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ABSTRACT

A recent line of work on black-box adversarial attacks has revived the use of transfer
from surrogate models by integrating it into query-based search. However, we find
that existing approaches of this type underperform their potential, and can be overly
complicated besides. Here, we provide a short and simple algorithm which achieves
state-of-the-art results through a search which uses the surrogate network’s class-
score gradients, with no need for other priors or heuristics. The guiding assumption
of the algorithm is that the studied networks are in a fundamental sense learning
similar functions, and that a transfer attack from one to the other should thus be
fairly “easy”. This assumption is validated by the extremely low query counts and
failure rates achieved: e.g. an untargeted attack on a VGG-16 ImageNet network
using a ResNet-152 as the surrogate yields a median query count of 6 at a success
rate of 99.9%. Code is available at https://github.com/fiveai/GFCS.

1 INTRODUCTION

The paper that introduced adversarial examples in computer vision (Szegedy et al., 2014) also
initiated the study of their transfer across models. This directly yielded two parallel lines of research
into “white-box” and “black-box” attacks on classification systems. The white-box attacks (e.g.
Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Carlini & Wagner (2017)) assumed full
knowledge of the victim model architecture and parameters, and would typically exploit the analytical
gradients of the network outputs with respect to the input image. These methods were primarily
concerned with demonstrating the existence of adversarial examples, as well as optimising criteria
such as their norms or the time spent computing them. The earliest black-box attacks (e.g. Papernot
et al. (2017); Liu et al. (2017)), on the other hand, assumed no access to the attacked model beyond
an end user’s ability to input images and receive output classifications. They sought to produce
adversarial examples on the victim model by transferring them from a known surrogate model.
This surrogate may have represented a model trained separately on a comparable problem or one
trained to mimic the victim through a sequence of online queries; the transfer attack would typically
comprise something as simple as a single step in the surrogate gradient direction. These methods
were concerned primarily with the discoverability and predictability of adversarial examples. The
key assumption underlying this branch of study was that different ML architectures, when trained on
sufficiently similar problems, would exhibit similar adversarial vulnerabilities at the same inputs. As
has become better understood and explained since (Olah et al., 2017; Jetley et al., 2018; Ilyas et al.,
2019b), this is equivalent to those networks learning similar feature responses to one another, i.e.,
learning similar solutions to the problem. Such attacks did demonstrate nontrivial success rates, and
thus, the partial validity of that hypothesis. However, the field widely acknowledged that there were
limits to their reliability, and sought alternatives with higher success rates.

To this end, Chen et al. (2017) and Bhagoji et al. (2018) introduced a modification of the threat model:
they assumed the victim to provide not only the top class prediction, but also the candidate class
scores. This relaxation eliminated the need for a surrogate, enabling the use of query-based methods
to numerically estimate the victim’s gradients directly. These approaches and their many descendants
are called “score-based” attacks. The common problem they all face, noted in the seminal works
above, is that direct numerical estimation of gradients is linear in the dimension of the input space.
Depending on the input image resolution, this ranges from being costly to being infeasible. Thus,
a core issue in score-based attacks is the need to limit the query count without compromising the
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Figure 1: Transfer of information from a surrogate to a target in GFCS: Gradient First, Coimage
Second. A sequence of optimisation steps is taken through the loss landscape of the target model, as
shown on the right. Each candidate direction q is supplied by the surrogate in one of two ways: either
through direct transfer of the surrogate’s own gradient qsur, or as a qco generated through a process of
coimage sampling described in Sec. 2.2. qtrue is the target’s true but inaccessible gradient. As shown
in Sec. 3.2, the method relies mostly on the directly transferred qsurs, using the qcos to avoid failure.

quality of the gradient estimate: in Chen et al. (2017) alone, proposals included coordinate descent,
basis transformation, coarse-to-fine optimisation, and priors on the gradient. The line of work which
followed (Ilyas et al., 2018; 2019a; Li et al., 2019; Liu et al., 2020; Guo et al., 2019b; Tu et al., 2019)
explored ways to improve the fundamental approach by experimenting with different optimisation
methods and priors. Strikingly, and perhaps surprisingly, one of the most successful efforts was
SimBA (Guo et al., 2019a), for “Simple Black-Box Attack”. Its name refers to the fact that it is an
especially basic form of coordinate descent which achieves competitive results despite its deliberately
simple approach: the greedy sequential assignment of signs to fixed-length steps along orthogonal
basis directions.

Though query-driven score-based black-box attacks were proposed as an alternative to transfer
methods, the two approaches are not incompatible with one another. They are actually complementary:
a query-based strategy can benefit from search directions that are more promising a priori, and a
transfer-based strategy can benefit from a flexible optimiser that allows it to dynamically correct
approximation errors and consider alternative hypotheses. This was first suggested in Cheng et al.
(2019) and Guo et al. (2019b), which were followed by Tashiro et al. (2020) and Yang et al. (2020).
In this paper, we argue that the core intuition of this branch of literature is sound. However, we also
argue that when combining transfer- and query-based approaches, it is crucial to recognise that the
failure of surrogate gradient transfer is generally overestimated, even by approaches which leverage it.
Transfer typically succeeds: it just requires an occasional source of appropriately chosen alternative
hypotheses within a sensible optimisation framework. It is this core insight that enables us to propose
a simple but powerful new algorithm which achieves state-of-the-art results against the most modern
competing methods on this problem, under their own experimental setup of minimising the number
of queries required to identify ℓ2-norm-bounded adversarial perturbations on specific networks. We
call our approach “GFCS: Gradient First, Coimage Second”, as its search directions represent either
the surrogate gradient of the adversarial loss itself, or, failing that, a random choice from the row
space of the surrogate Jacobian (called the “coimage”). The former case represents a standard transfer
attack; the latter involves searching the space of features to which the locally linearised surrogate
exhibits any response at all, and is itself a generalised form of gradient transfer. The optimisation
method is just a SimBA (Guo et al., 2019a) variation within a standard projected gradient ascent
(PGA) context. Key to the method’s efficiency is the identification of effective local search spaces of
low dimension: in the case of the common ImageNet Inception-v3 implementation, confining the
search to the coimage reduces the dimension from 299 · 299 · 3 (the input resolution) to 1000 (the
number of output classes). The loss gradient is of course one-dimensional.

