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Abstract

Language model activations entangle concepts that mediate their behavior, making
it difficult to interpret these factors, which has implications for generalizability
and robustness. We introduce an approach for disentangling these concepts with-
out supervision. Existing methods for concept discovery often rely on external
labels, contrastive prompts, or known causal structures, which limits their scala-
bility and biases them toward predefined, easily annotatable features. In contrast,
we propose a new unsupervised algorithm that identifies causal differentiating
concepts—interpretable latent directions in LM activations that must be changed to
elicit a different model behavior. These concepts are discovered using a constrained
contrastive learning objective, guided by the insight that eliciting a target behavior
requires only sparse changes to the underlying concepts. We formalize this notion
and show that, under a particular assumption about the sparsity of these causal
differentiating concepts, our method learns disentangled representations that align
with human-interpretable factors influencing LM decisions. We empirically show
the ability of our method to recover ground-truth causal factors in synthetic and
semi-synthetic settings. Additionally, we illustrate the utility of our method through
a case study on refusal behavior in language models. Our approach offers a scalable
and interpretable lens into the internal workings of LMs, providing a principled
foundation for interpreting language model behavior.

1 Introduction

As language models (LMs) grow more capable and complex, there is an increasing need for inter-
pretability methods to shed light on human-interpretable factors that mediate LM behavior on a given
task. Consider the following running example:

Example 1 (Income prediction using LMs). In a set of prompts, each prompt xn consists of a
candidate’s bio followed by an instruction asking an LM to assess whether the candidate earns a
six-figure salary. Suppose p(yes|xn) is high for bios corresponding to high-income occupations
(e.g., lawyers and doctors) and low for bios corresponding to low-income occupations (e.g., painters
and teachers). But for medium-income occupations (e.g., accountants and lecturers), the model’s
behavior varies by gender, leading to higher p(yes|xn) for male-associated bios and lower p(yes|xn)
for female-associated ones.
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Figure 1: M represents a high-level model that explains the language model’s behavior c in terms of
latent mediating concepts z, such that sparse interventions to mediating concepts suffice to change
model behavior. Instead of assuming access to the high-level model M, our work disentangles the
learned representation ẑ with the key assumption that causal differentiating concepts are axis-aligned.

In this example, the different ranges of p(yes|xn) give rise to four distinct behavior classes, and the
candidate’s gender and occupation are the “concepts” that mediate this behavior. These patterns
may emerge due to correlations present in the data used to train the language model. This high-level
model of the LM’s behavior is illustrated in Figure 1(a). In this paper, we focus on a key aspect of
interpretability research: finding alignments between the activations of an LM (e.g., token embeddings
at different layers) and mediating concepts (e.g., gender and occupation).

The challenge in directly interpreting individual neurons or embedding dimensions as potential
concepts is that LM activations generally entangle such concepts (Elhage et al., 2022; Geiger et al.,
2024b). This necessitates a mapping that effectively “inverts” activations back into the space of
disentangled concepts. The need for such interpretability tools has led to a suite of methods, such as
linear probes (Elazar et al., 2021), contrastive activation addition (CAA) (Rimsky et al., 2024), and
distributed interchange interventions (DII) (Geiger et al., 2024b) that learn mappings from activations
to ground-truth concepts via various forms of supervision (e.g., concept labels, contrastive prompts,
causal model over concepts). While these methods are effective at finding interpretable concepts
encoded in LM activations (Wu et al., 2025), the need for supervision introduces a bias toward
inferring simple concepts that we know how to annotate, such as tense, pronoun use, or language. To
address these limitations and enable the discovery of behavior-relevant concepts, this paper introduces
a new method for uncovering such mediating concepts from LM activations without the need for
supervision from ground-truth concept labels.

Since fully unsupervised learning is not identifiable (Hyvärinen and Pajunen, 1999; Locatello et al.,
2019)—i.e., there are infinitely many correct solutions—many practical approaches to unsupervised
learning introduce inductive biases. Sparse autoencoders (Huben et al., 2024, SAEs) seek to recover
all human-interpretable features encoded in LM activations by constraining the feature representation
to be sparse. However, SAEs require post hoc analysis both to interpret individual features (for
instance, by feeding a set of examples that activate a feature into a large language model to infer its
meaning) and to identify which features affect model behavior (for instance, by manipulating different
features, one at a time, and observing the corresponding effects on model behavior) (Bills et al., 2023;
Bricken et al., 2023; Paulo et al., 2024). Moreover, since SAEs seek to invert potentially billions of
concepts from activations, they may not be able to uniquely recover many concepts (Menon et al.,
2025). As one example, SAEs could decompose a concept (e.g., “Einstein”) into a combination of
features (such as “scientist”, “Germany”, and “famous person”) (Leask et al., 2025). Even though in
this case the decomposition is interpretable, it may make concepts harder to intervene on for causal
insights. This makes SAEs cumbersome to use for understanding targeted model behavior. In this
work, we place the interpretation of model behavior front and center, aiming to learn concepts at the
level of granularity that is directly relevant to codify the behavior under consideration.

Concretely, we learn mappings from model activations g(x) to features ẑ = τ(g(x)), so that the
learned features ẑ align with the true mediating concepts (e.g., gender and occupation in Example 1).
To arrive at an identifiable objective, we first introduce the idea of “causal differentiating concepts.”
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Put simply for now, causal differentiating concepts are the concepts whose values we must change
for any example to elicit a different model response. In Example 1, we must change the candidate’s
occupation if we want the model to change p(yes|xn) from a high to a low value. Motivated by
work on identifiable representation learning that leverages sparse effects of features on outcomes of
interest (Lachapelle et al., 2023), we make the key assumption that causal differentiating factors are
sparse—i.e., sparse changes suffice to change behavior. We encode this assumption into a constrained
contrastive learning objective that we prove recovers disentangled concepts that mediate some model
behaviors of interest.

To summarize our contributions: (1) We formalize concept discovery in settings where high-level
mediating factors are unknown. We introduce causal differentiating concepts—factors that must
change to elicit a different model behavior—and propose a sparsity assumption that enables their
identification. (2) We develop a constrained contrastive learning objective that enforces this assump-
tion and can provably recover disentangled, interpretable features. (3) We validate our method in both
controlled experiments and a real-world case study, where the underlying causal factors are unknown
and the assumption is unverifiable, demonstrating the potential of our approach in practice.

2 Problem setting

We consider the setting where a language model takes in an input sequence x ∈ X and outputs
a sequence y ∈ Y . The fine-grained responses y are categorized into m coarse-grained behavior
classes {1, . . . ,m} so that each input x is associated with a discrete behavior label c. For instance,
when studying refusal behavior in language models, all queries x to the model that elicit responses
such as “I am sorry...”, or “I cannot respond...” are mapped to the same refusal behavior class. These
categorizations of fine-grained responses y into coarse-grained behaviors can be provided entirely by
a domain expert or by clustering the next-token probabilities p(y|x) learned by the model, as with
causal feature learning (Chalupka et al., 2017).

Motivated by work on abstracting neural networks (Geiger et al., 2021, 2024a), we assume a high-
level model c = M(x) that explains the LM’s behavior c in terms of k discrete mediating concepts z,
so that c ⊥⊥ x|z. Figure 1 illustrates a high-level model for Example 1, where the model’s likelihood
of predicting yes is mediated by two latent concepts z: the gender and occupation of a candidate.

