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Abstract

Several studies have reported the inability of001
Transformer models to generalize composi-002
tionally, a key type of generalization in many003
NLP tasks such as semantic parsing. In this004
paper we explore the design space of Trans-005
former models showing that the inductive bi-006
ases given to the model by several design deci-007
sions significantly impact compositional gen-008
eralization. We identified Transformer config-009
urations that generalize compositionally signif-010
icantly better than previously reported in the011
literature in many compositional tasks. We012
achieve state-of-the-art results in a semantic013
parsing compositional generalization bench-014
mark (COGS), and a string edit operation com-015
position benchmark (PCFG).016

1 Introduction017

Although modern neural network architectures018

reach state-of-the-art performance in many chal-019

lenging natural language tasks, they seem to exhibit020

a low amount of “compositional generalization”,021

i.e., the ability to learn a set of basic primitives and022

combine them in more complex ways than those023

seen during training (Hupkes et al., 2020). For ex-024

ample, suppose a system has learned the meaning025

of “jump” and that “jump twice” means that the026

action “jump” has to be repeated two times. Upon027

learning the meaning of the action “jax”, it should028

be able to infer what “jax twice” means. Compo-029

sitional generalization is a key aspect of natural030

language and many other tasks we might want ma-031

chine learning models to learn.032

While both humans and classical AI techniques033

(such as grammars or search-based systems) can034

handle compositional tasks with relative ease, it035

seems that modern deep learning techniques do not036

possess this ability. A key question is thus: Can037

we build deep learning architectures that can also038

solve compositional tasks? In this paper we focus039

on Transformers (Vaswani et al., 2017), which have040

been shown in the literature to exhibit poor com- 041

positional generalization (see Section 2). Through 042

an empirical study, we show that this can be im- 043

proved. With the goal of creating general models 044

that generalize compositionally in a large range of 045

tasks, we show that several design decisions, such 046

as position encodings, decoder type, weight shar- 047

ing, model hyper-parameters, and formulation of 048

the target task result in different inductive biases, 049

with significant impact for compositional general- 050

ization1. We use a collection of twelve datasets 051

designed to measure compositional generalization. 052

In addition to six standard datasets commonly used 053

in the literature (such as SCAN (Lake and Baroni, 054

2018), PCFG (Hupkes et al., 2020), CFQ (Keysers 055

et al., 2019) and COGS (Kim and Linzen, 2020)), 056

we also use a set of basic algorithmic tasks (such 057

as addition, duplication, or set intersection) that 058

although not directly involving natural language, 059

are useful to obtain insights into what can and can- 060

not be learned with different Transformer models. 061

We also include tasks where we do not see sig- 062

nificant improvements, to understand what types 063

of compositional generalization are improved with 064

our proposed modifications, and which are not. 065

The main contributions of this paper are: (1) A 066

study of the Transformer design space, showing 067

which design choices result in compositional learn- 068

ing biases across a variety of tasks. (2) state-of-the- 069

art results in COGS, where we report a classifica- 070

tion accuracy of 0.784 using an intermediate repre- 071

sentation based on sequence tagging (compared to 072

0.35 for the best previously reported model (Kim 073

and Linzen, 2020)), and the productivity and sys- 074

tematicity splits of PCFG (Hupkes et al., 2020). 075

2 Background 076

This section briefly provides background on com- 077

positional generalization and Transformer models. 078

1Source code: blinded for peer review.
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2.1 Compositional Generalization079