Whether a threat model which assumes access to both class scores and surrogates is realistic from
a security perspective is a controversial question, and one we are agnostic to. Our interest in the
problem is analytical, and we have two main points to make. First, if this threat model is to be
considered to be of interest (as it has been in the prior art), then it should be understood just how
“easy” the problem as currently posed is: even a single surrogate reduces the query count to a handful.
Second, the fact that GFCS performs as it does while relying entirely on gradient transfer between
networks demonstrates that those networks are, in an important sense, very similar to one another.
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2 METHOD

2.1 PRELIMINARIES

The adversarial attack problem appears in slightly different variations. Generally, given a classifier
function f(x) : X → Y , the goal is to supply an adversarial example xadv ∈ X which, while “near” to
a given xin under some definition, is such that f(xadv) differs from f(xin) in a particular noteworthy
way. In image classification, we typically have the situation that X ⊆ RD and Y ⊆ RC , with f a
network mapping a D-dimensional input image to a C-dimensional class-score/logit vector. The un-
targeted attack objective is argmaxc f c(xadv) ̸= argmaxc f c(xin), i.e. that the top predicted class of
xadv is different from that of xin. The targeted attack objective is instead argmaxc f c(xadv) = t, mean-
ing that the net predicts a specific target class t other than the original prediction argmaxc f c(xin).

As the subfield has expanded to consider perturbation classes including non-rigid deformation (Xiao
et al., 2018), semantically insignificant distortion (Hosseini & Poovendran, 2018; Brown et al., 2018),
and movement within the estimated natural image manifold (Zhao et al., 2018; Hendrycks et al.,
2021), corresponding definitions of adversarial perturbation magnitude have been adopted, including
total variation and manual human assessment. The most common measure, used by all methods to be
compared against in this paper, is ∥xin − xadv∥p, with p ∈ {2,∞}: here, we use p = 2.

In some experimental setups, the attacker’s goal is to satisfy the adversarial objective while minimising
the perturbation magnitude. In others, it is to minimise the number of network evaluations performed
while finding any adversarial example with a perturbation magnitude within a pre-specified bound.
In black-box attacks, the latter setup is common, with “evaluations” being defined as queries to the
victim model: this is likewise our focus.

2.2 ALGORITHM

Algorithm 1 GFCS: Gradient First, Coimage Second

1: Input: A targeted image xin, loss function L, a victim classifier v, a set of surrogate models S , a
step length ϵ, and a norm bound ν.

2: Output: adversarial image xadv within distance ν of xin
3: xadv ← xin
4: Srem ← S
5: while xadv is not adversary do
6: if Srem ̸= ∅ then
7: Randomly sample surrogate model s from Srem
8: Srem ← Srem \ s
9: q← ∇xLs(xadv)

∥∇xLs(xadv)∥2

10: else ▷ None of the surrogate loss gradients work, so revert to ODS.
11: Randomly sample surrogate model s from S
12: Sample w ∼ U(−1, 1)C
13: q← dODS(xadv, s,w) ▷ See Eqn. 1 for definition.
14: for α ∈ {ϵ,−ϵ} do
15: if Lv(Πxin,ν(xadv + α · q)) > Lv(xadv) then
16: xadv ← Πxin,ν(xadv + α · q)
17: Srem ← S ▷ Reset candidate surrogate set to input set; resume using loss gradients.
18: break

The entirety of the proposed method is given in pseudocode as Algorithm 1. As indicated in Sec. 2.1,
the method takes a victim classifier v, an input image xin, and a norm bound ν. The projection
operator Πxin,ν confines its input to the ν-ball centred on xin: its inclusion in the algorithm represents
a standard projected gradient ascent (PGA) implementation. Additionally, the method requires a loss
function L, a set S of one or more surrogate models, and a step length ϵ representing the fixed length
of the perturbations to be attempted at each iterate1 along its candidate direction. The loss L can be
any function of the iterate that serves as a suitable proxy for the adversarial objective, as in Sec. 2.1:

1In optimisation, this term refers to any given intermediate value of the variable being optimised.
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the only requirement here is that it be once differentiable. In our implementation, we make the
popular and effective choice of the margin loss Lf (x) = f ct(x)− f cs(x) where cs = argmaxc vc(x)
and ct = argmaxc ̸=cs vc(x), i.e. the difference between the highest and second-highest (or, in the
targeted case, the target) class scores. Note that the class IDs ct and cs are defined by the ranking
according to v, but are evaluated on the net f parametrising the loss, which is either s or v depending
on the line of the algorithm (9 and 15, respectively). The natural assumption of a surrogate method is
that the surrogate will provide useful information about the victim, but there is no “hard” requirement
on the surrogates s ∈ S other than being once-differentiable functions mapping X → Y . The
definition of ODS direction dODS for network f and input x is, as in Tashiro et al. (2020),

dODS(x, f ,w) =
∇x(w

⊺f(x))

∥∇x(w⊺f(x))∥2
=

w⊺(∇xf(x))

∥∇x(w⊺f(x))∥2
, (1)

where w is sampled from the uniform distribution over [−1, 1]C . By definition, it is the normalised
gradient of a randomly weighted sum of all of the class scores. Equivalently, by linearity, it is a
randomly weighted sum of all of the class-score gradients (i.e. rows of the Jacobian matrix), which
are themselves a basis of the coimage of the linear approximation of f : the subspace which f exhibits
any nonzero response to.