Problem. To interpret model behavior, the goal is to map model activations g(x) to k features
ẑ = τ(g(x)), via a learned encoder τ , so that the learned features ẑ align with the true mediating
concepts z (e.g., gender and occupation).

Given input-behavior pairs (x, c), it would be tempting to simply find the most activated neurons
or token embedding dimensions among examples in a given class and use these as proxies for the
mediating concepts z. However, such activations typically entangle interpretable concepts like gender
or occupation (Elhage et al., 2022; Geiger et al., 2024b). To find an alignment between activations
and concepts, Geiger et al. (2024b) propose using a fully known high-level model M(x) to supervise
the learning of τ(g(x)).

Key idea. To overcome the need to fully specify M(x), this paper proposes weaker assumptions that
we can make about high-level concepts and behaviors that drive identifiable concept learning.

3 Learning causal differentiating concepts

Our method operationalizes two assumptions that we make about the high-level model c = M(x).
The key assumption, as illustrated in Figure 1(c), says, loosely speaking, that we can change a model’s
behavior with only a sparse change to the mediating concepts z. We formalize both assumptions and
the resulting learning objective for recovering mediating features ẑ = τ(g(x)) that align with the true
underlying mediating concepts z. Crucially, we show that because of the assumptions, the mapping
τ(g(x)) becomes identifiable, meaning that the recovered ẑ features are guaranteed to correspond to
the mediating concepts z up to permutation and scaling indeterminacies.

Assumption 1. The true conditional probability of a behavior given the mediating concepts z
encoded by the high-level model c = M(x) is p(C = c|z) ∝ exp(w⊤c z). That is, the model’s
behavior c for an input x is related to the mediating latent variables z by a logit-linear function.
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This assumption, used in other works on disentangled representation learning (Ahuja et al., 2022b),
can be motivated by the structure of language models, where the final layer embedding linearly
influences next-token logit probabilities. Here, we extend such a logit-linear assumption to behaviors.

To formalize the assumption that sparse feature changes enable behavior changes, we define the
notion of interchange intervention and causal differentiating concepts. First, we define zS as a subset
of the vector z that selects elements of the set S, Ck = {x|c = k} as the set that contains inputs with
behavior label k, and xk ∈ Ck as an input in this set.

Definition 1. For two inputs xk ∈ Ck and xl ∈ Cl such that k ̸= l, an interchange intervention on
a subset of mediating concepts S ⊂ {1, . . . , d} in the high-level model is defined as MzS

k←zS
l
(xk)

where for r ∈ S, the r-th component of the high-level representation zk (associated with the input
xk) is replaced with the corresponding value from zl from xl.1

Definition 2. A set of latent mediating factors zS is defined as causal differentiating concepts
between two groups Ck and Cl if, for some inputs x that are labeled with class k, an interchange
intervention on S is both necessary and sufficient to change the behavioral label from k to l.

(Necessary condition) For any xk ∈ Ck and xl ∈ Cl, MzS′
k ←zS′

l
(xk) ̸= cl, where S̄′ ∩ S ̸= ∅

(1)
(Sufficient condition) For some xk ∈ Ck and xl ∈ Cl, MzS

k←zS
l
(xk) = cl. (2)

A latent mediating factor r is thus the 1-sparse causal differentiating concept between a pair of
group Ck and Cl if the set of causal mediating concepts between Ck and Cl is S = {r}.

Assumption 2. Every dimension zr is a 1-sparse causal differentiating concept for some pair of
groups Ck and Cl.

Corollary 1. For the groups Ck and Cl, consider a 1-sparse latent mask δkl ∈ Rd, which is a
d-dimensional vector with a nonzero value at position r corresponding to the causal differentiating
concept between the two groups and zeros elsewhere. It follows from the necessary and the sufficient
conditions of causal differentiating concepts that for some xk ∈ Ck and xl ∈ Cl, zl = zk + δkl.2

Method. To learn the mapping ẑ = τ(g(x)) from activations g(x) to interpretable concepts,
we introduce a constrained contrastive learning objective designed to satisfy the key assumptions
(Assumptions 1 and 2) about the true mediating concepts z in the high-level model M(x). We
implement ẑ = τ(g(x)) as a bottleneck layer on top of the language model’s final layer, ensuring
that the dimension of ẑ is less than the dimension of g(x).

Our objective has two components. The first ensures that this bottleneck representation extracts
information that is predictive of the labeled behavior c, using a log-linear predictor h(τ(g(x))) to
enforce Assumption 1. The bottleneck serves to filter out irrelevant factors, retaining only information
necessary for predicting c. Specifically, we minimize the categorical cross entropy loss:

min
τ,h

Ep(x,y)

[
− log h(τ(g(x)))y

]
. (3)

The second contrastive loss term satisfies Assumption 2 by using Corollary 1. Essentially, for each
pair of groups Ck and Cl, the learner guesses a 1-sparse perturbation δ̂kl and searches for a pair of
examples xi ∈ Ck and xj ∈ Cl such that ẑj = ẑi + δ̂kl. Formally, the objective is,

min
τ,δ

∑
k,l

[
min
xi∈Ck
xj∈Cl

E[||τ(g(xj))− τ(g(xi))− δ̂kl||2]
]
. (4)

Since Assumption 2 only requires that each concept zr is a 1-sparse causal differentiating concept
for at least one pair of groups, we do not expect to find a 1-sparse perturbation δ̂kl between all pairs

1Notation: We use a subscript for enumerating the sample and a superscript for enumerating the dimension.
So zi is the true latent for the ith sample and zri is the rth dimension of this latent variable.

2This is true because if δkl were nonzero in more than one position ∀xk ∈ Ck and xl ∈ Cl, the sufficiency
condition would be violated. Conversely, if δkl were zero everywhere, the necessary condition would be violated.
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of groups. However, as we show later, a disentangled solution ˆτ(g(x)) achieves a lower objective
value than an entangled solution, which generally captures fewer axis-aligned changes across pairs of
groups. In practice, we search over possible δkl and perform the inner minimization over i and j by
sampling multiple xi ∈ Ck and xj ∈ Cl. To ensure that the learned perturbations cover all mediating
concepts, we constrain spank,l(δ̂kl) = d.

We show that under the above assumptions, our method identifiably recovers interpretable causal
factors up to permutation and scaling.
Theorem 1. If the Assumption 1 holds, then the function τ̂ that satisfies Equation (3) gives us the
true latents up to an affine transformation.
Theorem 2. If Assumptions 1 and 2 hold, then the function τ̂ that satisfies Equations (3) and (4)
identifies the true latents up to permutation and scaling.

Intuitively, we get the result in Theorem 1 because of the log-linearity in the prediction function (Ahuja
et al., 2022b). For Theorem 2, we leverage the fact that for all causal differentiating concepts of
interest, by Corollary 1, there exist some pairs xi and xj that are related by a sparse latent shift,
allowing us to adapt the proof from Ahuja et al. (2022a). See the full proofs in Appendix A.

4 Experimental details

We evaluate the ability of our method to disentangle mediating concepts in settings where we have
some domain knowledge about what the desired mediating concepts are. We compare our method
to baselines without disentanglement guarantees and sparse autoencoders (SAEs), and find that our
method outperforms these related methods.