Compositional generalization can manifest in dif-080

ferent ways. Hupkes et al. (2020) identified five081

different types, such as systematicity (recombina-082

tion of known parts and rules) and productivity083

(extrapolation to longer sequences than those seen084

during training). An example of productivity would085

be if a model has learned to add, subtract, and086

multiply, and how to use parenthesis to associate087

arguments in simple expressions, and we expect088

it to generalize this knowledge to larger expres-089

sions. Compositional generalization is related to090

the general problem of out-of-distribution general-091

ization. Hence, we can also see it as the problem of092

how models can discover symmetries in the domain093

(such as the existence of primitive operations or094

other regularities) that would generalize better to095

out-of-distribution samples than shortcuts (Geirhos096

et al., 2020), which would only work on the same097

distribution of examples seen during training.098

Early work focused on showing how different099

deep learning models do not generalize composi-100

tionally (Liška et al., 2018). For example Liška101

et al. (2018) showed that while models like LSTMs102

are able to generalize compositionally, it is un-103

likely that gradient descent converges to a solution104

that does so (only about 2% out of 50000 train-105

ing runs achieved a generalization accuracy higher106

than 80% in a compositional task, while they had107

almost perfect performance in training). Datasets108

like SCAN (Lake and Baroni, 2018), PCFG (Hup-109

kes et al., 2020), Arithmetic language (Veldhoen110

et al., 2016), or CFQ (Keysers et al., 2019) were111

proposed to show these effects.112

Work toward improving compositional gen-113

eralization includes ideas like Syntactic at-114

tention (Russin et al., 2019), increased pre-115

training (Furrer et al., 2020), data augmenta-116

tion (Andreas, 2019), intermediate representa-117

tions (Herzig et al., 2021) or structure annota-118

tions (Kim et al., 2021). Specialized architectures119

that achieve good performance in specific composi-120

tional generalization tasks also exist. For example,121

Liu et al. (2020) propose a model made up of a122

“composer” and a “solver”, achieving perfect per-123

formance on SCAN. The most related concurrent124

work to ours is that of Csordás et al. (2021), who125

also showed gains in compositional generalization126

via relative attention. Additionally, in their work,127

they show that a key problem in some tasks is the128

end of sequence detection problem (when to stop129

producing output). Finally, they show that general- 130

ization accuracy keeps growing even when training 131

accuracy maxes out, questioning early stopping 132

approaches in compositional generalization. We 133

note that training for longer might also improve our 134

results, which we will explore in the future. 135

2.2 Transformer Models 136

Models based on Transformers (Vaswani et al., 137

2017), such as BERT (Devlin et al., 2018), or vari- 138

ants (Yang et al., 2019; Lan et al., 2019; Raffel 139

et al., 2019) yield state-of-the-art results in many 140

NLP tasks such as language modeling (Child et al., 141

2019; Sukhbaatar et al., 2019; Rae et al., 2019; 142

Kitaev et al., 2020), question answering (Ainslie 143

et al., 2020; Lan et al., 2019; Zaheer et al., 2020; 144

Beltagy et al., 2020), and summarization (Zhang 145

et al., 2019). However, existing studies show that 146

they do not have good compositional generaliza- 147

tion. In this paper we will consider the original 148

Transformer architecture and expand upon it. 149

The standard Transformer model consists of two 150

main components (see the center of Figure 2): an 151

encoder and a decoder, each of which consists of 152

a series of layers. Each layer contains an attention 153

sublayer followed by a feed-forward sublayer (the 154

decoder has two attention sublayers for decoder- 155

to-decoder and decoder-to-encoder attention). The 156

input of a Transformer is a sequence of token em- 157

beddings, and the output is a sequence of tokens 158

generated one at a time by predicting based on the 159

output distribution generated by the decoder. To 160

provide a notion of token “order” a set of position 161

encodings are typically added to the embedding of 162

each input token to indicate sequence order. 163

We will use l to denote the number of en- 164

coder/decoder layers, d for the dimensionality of 165

token embeddings, f for the intermediate dimen- 166

sionality used by the feed-forward sublayer, and h 167

for the number of attention-heads in the attention 168

sublayers. The original Transformer model used 169

l = 6, d = 512, f = 2048 and h = 8, as their base 170

configuration. In this paper, we use parameters 171

much smaller than that, as we are evaluating the 172

architectural decisions on relatively small datasets. 173

3 Evaluation Datasets 174

We use a collection of 12 datasets that require dif- 175

ferent types of compositional generalization. Six 176

of those dataset consist of “algorithmic” tasks 177

(addition, reversing lists, etc.), and six of them 178

2



,QSXW�����������������>6(3@�������������>(1'@
2XWSXW��������������>(1'@��

$GGLWLRQ�

,QSXW�����������������>6(3@�������������>(1'@
2XWSXW��������������>(1'@��

$GGLWLRQ1HJDWLYHV�

,QSXW���������������>(1'@�
2XWSXW������������>(1'@�

5HYHUVH�

,QSXW���������������>(1'@�
2XWSXW����������������������>(1'@�

'XSOLFDWLRQ�

,QSXW������������>6(3@�D�E�>(1'@
2XWSXW�����D�>6(3@���D�>6(3@���D�>6(3@�

����E�>6(3@���E�>6(3@���E�>(1'@

&DUWHVLDQ�

,QSXW�����D��E��I��>6(3@�I��D��F��>(1'@
2XWSXW��WUXH�>(1'@

,QWHUVHFWLRQ�

,QSXW������ORRN�DURXQG�ULJKW�DQG�ZDON�OHIW�WZLFH�>(1'@
2XWSXW����,B7851B5,*+7�,B/22.�,B7851B5,*+7�,B/22.�

��,B7851B5,*+7�,B/22.�,B7851B5,*+7�,B/22.�
��,B7851B/()7�,B:$/.�,B7851B/()7�,B:$/.�>(1'@

6&$1�OHQJWK���6&$1�DGG�MXPS�

,QSXW������VZDSBILUVWBODVW�FRS\�UHPRYHBVHFRQG�(���(���
��4����3���/���;���,���<���>(1'@

2XWSXW���4��(���(���>(1'@

3&)*�SURGXFWLYLW\���3&)*�V\VWHPDWLFLW\

,QSXW������$�URVH�ZDV�KHOSHG�E\�D�GRJ���>(1'@
2XWSXW���URVH���[�B�����$1'�KHOS���WKHPH���[�B�����[�B����

��$1'�KHOS���DJHQW���[�B�����[�B�����
��$1'�GRJ���[�B�����>(1'@

&2*6

,QSXW������'LG�D�SHUVRQ�PDUU\�D�FLQHPDWRJUDSKHU��
��LQIOXHQFH�0����DQG�LQIOXHQFH�0��>(1'@

2XWSXW���6(/(&7�FRXQW���:+(5(�^�
��"[��D�QV�SHRSOH�SHUVRQ���
��"[��QV�LQIOXHQFH�LQIOXHQFHBQRGH�LQIOXHQFHG�0���
��"[��QV�LQIOXHQFH�LQIOXHQFHBQRGH�LQIOXHQFHG�0���
��"[��QV�SHRSOH�SHUVRQ�VSRXVHBV�"[����
��"[��D�QV�ILOP�FLQHPDWRJUDSKHU���
��),/7(5���"[��� �"[����`�>(1'@

&)4

Figure 1: Examples from the different datasets used in our experiments.

are standard datasets used to evaluate composi-179

tional generalization (most involving natural lan-180

guage). We note that our algorithmic tasks mostly181

require productivity-style compositional generaliza-182

tion, while other datasets also require systematicity183

or synonimity (Hupkes et al., 2020). Specifically,184

we used the following datasets (see Appendix E for185

details, and Figure 1 for examples):186

Addition (Add): A synthetic addition task,187

where the input contains the digits of two integers,188

and the output should be the digits of their sum.189

The training set contains numbers with up to 8 dig-190

its, and the test set contains numbers with 9 or 10191

digits. Numbers are padded to reach a length of 12.192

AdditionNegatives (AddNeg): The same as the193

previous one, but 25% of the numbers are negative194

(preceded with the - symbol).195

Reversing (Reverse): Where the output is ex-196

pected to be the input sequence in reverse order.197

Training contains sequences of up to 16 digits, and198

the test set contains lengths between 17 to 24.199

Duplication (Dup): The input is a sequence of200

digits and the output should be the same sequence,201

repeated twice. Training contains sequences up to202

16 digits, and test from 17 to 24.203

Cartesian (Cart): The input contains two se-204

quences of symbols, and the output should be their205

Cartesian product. Training contains sequences of206

up to 6 symbols (7 or 8 for testing).207

Intersection (Inters): Given two sequences of208

symbols, the output should be whether they have209

a non-empty intersection. Training contains sets210

with size 1 to 16, and testing 17 to 24.211

SCAN-length (SCAN-l): The length split of the 212

SCAN dataset (Lake and Baroni, 2018). 213

SCAN-add-jump (SCAN-aj): The add primi- 214

tive jump split of the SCAN dataset (Lake and Ba- 215

roni, 2018). 216

PCFG-productivity (PCFG-p): The productiv- 217

ity split of the PCFG dataset (Hupkes et al., 2020) 218

PCFG-sytematicity (PCFG-s: The systematic- 219

ity split of the PCFG dataset (Hupkes et al., 2020). 220

COGS: The generalization split of the COGS 221

semantic parsing dataset (Kim and Linzen, 2020). 222

CFQ-mcd1 (CFQ): The MCD1 split of the CFQ 223

dataset (Keysers et al., 2019). 224

Note that most of these datasets are trivial if 225

the training and test sets come from the same dis- 226

tribution, and most Transformer models achieve 227

near 100% accuracy (except a few hard tasks like 228

the Cartesian product or set intersection). Hence, 229

splitting train and test data in a way that requires 230

compositional generalization is key (e.g., having 231

examples with larger sequences in the test set than 232

in the training set). We want to make sure models 233

do not just learn shortcuts (Geirhos et al., 2020) 234

that do not generalize to out-of-distribution data. 235

4 Empirical Results 236

In this section we present an evaluation of the com- 237

positional generalization abilities of Transformers 238

with different architectural configurations. Specif- 239

ically we evaluated: (1) the type of position en- 240

codings, (2) the use of copy decoders, (3) model 241

size, (4) weight sharing, and (5) the use of inter- 242

mediate representations for prediction (see Figure 243

2). For this systematic experimentation, we used 244
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Figure 2: An illustration of a Transformer, extended with the additional components necessary to explore the
different dimensions we experiment with in this paper: (1) position encodings, (2) copy decoder, (3) model size
(l, d, f, h), (4) weight sharing, and (5) intermediate representations.