As indicated in Sec. 1, the logic of the method is simple. At any given iterate, the method tries to
proceed in a SimBA-like manner by testing the change in adversarial loss at fixed-length steps along
candidate directions, projected back into the feasible set where necessary. It does so exclusively
using normalised loss gradients from the surrogates in the input set (drawn in random order, without
replacement), unless and until it has exhausted them at that iterate without success. As we will
demonstrate in Sec. 3.2, this intermediate failure state is seldom reached. If this state is reached,
however, the method instead randomly samples a surrogate (with replacement) and an ODS direction
from that surrogate, attempting a SimBA update each time, until an improvement in the loss is
realised. Once such a successful update occurs, the method resets the candidate surrogate set to the
input set and resumes using normalised loss gradients only. The method terminates on finding an
adversarial example or on exceeding an upper bound on the query count if one has been specified.

3 EXPERIMENTS

3.1 UNTARGETED ATTACKS

Experimental setup: We compare GFCS to the methods of Cheng et al. (2019); Tashiro et al. (2020);
Yang et al. (2020) by designing an experimental framework covering the key aspects of the original
experiments in the respective source works. We use each method to perform ℓ2-norm-constrained
untargeted attacks against the same 2000 randomly chosen correctly classified ILSVRC2012 vali-
dation images per victim network. A maximum query count of 10000 is set per example (beyond
which failure is declared), and the ℓ2 bound (enforced using PGA) is set to the commonly chosen√
0.001D, where D is the image dimension in the victim network’s native input resolution. The

victim networks are the commonly chosen VGG-16, ResNet-50, and Inception-v3. The experiments
are repeated for each of two choices of surrogate set: ResNet-152 alone (as in Cheng et al. (2019);
Yang et al. (2020)), and the set {VGG-19, ResNet-34, DenseNet-121, MobileNet-v2}, as in Tashiro
et al. (2020). The latter is omitted for LeBA (Yang et al., 2020), which does not admit non-singleton
surrogate sets. All networks used are pretrained models available via PyTorch/torchvision. Parameter
values of competitors are as they specify except where we note otherwise for reasons that will be
discussed below. LeBA is run in “train” mode on a held-out set of 1000 images and then evaluated
in “test” mode on the same set of 2000 used for all other methods. P-RGF always uses the adaptive
coefficient mode. P-RGF and ODS-RGF are based on our own PyTorch port of the reference P-RGF
code, which will be released along with this paper: no public implementation of ODS-RGF currently
exists otherwise. We include the surrogate-free (Andriushchenko et al., 2020) for comparison.

Results: Table 1 reports attack success rates and median query counts, and Fig. 2 plots cumulative
success counts against the maximum queries spent per example (CDFs, modulo normalisation).
Unlike prior work, we do not report means, as these are inappropriate for summarising the long-tailed
distributions resulting from these methods. Uncertainty is represented as standard error in Table 1 and
by 95% confidence intervals in Fig. 2, in both cases having been obtained via bootstrap sampling. Two
things are readily apparent in Table 1. First, all of the studied methods have very high success rates on
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(a) VGG-16; one surrogate.
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(b) ResNet-50; one surrogate.
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(c) Inception-v3; one surrogate.
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(d) VGG-16; four surrogates.
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(e) ResNet-50; four surrogates.
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(f) Inception-v3; four surrogates.

Figure 2: CDFs representing the number of successfully attacked examples at different query counts
when performing untargeted black-box attacks on VGG-16, ResNet-50, and Inception-v3 networks.

Table 1: Median query count for state-of-the-art untargeted black-box methods that make use of
surrogates. The missing entry at † indicates the LeBA code crashing before completing the full set of
images for ResNet-50.

Surrogates Method Median queries [Success rate]
VGG-16 ResNet-50 Inception-v3

1

SimBA-ODS 117 ± 5.1 [99.45%] 91.5 ± 3.2 [99.65%] 275 ± 14 [95.10%]
SimBA-ODS ϵ=2 15 ± 0.7 [99.65%] 11 ± 0.4 [99.90%] 36 ± 1.9 [98.50%]
P-RGF 128 ± 1.1 [99.95%] 62 ± 1.2 [100%] 282 ± 12 [99.25%]
P-RGF ϵ=0.5, SPD=10 48 ± 2.0 [99.90%] 16 ± 0.0 [99.95%] 90 ± 4.9 [99.00%]
ODS-RGF 44 ± 0.0 [99.95%] 33 ± 0.0 [100%] 77 ± 2.4 [99.95%]
SimBA++ 30 ± 3.0 [100%] 5 ± 0.5 [100%] 59 ± 3.4 [99.4%]

LeBA 8 ± 0.74 [100%] —† 27 ± 3.1 [99.45%]
GFCS (ours) 6 ± 0.3 [99.90%] 4 ± 0.4 [99.85%] 18 ± 1.1 [98.60%]
GF, no CS (ablation) —"— [58.55%] —"— [75.90%] (failure) [38.25%]

4

SimBA-ODS 68 ± 2.2 [99.90%] 108.5 ± 4.5 [99.80%] 227 ± 9.9 [96.65%]
SimBA-ODS ϵ=2 10 ± 0.3 [100%] 14 ± 0.5 [99.90%] 29 ± 1.4 [100%]
P-RGF 64 ± 0.6 [99.95%] 66 ± 0.5 [100%] 232 ± 4.7 [99.15%]
P-RGF ϵ=0.5, SPD=10 16 ± 2.3 [100%] 24 ± 1.2 [100%] 60 ± 2.1 [99.60%]
ODS-RGF 33 ± 0.0 [100%] 44 ± 0.0 [100%] 77 ± 5.5 [100%]
GFCS (ours) 4 ± 0.2 [100%] 4 ± 0.0 [99.95%] 9 ± 0.5 [99.40%]
GF, no CS (ablation) —"— [98.65%] —"— [96.50%] —"— [80.20%]

