, we use the 387

HaluEval dataset(Li et al., 2023a) to fine-tune the 388

weaker model. LoRA (Hu et al., 2022) is used for 389

parameter-efficient fine-tuning and hallucination 390

injection. The LLaMA-Factory framework (Zheng 391

et al., 2024) is also employed for fine-tuning. De- 392

tails of the fine-tuning process and hyperparameters 393

are provided in Table 1. 394

4.2 Main Results 395

Overall results on four datasets for hallucination 396

mitigation are shown in Table 2. The proposed 397

HiCD achieves the best performance on all datasets 398
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Method TruthfulQA FACTOR TriviaQA NQ
MC1 MC2 MC3 News Wiki Expert EM F1 EM F1

Greedy 37.62 54.60 28.12 65.05 56.96 66.10 46.50 46.50 23.49 21.45
ITI (Li et al., 2024) 37.01 54.66 27.82 53.28 43.82 51.69 – – – –
CD (Li et al., 2023b) 28.15 54.87 29.75 64.57 58.47 67.12 47.30 38.58 26.03 19.38
DoLa (Chuang et al., 2023) 32.97 60.84 29.50 64.32 57.63 67.30 47.08 45.94 24.01 22.15
AD (Shi et al., 2024) 33.90 51.62 25.78 61.87 53.84 62.28 48.55 48.24 24.34 22.35
ICD (Zhang et al., 2023) 46.32 69.08 41.25 70.75 58.40 66.94 50.46 50.33 25.59 23.94
HiCD (Ours) 47.00 73.16 46.26 71.23 59.17 74.15 50.91 50.67 26.20 24.40
Improve (%) +9.38 +18.56 +18.14 +6.18 +2.21 +8.05 +4.41 +4.17 +2.71 +2.95

Table 2: Overall results of different inference-based methods on four benchmarks. We reimplement all methods
according to their open-source codes under the same environment except for ITI. The Llama2-13B-Chat vs. 7B-
Chat setting is used in experiments of CD. For ICD and our HiCD, we follow Zhang et al. (2023) and finetune
Llama2-7B-Base as a weaker model for contrasting with Llama2-7B-Chat. The best performances are bolded.

in terms of all evaluation metrics. This demonstrate399

the superiority of our model on ensuring the truth-400

fulness of responses but also effectively retrieving401

and reasoning over factual information in open-402

domain settings. Specifically, for truthfulness-403

related datasets, compared the the baseline Greedy,404

HiCD achieves improvements of +9.4%, +18.6%,405

and 18.1% on MC1, MC2, and MC3 scores on406

TruthfulQA. For knowledge-seeking tasks, HiCD407

outperforms the baseline by +4.4% EM and 4.2%408

F1 scores. Besides, compared to other decoding409

strategies, HiCD contrasts with hard hallucination-410

induced models, leading to better mitigation perfor-411

mance on all datasets.412

4.3 Ablation Study413

To evaluate the effectiveness of our adversarial414

training in inducing precise hallucinations and en-415

hancing contrastive decoding, we conduct an ab-416

lation study by comparing our HiCD with the417

following ablation models: 1) w/ Adv Perturb.418

refers to replacing adversarial perturbations with419

random perturbations during the fine-tuning of the420

hallucination-induced models. 2) w/o Perturb. in-421

dicates removing the adversarial perturbations en-422

tirely during fine-tuning.423

The ablation results on TruthfulQA and FAC-424

TOR are presented in Table 3. The full HiCD model425

achieves the best performance across all metrics426

on both datasets, showing the effectiveness of each427

component for building hallucination LLMs. In-428

corporating adversarial perturbations enhances the429

generation of precise and diverse hallucinations. In430

this way, HiCD enables more effective filtering of431

factual inaccuracies, leading to more reliable and432

factually consistent outputs.433

Method TruthfulQA FACTOR
MC1 MC2 MC3 News Wiki Expert

HiCD 47.00 73.16 46.26 71.23 59.17 74.15
w/o Adv Perturb. 38.31 65.56 37.23 55.88 38.92 55.50
w/o Perturb. 46.32 69.08 41.25 70.75 58.40 66.94

Table 3: Ablation results on TruthfulQA and FACTOR.

Method TruthfulQA
%truth %info %truth*info %reject

CD 70.21 42.25 19.23 29.98
ICD 62.85 77.65 41.16 23.50
HiCD 63.71 78.03 42.24 23.13

Table 4: Evaluation results on generative tasks using
"GPT-judge" for TruthfulQA.

4.4 Generation Task Evaluation 434

Following Lin et al. (2022), we also evaluate our 435

method on the TruthfulQA dataset using “GPT- 436

judge” to assess both factual accuracy and infor- 437

mativeness. This evaluation yields four metrics: 438

truth, info, a combined truth&info, and the reject 439

rate. Table 4 presents the evaluation results on 440

generative tasks for CD, ICD, and our proposed 441

HiCD approach. Compared to ICD, HiCD achieves 442

a +0.38% increase in info, a +1.08% increase in 443

truth&info, and a -0.37% decrease in reject, indicat- 444

ing that HiCD produces more informative, factually 445

consistent responses. 446

4.5 Efficiency Analysis 447

We compare the inference efficiency of different 448

inference-stage methods, i.e., a baseline greedy de- 449

coding, CD, ICD, and our proposed HiCD. The 450

baseline employs on a Llama2-7B-Chat model. 451

The measured times reflect approximate overhead 452

trends rather than a strict one-to-one comparison, 453

as the CD experiment uses a Llama2-13B-Chat vs. 454

7B-Chat configuration, while both ICD and HiCD 455
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Method Decoding Latency (s)
Baseline 138.4 (×1.00)
CD 357.6 (×2.58)
ICD 402.4 (×2.91)
HiCD 384.7 (×2.78)