small Transformer models, without pre-training (all245

models are trained from scratch). Even if previous246

work has reported benefits of pre-training in some247

compositional tasks (e.g., in CFQ (Furrer et al.,248

2020)), we aim at disentangling the effects of each249

architecture decision in and of itself, in the search250

for compositional inductive biases.251

Our results show that, while these decisions do252

not affect certain types of compositional general-253

ization tasks, we see significant gains in others.254

We report the average of at least 3 training runs255

(for algorithmic tasks, we use at least 5 train-256

ing runs, and 10 for set intersection since they257

have a higher variance; see Appendix B). We use258

sequence-level accuracy as the evaluation metric:259

an output sequence with even just a single wrong260

token is considered wrong.261

4.1 Position Encodings262

While the original Transformer model (Vaswani263

et al., 2017) and BERT (Devlin et al., 2018) used264

absolute position encodings, later models such as265

T5 (Raffel et al., 2019) or ETC (Ainslie et al., 2020)266

use relative position encodings (Shaw et al., 2018).267

Relative position encodings assign a label to each268

pair of tokens in the input (typically representing269

their relative distance in the input, up to a maxi-270

mum radius). So, there is a label used for tokens271

attending to a token “two positions to the right”,272

etc. One interesting thing about relative position273

encodings is that they are position invariant, i.e.274

two tokens that are k positions apart will attend to 275

each other in the same way, regardless of where 276

they are in the sequence, and hence allowing mod- 277

els to capture further symmetries in the domain. We 278

compare the following position encodings: 279

abs: sinusoidal absolute position encodings (as 280

used in the original Transformer)2. 281

rel-e: relative position encodings, where the rel- 282

ative position label defines a learnable embedding 283

that is added to the key during the attention process. 284

We used a maximum local attention radius of 16, 285

which means that we have the following relative po- 286

sition labels {l�16, l�15, ..., l�1, l0, l1, ..., l15, l16}. 287

Tokens that are further than 16 positions apart get 288

the l�16 or l16 labels. 289

rel-b: relative positions define a learnable bias 290

that is added to the attention weight of each atten- 291

tion pair. This is the attention mechanism used by 292

T5 (although they use a logarithmic scheme for 293

representing relative positions). 294

rel-eb: relative position using both a learnable 295

embedding vector and a learnable bias scalar. 296

While relative positions are straightforward for 297

encoder-to-encoder and decoder-to-decoder atten- 298

tion, it is unclear what the relative positions should 299

be for decoder-to-encoder. Hence, we tested three 300

alternatives (rel2-e, rel2-b and rel2-eb in our result 301

tables). rel-* methods do not use relative position 302

2We did not experiment with learnable absolute position
encodings, as test examples are longer than anything seen
during training, hence containing untrained embeddings.
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 0.000 0.003 0.174 0.434 0.177 0.304 0.137
rel-e 0.004 0.018 0.422 0.486 0.004 0.501 0.064 0.003 0.238 0.451 0.170 0.322 0.224
rel-b 0.002 0.005 0.277 0.362 0.054 0.501 0.049 0.007 0.042 0.102 0.126 0.276 0.150
rel-eb 0.003 0.011 0.486 0.444 0.000 0.500 0.089 0.011 0.257 0.452 0.249 0.290 0.233
rel2-e 0.988 0.830 0.787 0.010 0.000 0.501 0.032 0.007 0.159 0.353 0.259 0.322 0.354
rel2-b 0.140 0.708 0.056 0.253 0.000 0.504 0.080 0.002 0.041 0.117 0.138 0.319 0.197
rel2-eb 0.978 0.779 0.737 0.017 0.000 0.504 0.091 0.010 0.194 0.374 0.159 0.311 0.346

Table 1: Sequence-level accuracy for different position encoding methods. Bolded results represent the best results
for each dataset in this table.

labels in decoder to encoder attention, and rel2-303

* do (where token yi in the decoder attending to304

token xj in the encoder will have label lj�i.305

Table 1 shows sequence-level classification ac-306

curacy for small Transformers (l = 2, d = 64,307

f = 256, h = 4). The right-most column shows308

the average accuracy across all datasets, and we can309

see that position encodings play a very significant310

role in the performance of the models. Going from311

0.137 accuracy of the model with absolute position312

encodings up to 0.354 for a model with relative313

position encodings using embeddings (but no bias314

term), as well as relative positions for decoder-to-315

encoder attention. In general almost any type of316

relative position encodings help, but using embed-317

dings helps more than using bias terms. Moreover,318

position encodings play a bigger role in algorith-319

mic tasks. For example, in the Add and AddNeg320

tasks, models go from 0.005 and 0.042 accuracy to321

almost perfect accuracy (0.988 and 0.830 for the322

rel2-e model). Moreover tasks like SCAN or CFQ323

do not seem to be affected by position encodings,324

and using relative position encodings with only a325

bias term hurts in PCFG.326

4.2 Decoder Type327

Many tasks (such as the duplication or PCFG328

datasets used in our experiments) require models329

able to learn things like “output whatever is in po-330

sition k of the input”, rather than having to learn331

hard-coded rules for outputting the right token, de-332

pending on the input, a type of symmetry that can333

be captured with a copy decoder.334

The copy decoder in our experiments is fairly335

simple, and works as follows (Figure 2, top-left).336

It assumes that the input and output vocabularies337

are the same (we use the union of input and output338

vocabularies in our experiments). For a given token339

xi in the output (with final embedding yi), in addi-340

tion to the output probability distribution p1 over341

the tokens in the vocabulary, the copy decoder pro-342

duces a second distribution p2, which is then mixed343

with p1 via a weight w. p2 is obtained by attending 344

to the output of the last encoder layer (the attention 345

query is calculated using a learnable weight matrix 346

from yi, the embeddings of the last encoder layer 347

are used as the keys, and the values are a one-hot 348

representation of the input tokens). The result is 349

passed through a softmax layer, resulting in p2. 350

Table 2 shows sequence-level classification ac- 351

curacy for models with and without a copy decoder. 352

As can be seen in the last column (Avg.), having a 353

copy decoder consistently helps performance, with 354

all models using a copy decoder (abs-c, rel-eb- 355

c and rel2-eb-c) outperforming their counterparts 356

without a copy decoder. Moreover, we see that the 357

copy decoder helps the most in PCFG and COGS, 358

while it does not seem to help in some other tasks. 359

4.3 Model Size 360

Next, we compare the effect of varying both the 361

number of layers (l), as well as their size (d, f , 362

h). Specifically, we tested models with number 363

of layers l equal to 2, 4 and 6, and layers of two 364

sizes: small (d = 64, f = 256, h = 4), and large 365

(d = 128, f = 512, h = 8). We denote these 366

models small-2, small-4, small-6, large-2, large- 367

4, and large-6. All of the models in this section 368

are variants of rel2-eb-c, our previous best (see 369

Appendix C for parameter counts of our models). 370

Table 3 shows the sequence-level classification 371

accuracy, showing a few interesting facts. First, 372

in most algorithmic tasks, size does not help. Our 373

hypothesis is that the logic required to learn these 374

tasks does not require too many parameters, and 375

large models probably overfit (e.g., like in Du- 376

plication)3. Some datasets, however, do benefit 377

from size. For example, most large models outper- 378

form their respective small ones in both variants of 379

PCFG. These results are not unexpected, as most 380

3Further investigation showed that lowering the learning
rate improves performance in the larger models, preventing the
phenomenon seen in the Duplication dataset. Systematically
exploring this is left for future work.
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 0.000 0.003 0.174 0.434 0.177 0.304 0.137
rel-eb 0.003 0.011 0.486 0.444 0.000 0.500 0.089 0.011 0.257 0.452 0.249 0.290 0.233
rel2-eb 0.978 0.779 0.737 0.017 0.000 0.504 0.091 0.010 0.194 0.374 0.159 0.311 0.346
abs-c 0.006 0.021 0.000 0.000 0.000 0.501 0.000 0.003 0.230 0.390 0.520 0.301 0.164
rel-eb-c 0.004 0.007 0.271 0.460 0.000 0.413 0.026 0.009 0.342 0.541 0.474 0.311 0.238
rel2-eb-c 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403

Table 2: Sequence-level accuracy with and without copy decoding (models with a copy decoder are marked with a
“-c” suffix). Bolded numbers are the best results for each dataset in this table.

Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
small-2 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403
small-4 0.986 0.835 0.676 0.572 0.000 0.500 0.170 0.000 0.499 0.711 0.501 0.301 0.479
small-6 0.992 0.835 0.225 0.000 0.000 0.203 0.164 0.002 0.548 0.741 0.476 0.312 0.375
large-2 0.983 0.811 0.605 0.503 0.000 0.500 0.184 0.001 0.535 0.758 0.498 0.269 0.471
large-4 0.957 0.786 0.684 0.523 0.000 0.400 0.164 0.004 0.513 0.770 0.462 0.310 0.464
large-6 0.978 0.673 0.423 0.288 0.000 0.250 0.144 0.000 0.530 0.750 0.451 0.288 0.398

Table 3: Sequence-level accuracy for models of different sizes. All models are variations of the rel2-eb-c model in
Table 2 (small-2 is equivalent to rel2-eb-c). Bolded results represent the best results for each dataset in this table.

compositional generalization datasets contain ide-381

alized examples, often generated via some form of382

grammar, and have very small vocabularies (see383

Table 7). Hence, models might not benefit from384

size as much as on complex natural language tasks.385

4.4 Weight Sharing386

In this section we evaluate the effect of sharing387

weights across transformer layers. When weight388

sharing is activated, all learnable weights from all389

layers in the encoder are shared across layers, and390

the same is true across the layers of the decoder.391

Table 4 shows the resulting performance of the392

models (to be compared with Table 3). Surpris-393

ingly, weight sharing significantly boosts compo-394

sitional generalization accuracy, and almost all395

models achieve a higher average accuracy across396

all datasets than their equivalent models in Ta-397

ble 3. In particular, datasets such as AdditionNeg-398

atives see a significant boost, with several mod-399

els achieving higher than 0.9 accuracy (0.982 for400

large-6s). PCFG also significantly benefits from401

weight sharing, with the large-6s model achieving402

0.634 and 0.828 in the productivity and systematic-403

ity versions, respectively. These are higher than404

previously reported results in the literature (using405

the original Transformer, which is a much larger406

model): 0.50 and 0.72 (Hupkes et al., 2020). No-407

tice, moreover that achieving good results in PCFG408

(or SCAN) is easy with specialized models. The409

important achievement is doing so with general410

purpose models. Our hypothesis is that a model411

with shared weights across layers might have a412

more suited inductive bias to learn primitive opera-413

tions that are applied repeatedly to the input of the 414

transformer (copying, reversing, duplicating, etc.). 415

4.5 Intermediate Representations 416

The key idea of an intermediate representation is 417

to define a different representation of the target out- 418

put that is easier to generate by the model, but that 419

can be easily mapped to the desired output. Herzig 420

et al. (2021) recently showed very promising re- 421

sults using this technique in several tasks. Defining 422

useful intermediate representations is task-specific 423

and not trivial. Thus we experimented with it in 424

only two datasets: COGS and CFQ (Figure 3). 425

4.5.1 Intermediate Representation for COGS 426

Our intermediate representation for COGs turns 427

the task from seq2seq into a sequence tagging task. 428

We ask the model to produce 5 tags for each input 429

token: a parent, the role of the relation between the 430

token and its parent (if applicable), the category, 431

the noun determiner (for nouns) and the verb name 432

(for verbs). With these tags, the original output can 433

be constructed deterministically. One of the main 434

advantages of this is that the model is naturally 435

pushed to produce outputs with the correct length 436

even for longer inputs (improving productivity). 437

For the sequence tagging formulation, we used 438

only the encoder part of the Transformer and added 439

five prediction heads, to predict each tag. For role, 440

category, noun determiner and verb name, we sim- 441

ply had a dense layer with a Sigmoid activation 442

function. For the parent tag, we experimented with 443

3 different head types: Absolute used a dense layer 444

with a Sigmoid activation to predict the absolute 445
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
small-2s 0.992 0.809 0.780 0.750 0.000 0.699 0.022 0.003 0.313 0.501 0.450 0.303 0.468
small-4s 0.991 0.955 0.708 0.580 0.000 0.500 0.172 0.017 0.534 0.723 0.445 0.292 0.493
small-6s 0.993 0.933 0.505 0.000 0.000 0.500 0.186 0.000 0.562 0.780 0.454 0.295 0.434
large-2s 0.997 0.894 0.831 0.848 0.000 0.584 0.033 0.002 0.511 0.638 0.465 0.292 0.508
large-4s 0.991 0.915 0.771 0.882 0.000 0.400 0.186 0.002 0.589 0.791 0.475 0.327 0.527
large-6s 0.985 0.982 0.241 0.000 0.000 0.500 0.196 0.000 0.634 0.828 0.454 0.303 0.427

Table 4: Sequence-level accuracy for all the models in Table 3, but sharing weights across layers.
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Figure 3: Examples from the intermediate representations for COGs and CFQ. For COGs, we framed the task as
sequence tagging and made the model predict 5 tags for each token; for CFQ we compressed Cartesian products.

seq2seq tagging
Model abs rel2-eb-c abs rel-eb
Size small-2 small-6s small-2 small-2s
Parent encoding absolute attention
Lexical Generalization: Primitives and Grammatical Roles
Subject ! Object (common noun) 0.309 0.899 0.911 0.969
Subject ! Object (proper noun) 0.098 0.429 0.630 0.826
Object ! Subject (common noun) 0.790 0.936 0.982 0.978
Object ! Subject (proper noun) 0.207 0.951 0.993 0.995
Prim noun ! Subject (common noun) 0.240 0.913 0.993 0.988
Prim noun ! Subject (proper noun) 0.019 0.772 0.974 0.996
Prim noun ! Object (common noun) 0.017 0.902 0.950 0.953
Prim noun ! Object (proper noun) 0.000 0.513 0.651 0.700
Prim verb ! Infinitival argument 0.000 0.766 0.000 0.001
Lexical Generalization: Verb Argument Structure Alternation
Active ! Passive 0.604 0.000 0.697 0.948
Passive ! Active 0.196 0.001 0.535 0.897
Object-omitted transitive ! Transitive 0.275 0.003 0.527 0.926
Unaccusative ! Transitive 0.069 0.003 0.528 0.787
Double object dative ! PP dative 0.819 0.000 0.590 0.958
PP dative ! Double object dative 0.404 0.004 0.771 0.850
Lexical Generalization: Verb Class
Agent NP ! Unaccusative Subject 0.399 0.951 0.784 1.000
Theme NP ! Obj-omitted trans Subj 0.688 0.965 0.791 0.701
Theme NP ! Unergative subject 0.694 0.966 0.930 0.771
Structural Generalization: Phrases and Grammatical Roles
Obj-mod PP ! Subj-mod PP 0.000 0.000 0.000 0.299
Structural Generalization: Deeper Recursion
Depth generalization: PP modifiers 0.003 0.000 0.138 0.681
Depth generalization: Sentential comp 0.000 0.000 0.000 0.233
Overall 0.278 0.475 0.637 0.784

Table 5: Sequence-level accuracy in different general-
ization subsets in COGS for both seq2seq and sequence
tagging models. PP stands for prepositional phrase.

index of the parent in the input sequence (-1 for446

no parent). Relative predicted the relative offset of447

the parent token with respect to the current token,448

or self for no parent. Finally, Attention used the449

attention weights from a new attention layer with 1450

head to predict the parent.451

Table 5 shows the experimental results compar-452

ing a few configurations of this new tagging ap-453

proach to the seq2seq approach (see Appendix D 454

for other configurations). Examples in the struc- 455

tural generalization tasks are typically longer than 456

in the training set and require productivity. All the 457

models tested in the original COGS paper (Kim and 458

Linzen, 2020) (and all of our seq2seq approaches 459

above) achieved 0 accuracy in this category. The 460

small-6s seq2seq model improves the overall per- 461

formance from 0.278 to 0.475, but curiously has 462

near 0 performance on Verb Argument Structure 463

Alternation tasks, worse than the base abs model. 464

The intermediate representation based on tag- 465

ging works much better. The base abs tagging 466

model manages to get non-zero performance on 467

one structural generalization task, which suggests 468

that enforcing the right output length helps. Finally, 469

when predicting the parent directly from attention 470

weights, the structural generalization tasks score 471

0.2-0.7, compared to our previous near 0 scores 472

(see Appendix D for common types of errors). 473

Overall, the sequence tagging intermediate rep- 474

resentation achieves a much higher accuracy, with 475

one model reaching 0.784, higher than any previ- 476

ously reported performance in COGS in the litera- 477

ture, to the best of our knowledge. This suggests 478

that the encoder has the power to parse the input 479

correctly, but maybe the decoder is not capable of 480

generating the correct output sequence from the 481

encoder in the full transformer. 482

4.5.2 Intermediate Representation for CFQ 483

One of the difficulties in the CFQ dataset is that 484

models need to learn to perform Cartesian prod- 485
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CFQ CFQ-im
abs 0.304 0.541
rel-eb 0.290 0.555
rel2-eb 0.311 0.541
rel-eb-c 0.311 0.541
rel2-eb-c 0.295 0.519
large-4 0.310 0.541
large-4s 0.327 0.474