this problem, against all of the victim networks: the lowest rate observed is 95.10% for SimBA-ODS
on Inception-v3 with ResNet-152 as the lone surrogate. Second, GFCS incurs an extremely low
median query count while achieving a similarly high success rate to all other methods. This fact can
be seen in more detail in the single-surrogate results of Figs. 2a, 2b, and 2c, in which GFCS clearly
dominates the low-query regime, and even more strikingly so in the multi-surrogate Figs. 2d, 2e, and
2f. This is despite GFCS’s simplicity: compare Alg. 1 against, for example, LeBA’s training of its
surrogate in a separate step. Note that our choice of SimBA-ODS as the coimage sampler is partly
about simplicity: as the results demonstrate, a very small number of failures are expected when it
is used on its own, and we effectively inherit them. At the cost of a bit of added complexity in the
implementation, e.g. ODS-RGF could be substituted, and would likely lead to further improvements
in the failure rates, while still representing a form of GFCS. There is an additional phenomenon of
note: Table 1 also demonstrates the dependence of the performance of existing methods on their own
choices of parameter values. Strikingly, most of the empirical benefit of ODS-RGF over the earlier
P-RGF is due to the different choice of default parameters in the respective methods: when P-RGF
simply uses the default parameters of ODS-RGF, it actually considerably outperforms it in terms of
median query count on ResNet-50, at the cost of a 0.05% increase in the single-surrogate failure rate.
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(a) Inception-v3; one surrogate.
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(b) Inception-v3; four surrogates.

Figure 3: Breakdown of the total query count for the proposed method, GFCS: Gradient First,
Coimage Second. The x-axis represents the number of queries for a successful attack required by the
gradient part of the method, and the y-axis the number required by the coimage part. Histograms on
the top and right sides of the scatter plots represent marginal empirical distributions.

SimBA-ODS benefits dramatically from an order-of-magnitude increase in its step-size parameter.
This, in and of itself, serves as further evidence of our central thesis that transfer is generally pursued
too timidly in this context. Of course, one can be too aggressive: see the ablation lines in the table
representing the exclusive use of loss gradients, i.e. “GF without the CS”.

3.2 ANALYSIS OF ALGORITHM BEHAVIOUR

To delve deeper into the results of Sec. 3.1, we plot each attacked example as a 2D point whose
x-coordinate is the number of queries expended by the surrogate loss gradient block of the algorithm,
and whose y-coordinate is the analogous count for the coimage block. This gives the scatter plot
of Fig. 3, which is supplemented by marginal histograms corresponding to the axes opposite them.
The figure shows results obtained using Inception-v3 as the victim: see Appendix A.3 for analogous
figures for VGG-16 and ResNet-50. Note that the axes of the main scatter plots are log-log, while
those of the marginal histograms are linear-log. Some phenomena are readily evident. For one, there
is a large fraction of examples (represented by the dense horizontal rows of dots at the bottom of the
plots) that succeed within a very low number of queries (on the order of 1-10), which are entirely
or almost entirely due to the surrogate gradient transfer, with ODS used seldom or not at all. As
these low-query clusters are extremely dense, the corresponding marginals should be consulted (best
under zoom) in order to quantify them. For another, the number of examples outside of this regime
falls considerably when the four-surrogate set is used instead of ResNet-152 on its own, as can be
seen by comparing the left and right sides of the figure. It is clear that the examples that rely on the
interplay between the gradient- and coimage-based direction generators are reduced to a nontrivial
(i.e. sufficient to affect the failure rate if not handled) but nonetheless relatively small group. Overall,
there is an order-of-magnitude difference between surrogate loss gradient queries and ODS queries in
the points extending away from the dense low-query cluster at the bottom, i.e. the examples that rely
on both submethods. That is, when the ODS block is required, it typically requires far more queries
to progress the optimiser than in the much more common cases in which the gradient suffices.

3.3 ON THE IMPORTANCE OF INPUT-SPECIFIC PRIORS

We have demonstrated that surrogate CNNs are sufficient to craft extremely effective score-based
black-box attacks on other CNNs trained on the same problem. We now make an empirical argument
that such surrogates are likely necessary in achieving this level of performance. That is, the location-
specific information encoded by a surrogate network, in which the gradient prior is a function of the
input image-space point, increases attack effectiveness beyond that available to methods that use
location-independent priors and infer location-specific properties online. We do not consider this to be
a trivial point. The phenomenon of universal adversarial perturbations (Moosavi-Dezfooli et al., 2017)
demonstrates a level of location agnosticism in adversarial vulnerability, and the original SimBA
method (Guo et al., 2019a) on which GFCS is based is itself a demonstration of the remarkable
effectiveness of online determination of the signs of predetermined basis vectors. The latter paper
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(a) VGG-16.
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(b) ResNet-50.
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(c) Inception-v3.

Figure 4: Comparison between GFCS, which evaluates surrogate gradients locally, vs. flavours of
SimBA which build location-agnostic gradient priors. Please refer to Sec. 3.3.

itself proposed, as future work, “to further investigate the selection of different sets of orthonormal
bases, which could be crucial to the efficiency of [the] method by increasing the probability of finding
a direction of large change.” A priori, it is unclear what the added benefit of a surrogate network will
be, vs. a well-chosen adversarial subspace with a prior ordering on its basis vectors.

To study this within our SimBA-based optimisation context, we propose a variant called “SimBA-
PCA”, which is defined by the approach it takes to generating the SimBA basis matrix. Following the
method used in Moosavi-Dezfooli et al. (2017); Jetley et al. (2018), we gather adversarial examples2

over a sample input set as columns in a matrix, then compute that matrix’s SVD. That is, we produce
the ordered set of vectors that would be expected to represent the ℓ2-optimal basis for reproducing
the adversarial examples on the given set, when constrained to follow SimBA’s iterative adversary-
building optimisation procedure. We then compare this against SimBA using both the canonical pixel
and DCT bases in random order, and GFCS. An an interesting aside, we also include the result of
using the procedure on raw images directly, i.e. using the principal components of the input data as the
search directions. All of these methods are placed within the same norm-bounded PGA framework.