Table 5: Inference time comparison across different
decoding strategies.

rely on a Llama2-7B-Chat model with a finetuned456

Llama2-7B-Base weaker model.457

As shown in Table 5, the baseline decoding takes458

approximately 138.4s. Under the CD setting, in-459

creasing complexity leads to about a 2.58× slow-460

down. For ICD and HiCD, which directly compare461

a 7B-Chat strong model to a finetuned 7B-Base462

weaker model, the overhead is roughly 2.91× and463

2.78× respectively. Although these configurations464

differ, the general pattern holds: more sophisticated465

contrastive strategies incur additional computation.466

Notably, HiCD offers improved factual fidelity over467

ICD while slightly reducing the slowdown from the468

baseline, indicating a more balanced trade-off be-469

tween accuracy and efficiency.470

4.6 Parameter Analysis471

We experiment to analyze the impact of two critical472

hyperparameters in HiCD: the perturbation magni-473

tude ϵ and the scaling factor λ. Results of parameter474

analysis on TruthfulQA are shown in Figure 3.475

Effect of Scaling Factor λ The scaling factor λ476

adjusts the influence of the weaker model (i.e., hal-477

lucination model) in the contrastive decoding pro-478

cess. The optimal value is set to 1.5. By increasing479

λ, we amplify the penalty imposed by the weaker480

model on the strong model’s outputs, thereby en-481

hancing the suppression of hallucinations. The fact482

indicates that increasing λ effectively suppresses483

hallucinations by strengthening the contrastive sig-484

nal between the strong and weaker models. beyond485

a certain threshold, further increasing λ may lead486

to over-penalization, resulting in a slight decline487

in performance due to excessive suppression of488

potentially correct tokens.489

Effect of Perturbation Magnitude ϵ The pertur-490

bation magnitude ϵ controls the strength of adver-491

sarial noise during the fine-tuning of the weaker492

model. By adjusting ϵ, we influence the extent to493

which the model’s decision boundaries are shifted,494

thereby affecting the precision and difficulty of495

induced hallucinations. Our results indicate that496

Figure 3: MC1, MC2, and MC3 scores on the Truth-
fulQA dataset for different perturbation magnitudes ϵ
and scaling factors λ.

ϵ = 0.005 yields the highest MC scores, effectively 497

balancing the generation of challenging hallucina- 498

tions and maintaining the efficacy of contrastive 499

signals. Smaller perturbations (ϵ = 0.0005) do 500

not sufficiently alter the model’s behavior to pro- 501

duce hard hallucinations, while larger perturbations 502

(ϵ = 0.05) may overly degrade the weaker model’s 503

performance, reducing the effectiveness of con- 504

trastive decoding in distinguishing factual from 505

hallucinated content. 506

4.7 Case Study 507

We provide a case study from the Natural Ques- 508

tions dataset to illustrate the effectiveness of our 509

method. Consider the query: “When was the rock 510

and roll hall of fame built in Cleveland?” The cor- 511

rect answer is 1995, while a hallucinated answer 512

is 1986. In this scenario, both the original model 513

and the ICD approach produce the hallucinated 514

answer, whereas our method yields the factually 515

correct output. As shown in Figure 4, we analyze 516

the token-level probabilities for the key differing 517

token positions (the second “9” in 1995 and “8” in 518
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Figure 4: Token-level probability analysis for the query
“When was the rock and roll hall of fame built in Cleve-
land?” at the critical token position where hallucination
occurs

1986): the original model assigns overly high con-519

fidence to an incorrect token, while ICD’s weaker520

model overcompensates for the correct token, ulti-521

mately leading to a hallucination. In contrast, our522

weaker model appropriately balances probabilities523

for the correct and hallucinated tokens, ensuring524

that the final output is both accurate and reliable.525

5 Conclusion526

We presented Hard Hallucination-Induced Con-527

trastive Decoding (HiCD), a novel inference-stage528

method that leverages adversarial perturbations529

to induce more challenging hallucinations for im-530

proved contrastive filtering. By doing so, HiCD531

significantly enhances factual fidelity and robust-532

ness across multiple benchmarks, including Truth-533

fulQA, FACTOR, TriviaQA, and NQ. More precise534

and diverse signals are produced by HiCD consis-535

tently outperform state-of-the-art baselines, offer-536

ing a scalable and practical approach to mitigating537

hallucinations in large language models.538

6 Limitations539

While our proposed HiCD method effectively en-540

hances factual fidelity, it introduces additional com-541

putational overhead due to adversarial perturba-542

tions and refined contrastive decoding. This may543

limit its practicality in extremely latency-sensitive544

applications. Furthermore, our approach still re-545

lies on the availability of a reasonably strong base546

model and does not guarantee performance im-547

provements when faced with highly adversarial or548

domain-specific hallucinations.549

Ethical Considerations550

Our method involves training a factually weaker551

language model that is more prone to generating552

hallucinations. While this is effective for improv- 553

ing hallucination mitigation in LLMs, it raises po- 554

tential ethical concerns. The weaker model could 555

be misused to intentionally generate and spread 556

misinformation or disinformation. To mitigate this 557

risk, it is important to handle the weaker model re- 558

sponsibly, restricting access and ensuring it is used 559

only for research purposes within controlled envi- 560

ronments. Proper safeguards should be in place to 561

prevent misuse and protect against the dissemina- 562

tion of false information. 563
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