Table 6: Sequence-level accuracy for different models
for the original CFQ, and for CFQ with intermediate
representations (CFQ-im). The top 5 models are small
models with 2 layers, and the last four models are vari-
ants of rel2-eb-c (used in Tables 3 and 4).

ucts (e.g., for questions like “who directed and486

acted in M1 and M2?”, the model needs to expand487

to “directed M1”, “directed M2”, “acted in M1”488

and “acted in M2”). However, as shown in our489

experiments above, this is a very hard task to learn.490

Hence, we followed the same idea as in Herzig491

et al. (2021), and defined an intermediate repre-492

sentation that removes the need to learn Cartesian493

products by allowing triples of the form (entity list)494

- (relation list) - (entity list).495

Table 6 shows the sequence-level classification496

accuracy for models on CFQ and on the version497

with intermediate representations (CFQ-im). While498

the different variations on Transformer models499

have little affect on the performance, the use of an500

intermediate representation significantly improves501

performance, going from around 0.3 accuracy for502

most Transformer models to over 0.5, and up to503

0.555 for the rel-eb model. This is consistent with504

the results reported by Herzig et al. (2021).505

5 Discussion506

An overall trend is that algorithmic tasks seem to507

be greatly affected by the different architecture de-508

sign decisions we explored. In all datasets, except509

for Cartesian product, there is at least one combina-510

tion in our experiments that achieved high perfor-511

mance (close to 0.8 accuracy or higher). Cartesian512

products remain an open challenge for future work,513

where one of the big obstacles is learning to pro-514

duce much longer outputs than seen during training515

(output is quadratic with respect to input size).516

There are some datasets, such as SCAN-aj, where517

we did not see large improvements in performance.518

The main obstacle is learning to handle a symbol519

(“jump”) having seen it very few times (or even just520

once) during training (this also happens in some521

types of generalization in COGS). None of the vari-522

ations we experimented with were enough to han-523

dle this type of compositionality either. 524

In conclusion, we observed: (1) relative position 525

encodings (when both embeddings and biases are 526

used) seem to never be detrimental (they either pro- 527

vided gains, or did not affect). Results indicates this 528

significantly helps in productivity. (2) Similarly, 529

adding a copy decoder was generally beneficial. 530

We saw some occasional degradation in some tasks 531

(e.g., Reverse), but these are high variance tasks 532

(see Table 10 in the Appendix), where results are 533

more uncertain. (3) Model size in terms of embed- 534

ding dimensions, helped generally. Going from 535

2 to 4 layers provided a slight benefit in general. 536

Our experiments show going to 6 layers hurt perfor- 537

mance, but as noted earlier, additional (unreported 538

preliminary) experiments indicated larger models 539

might need smaller learning rates, with which they 540

also seem to improve performance (systematic ex- 541

ploration of this is future work). (4) Weight sharing 542

seems to benefit in tasks where there are a clear 543

set of primitives that have to be learned (PCFG 544

in particular), or algorithmic tasks, but it seems 545

to hurt in COGs. Hence, weight sharing does not 546

provide general benefits as the previous modifica- 547

tions. (5) Intermediate representations, although 548

dataset-specific, significantly help when they can 549

be defined, as expected. 550

6 Conclusions 551

This paper presented an empirical study of the de- 552

sign space of Transformer models, evaluated in a 553

collection of benchmarks for compositional gener- 554

alization in language and algorithmic tasks. Our 555

results show that, compared to a baseline Trans- 556

former, significant gains in compositional general- 557

ization can be achieved. Specifically, the baseline 558

Transformer achieved an average sequence-level 559

accuracy of 0.137, while we showed this can in- 560

crease to up to 0.527 with some design changes. 561

Moreover, we achieved state-of-the-art results in 562

COGS, showing 0.784 accuracy on the generaliza- 563

tion set, and two PCFG splits (0.634 and 0.828 564

respectively). This shows that a key factor in train- 565

ing models that generalize compositionally is to 566

provide the right inductive biases. 567

As part of our future work, we want to explore 568

more dimensions, such as pre-training and opti- 569

mizer parameters, and study the implications of 570

our results in compositional generalization in large 571

models on real world tasks. 572
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A Implementation Details705

We used a standard Transformer implementation4,706

and added all the proposed variations on top of707

it. All experiments were run on machines with708

a single CPU and a single Tesla V100 GPU. All709

parameters were left to their default values from the710

original implementation, including the learning rate711

schedule (which could probably be further tweaked712

if state-of-the-art results are sought), as we were713

just aiming to compare inductive biases, rather than714

aim for SOTA results.715

Additionally, we would like to highlight some716

implementation details, which surprisingly had717

large effects on our experimental results. Layer718

normalization operations in our Transformer imple-719

mentation were done after each sublayer (attention720

and feed forward). Embedding layers were initial-721

ized with the Keras default “uniform” Keras ini-722

tializer (uniform random distribution in the range723

[�0.05, 0.05]). Dense layers were initialized also724

with the Keras default Glorot initializer (uniform725

random distribution with mean 0 and standard726

deviation
p
2/(fan_in+ fan_out)) (Glorot and727

Bengio, 2010). While these details might not728

seem that important, we were unable to repro-729

duce some of the results reported above using a730

re-implementation of the Transformer model in731

Flax, which used different defaults (and layer nor-732

malization before each sublayer rather than after)733

unless we changed these implementation details734

to match those of the Keras implementation. This735

indicates that these low-level details also have an736

effect on the learning bias of the models, with an737

impact in compositional generalization, which we738

plan to study in the future.739

B Detailed Results740

Table 8 shows the average sequence-level accuracy741

for all the models evaluated in this paper, all in one742

table. We used the same names as used in the paper743

(as models rel2-eb-c and small-2 both refer to the744

same model, we included the row twice, with both745

names, for clarity).746

Table 9 shows the maximum accuracy each747

model achieved in each dataset out of the 3 to748

10 repetitions we did for each dataset. Recall we749

used 3 repetitions for SCAN-l, SCAN-aj, PCFG-p,750

PCFG-s, COGS and CFQ, 5 repetitions for Add,751

AddNeg, Reverse, Dup and Cart, and 10 repetitions752

4https://www.tensorflow.org/tutorials/
text/transformer

for Inters (as it was the dataset where we saw more 753

extreme results). An interesting phenomenon ob- 754

served in the Inters dataset is that models tend to 755

achieve either random accuracy (around 0.5), or 756

perfect accuracy (1.0). Very rarely models achieve 757

intermediate values. This support the needle-in-a- 758

haystack argument of Liška et al. (2018), who saw 759

that while LSTMs have the capability of general- 760

ize compositionally, what happens in practice is 761

that gradient descent has a very low probability of 762

converging to weights that do so (finding the “com- 763

positional needle” in a haystack). We observed a 764

similar thing in our experiments, but saw that some 765

Transformer architectures resulted in an increased 766

chance of finding this needle. 767

Table 10 shows the standard deviation in the 768

sequence-level accuracy we observed in our ex- 769

periments. As can be seen, the algorithmic tasks 770

result in a much larger standard deviation. In some 771

datasets (e.g., Add and Inters) it was common for 772

morels to either achieve near 0% accuracy (50% in 773

Inters) or near 100% accuracy, but few values in 774

between. 775

C Parameter Counts 776

Table 11 shows the parameter count for all the mod- 777

els used in this paper, notice that exact parameter 778

counts vary per dataset, as each dataset has a differ- 779

ent token vocabulary, and hence both the token em- 780

bedding and the output layers vary. One interesting 781

result is that in our experiments, parameter count is 782

not, by itself, sufficient to increase compositional 783

generalization. Our best model overall (large-4s) 784

only had about 0.5 million parameters, and outper- 785

formed significantly larger models. Another ex- 786

Dataset |Train| |Test | |Vocab| Epochs
Add 200000 1024 14 2
AddNeg 200000 1024 16 10
Reverse 200000 1024 14 2
Dup 200000 1024 14 4
Cart 200000 1024 24 4
Inters 200000 1024 106 8
SCAN-l 16989 3919 25 24
SCAN-aj 14669 7705 25 24
PCFG-p 81011 11331 537 20
PCFG-s 82167 10175 537 20
COGS 24155 21000 876 16
CFQ 95743 11968 184 16