Fig. 4 demonstrates the results of this experiment. As predicted, the gradient-based basis (“SimBA-
PCA-gradients”) comfortably outperforms the canonical pixel basis (“SimBA pixel”), as well as the
principal image components (“SimBA-PCA-images”), the latter fact indicating that the information
encoded in adversarial directions indeed goes beyond simple correspondence to modes of data
variation. Note, though, that the principal data directions do outperform the naı̈ve pixel basis,
unsurprisingly revealing nontrivial correlation between modes of data variation and features learned
by the network. However, despite forming a “natural adversarial basis”, the adversarial singular
vector matrix does not generally outperform the DCT basis: their results are very close, with the
DCT basis sometimes slightly outperforming. That is, the DCT basis with a suitably tuned frequency
count appears to already represent the limit of what a SimBA-style iteration through a single fixed
orthonormal basis can accomplish, and the SimBA-PCA procedure has at best recovered an equivalent
to it. GFCS, on the other hand, is far more efficient than all of the compared methods, demonstrating
the performance that is available when it is possible to condition the prior on the iterate, i.e. to use local
gradient information. This is one way of viewing why it is that the use of surrogates is as powerful
as it is. This is despite the fact that these surrogates, rather than having been originally designed to
simulate their victims, were actually supposed to have represented architectural alternatives to them.

3.4 TARGETED ATTACKS

We also test our method in the targeted attack scenario. The setup is the same as in Sec. 3.1, except as
noted otherwise. For these experiments, instead of the margin loss, we use the log loss of the target-
class softmax score, as is often chosen for targeted attacks: Lf (x) = log pt, where pt =

eft(x)∑
c efc(x) .

That is, the goal of the attacker is to push the target-class confidence up at the expense of all other
classes generally, rather than suppressing a specific source class. We perform multiple runs for each
setting, with the target class for each image chosen at random (uniformly) from all ImageNet classes
other than the ground truth. Neither Cheng et al. (2019) nor Yang et al. (2020) provide results or code
for targeted attacks. While Tashiro et al. (2020) report targeted attack numbers for both P-RGF and

2We have experimented with various methods of generating the source adversaries, all of which yield
indistinguishable results. Here, we simply use the gradients of random class scores, a basic targeted FGM.
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Figure 5: CDFs showing the number of successfully attacked examples at different query counts
when performing targeted black-box attacks on 1000 ImageNet images, with four surrogates.

their own ODS-RGF, no supporting implementation is available. As noted before, our own P-RGF
and ODS-RGF results in Sec. 3.4 were produced using a port of the public P-RGF repository, which
only supports untargeted attacks (a restriction that carries through to the ODS-RGF modification we
have made to it). We thus work with the provided SimBA-ODS implementation, comparing it in
isolation to GFCS, in which it serves as the backup method. The results are displayed in Fig. 5. As
can be seen, even under this more difficult attack scenario, under which the more aggressive transfer
strategy of GFCS might be expected to suffer, our method retains its considerable advantage.

While the targeted attack method of Huang & Zhang (2020) is both powerful and conceptually related,
it is architecturally tied to the ℓ∞ norm in its given formulation, and thus not appropriate for our
ℓ2-bound comparisons. Further, given a trained surrogate, the method requires that one then train the
method’s adversarial encoder-decoder network on a held-out validation set: in the case of targeted
attacks, this must be done per target class, as acknowledged by the authors in the original work. Our
approach, by contrast, uses the surrogate directly without any issue, on any target class.

4 RELATED WORK

Cheng et al. (2019) and Guo et al. (2019b) were the first to, in their words, “bridge the gap between
the transfer-based attacks and the query-based ones” in the score-based black-box context, noting
that earlier methods “often suffer from low attack success rates (in the transfer case) or poor query
efficiency (in the query-based case) since it is non-trivial to estimate the gradient in a high-dimensional
space with limited information”. Guo et al. (2019b) did this by supplying a bandits optimiser (as
used in Ilyas et al. (2019a)) with surrogate gradient estimates at each iteration, diversifying the
proposed search directions through the use of test-time dropout and drop-layer. Cheng et al. (2019)
presented a variant of random gradient-free (RGF) optimisation using the surrogate gradient as
a biasing prior (P-RGF) and featuring a dynamically estimated bias parameter, albeit one whose
optimal value itself depends on the unknown target gradient. The Output-Diversified Sampling (ODS)
approach of Tashiro et al. (2020) sampled gradients of randomly weighted logit sums over multiple
surrogate models in order to generate search directions for variations on SimBA, RGF, and some
Boundary Attack (Brendel et al., 2018) variants, demonstrating improvement over all of the base
methods. Yang et al. (2020) also proposed a surrogate-enhanced version of SimBA (“SimBA++”),
sampling candidate pixels to perturb according to the distribution specified by the corresponding
magnitudes of the surrogate gradient components, as well as making periodic attempts to directly
transfer surrogate gradients estimated using smoothing and momentum. When combined with “High
Order Gradient Approximation”, a method for dynamically updating the surrogate by matching the
first- and zeroth-order victim model behaviour, it is dubbed “Learnable Black-Box Attack” (LeBA).

In addition to the above, we review relevant works on black-box attacks, particularly score-based
methods that use (possibly learned) prior information and/or alternative optimisers. When they feature
a relevant concept, we also include variations of the Boundary Attack method of Brendel et al. (2018),
which avoid requiring scores in exchange for much higher query counts:

Frequency/scale priors: As noted by (Chen et al., 2017; Bhagoji et al., 2018), in order to be practical,
any black-box method that relies on gradient estimation must have an approach to effectively reduce
the intrinsic dimension of the estimate space. Guo et al. (2019a; 2020) use low-frequency DCT
dimensions for this purpose. The Boundary Attack variant of Brunner et al. (2019) uses Perlin noise
similarly, and the Gaussian smoothing of the gradient in Yang et al. (2020) is conceptually related.
Also closely related to the low-frequency prior is the use of spatial downsampling, whether applied
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to the image or its gradient, and whether implemented through pooling, interpolation, or striding:
Tu et al. (2019); Ilyas et al. (2019a); Li et al. (2019); Wang et al. (2021) all involve a version of it.
Coarse-to-fine approaches, in which results at a coarser scale either solve the problem or initialise the
optimiser of a finer one, appear in Moon et al. (2019); Al-Dujaili & O’Reilly (2020).