Data. We conduct our experiments in three settings: (1) synthetic data, (2) semi-synthetic data with
real text and synthetic labels, and (3) non-synthetic data with text and LM outputs.

Synthetic and semi-synthetic datasets allow us to control the ground-truth causal factors and their
influence on outcomes, enabling a precise evaluation of the ability of our proposed method to recover
the true causal factors up to permutation and scaling. The semi-synthetic data with text inputs enables
testing our method in the context of language models, assessing whether our method can isolate
causally relevant factors from the many encoded during LM pretraining. However, it is limited
to naturally occurring features in the text. Fully synthetic data offers more control: we can vary
complexity, sparsity, and the number of causal factors. Lastly, we present a case study using a dataset
with queries with different harmfulness categories and study the language model’s refusal behavior,
demonstrating how our method can be implemented and evaluated in practical, in-the-wild scenarios.

Synthetic data. For synthetic data, we consider true factors z ∼ N (µ, σ) ⊂ Rd with d = 2 and
d = 3. We relate factors z to behavior labels c, such that the resulting data satisfy Assumption 2. The
resulting behavior groups are illustrated in Table 1, with each color representing a different group.

We generate x ∈ Rn given the factor z using linear and non-linear mixing functions. Moran et al.
(2022) show identifiability up to permutation and scaling for non-linear sparse mixing functions,
where each component xj depends only on a subset of factors. We also experiment with non-linear
non-sparse mixing functions to assess whether our method yields identifiability when mapping from
factors to observations is more complex. The list of mixing functions is included in Appendix B.

Semi-synthetic data. For semi-synthetic data, we consider the data generating process described in
Example 1. We use the bios from the BiasBios dataset (De-Arteaga et al., 2019) as the textual input
x and generate an outcome y that represents, e.g., a model responding “yes" or “no" to whether or
not the candidate makes six figures. We consider two causal factors—binary gender (male/female)
and occupation level (high/medium/low). We restrict our experiments to binary gender because the
BiasBios dataset provides binary labels, which we use as the gender factor. For occupation, we
categorize the occupation associated with each bio into three categories—high income (e.g., doctors,
lawyers), medium income (e.g., nurses, accountants), and low income (e.g., paralegal, painters).3
This grouping allows us to test whether our method can recover causal factors that influence the
outcome y at the appropriate level of abstraction, rather than solely relying on the semantic cues
from the bios x.

3These groupings are derived from the U.S. Department of Labor’s Employment and Earnings by Occupation
statistics (https://www.dol.gov/agencies/wb/data/occupations).
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We simulate model behavior c such that c is mediated entirely by the true causal factors z. We
design p(y|x) so that we can derive labels for high-level model behavior c by simply clustering
p(y|x). The resulting groups are the same as in the synthetic data experiments with d = 2 (Table 1;
top). Thus, we get z1 = gender and z2 = occupation with groups {{O=High}, {O=Med, G=Male},
{O=Med, G=Female}, {O=Low}}.

Non-synthetic data. For our case study experiments, we consider refusal behavior in models. We
use a collection of harmful prompts, sampled from MALICIOUSINSTRUCT (Huang et al., 2024),
HARMBENCH (Mazeika et al., 2024), ADVBENCH (Zou et al., 2023), and TDC2023 (Mazeika et al.,
2022), harmless prompts, sampled from ALPACA (Taori et al., 2023), and pseudo-harmful prompts,
sampled from OR-BENCH (Cui et al., 2025). We use common refusal patterns in Llama-3.1-8B
model, such as “I am sorry” and “I cannot” to extract p(refusal|x). We cluster model behavior into
three classes based on p(refusal|x), which serve as the behavior classes that we aim to explain. We
train τ to obtain the aligned hidden representations z ∈ R2. Note that the model has no access to
the actual class labels of harmful, pseudo-harmful, and harmless prompts. We visualize the learned
representation z for these three prompt sets to understand what factors affect model refusal behavior.

Models. We conduct the semi-synthetic and non-synthetic experiments with three language models—
DistilBert-base (66M) (Sanh et al., 2020), Llama-3.1-8B (Touvron et al., 2023) and Qwen2-7B (Bai
et al., 2023). For synthetic data, where the input x is not text, we replace the language model encoder
with a feedforward neural network. To obtain g(x), we fit a variational autoencoder to x.

We compare our method against two baselines that use autoencoding and prediction objectives without
the contrastive constraint. The autoencoding baseline trains the bottleneck τ to reconstruct x to mimic
vanilla contrastive learning without constraints, and the prediction objective encourages discarding
irrelevant information but, crucially, both baselines are not guaranteed to identify the true mediating
concepts. Additionally, we perform detailed comparisons of our method with sparse autoencoder
baselines, discussed in Section 6. More implementation details are included in in Appendix B.

Evaluation metrics. We evaluate the effectiveness of our method at recovering the ground-truth
causal factors using the disentanglement-completeness-informativeness (DCI) metrics (Eastwood and
Williams, 2018). Briefly, disentanglement measures the extent to which a representation disentangles
the underlying factors of variation, that is, whether each feature capture at most one causal factor.
Completeness measures the extent to which each causal factor is captured by a single learned
feature. Informativeness measures the amount of information that a representation as a whole
captures about the underlying factors of variation. Thus, a rotated but disentangled representation
will have an informativeness score of 1.0. We also include the Mean Correlation Coefficient (MCC)
metric (Khemakhem et al., 2020), which computes the maximum linear correlations (accounting for
permutations in the learned representations), giving a measure of disentanglement.

5 Results

Table 1 shows a comparison between our method and the baseline methods for synthetic data. We
see that, across all data-generating functions, all methods achieve near-perfect informativeness
scores. However, as expected, the baseline methods entangle the true causal factors, leading to
low disentanglement and completeness scores. In contrast, our method achieves significantly better
disentanglement, with DCI-D scores exceeding 0.89 and MCC scores above 0.86 across all settings.

Next, Table 2 shows results on the semi-synthetic data. We find that in the semi-synthetic setting,
the autoencoding baseline shows a low informativeness scores. This is expected since textual data
contains a large amount of information, and without additional signals, the autoencoding baseline
may struggle to determine which information to retain, potentially discarding information relevant
to the true causal factors. In contrast, adding the prediction objective results in a boost in the
informativeness score across all models. However, both baselines exhibit low disentanglement and
completeness scores. In comparison, incorporating our contrastive constraint consistently improves
the disentanglement metrics (MCC and DCI-D scores) across all evaluated models.