Table 7: Size of the training/test sets, vocab and train-
ing epochs we used for the different datasets.
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ Avg.
abs 0.005 0.042 0.000 0.000 0.000 0.500 0.000 0.003 0.174 0.434 0.177 0.304 0.137
rel-e 0.004 0.018 0.422 0.486 0.004 0.501 0.064 0.003 0.238 0.451 0.170 0.322 0.224
rel-b 0.002 0.005 0.277 0.362 0.054 0.501 0.049 0.007 0.042 0.102 0.126 0.276 0.150
rel-eb 0.003 0.011 0.486 0.444 0.000 0.500 0.089 0.011 0.257 0.452 0.249 0.290 0.233
rel2-e 0.988 0.830 0.787 0.010 0.000 0.501 0.032 0.007 0.159 0.353 0.259 0.322 0.354
rel2-b 0.140 0.708 0.056 0.253 0.000 0.504 0.080 0.002 0.041 0.117 0.138 0.319 0.197
rel2-eb 0.978 0.779 0.737 0.017 0.000 0.504 0.091 0.010 0.194 0.374 0.159 0.311 0.346
abs-c 0.006 0.021 0.000 0.000 0.000 0.501 0.000 0.003 0.230 0.390 0.520 0.301 0.164
rel-eb-c 0.004 0.007 0.271 0.460 0.000 0.413 0.026 0.009 0.342 0.541 0.474 0.311 0.238
rel2-eb-c 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403
small-2 0.977 0.791 0.540 0.283 0.000 0.528 0.043 0.010 0.336 0.527 0.511 0.295 0.403
small-4 0.986 0.835 0.676 0.572 0.000 0.500 0.170 0.000 0.499 0.711 0.501 0.301 0.479
small-6 0.992 0.835 0.225 0.000 0.000 0.203 0.164 0.002 0.548 0.741 0.476 0.312 0.375
large-2 0.983 0.811 0.605 0.503 0.000 0.500 0.184 0.001 0.535 0.758 0.498 0.269 0.471
large-4 0.957 0.786 0.684 0.523 0.000 0.400 0.164 0.004 0.513 0.770 0.462 0.310 0.464
large-6 0.978 0.673 0.423 0.288 0.000 0.250 0.144 0.000 0.530 0.750 0.451 0.288 0.398
small-2s 0.992 0.809 0.780 0.750 0.000 0.699 0.022 0.003 0.313 0.501 0.450 0.303 0.468
small-4s 0.991 0.955 0.708 0.580 0.000 0.500 0.172 0.017 0.534 0.723 0.445 0.292 0.493
small-6s 0.993 0.933 0.505 0.000 0.000 0.500 0.186 0.000 0.562 0.780 0.454 0.295 0.434
large-2s 0.997 0.894 0.831 0.848 0.000 0.584 0.033 0.002 0.511 0.638 0.465 0.292 0.508
large-4s 0.991 0.915 0.771 0.882 0.000 0.400 0.186 0.002 0.589 0.791 0.475 0.327 0.527
large-6s 0.985 0.982 0.241 0.000 0.000 0.500 0.196 0.000 0.634 0.828 0.454 0.303 0.427

Table 8: Average sequence-level accuracy for all the models evaluated in this paper.