Data distribution modelling: Li et al. (2019) assumes the ability to parametrically model an
adversarial distribution in the vicinity of the input point. Dolatabadi et al. (2020) replaces this
parametric model with a normalising flow model trained on clean data. Tu et al. (2019) represents
the data using an autoencoder and conducts the attack in its latent space. Huang & Zhang (2020)
likewise conducts a latent-space attack, but in that of an encoder-decoder network trained to output
adversaries on a source network. Ru et al. (2019) attempts to learn the latent-space dimension itself.

Attention: Wang et al. (2021) uses the output of CAM (Zhou et al., 2016) on a proxy net as a map of
pixels to attack. In Brunner et al. (2019), a similar map is derived from the difference between the
adversarial and original images, and used to weight the sampled perturbation elementwise.

Gradient/feature priors: The use of gradient priors in Guo et al. (2019b); Cheng et al. (2019);
Tashiro et al. (2020); Yang et al. (2020) is discussed above, and the transfer-based approaches Papernot
et al. (2017); Liu et al. (2017) are of course fundamentally based on this. Besides these, the method
of Brunner et al. (2019) uses the gradient of a surrogate model to bias the orthogonal perturbation
used in Boundary Attack, stating, “even surrogate models that are too weak for direct transfer attacks
can be used in our framework”. Yan et al. (2021), also a Boundary Attack variant, attempts to learn to
mimic the gradients of a victim net using a customised pre-trained policy network. Huang & Zhang
(2020) learns a latent space of transferable adversarial features from its surrogate. Andriushchenko
et al. (2020) supplies a bespoke feature bank which essentially transfers empirical domain knowledge
(i.e. features determined to be likely to fool CNNs), both in the initialisation (vertical stripes) and the
feature choice (homogeneous squares in the ℓ∞ case, pairs of opposite-signed “decaying peaks” in
the ℓ2). Sahu et al. (2020) attempts to perform a “black-box FGSM” by learning correlations between
components of the loss function gradient within a Gaussian Markov random field framework. The
“gradient priors” of Ilyas et al. (2019a) essentially amount to momentum and downsampling, and do
not represent the sort of “flexible gradient transfer” we are otherwise discussing here.

Optimisation algorithms: Again, a standard optimisation framework for black-box score-based
attacks is ascent on gradients estimated via numerical derivatives in guessed directions, possibly
using enhancements such as priors and/or simplifications such as coordinate ascent. We consider
the aforementioned SimBA variants (including the method we present) to essentially be of this type.
Variations on or alternatives to this approach have included bandits (Ilyas et al., 2019a; Guo et al.,
2019b), Natural Evolution Strategies (NES) (Li et al., 2019; Huang & Zhang, 2020; Dolatabadi
et al., 2020) evolutionary algorithms (Liu et al., 2020; Wang et al., 2021), Bayesian optimisation
(Ru et al., 2019; Shukla et al., 2019), and training of a policy network by REINFORCE (Yan et al.,
2021). Al-Dujaili & O’Reilly (2020) uses a custom “flip/revert” approach based on checking the
overall effect of grouped sign changes to pixel perturbations. Assuming submodularity, Moon et al.
(2019) uses the max-heap-based “local search algorithm” to alternate between greedily inserting
and removing elements defining a partition between oppositely signed perturbation pixels. Shi et al.
(2019) comprises a set of heuristics meant to reduce the norms of attacks based on transfer from
surrogate models: many of these are in principle applicable to attack vectors obtained otherwise.

5 CONCLUSION

We have demonstrated that score-based attacks using surrogates are in fact easy. By “easy”, we mean
that a very high success rate is achievable within a very low number of queries to the victim model,
using an algorithm, GFCS, that is simple to both describe and implement. Further, this algorithm
is based on a fairly direct type of transfer: it relies first and foremost on transfer of loss gradient
directions from the surrogate to the target, falling back to transferring other combinations of features
locally significant to the surrogate. One implication of this is that all of the examined surrogate and
target networks are in fact similar to one another in the sense that the algorithm not only assumes, but
entirely relies on. An interesting avenue for future work is to determine whether there are noteworthy
situations in which the assumption of good feature transfer no longer holds, and the attack no longer
suitable: this will be tantamount to identifying classes of networks that genuinely learn distinct
responses from one another.
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ETHICS STATEMENT

Our work introduces a novel (and very effective) black-box attack. As with all adversarial attacks, the
method exposes a way of getting a target/victim network to issue responses to inputs that are almost
certainly unlike those intended by its designer. Therefore, were an actual harmful practical application
of such an attack to be identified in which the assumptions of this method (i.e. that the victim exposes
its decision scores, and that a viable surrogate can be found) were satisfied, the publication of this
method could in principle facilitate it. As is it not currently well understood how to build useful
networks that do not have the sorts of properties being exploited here, there is no straightforward
“defence”. However, the primary perspective from which we approach this work is that of network
analysis. A key goal is to make practitioners aware of potential risks their machine learning systems
are exposed to, especially and most realistically unintended failure, and to motivate the community to
design networks that are more robust, predictable, and comprehensible.

REPRODUCIBILITY STATEMENT

Code and data: We accompany this submission with the code implementing the proposed GFCS
method. The code includes, in a utility file, lists of IDs of the ImageNet validation images used
in the experiments, to allow full reproduction. Note that Algorithm 1 itself presents a complete
and implementable description of the algorithm. We are also publicly releasing all code needed
to reproduce all of the results in our paper. This will include details of any changes made to the
released code of competing methods to standardise the comparison, including the issues noted in
Appendix A.2.