Lastly, for our case-study experiments, since we do not have ground-truth causal factors, we instead
visualize the learned latent space for the different sets of prompts. Figure 2 shows the learned latent
space ẑ = τ(g(x)) for Llama-3.1-8B (the findings for Qwen2-7B are consistent and included in
Appendix C). Consistent with our previous analysis, we find that the autoencoding baseline is not
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Table 1: Synthetic data. (Left): Example of data with d = 2 (top) and d = 3 (bottom) latent
factors. (Right): Disentanglement (D), Completeness (C), Informativeness (I), and Mean Correlation
Coefficient (MCC) scores with latent dimension d = 2 (top; shaded) and d = 3 (bottom; unshaded).4

z1

z2

z1

z2

z3

z1

z2

z1

z2

z3

Mixing fn Method MCC D C I

Autoencoding 0.76 0.30 0.36 1.0
Autoenc+Pred 0.60 0.21 0.21 1.0Linear
Our constraints 0.99 1.0 1.0 1.0
Autoencoding 0.81 0.24 0.33 1.0
Autoenc+Pred 0.72 0.0 0.0 1.0Non-linear,

sparse Our constraints 0.91 0.97 0.97 1.0
Autoencoding 0.67 0.0 0.0 1.0
Autoenc+Pred 0.76 0.02 0.02 1.0Non-linear,

non-sparse Our constraints 0.92 0.90 0.92 1.0

Linear
Autoencoding 0.77 0.34 0.35 1.0
Autoenc+Pred 0.65 0.23 0.31 0.87
Our constraints 0.94 0.99 0.99 1.0

Non-linear,
sparse

Autoencoding 0.74 0.19 0.25 1.0
Autoenc+Pred 0.77 0.54 0.51 1.0
Our constraints 0.90 0.92 0.95 1.0

Non-linear,
non-sparse

Autoencoding 0.78 0.51 0.60 1.0
Autoenc+Pred 0.86 0.54 0.59 1.0
Our constraints 0.89 0.89 0.89 1.0

Table 2: Disentanglement (D), Completeness (C), Informativeness (I), and Mean Correlation Coeffi-
cient (MCC) scores on semi-synthetic data.4

Model Method MCC D C I

Distilbert-base
Autoencoding 0.17 0.01 0.01 0.57
Autoenc+Pred 0.32 0.18 0.20 0.85
Our constraints 0.85 0.91 0.92 0.99

Qwen2-7B
Autoencoding 0.32 0.01 0.04 0.57
Autoenc+Pred 0.69 0.06 0.06 0.83
Our constraints 0.79 0.80 0.84 0.97

Llama-3.1-8B
Autoencoding 0.06 0.0 0.0 0.49
Autoenc+Pred 0.54 0.05 0.11 0.84
Our constraints 0.81 0.86 0.88 0.98
Sparse-autoencoders 0.51 0.49 0.52 0.56

able to distinguish between different data distributions. Adding the prediction constraint for the
class labels based on p(y = refusal|x) leads to distinctive clustering of the harmful, pseudo-harmful,
and harmless prompts. However, the learned representation is not axis-aligned. For instance, the
representation for harmful and pseudo-harmful prompts differ along both latent dimensions, similarly
for pseudo-harmful and harmless prompts. In contrast, our method yields an axis-aligned latent space.
These directions can be interpreted as harmfulness (dimension 1) and topic (dimension 2).

6 Comparison to sparse autoencoders

We compare our approach to sparse autoencoders in the semi-synthetic setting. We use LlamaS-
cope (He et al., 2024), a popular resource with 256 SAEs trained on each layer and sublayer of the
Llama-3.1-8B model, with 32k and 128k features. We restrict our experiments to the residual stream
SAEs as they are reported to perform best across all metrics evaluated in the original paper, resulting
in 64 SAEs (one for each 32k and 128k feature dimension and all 32 layers of Llama-3.1-8B).

Evaluation. We perform 3 evaluations for both the 32k- and 128k-feature SAEs. First, we measure
disentanglement and informativeness for the full feature vectors, which reflect overall sparsity and
predictiveness of SAE features. Since the feature dimensionality of SAEs far exceeds the number of

4The numbers in bold indicate statistical significance at p < 0.05. Details on the analysis in Appendix B.
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layers. Solid lines indicate layer-wise scores, dashed lines denote the mean, and shaded regions
represent ±1 standard deviation. Each subplot is annotated with the maximum disentanglement score
along with its corresponding informativeness score.

ground-truth latent factors, we also train a linear classifier on the SAE features to predict c. From this,
we select the two most predictive features and compute disentanglement and informativeness scores
on this reduced 2-dimensional representation, matching the number of ground-truth latents required
to predict c. This evaluation most closely aligns with our setting, which is designed to learn features
that best predict c. Finally, we perform a ceiling evaluation by training two separate classifiers—one
for each ground-truth factor—and identifying the most predictive feature for each. We then compute
disentanglement and informativeness scores on the resulting 2-dimensional feature vector.

Results. The results for 32k-dimensional SAEs are shown in Figure 3. SAE features exhibit high
informativeness across multiple layers, with a mean and standard deviation of 0.95± 0.07. However,
disentanglement scores remain relatively low (0.58± 0.07), with a maximum of 0.68.

When considering only the two most informative features for predicting c, both informativeness
(0.57±0.02) and disentanglement scores (0.08±0.12) drop significantly. This suggests that SAEs do
not isolate the true causal factors into two distinct features. Given the low informativeness in the top-2
features analysis, we hypothesize that SAE features may be more fine-grained than the true causal
factors (Leask et al., 2025). To investigate this, we evaluate disentanglement by selecting the top-k
most informative features for predicting c such that the overall informativeness is at least 0.95. Even
under this setting, disentanglement scores remain low (0.41± 0.04) with a maximum of only 0.46.
Finally, the rightmost plot in Figure 3 shows a ceiling analysis using the most predictive features for
each of the two ground-truth causal factors. Even under this best-case feature selection, the maximum
disentanglement score observed is 0.76, which remains notably lower than the score achieved by our
method (0.86) on the Llama-3.1-8B model. The results are consistent for the 128k-dimensional SAE,
as shown in Figure 8 in the appendix.
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Beyond the empirical comparisons, we note some key differences between our method and sparse
autoencoders. Notably, SAEs do not offer a natural mechanism for identifying which of the 32k
or 128k features, across 4 activations and 1024 tokens, are relevant to a specific model behavior.
While we explore several strategies for selecting the most relevant SAE features, the process remains
non-trivial and ad hoc. Furthermore, a direct comparison is limited, as SAEs are not explicitly trained
to predict the behavior class c. However, in certain settings, such behavior-targeted interpretation
may be more valuable, which our work is designed for.

7 Sensitivity to assumptions and implementational choices

Choice of latent dimensionality. In the experiments discussed in Section 5, we fix the number
of the learned latent dimensions to that of true mediating concepts. However, the number of true
mediating concepts is unlikely to be known beforehand. To account for this, we perform additional
experiments by varying the dimensions of learned latents to assess how over-specification or under-
specification affects disentanglement metrics and whether these could be used as a signal to adjust the
specified latent dimensionality. The details of experiments and results are included in Appendix C.
We find that over-specifying latent dimensionality consistently leads to a drop in completeness scores
and under-specifying latent dimensionality consistently leads to a lower disentanglement score. These
measures can thus serve as useful signals for adjusting the latent dimensionality as a hyperparameter.

We restrict this sensitivity analysis to synthetic experiments because a parallel comparison is not
feasible in semi-synthetic and non-synthetic cases as the dimensionality of true mediating concepts
is dataset-dependent and cannot be dictated externally. We believe that the insights from synthetic
experiments can be extended to a general setting to determine latent dimensionality. Even though
non-synthetic settings lack ground-truth mediating concepts, not allowing direct evaluation of disen-
tanglement and completeness scores, the disentanglement measures can be estimated across multiple
model runs as a signal for guiding the latent dimensionality, following Duan et al. (2020).