ample, of this is that the models with shared layer787

parameters outperform their counterparts without788

parameter sharing, although they naturally have789

less parameters.790

D Detailed Results in COGS791

Table 12 shows the results of some of the models792

we tested in the COGS dataset (including seq2seq793

and sequence tagging models), with the accuracy794

broken down by the type of example in the gen-795

eralization set. The COGS dataset contains four796

splits: training, dev, test and generalization (gener-797

alization is the one used to measure compositional798

generalization, and the set reported in the main pa-799

per). All but one shown configuration achieve more800

than 95% sequence level accuracy on the test and801

development splits after training for 16 epochs over802

the training data. The generalization set is split into803

several generalization tasks as described above, to804

break down performance by type of generalization805

(overall performance in the generalization set is806

shown in the bottom row).807

The best tagging model does much better than808

the base seq2seq model (0.784 vs. 0.278). No-809

tably the tagging model does relatively well on the810

Depth generalization: Prepositional phrase (PP)811

modifiers task achieving accuracy 0.681. When the812

depth of the model is increased from 2 to 6, the813

score on this task increases from 0.681 to 0.819, i.e.814

the model with more layers can parse deeper recur-815

sion. However, increasing the encoder depth at the816

same time dramatically lowers the performance on 817

Verb Argument Structure Alternation tasks. 818

Since many of the tasks are solved to near per- 819

fect accuracy, here we briefly discuss the types of 820

the remaining errors. The one type of task where 821

sequence tagging models did worse than seq2seq 822

is Prim verb ! Infinitival argument, which mea- 823

sures one shot generalization of an example with 824

only a single verb to examples where the verb is 825

used in sentences. The cause of this is that the 826

tagging example with only a single verb doesn’t ac- 827

tually encode the type of relations the verb allows, 828

so the tagging model is actually not provided the 829

full information in the only example for this one 830

shot learning task. Nevertheless, this category was 831

solved in our seq2seq models with a copy decoder. 832

Curiously, some errors, that the tagging model 833

with attention in the parent prediction head makes, 834

are quite quite reasonable. For example in the Obj- 835

mod PP ! Subj-mod PP task, the model often 836

gets the complete parsing tree correctly, and the 837

only error is the predicted relation of the subject to 838

the predicate (instead of agent the model predicts 839

theme as is present in all the training examples, 840

where the prepositional phrase modifies the object). 841

Another task where even the best tagging model 842

achieves a low score (0.233) is Depth generaliza- 843

tion: Sentential complements. The examples in this 844

task are long complex sentences chained together 845

with the conjunction that. The most common er- 846

ror here is to predict that the main verb depends 847

12



Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 0.008 0.131 0.002 0.000 0.000 0.500 0.000 0.008 0.191 0.462 0.211 0.326
rel-e 0.010 0.059 0.597 0.908 0.034 0.511 0.115 0.007 0.257 0.496 0.281 0.346
rel-b 0.004 0.016 0.331 0.417 0.137 0.510 0.072 0.013 0.047 0.112 0.170 0.305
rel-eb 0.006 0.018 0.658 0.795 0.001 0.502 0.129 0.023 0.268 0.528 0.306 0.333
rel2-e 1.000 0.943 0.917 0.038 0.000 0.512 0.058 0.018 0.182 0.457 0.332 0.357
rel2-b 0.256 0.910 0.132 0.339 0.002 0.529 0.116 0.004 0.049 0.137 0.187 0.342
rel2-eb 1.000 0.875 0.824 0.062 0.000 0.519 0.124 0.018 0.233 0.479 0.205 0.333
abs-c 0.021 0.037 0.000 0.000 0.000 0.506 0.000 0.005 0.250 0.420 0.550 0.312
rel-eb-c 0.006 0.027 0.504 0.721 0.000 1.000 0.031 0.021 0.361 0.562 0.581 0.351
rel2-eb-c 0.998 0.842 0.861 0.683 0.000 1.000 0.082 0.014 0.346 0.581 0.576 0.369
small-2 0.998 0.842 0.861 0.683 0.000 1.000 0.082 0.014 0.346 0.581 0.576 0.369
small-4 0.992 0.877 0.939 0.805 0.000 0.500 0.197 0.001 0.509 0.734 0.520 0.342
small-6 1.000 0.922 0.576 0.000 0.000 0.500 0.199 0.007 0.571 0.766 0.516 0.330
large-2 0.998 0.896 0.933 0.882 0.000 0.500 0.197 0.002 0.548 0.762 0.530 0.314
large-4 0.996 0.953 0.848 0.855 0.000 0.500 0.199 0.010 0.523 0.782 0.500 0.360
large-6 0.994 0.887 0.619 0.856 0.000 0.500 0.195 0.000 0.549 0.766 0.483 0.317
small-2s 0.998 0.871 0.979 0.972 0.000 1.000 0.044 0.006 0.328 0.519 0.487 0.348
small-4s 0.998 0.986 0.870 0.871 0.000 0.500 0.175 0.039 0.540 0.742 0.515 0.362
small-6s 1.000 0.984 0.821 0.000 0.000 0.500 0.199 0.000 0.569 0.788 0.486 0.344
large-2s 1.000 0.945 0.952 0.955 0.000 1.000 0.054 0.003 0.526 0.641 0.563 0.304
large-4s 1.000 0.959 0.923 0.959 0.000 0.500 0.195 0.004 0.604 0.810 0.481 0.362
large-6s 1.000 0.998 0.489 0.000 0.000 0.500 0.198 0.000 0.642 0.832 0.469 0.361

Table 9: Maximum sequence-level accuracy achieved in a given repetition for all the models evaluated in this
paper.

on another verb far away in the sentence structure,848

instead of predicting that it has no parent. The dis-849

tance to the incorrectly predicted parent is often850

more than 16, which was the limit on our relative851

attention offsets. The attention mechanism seems852

to get confused by seeing many more tokens in this853

test split than during training.854

E Dataset Details855

This appendix presents more details on the datasets856

used in this paper, as well as on the type of compo-857

sitionality involved in each of them.858

• Addition (Add): This is a synthetic addition859

task, where the input contains the digits of860

two integers, and the output should be the861

digits of their sum. The training set contains862

numbers with up to 8 digits, and the test set863

contains numbers with 9 or 10 digits. Num-864

bers are padded to reach a length of 12 so865

that it’s easy to align the digits that need to866

be added. We found that without padding, the867

task became much harder. Types of compo-868

sitionality: models need to learn that there869

is a primitive operation “adding two digits870

(with carry)” that is repeatedly applied at each871

position. Models that learn position-specific872

shortcuts will not generalize to longer input873

lengths (as they would have learned no rules874

to produce the most significant digits, which875

would have never been seen during training). 876

This mostly corresponds to productivity type 877

of compositional generalization. 878

• AdditionNegatives (AddNeg): The same as 879

the previous one, but 25% of the numbers 880

are negative (preceded with the “-” token). 881

Types of compositionality: the type of com- 882

positionality requires by this task is similar to 883

that of the previous task, except that the gen- 884

eral rules that need to be learned (independent 885

of position) are more complex due to negative 886

numbers. So, the model needs to learn three 887

basic primitive operations that are the same 888

irrespective of the position of the digits: “add 889

two digits with carry”, “subtract first from sec- 890

ond with carry”, and “subtract second from 891

first with carry”, and learn when to apply each. 892

This also mostly corresponds to productivity 893

type of compositional generalization. 894

• Reversing (Reverse): Where the output is ex- 895

pected to be the input sequence in reverse or- 896

der. Training contains sequences of up to 16 897

digits, and the test set contains lengths be- 898

tween 17 to 24. Types of compositionality: 899

the difficult part of this task is to learn to re- 900

verse position embeddings in a way that gener- 901

alizes to longer inputs than seen during train- 902

ing, in order to attend and produce the right 903
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 0.003 0.047 0.001 0.000 0.000 0.000 0.000 0.004 0.014 0.039 0.067 0.022
rel-e 0.003 0.017 0.169 0.271 0.012 0.003 0.045 0.004 0.023 0.078 0.103 0.027
rel-b 0.002 0.006 0.078 0.046 0.073 0.003 0.038 0.006 0.005 0.014 0.040 0.025
rel-eb 0.002 0.007 0.211 0.287 0.000 0.001 0.038 0.011 0.013 0.066 0.050 0.047
rel2-e 0.009 0.074 0.167 0.014 0.000 0.004 0.023 0.009 0.016 0.111 0.104 0.035
rel2-b 0.122 0.202 0.051 0.055 0.001 0.009 0.039 0.002 0.011 0.018 0.045 0.016
rel2-eb 0.029 0.067 0.057 0.024 0.000 0.007 0.029 0.008 0.047 0.101 0.043 0.020
abs-c 0.009 0.010 0.000 0.000 0.000 0.003 0.000 0.002 0.024 0.027 0.038 0.013
rel-eb-c 0.003 0.011 0.135 0.157 0.000 0.322 0.005 0.011 0.017 0.036 0.093 0.025
rel2-eb-c 0.035 0.053 0.208 0.289 0.000 0.239 0.033 0.005 0.009 0.048 0.056 0.063
small-2 0.035 0.053 0.208 0.289 0.000 0.239 0.033 0.005 0.009 0.048 0.056 0.063
small-4 0.004 0.054 0.213 0.184 0.000 0.000 0.046 0.000 0.010 0.019 0.028 0.049
small-6 0.007 0.120 0.233 0.000 0.000 0.256 0.056 0.004 0.024 0.026 0.047 0.022
large-2 0.016 0.074 0.240 0.289 0.000 0.000 0.022 0.001 0.012 0.004 0.042 0.033
large-4 0.075 0.106 0.178 0.190 0.000 0.211 0.049 0.006 0.009 0.010 0.033 0.047
large-6 0.023 0.377 0.119 0.356 0.000 0.264 0.045 0.000 0.018 0.014 0.029 0.022
small-2s 0.007 0.038 0.255 0.254 0.000 0.346 0.021 0.003 0.014 0.019 0.054 0.039
small-4s 0.009 0.055 0.118 0.261 0.000 0.000 0.005 0.020 0.008 0.023 0.068 0.054
small-6s 0.012 0.047 0.208 0.000 0.000 0.001 0.017 0.000 0.006 0.007 0.030 0.041
large-2s 0.004 0.031 0.131 0.167 0.000 0.156 0.027 0.001 0.018 0.004 0.102 0.011
large-4s 0.007 0.039 0.127 0.066 0.000 0.211 0.016 0.002 0.015 0.017 0.009 0.043
large-6s 0.020 0.015 0.159 0.000 0.000 0.000 0.002 0.000 0.008 0.007 0.013 0.037

Table 10: Standard deviation of the sequence level accuracy results.