Statistical significance: As described in Sec. 3.1, we report uncertainty for the results of all the
reported methods, for all of the experiments. Moreover, we double the size of the test set typically
used in the literature (and keep it fixed across competing methods).

Hyperparameters: Our method contains a single tunable hyperparameter (the step length ϵ). As
discussed in Appendix A.4, we chose its value on a held-out set and kept it fixed across all of
the experimental configurations. For the competing methods, we have used the provided source
code (or provided our own implementation when none existed, as and when noted) and the default
hyperparameters, alongside any hyperparameter choice we found to work better than the default(s).
For instance (see Appendix A.4), for SimBA-ODS, we found that ϵ = 2.0 is significantly better than
ϵ = 0.2, which is the default used in Tashiro et al. (2020).
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A APPENDIX

A.1 COIMAGES AND DIMENSION REDUCTION

The assumption of local linearity is ubiquitous in the study of deep networks, and particularly
adversarial attacks on them. A simple way of explaining the upper bound on the dimension of the
coimage of a network’s linear approximation is through the rank-nullity theorem. This points out that
for linear transformation T mapping finite-dimensional vector space V to vector spaceW , rank(T ) +
nullity(T ) = dim(V), where rank(T ) := dim(image(T )) and nullity(T ) := dim(kernel(T )). That
is to say, the dimension of the input subspace that has any effect on the output (rank(T )) is no greater
than that of the output space (because dim(image(T )) ≤ dim(W)), and the dimension of the input
subspace that has no effect on the output (nullity(T )) is at least equal to the difference between the
input and output dimensions (because nullity(T ) = dim(V)− rank(T ) ≥ dim(V)− dim(W)). To
make this more concrete, in the case of a standard ImageNet Inception-v3 network, V = R299∗299∗3

and W = R1000, and so in the linear approximation, rank(T ) = dim(coimage(T )) ≤ 1000, and
nullity(T ) ≥ 267203. Under the assumption that the features to which a surrogate is locally sensitive
will largely transfer to a target network, naı̈ve search of the input space is thus extremely wasteful.

This is the key issue which limits the preprint of Ma et al. (2020), which contains some similarities
to our method in its preference for surrogate gradient transfer within a SimBA-like optimisation
context. The crucial difference lies in their attempt to use standard RGF gradient estimation in order
to progress optimisation when surrogate loss gradients fail, thus falling prey to the inherent issue with
estimating gradients in high-dimensional input spaces pointed out in this context as far back as Chen
et al. (2017). The dramatic difference in result quality between the two methods owes to this fact.

A.2 IMPLEMENTATION DETAILS

As explicitly written in Alg. 1 and discussed in Sec. 2.2, the SimBA-style search is done within a
standard PGA projection of the update candidate onto the feasible set, to avoid the common evaluation
issue in the literature in which SimBA is punished ex post facto for violating a norm bound that the
method was not originally designed to account for. Our method thus avoids this issue by design, but
we further note that none of the evaluations we perform on other methods involve this sort of practice:
if a bound is to be imposed, a method should always be modified in a straightforward manner to
account for it, rather than being deemed to have failed after the fact.
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(a) ResNet-50; one surrogate.
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(b) ResNet-50; four surrogates.
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(c) VGG-16; one surrogate.
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(d) VGG-16; four surrogates.

Figure 6: Breakdown of the total query count for the proposed method, GFCS: Gradient First,
Coimage Second. The x-axis represents the number of queries required for a successful attack by the
gradient part of the method, while the y-axis represents the number required by the coimage part.
Histograms on the top and right sides of the scatter plots represent marginal empirical distributions.
These plots correspond to the results depicted in Fig. 2.

On the other hand, our study of the implementations of competing methods has shown that some
of them unnecessarily hobble their own performance by using surrogates with domains that differ
from that of the target model without appropriately including interpolation between the domains.
This typically shows up when Inception-v3, which is trained to accept an input in R299∗299∗3, is
attacked using networks with the more common input domain ofR224∗224∗3: adaptive pooling layers
prevent crashing, but do not fix the issue of feature scale mismatch. As such, each surrogate in our
method should be considered to contain an differentiable bilinear interpolation module as an initial
layer, thus producing appropriately mapped gradients in the target domain on backpropagation. In the
spirit of fair comparison, we implement this option for competitors as well. Additionally, as of this
writing, the public LeBA implementation contains non-standard pre-processing of the input images:
we replace this with standard practice, again to facilitate fair comparison against other methods.

Finally, note that when Lf (x) is the margin loss, its normalised gradient is just a special case of
dODS(x, f ,w) in which wct ← 1, wcs ← −1, and wc ̸∈{cs,ct} ← 0. In our experimental setup, all
methods are run on sets of images that, while otherwise randomly selected from the ILSVRC2012
validation set, are guaranteed to be correctly classified by each target network. Thus, there is never
any difference between cs and the ground-truth label in the untargeted attack case.

A.3 ADDITIONAL RESULTS FOR SECTION 3.2

The scatter plots and empirical marginal distributions in Fig. 6 complete the results of Sec. 3.2 and
Fig. 3 from the main paper, extending the same analysis to ResNet-50 and Inception-v3 architectures.
A very similar trend can be observed: 1) most of the examples are successfully attacked with a
handful of queries, 2) the low count is largely due to the surrogate gradient transfer, and 3) using four
surrogates amplifies the two previous phenomena.
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A.4 ON THE STEP LENGTH ϵ
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Figure 7: The figure illustrates two sets of curves. The solid curves represent the median query
count required to successfully attack the three architectures as a function of the step length, while the
dashed curves show the success rate.