Choice of intervention layer. In the experiments discussed in Sections 5 and 6, we apply our
constrained learning objective to the representations at the final layer of the LLM, where the linearity
assumption is most naturally satisfied. However, our method can also be applied to intermediate
layers. The proposed contrastive learning constraints (Equation (4)) are designed to disentangle
linearly mixed concepts, an assumption that may not strictly hold for intermediate representations.
Nevertheless, recent studies support the linear representation hypothesis, suggesting that latent
concepts are approximately linearly encoded in language model representations (Roeder et al., 2021;
Jiang et al., 2024; Park et al., 2024). Based on this, we hypothesize that our method can be used for
unsupervised discovery of latent concepts in the model’s internal layers. To empirically test this, we
extend our refusal case study to intermediate representations and examine whether our method can
extract relevant insights from those layers. Detailed results are included in Appendix C. Overall, we
find that our approach does not yield disentangled representations in the early layers (up to layer 9 in
the Llama-3.1-8B model), but past layer 9, the structure presented in Figure 2 starts to emerge. That
is, we observe that the harmfulness and topicality dimensions identified in our experiments can also
be disentangled in intermediate model representations.

Violation of 1-sparsity assumption. Our main theoretical and experimental results assume 1-
sparsity in causal differentiating concepts. We note that our 1-sparse assumption is more relaxed
than that of Ahuja et al. (2022a) since we do not require that every pair of clusters has only 1 causal
differentiating concept or that the pair of clusters that have 1 causal differentiating concepts are
known beforehand, rather that every zr is 1-sparse for some pair of clusters. We expect our results can
be further extended to a 2-sparse condition (or generally speaking, a p-sparse condition) following
the proof strategy as in Ahuja et al. (2022a). We include some preliminary experiments to test this in
Appendix C, indicating that our method can be extended beyond 1-sparse settings as well. However,
we leave formal extensions of our approach to p-sparse causal differentiating concepts to future work.

8 Related work

Causal representation learning. This work presents an identifiable approach to learning concepts
from observed LM activations, extending ideas from the field of causal representation learning (CRL)—
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see Yao et al. (2025) for a comprehensive overview. In brief, CRL methods enjoy identifiability
guarantees by leveraging paired datasets (Zhang et al., 2023; Ahuja et al., 2024) or samples (see
below), auxiliary labels (Roeder et al., 2021; Khemakhem et al., 2020; Rajendran et al., 2024), or
extra assumptions about the data-generating process, such as sparse decoding (Moran et al., 2022;
Gresele et al., 2021). In this paper, we take inspiration from a line of CRL works that leverage
sparsity assumptions such as sparse transitions in latent temporal models (Lachapelle et al., 2022,
2024), sparse latent perturbations across samples (Ahuja et al., 2022a; Brehmer et al., 2022; Locatello
et al., 2020; Joshi et al., 2025), or sparse dependencies between labels and features (Lachapelle et al.,
2023). Here, we introduce a new assumption on sparse causal differentiating factors, in effect finding
“pseudo” counterfactual pairs of samples x that vary sparsely in concepts.

Causal abstraction. Causal abstraction (also known as causal feature learning) aims to abstract
low-level features (microvariables) into high-level features (macrovariables) such that the causal
effect of intervention in the low-level model corresponds to the causal effect of corresponding
interventions in the high-level model (Chalupka et al., 2017; Rubenstein et al., 2017; Beckers
and Halpern, 2019; Beckers et al., 2020). Geiger et al. (2020, 2021) adapt causal abstraction for
mechanistic interpretability of neural networks by aligning neurons to high-level features in a human-
interpretable hypothesized algorithm. Since concepts are typically distributed across neurons, Geiger
et al. (2024b) propose learning alignments between concepts and LM activations, using a known
high-level causal model to supervise the learning, following Geiger et al. (2022); Wu et al. (2023).
We take inspiration from causal abstraction in this work to align concepts and LM activations, but
require weaker assumptions than assuming that the causal model is known.

Concept discovery and influence. There are a host of methods in machine learning, and language
modeling in particular, for interpreting learned concepts and assessing their influence on model
behavior. Broadly, these methods fall into two categories—(1) supervised methods, which identify
predefined concepts within model activation space, for instance, by aligning model activations with
concepts using examples labeled with predefined concepts (Koh et al., 2020), or identifying concept
directions in activation space (Kim et al., 2018; Elazar et al., 2021; Ravfogel et al., 2022a,b; Belrose
et al., 2023) using concept-conditional examples, and (2) unsupervised methods, which discover
latent structure in model activations, for instance, by clustering contextual representations (Dalvi
et al., 2022; Sajjad et al., 2022), or finding examples that highly activate a feature (and those that do
not) and feeding them into an LM to label the feature (Bills et al., 2023; Kalibhat et al., 2023).

Due to polysemanticity in language models (Elhage et al., 2022), however, individual neurons often
lack consistent semantic interpretation. To address this, sparse autoencoders disentangle features
by learning a sparse intermediate representation (Huben et al., 2024; Bricken et al., 2023), which
can again be interpreted by finding examples that highly activate a feature and feeding them into
an LLM for labeling. The effect of these features on model behavior is studied using activation
patching (Huben et al., 2024), feature clamping (Bricken et al., 2023), logit weight inspection (Bricken
et al., 2023), training linear probes (Rao et al., 2024), vocabulary projection (Gur-Arieh et al., 2025).
Unlike our approach, these methods offer post-hoc, behavior-agnostic interpretations. While valuable
for general interpretability, they do not provide insights directly tied to specific model behaviors.

9 Discussion and conclusion

In this work, we introduced a framework for learning disentangled representations of the latent
concepts that mediate a language model’s behavior. We showed theoretically and empirically that
when behavior changes are caused by sparse shifts in these mediating concepts, our proposed method
accurately recovers features that align with the true underlying concepts. This sparsity assumption is
motivated by identifiable representation learning approaches that leverage sparsity in the mappings
from latent features to labels (Lachapelle et al., 2023) or transitions in temporal data (Lachapelle et al.,
2022, 2024). While verifying whether such sparsity holds in a given dataset or model is challenging,
the disentangled concepts that we found in the case study on refusal behavior of large language models
suggest that the assumption is suited to naturally occurring data. We hope that our work can help
bridge the gap between theoretical identifiability guarantees and practical interpretability in language
models, demonstrating how assumptions like sparsity can yield meaningful and recoverable latent
structure in real-world settings. Integrating different assumptions from the identifiability literature
to expand the suite of weakly supervised LM interpretability tools and exploring the uses of our
approach for steering are all avenues for future work.
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A Proofs

We repeat the Theorems 1 and 2 here for completeness.

Theorem 1. If the Assumption 1 hold, then the function τ̂ that satisfies Equation 3 recovers the true
mediating concepts h(x) up to an invertible affine transformation, i.e., f̂(x) = Ah(x) + b for all x.

Proof. Let us write τ(g(x)) as f̂ , for simplicity. For a logistic linear predictor ĥ, the model family
can be written as

p(c|x) = exp(f̂(x)T q(c))∑m
j=1 exp(f̂(x)

T q(j))
,

where q(j) ∈ Rd is the j-th column of the linear prediction matrix. Next, based on Assumption 1,
the true posterior of the behavior group c can be written as

p(c|z) = exp(wT
c z)∑m

j=1 exp(w
T
j z)

.