output sequences. This mostly corresponds to904

productivity type of compositional generaliza-905

tion, as the model needs to learn to reverse po-906

sition embeddings for longer sequences than907

seen during training.908

• Duplication (Dup): The input is a sequence909

of digits and the output should be the same910

sequence, repeated twice. Training contains911

sequences up to 16 digits, and test from 17 to912

24. Types of compositionality: Learning to913

repeat the input several times is not a particu-914

larly hard task for a Transformer, but we no-915

ticed that the difficult part was learning when916

to stop producing output (exactly after repeat-917

ing the input twice in this case). This problem918

was also noted in the work of (Csordás et al.,919

2021), and mostly corresponds to productivity920

type of compositional generalization.921

• Cartesian (Cart): The input contains two se-922

quences of symbols, and the output should923

be their Cartesian product. Training contains924

sequences of up to 6 symbols (7 or 8 for test-925

ing). Types of compositionality: this is a926

very challenging task that requires very de-927

manding productivity, as the model needs to928

learn to learn to compose the basic operation929

of pairing elements from both sets via two930

nested loops: iterating over each of the two931

input sets.932

• Intersection (Inters): Given two sequences 933

of symbols, the output should be whether they 934

have a non-empty intersection. Training con- 935

tains sets with size 1 to 16, and testing 17 936

to 24. Types of compositionality: the main 937

challenge in this dataset is to learn short-cut 938

rules such as “if the first set contains a4 and 939

the second set also contains a4 then the out- 940

put should be true”. However, the model 941

needs to learn to ignore these token specific 942

rules, and learn the general rule of finding two 943

identical tokens regardless of which specific 944

token they are, which could be seen as a form 945

of systematicity. Moreover, this needs to be 946

learned in a way that generalizes to longer 947

inputs (productivity). 948

• SCAN-length (SCAN-l): The length split of 949

the SCAN dataset (Lake and Baroni, 2018). 950

The SCAN dataset asks the model to learn to 951

interpret and execute natural language instruc- 952

tions with a limited vocabulary. For example, 953

if the input is “walk twice", the output should 954

be “I_WALK I_WALK“. There are a set of 955

primitive actions (walk, jump, etc.), and a set 956

of modifiers (twice, thrice, left, etc.) and com- 957

position operators (e.g., and), and the model 958

needs to learn how to compose and execute 959

all of those instructions to generate the out- 960

put sequence. In this specific length split, the 961

training and test sets are split by length (the 962
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Add AddNeg Reverse Dup Cart Inters SCAN-l SCAN-aj PCFG-p PCFG-s COGS CFQ
abs 236k 236k 236k 236k 238k 253k 238k 238k 337k 337k 402k 268k
rel-e 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
rel-b 236k 236k 236k 236k 238k 254k 238k 238k 337k 337k 402k 269k
rel-eb 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
rel2-e 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
rel2-b 236k 236k 236k 236k 238k 254k 238k 238k 337k 337k 402k 269k
rel2-eb 239k 239k 239k 239k 241k 257k 241k 241k 340k 340k 405k 272k
abs-c 241k 241k 241k 241k 242k 258k 243k 243k 341k 341k 407k 273k
rel-eb-c 243k 244k 243k 243k 245k 261k 245k 245k 344k 344k 410k 276k
rel2-eb-c 243k 244k 243k 243k 245k 261k 245k 245k 344k 344k 410k 276k
small-2 243k 244k 243k 243k 245k 261k 245k 245k 344k 344k 410k 276k
small-4 480k 480k 480k 480k 482k 498k 482k 482k 581k 581k 646k 513k
small-6 717k 717k 717k 717k 719k 735k 719k 719k 818k 818k 883k 750k
large-2 1.88m 1.88m 1.88m 1.88m 1.88m 1.92m 1.88m 1.88m 2.08m 2.08m 2.21m 1.95m
large-4 1.88m 1.88m 1.88m 1.88m 1.88m 1.92m 1.88m 1.88m 2.08m 2.08m 2.21m 1.95m
large-6 2.81m 2.81m 2.81m 2.81m 2.81m 2.84m 2.81m 2.81m 3.01m 3.01m 3.14m 2.87m
small-2s 125k 125k 125k 125k 127k 143k 127k 127k 226k 226k 291k 158k
small-4s 125k 125k 125k 125k 127k 143k 127k 127k 226k 226k 291k 158k
small-6s 125k 125k 125k 125k 127k 143k 127k 127k 226k 226k 291k 158k
large-2s 486k 487k 486k 486k 490k 521k 490k 490k 687k 687k 818k 552k
large-4s 486k 487k 486k 486k 490k 521k 490k 490k 687k 687k 818k 552k
large-6s 486k 487k 486k 486k 490k 521k 490k 490k 687k 687k 818k 552k

Table 11: Parameter counts for the models used in this paper.

test set contains the longest sequences and963

the training set the shortest ones). Types of964

compositionality: Overall, SCAN requires965

significant systematicity to be solved, and this966

split in particular focuses on productivity.967

• SCAN-add-jump (SCAN-aj): The add prim-968

itive jump split of the SCAN dataset (Lake969

and Baroni, 2018). In this split, the “jump”970

instruction is only seen during training in iso-971

lation (i.e., there is a training example “jump”972

! “I_JUMP”), but the test set contains this973

instruction heavily, and in combination with974

other constructs. Types of compositionality:975

this split in particular focuses more on system-976

aticity.977

• PCFG-productivity (PCFG-p): The produc-978

tivity split of the PCFG dataset (Hupkes et al.,979

2020). The PCFG dataset is a synthetic dataset980

where each example contains a set of opera-981

tions that need to be done to one or more input982

strings, and the model needs to learn to apply983

these operations and produce the final output.984

Operations include reversing, duplicating, get-985

ting the first element, etc. Types of compo-986

sitionality: this split in particular focuses on987

productivity, as test examples contain longer988

sequences of instructions than those seen dur-989

ing training.990

• PCFG-sytematicity (PCFG-s: The system- 991

aticity split of the PCFG dataset (Hupkes et al., 992

2020). Types of compositionality: this split 993

focuses on systematicity, by testing the model 994

recombining operations in ways never seen 995

during training. 996

• COGS: The generalization split of the COGS 997

semantic parsing dataset (Kim and Linzen, 998

2020). This is a semantic parsing dataset, 999

where the input is a sentence in natural lan- 1000

guage, and the output should be a logical rep- 1001

resentation of the sentence. Types of compo- 1002

sitionality: The generalization split contains 1003

combinations not seen during training, while 1004

most of these focus on systematicity (e.g., con- 1005

structions that had only been seen as subjects, 1006

now they are seen as objects), some part of the 1007

test set focuses on productivity (having deeper 1008

nesting of propositional phrases, for example). 1009

This, productivity type of generalization, is 1010

where our sequence tagging approach signifi- 1011

cantly outperforms previous approaches. 1012

• CFQ-mcd1 (CFQ): The MCD1 split of the 1013

CFQ dataset (Keysers et al., 2019). This 1014

dataset asks a model to learn how to translate 1015

delexicalized natural language queries into 1016

SPARQL. Types of compositionality: the 1017

MCD1 split of this dataset focuses specifically 1018

15



on systematicity, but more concretely, there1019

are two additional ways in which this dataset1020

is hard compositionally. First, solving this1021

dataset requires solving Cartesian products1022

(which is the reason for which we added the1023

separate Cartesian product task), since some1024

question contains constructions like: “Who1025

directed, played and produced movies M1,1026

M2 and M3”, which get translated into 91027

SPARQL clauses (the Cartesian product). Sec-1028

ond, SPARQL clauses are supposed to be pro-1029

duced in alphabetical order, hence the model1030

needs to learn how to sort.1031

Finally, table 7 shows the size of the training1032

and test sets for each dataset, as well as the size1033

of their vocabularies. For the vocabulary, we used1034

the union of the input and output vocabularies as1035

a unified vocabulary. We also show the number1036

of training epochs we performed in each dataset1037

(this was chosen as the number after which perfor-1038

mance stabilized with some initial models; it was1039

not tuned afterwards during the systematic evalua-1040

tion presented below).1041
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