The simple method we propose in Algorithm 1 accepts a single hyperparameter: the step length ϵ
(line 14), which indicates the length of the perturbations to be attempted at each iterate along its
candidate direction. We chose 2.0 as the default value for our experiments by performing a small grid
search over a held-out set (disjoint from the 2000 examples used in the experiments of the main paper).
Results for the three architectures used as victim (and ResNet-152 as the single surrogate) are shown
in Fig. 7. Note that the figure has two y-axes and two sets of curves: solid and dashed curves should
be considered looking at each axis on the left and right hand side of the plot, respectively. Clearly,
better performance can be obtained by separately tuning this hyperparameter for each architecture.
Instead, we simply chose a fixed value that is reasonable for all models, balancing the query count
and success rate. Note also the fact that it is possible to achieve an even lower query count if one is
willing to sacrifice about 1% of the success rate.

We observed that this choice of ϵ is also significantly better than the default one made by SimBA-
ODS (Tashiro et al., 2020) (i.e. 0.2), and have reported results for both in our experiments.

A.5 EXPERIMENTS WITH ℓ2 NORM BOUND ν = 5.0

We repeat the experiments of Sec. 3.1 (whose results are displayed in Fig. 2), but instead using the
norm bound of ν = 5.0 sometimes used in ℓ2 adversarial attack experiments on ImageNet networks
with input domains of size [224, 224, 3], such as VGG-16 and ResNet-50. This is roughly a factor
of 2 smaller than the bound of ν =

√
0.001D used by our competitors and ourselves in the main

experiments. The results of this experiment are given in Fig. 8. We see, as before, that GFCS
comfortably dominates the low-query regime in all cases. In the single-surrogate cases, both GFCS
and SimBA-ODS saturate at a slightly lower success rate than some competitors, including ODS-RGF.
As already pointed out in Sec. 3.1, GFCS uses SimBA-ODS as its coimage sampler for the sake of
simplicity, and inherits a small number of failure cases from it in some circumstances. This can easily
be alleviated in exchange for a bit of additional complexity in the algorithm’s implementation by
using ODS-RGF to do coimage sampling.

A.6 EXPERIMENTS ON CIFAR-10

We again repeat the main untargeted attack experiment, this time using CIFAR-10 as the dataset,
with the target and surrogate networks sourced from https://github.com/akamaster/
pytorch_resnet_cifar10. We use ResNet-110 as the target, and the much simpler ResNet-20
as its single surrogate. The ℓ2 norm bound is again set to ν =

√
0.001D, which for CIFAR-10

≈ 1.75. Fig. 9 demonstrates the results. All methods completely solve the problem well within the
10K query limit: we focus the plot on the first 500 queries. This problem is easier than the main
ImageNet version studied in this work, but GFCS nonetheless retains its relative dominance.
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(a) VGG-16; one surrogate; ν=5.0.
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(b) ResNet-50; one surrogate; ν=5.0.
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(c) VGG-16; four surrogates; ν=5.0.

20 50 100 1000 10000
Queries per image

800

1000

1200

1500

1700

2000

N
um

be
r

fo
ol

ed

GFCS (ours)
SimbaODS, ε = 2.0
P-RGF, ε = 0.5, SPD = 10
ODS-RGF

(d) ResNet-50; four surrogates; ν=5.0.

Figure 8: CDFs representing the number of successfully attacked examples at different query
counts when performing untargeted black-box attacks on VGG-16 and ResNet-50, with one or four
surrogates, under ℓ2 norm bound ν = 5.0.

A.7 ATTACKING A HARDENED NETWORK

As a final additional experiment, we repeat the four-surrogate untargeted attack of Sec. 3.1, using
the adversarially trained Inception-v3 of Kurakin et al. (2017) (as provided by https://github.
com/rwightman/pytorch-image-models) as the victim. The test set in this case consists
of 800 ImageNet images correctly classified by the victim model. This model has been hardened
on single-step adversarial attacks, and, as acknowledged by Kurakin et al. (2017) in their original
presentation of it, is vulnerable to iterative white-box attacks. As we demonstrate in Fig. 10, it is also
vulnerable to well-designed score-based black-box surrogate attacks, with GFCS again proving the
most efficient of the attack methods.

20 50 100 200 500
Queries per image

1800

1850

1900

1950

2000

N
um

be
r

fo
ol

ed

GFCS (ours) ε = 0.3
SimbaODS, ε = 0.3
P-RGF, ε = 0.3, SPD = 10
ODS-RGF, ε = 0.3, SPD = 10

Figure 9: CDFs representing the number of successfully attacked examples (from CIFAR-10) at
different query counts when performing untargeted black-box attacks on a ResNet-110 network using
a ResNet-20 surrogate.
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Figure 10: CDFs representing the number of successfully attacked examples at different query counts
when performing untargeted attacks on an adversarially trained Inception-v3, using four surrogates.
The target set in this case consists of 800 ImageNet images correctly classified by the adversarially
trained victim network.

A.8 BREAKDOWN ANALYSIS FOR TARGETED ATTACKS

Fig. 11 depicts the query breakdown for the targeted attack experiment of Sec. 3.4. Fig. 5 has already
demonstrated that GFCS outperforms its competitors dramatically on this problem: the breakdown
sheds light on how it is able to solve this difficult problem efficiently. The trend is broadly similar to
that in the analogous plots for the untargeted attacks: a large number of examples are solved entirely
using loss gradient transfer, while the others rely on the backup at least some of the time. What
is remarkable about this plot relative to those of the untargeted attacks is that the large number of
loss-gradient-only examples are a large minority: more of the 1000 attacked images require some use
of coimage sampling than do not, in this case. The loss-gradient transfer is crucial to the considerable
outperformance of GFCS over SimBA-ODS seen in Fig. 5, while the use of SimBA-ODS as a backup
is critical in preventing the overall method from failing the majority of the time.
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(a) VGG-16; four surrogates.
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(b) ResNet-50; four surrogates.

Figure 11: Breakdown of the total query count for GFCS, as in Figs. 3 and 6, for the targeted attack
experiments whose results are depicted in Fig. 5. See the caption of Fig. 3 if a reminder of what the
figure depicts is required.
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