The categorical cross entropy loss in objective Equation (3) is minimized when the optimal predictor
p(c|f̂(x)) matches the posterior probability p(c|z) for all the labels c and so we can write

exp(f̂(x)T q(c))∑m
j=1 exp(f̂(x)

T q(j))
=

exp(wT
c z)∑m

j=1 exp(w
T
j z)

.

Taking log on both sides, we get

f̂(x)T q(c) = wT
c z+ b, ∀c

where b is the difference of the normalization terms, and is independent of c. Writing

f̂(x)T q(0) = wT
0 z+ b

f̂(x)T q(1) = wT
1 z+ b

...
...

f̂(x)T q(m) = wT
mz+ b

we see that if m > d, we can write this as

f̂(x)L = Wz+ b

=⇒ ẑ = Az+ b′,

where the matrix L is full-rank and invertible, and the last line follows from applying L−1 on both
sides. Since W is also full-rank and invertible when m > d, the linear transformation A is also
invertible.

Theorem 2. If Assumptions 1 and 2 hold, then the function τ̂ that satisfies Equations (3) and (4)
identifies true latent up to permutation and scaling, i.e., A = DP where D is a diagonal scaling
matrix and P permutation matrix.

Proof. To show this, we follow a similar proof as Ahuja et al. (2022a). Based on Assumption 2, we
have for an r ∈ {1, 2, . . . , d}, there exists some Ck and Cl, such that r is the causal differentiating
factors between Ck and Cl. From Corollary 1, we have zj∗ = zi∗ + δkl for some xi∗ ∈ Ck and
xj∗ ∈ Cl, where δkl is a d-dimensional vector which takes a nonzero value at position r and 0
elsewhere. Or simply zj∗ = zi∗ + brer, where ei = [0, . . . , 1i, . . . , 0] is a d-dimensional identity
vector with 1 at the ith position and 0 elsewhere and br is a nonzero scalar.
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For some pair of groups Ck and Cl that are related by a 1-sparse causal differentiating factor, the
contrastive objective in Equation (4) yields a zero loss term if the learner correctly finds any of the
inputs in the set corresponding to i∗ and j∗.

Suppose the learner guesses ẑi ∈ Ck and ẑj∗ ∈ Cl, such that ẑj∗ = ẑi+ δ̂kl, where δ̂kl is the guessed
perturbation with δ̂kl = cses, such that s ∈ {1, . . . , d} and cs ̸= 0. That is, the learner guesses that
the pair of points xi and xj∗ satisfy the corollary. Our proof follows in two steps: first, considering
the case when xi is equivalent to xi∗ , that is τ(g(xi)) = τ(g(xi∗)), or simply put zi = zi∗ , and
second, considering the case when xi is not equivalent to xi∗ .

Using Theorem 1, we have

ẑj∗ = Azj∗ + b

ẑi + δ̂kl = A(zi∗ + δkl) + b

If i ≡ i∗, we can write

ẑi∗ + δ̂kl = A(zi∗ + δkl) + b

ẑi∗ + cses = A(zi∗ + brer) + b

ẑi∗ + cses = Azi∗ + brAer + b

cses = brAer
cs
br
es = Aer (5)

This implies that the rth column of A is cs
br
es. This is because the ith entry on the right side would

be the ith row of A multiplied by er. Since all values of er, except the rth one, are zero, this
multiplication would yield the ith entry on right side as Air. Therefore, Air is zero for i = 1, . . . , d,
except s.

However, the learner can attempt to enforce the sufficient condition ẑj∗ = ẑi + δ̂kl for a different
pair of points where i ̸≡ i∗ by learning a axis-misaligned (i.e., linearly entangled) solution for
ẑ = τ̂(g(x)). In this case, when i ̸≡ i∗, the necessary condition in Assumption 2 will be violated.
Essentially, if xi ∈ Ck, such that zj∗ and zi differ along δ̂kl, which is not axis-aligned, we can write
zj∗ = zj + cueu, where u ̸= r (depicted in Figure 4 (left)). If this is the case, we get

zi∗ = zj∗ + brer
zi∗ = zj + brer + cueu

A(zi∗) + b = A(zj + brer + cuAeu) + b

ẑi∗ = ẑj + brAer + cuAeu

By the necessary condition, ẑi∗ and ẑj should differ along at least s (that is, the learned causal
differentiating concept). However, if we choose zj , such that, cu = −br

Asr

Asu
, we get ⟨brAer +

cuAeu, es⟩ = 0. That is, ẑi∗ and ẑj , which lead to different behaviors, differ by a factor that is not
the guessed causal differentiating factor. This is a contradiction. Note that this contradiction does not
happen if there is no such zj ∈ Cl. This case is shown in in Figure 4 (right), where the group C1

does not contain the zj point that could induce the contradiction. In this case, however, the model
could use clusters C1 and C3 to learn the alignment for latent z2 instead.

Now, since the span of both true and guessed perturbations is d, we get d equations of the form
Equation 5, such that for every r, there is a unique j. Note that the condition does not need to
be met for all pairs of groups, but at least some pair of groups along a dimension r ∈ {1, . . . , d}.
Subsequently, applying the above argument to all column of A yields A as a permutation of an
identity matrix. Note that, even though this condition is derived for pairs of groups that have 1-sparse
causal differentiating concepts, since ẑ = Az+ b, ∀z (based on Theorem 1), if A is permutation of
identity matrix for some z, it is true for all z.

The argument in this section requires the learner to enforce sparse perturbations for pairs Ck and
Cl that actually differ by a 1-sparse causal differentiating factor. However, the learner could cheat
by attempting to enforce 1-sparse shifts between the wrong pair of groups. In the next section, we
show that by encouraging sparse shifts across all pairs of groups, the objective in Equation (4) finds
disentangled solutions.
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How does the constraint in Equation (4) enforce the correct alignment? In the previous part, we
show that if the learner enforces Equation (4) for some Ck and Cl such that r is the 1-sparse causal
differentiating concept between Ck and Cl, we will have identifiability up to permutation and scaling.
What remains is to argue that the optimization in (4) indeed drives the model to choose these correct
cluster pairs. This is based on the argument that correctly aligned axes identify strictly more pairs of
groups that satisfy the 1-sparse causal differentiating concept condition, and therefore yield a smaller
loss in Equation (4). We formalize this intuition by induction on the number of groups along a given
latent dimension.

Setup. Let us consider a case where all but one axis is misaligned, say ẑ1 instead of z1. We will
show that the number of cluster pairs that have 1-sparse causal differentiating concept as the true
latent z1 is strictly larger than along the rotated axis ẑ1. This argument then extends identically to the
remaining d− 1 dimensions.

For simplicity, we consider a two-dimensional latent space with the true coordinates (z1, z2) and
the learned latent space (ẑ1, z2). We call a pair Ck and Cl a match-pair if it has a 1-sparse causal
differentiating concept along the z1. We want to show that there are strictly more match pairs along
z1 than along ẑ1.

Base cases. We begin with the simplest case where there are only two distinct values along each
axis. There are three possible configurations of groups, as illustrated in Figure 5 In the first case, we
have two match pairs along the true axis z1: {(C1, C2), (C3, C4)}, but only one match-pair along the
rotated axis ẑ1: {(C1, C3)}. Similarly, in the second case, we have two match pairs along the true axis
z1: {(C1, C2), (C1, C3)}, but again only one match-pair along the rotated axis ẑ1: {(C1, C3)}. In
the last case, however, we have only 1 match-pair along both the true and the rotated axes: {(C2, C3)}
and (C1, C3)}, respectively. Thus, the strict inequality in the number of match pairs holds when there
are more than two match pairs along z1—that is, when the variation along z1 is sufficient to reveal
the structure of the causal differentiating concepts.

Inductive step. Next, we show that adding additional variation along the z1 axis preserves this strict
inequality. Consider the scenario depicted in Figure 6, where the shaded (yellow) region represents
groupings already included up to iteration i. Let n denote the number of discrete values taken by
z2, i.e., the number of values along the z2 axis. Let mi denote the number of match pairs identified
along the true axis z1, and m′i denote the number of match pairs identified along the misaligned axis
ẑ1 up to iteration i. By the inductive hypothesis, mi > m′i. We want to show that mi+1 > m′i+1.

When an additional group of set of groups are introduced along z1, three cases can occur:
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(1) A new group Ck is added. This group forms a new match pair with at least one existing
group for each of the n possible values along z2 (and possibly more, depending on the range
along z1). Hence, mi+1 ≥ mi + n. Along the misaligned axis ẑ1, however, the same group
can form at most n − 1 match pairs due to the rotation, so m′i+1 ≤ m′i + n − 1. Thus,
mi+1 −m′i+1 ≥ (mi −m′i) + 1 =⇒ mi+1 ≥ m′i+1.

(2) Multiple new groups are added along z1. Each behaves analogously to case (1), and the
inequality above holds again, so mi+1 ≥ m′i+1.

(3) Merged groups. One or more new observations may have similar behavior as the existing
observations, leading to merged groups (rightmost case in Figure 6). In this case, no new
match pairs are created or destroyed, so the inequality from the previous step is preserved.

Therefore, by induction, the number of match pairs along the true axis z1 are strictly greater than
along any misaligned axis ẑ1. Since the objective in Equation (4) sums the contrastive constraint
over all pairs of clusters, the alignment ẑ = τ̂(g(x)) that yields more valid match pairs (i.e., the true
disentangled alignment) achieves a strictly smaller objective value than any entangled alignment.

B Implementation details

Data. For synthetic, we generate 20,000 samples. We consider the following mixing functions for
linear, non-linear sparse, and non-linear non-sparse experiments:

d = 2

x = [2z0, 5z1, z0 + z1, 2z0 + z1,−z0 + 4z1, 3z0 − 2z1] (linear, non-sparse)

x = [z0, 2z0 + 3z20 , 4z1, 2z
2
1 + z31 , 6 sin(z0),−2 cos(z1)] (non-linear, sparse)

x = [z0z1, z0 + 3z1, z
2
0z1, z0z

3
1 , 2z0 + z1, 2z0z

2
1 ] (non-linear, non-sparse)

d = 3

x = 2z0, 5z1, 3z2, z0 + z1 + z2, 2z0 + z1 + z2,−z0 + 4z1 − 3z2, 3z0 − 2z1 + 5z2]

x = [z0, 2z1, 6z2, z0 + 3z20 , z
2
1 + 4z31 , z2 + 5z22 , z0 cos(z0), 6 sin(z1), z2 sin(z2)]

x = [z0z1z2, z0 + 3z1 + 5z2, z
2
0z1z2, z0z1z2 sin(z2), 2z0 + z1z2, 2z0z

2
1z

2
2 ]

For semi-synthetic data, we sample 20,000 bios from BiasBios dataset (De-Arteaga et al., 2019),
which is available under Apache-2.0 license. We assign the high, medium, low occupation
class based on the 1/3 and 2/3 quantile of median male salary for the respective occupation
based on the U.S. Department of Labor’s Employment and Earnings by Occupation statistics
(https://www.dol.gov/agencies/wb/data/occupations).

For non-synthetic data, we use 500 examples each from harmful, harmless, and pseudo-harmful
categories. Harmful examples are sampled uniformly from the MALICIOUSINSTRUCT (Huang et al.
(2024), CC BY-SA-4.0 License), HARMBENCH (Mazeika et al. (2024), MIT License), ADVBENCH
(Zou et al. (2023), MIT License), and TDC2023 (Mazeika et al. (2022), MIT License) datasets.
Pseudo-harmful examples are sampled from OR-BENCH-80K (Cui et al. (2025), CC BY-4.0 License).
All datasets follow a 70:15:15 train-validation-test split.
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Table 3: Compute resources for different experiments. All runtimes were consistent across our
method and the two baseline approaches.

Data setting Model Compute resources Approx. time

Synthetic Feedforward NN 4 CPU, 32 GB 20 minutes
Semi-synthetic DistilBert-base 1 GPU, 4 CPU, 32 GB 45 minutes
Semi-synthetic Qwen2-7B 4 GPU, 16 CPU, 256 GB 17 hours
Semi-synthetic Llama-3.1-8B 4 GPU, 16 CPU, 256 GB 17 hours
Non-synthetic Qwen2-7B 4 GPU, 16 CPU, 256 GB 2.25 hours
Non-synthetic Llama-3.1-8B 4 GPU, 16 CPU, 256 GB 2.25 hours

Models. In our experiments, the abstraction model M is implemented as a feed-forward network
with ReLU activations. For synthetic data, the bottleneck consists of two linear layers, with a fixed
hidden dimension of 4, except for the final layer in the bottleneck, which has the output dimensionality
of d ∈ [2, 3]. For semi-synthetic and non-synthetic data, the number of layers and dimensionality
of the bottleneck is a hyperparameter (with nlayers ∈ [2, 4, 8, 16] and hd ∈ [64, 128, 256, 512]), with
the hidden dimension of the final layers fixed to d. The predictor always consists of a single linear
layer to match the loglinear assumption.

For the experiments with synthetic data, we estimate g(x) with a feedforward neural network.
Essentially, we construct a counterpart of the language model in Figure 1 by training an encoder-
decoder model using a variational autoencoding objective. We then explain the causal factors in
g(x) by learning the alignment ẑ = τ(g(x)) using the proposed method detailed in Section 3. The
encoder-decoder model is implemented as a stack of 4 linear layers with ReLU activations, each with
a hidden size of 16.

For the contrastive constraint, we estimate the causal differentiating factor δkl by searching over the
latent dimension d. Specifically, for a xk ∈ Ck, we sample n = 5 examples from another group Cl

and define the contrastive loss as minj E[||f̂(xlj)− f̂(xk)− δ̂kl||2].

Training. We use PyTorch5 and HuggingFace Transformers6 libraries for our experiments. For
experiments with synthetic data, we train our models using the Adam optimizer and a learning rate
scheduler that reduces the learning rate when the validation loss plateaus. The model is trained for 50
epochs and the best checkpoint is selected based on the validation loss.

For semi-synthetic and non-synthetic experiments, we use the default optimizer and scheduler
provided in the Transformer training utils (AdamW and a linear learning rate scheduler). The model
is trained for 3 epochs. In the semi-synthetic setting, the number and size of layers in the bottleneck
modules are treated as hyperparameters, as detailed earlier. Hyperparameter selection is performed
with grid search using the Ray Tune library7 optimizing for disentanglement score on the validation
dataset. For the non-synthetic dataset, where the ground-truth causal factors are not known, we reuse
the best-performing hyperparameters identified in the semi-synthetic setting.

Statistical analysis. For significance testing on experiments with synthetic and semi-synthetic data,
we divide the test datasets into 5 splits. For each split, we compute the disentanglement, completeness,
informativeness, and MCC scores. Under the assumption that the average scores are approximately
normally distributed, we perform independent t-tests to assess statistical significance, with a threshold
of 0.05.

Compute resources. The experiments in this paper were conducted on machines equipped with
Tesla P100-PCIE-12GB GPUs. The resource usage along with compute time are shown in Table 3.

5https://pytorch.org/
6https://huggingface.co/docs/transformers/
7https://docs.ray.io/en/latest/index.html
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C Additional results

Case-study experiments on the Qwen2-7B model Figure 7 shows results on refusal behavior
in language model on the Qwen2-7B model. Similar to the findings on the Llama-3.1-8B model
(Figure 2), we see that the baseline method entangles the two latent dimensions, but the contrastive
constraint leads to an aligned latent space with latent dimension 1 representing the harmfulness
factor and the latent dimension 2 representing the topic factor. Notably, even though the model
behavior is defined based on p(y = refusal|x), the learned latent space neatly separates the harmful,
pseudo-harmful, and harmless prompts.

Comparison to sparse autoencoder for 128k-dimensional SAE Figure 8 presents results on
semi-synthetic dataset for the 128k-dimensional sparse autoencoder. The findings are consistent with
those observed for the 32k model, as discussed in Section 6.

Varying latent dimensions As discussed in Section 7, we perform experiments where we vary the
dimensionality of the learned latents to assess how over-specification or under-specification affect
disentanglement metrics. We consider two cases: (1) when the dimensionality of learned latents is
higher than that of true mediating concepts, and (2) when the dimensionality of learned latents is
lower than that of true mediating concepts.

In experiment 1, we construct synthetic data with the number of true mediating concepts set to 2 and
the number of learned latent concepts set to 3 and 4. We find that if we relax the span constraints
in Section 3, that is, the learned perturbations do not need to span all latent concepts, the learned
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perturbations correspond to the true causal differentiating concepts. That is, the model disregards any
extra latent(s) in learning the causal differentiating concepts, and the extra latents are solely some
function of one of the other latent variables. Thus, the model achieves a high disentanglement score,
but a lower completeness score (since more than one latent captures a true causal factor): DCI-D
0.95± 0.03 and DCI-C 0.81± 0.14 for n = 3, and DCI-D 0.94± 0.04 and DCI-C 0.76± 0.19 for
n = 4. In sum, when the model’s latent dimension is mis-specified to be larger than the true latent
dimension, we observe a degree of robustness in the performance.

With the span constraint, the learned perturbations no longer correspond to the true causal differenti-
ating concepts. This leads to degradation in disentanglement scores, alongside lower completeness
scores: DCI-D 0.64± 0.11 and DCI-C 0.81± 0.14 for n = 3 and DCI-D 0.89± 0.08 and DCI-C
0.57±0.13 for n = 4. Interestingly, the disentanglement scores are still higher than the autoencoding
(DCI-D 0.19± 0.12, DCI-C 0.24± 0.15) and autoencoding + prediction (DCI-D 0.08± 0.07, DCI-C
0.09± 0.08) baselines. But more importantly, overspecifying latent dimensionality consistently
leads to a drop in completeness scores, which can be used as a signal for reducing the latent
dimensionality as a hyperparameter.

In experiment 2, we construct synthetic data with the number of true mediating concepts set to 3 and
the number of learned latent concepts set to 2. We find that under-specifying the latent dimensionality
results in a significant drop in the disentanglement scores (0.51± 0.20). This is to be expected since
the learned latents cannot separate out the mediating concepts since there are not enough latents.
Thus, we conclude that under-specifying latent dimensionality consistently leads to a lower
disentanglement score, which can be used as a signal for increasing the latent dimensionality as
a hyperparameter.

Choice of intervention layers To empirically test the impact of applying our approach to inter-
mediate layers of LLMs instead of the last layer, we extend our refusal case study to intermediate
representations and assess whether our method can extract relevant insights from intermediate LM
layers as well. For simplicity, we consider the representation at the last token position in each layer of
the Llama-3.1-8B model. We find that in the earlier layers, our approach does not yield disentangled
representations. This is to be expected, as it has been noted before that initial LLM layers capture
surface-level encodings of the inputs. However, past layer 9, the structure presented in Figure 2
starts to emerge. That is, we observe that the harmfulness and topicality dimensions identified in our
experiments can also be disentangled in intermediate model representations. For a quantitative as-
sessment, we calculate the average unsupervised disentanglement score between the model’s internal
representations and the last layer. We observe an unsupervised disentanglement score of 0.78± 0.02
for layers 10–30 compared to 0.39± 0.20 for the first 9 layers. Interestingly, these findings align with
a recent paper (Zhao et al., 2025) that finds that harmfulness and refusal directions can be extracted
from LLM representations for Llama2-Chat-7B around layer 10. It would be interesting for future
exploration to study whether there are interesting concepts that can be extracted from intermediate
layers that are abstracted away or lost in later layers. Our method, hopefully, provides a useful tool
for such discoveries and insights.

Violation of 1-sparse assumption Even though we restrict our discussion to 1-sparsity, we expect
that our results can be extended to 2-sparse condition as well (or generally speaking, a p-sparse
condition) following the proof strategy as in Ahuja et al. (2022a). That is, if the causal differentiating
concepts are p-sparse and non-overlapping, we can expect identifiability up to permutations and
block-diagonal transforms, rather than our stronger results on identifiability up to permutations and
scaling. Further, if causal differentiating concepts are p-sparse and overlapping, we can expect that
the latents at the intersection of these blocks will be identified up to permutations and scaling.

To validate this second case in our setting, we construct synthetic data with 2-sparse causal differ-
entiating concepts for d = 3. Specifically, imagine three causal variables: occupation, gender, and
experience that determine the income prediction behavior of the model, such that the p(y|x) can be
clustered into four classes: {(Doctors/Lawyers, Male, More experience), (Doctors/Lawyers, Female,
Less experience); (Teachers/Nurses, Female, More experience), and (Teachers/Nurses, Male, Less
experience)}. We see that in this data, groups Ck and Cl have have 2 causal differentiating concepts.
For example, for behavior classes (Doctors/Lawyers, Male, More experience) and (Teachers/Nurses,
Female, More experience), the causal differentiating concepts are occupation and gender.
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We observe that our method can still disentangle the three causal factors. The average disentanglement
measures (across 5 runs) are comparable to our 1-sparse setting—DCI-D (0.95 ± 0.02), DCI-C
(0.98 ± 0.01), and DCI-I (1.0 ± 0.0). Note that we get this disentanglement because the 2-sparse
causal differentiating concepts are overlapping for different pairs of groups. This indicates that our
method can be extended beyond the 1-sparse setting following the intuition from (Ahuja et al., 2022a).
We leave more detailed explorations of these cases to future work.
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properly respected?
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We also include license information for these resources in Appendix B.
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well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any research with human subjects.
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15. Institutional review board (IRB) approvals or equivalent for research with human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: This work does not involve any crowdsourcing nor research with human
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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components. We conduct our experiments on large language models, which is appropriately
disclosed in the main paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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